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Abstract

The log-concave maximum likelihood estimator (MLE) problem answers: for a set of points
X1, ...Xn ∈ Rd, which log-concave density maximizes their likelihood? We present a charac-
terization of the log-concave MLE that leads to an algorithm with runtime poly(n, d, 1ε , r) to
compute a log-concave distribution whose log-likelihood is at most ε less than that of the MLE,
and r is parameter of the problem that is bounded by the `2 norm of the vector of log-likelihoods
the MLE evaluated at X1, ..., Xn.



1 Introduction

1.1 Motivation and Related Work

One of the central questions of both statistics and learning is recovering a distribution from samples.
Much of the work in estimation and learning focuses on parametric statistics which assumes the
data generating distribution is of a parametric form. This assumption often allows for statistically
and computationally efficient inference and learning.

Shape-constrained density estimation aims to create a middle ground between parametric statis-
tics and making no distributional assumptions. Instead of assuming the distribution is of a partic-
ular parametric form, shape-constrained density assumes the distribution has a density conforming
to a shape constraint such as log concavity.

Log-concave density estimation in high dimensions, in particular, has been studied by both the
learning and statistics communities. Cule et al. were the first to study the recovery of log-concave
densities in high dimensions [CSS10]. They showed that the log-concave maximum likelihood esti-
mator (MLE) converges asymptotically and proposed an algorithm to compute it [CSS10, CS+10].
Computational efficiency was not a focus of the work and the presented algorithm has a step which
requires computing a large triangulation. For n samples in Rd, the triangulation can be of size
O(nd/2) making it difficult to scale the algorithm to large dimensions.

Later work characterized the finite sample complexity of log-concave density estimation. First
Kim et al. showed that no method can get closer than squared Hellinger distance ε (and indirectly,

total variation distance) with Õ
(

1/ε
d+1
2

)
samples, where Õ hides logarithmic factors in 1/ε, d

[KS+16]. Later work demonstrated methods for learning log-concave distributions in total variation
and squared Hellinger distances with bounded sample complexity. First Diakonikolas et al. showed

a method that obtains sample complexity Õ
(

1/ε
d+5
2

)
with respect to total variation distance

[DKS16]. This work did not use the log-concave MLE. Carpenter et al. later showed that the
log-concave MLE is also effective for learning in squared Hellinger distance [CDSS18]. The log-

concave MLE was shown to converge to square Hellinger distance ε with Õ
(

1/ε
d+3
2

)
with high

probability, showing the log-concave MLE is nearly optimal in said metric. Both of these works are
non constructive and do not provide efficient algorithms.

However, while the line of work studying the log-concave MLE from a information-theoretic
perspective is extensive, there is little work on finding a computationally efficient algorithm for
high dimensional log-concave MLE problems. Our main contribution is a characterization of the
solution to the log-concave MLE that leads to an algorithm with polynomial dependence on the
dimension.

Theorem 1. Let p? be the solution to the log-concave MLE and l(p) be the log-likelihood of
X1, ..., Xn ∈ Rd. A distribution p such that l(p) − l(p?) ≤ ε can be computed with high proba-
bility in time poly(n, d, 1ε , r) where r bounds the `2 norm of the log-likelihoods of X1, ..., Xn under
p?.

It is important to note the magnitude of n above. In the worst case, the value of n must be

at least 1/ε
d+1
2 for the log-concave MLE to have converged information theoretically. The previous

algorithm by Cule et al. must take at least n
d
2 > 1/ε

d2

4 arithmetic operation. Our algorithm
requires at most Oε(1/ε

O(d)poly(d)) arithmetic operations where Oε hides the radius. Note that
since the previous algorithm was also a first order method, a standard analysis would have a similar
dependence on r (though no such analysis was provided).
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1.2 Overview

The key insight underlying the efficient algorithm is a new geometric characterization of the solu-
tions to the log-concave MLE. The solutions to log-concave MLE are contained within a class of
distributions known as tent distributions, whose log-likelihoods correspond to polyhedra [CSS10].
Our contribution lies in observing that while tent distributions are not an exponential family, they
“locally” retain many properties of exponential families. In fact, tent distributions can be viewed
as the union of a finite collection of exponential families that share a log-partition function. This
union preserves the following properties of the maximum likelihood geometry that makes maximum
likelihood estimation tractable:

1. The objective is convex.

2. Samples from the distributions can be used to compute unbiased estimates of the gradient of
the likelihood with respect to a natural parameterization.

Finally, we show that the solution to the log-concave MLE is a particular solution to the tent-density
maximum likelihood problem.

It is known that sample access to an exponential family leads to a simple stochastic gradient
descent based algorithm for computing maximum likelihood estimates [WJ+08]. The algorithm
maintains a distribution (from the hypothesis class) at each iteration and generates a single sample
from this distribution. The computational efficiency follows from the convexity of the the log-
likelihood function and the fact that an unbiased estimate of the gradient can be computed from a
sample of the distribution corresponding to the current iteration.

The “exponential form” of tent distributions developed in this paper retains many properties
of the exponential family. In section 2.4, we show that the exponential form of tent distribution
maximum likelihood also results in a convex optimization. In Section 2.3, we develop the notion
of the polyhedral sufficient statistic. The polyhedral sufficient statistic allows us to compute the
density of a point while only depending on the parameters through a combinatorial property of
the tent function known as the regular subdivision. Over regions of the parameter space where the
regular subdivision remains fixed, tent distributions form true exponential families. We show that
since the same log-partition function is shared across all tent distributions, samples can be used
to compute unbiased estimators of the gradient just as for exponential families. In practice this
means that the same algorithm that we would expect to use for computing the MLE for exponential
families can be used to compute the MLE for tent distributions.

However, the tent distribution MLE problem is not the same as the log-concave MLE problem.
In section 2.4, we provide a characterization of the log-concave MLE as a particular solution to
the tent distribution MLE problem. Beyond the computational implications, this characterization
also helps motivate why the log-concave MLE makes sense as a method for log-concave density
estimation. The log-concave MLE is the distribution with the uniform polyhedral sufficient statistic.

1.3 Future Directions

In this work we demonstrate:

1. A faster algorithm for computing the log-concave MLE.

2. That the machinery developed for exponential families can also be applied to a significantly
broader class of distributions.
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The geometry of exponential family maximum likelihood estimation has been extensively studied.
For example, we have natural stochastic oracles for both the gradient and Hessian of the objective
function (see e.g. [WJ+08]). Despite this, we still lack algorithms that converge faster than at a
sublinear rate. It is certainly plausible that faster algorithms exist, perhaps either of the form of a
stochastic Newton-type algorithm, or via a cutting plane method in an appropriate metric.

In this paper we show that many of the geometric properties that make exponential family
maximum likelihood optimizations tractable also extend to a more general class of distributions.
This prompts two, interrelated questions: What is the broadest class of distributions that admits
these properties? And which of the algorithmic tools developed for exponential families can be
applied to this larger class?

1.4 Preliminaries

We say that a probability density p(x) is log-concave if log p(x) is concave. The log-concave MLE
of a set of points X1, ..., Xn ∈ Rd is the log-concave density p̂(x) such that

∏
i
p̂(Xi) is maximized.

For a sigma algebra F , the total variation distance between two distributions p1, p2 is TV (p1, p2) =
1
2

∫
x
||p(x)− q(x)||dx = sup

A∈F
|p1(A)− p2(A)|. In other words if two distributions are total variation

distance at most ε, no algorithm can distinguish them via a single sample with probability better
than ε. It follows that if an algorithm that relies on n queries to a stochastic oracle, it can instead
be made to run using a stochastic oracle within total variation distance of 1

n

2
and still succeed with

probability at least 1− 1
n .

We say that a probability density f is C−isotropic if for any unit vector u:

1

C
≤
∫

(uTx)2dπf (x) ≤ C

.

The indicator function for a set X is denoted as follows: 1X(x) =

{
1 : x ∈ X
0 : x 6∈ X

. For an natural

number n, the all ones vector in Rn is denoted 1n. We say that a function f is in C∞ if it is smooth
(infinitely differential on its domain). Throughout, We let 〈x, y〉 denote the inner product between
real vectors x, y.

2 The Geometry of Tent Distributions

Our algorithm relies on a characterization of the geometry of log-concave distributions that max-
imize the likelihood of a point set. These solutions are always of a particular form, known as
tent densities. We begin by introducing exponential families and defining tent densities. We then
provide intuition for the algorithm by characterizing how tent distributions preserve the geometry
that makes exponential family maximum likelihood estimation tractable.

2.1 Exponential Families

In this section we give a brief overview of exponential families that covers just the material necessary
to understand this paper. If you are familiar with exponential families we advise you skip to section
2.2. If you are not, we recommend you read this section and reference [WJ+08] for a more complete
treatment of exponential families.
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An exponential family parameterized by θ ∈ Rk with sufficient statistic T (x), with carrier
density h measurable and non-negative is a family of probability distributions of the form:

pθ(x) = exp(〈T (x), θ〉 −A(θ))h(x)

The log-partition function A(θ) is defined to normalize the integral of the density.

A(θ) = log

∫
exp(〈T (x), θ〉)h(x)dx

It makes sense to restrict our attention to values of θ that give a valid probability density. The set
of Canonical Parameters Θ is defined such that Θ = {θ | A(θ) <∞}.

We say that an exponential family is minimal if θ1 6= θ2 implies pθ1 6= pθ2 . This is necessary
and sufficient for statistical identifiability.

We will study the geometry of maximum likelihood estimation for exponential families.
The maximum likelihood parameters θ? for a set of iid samples X1, ...Xn are:

θ? = arg max
θ

∏
i

pθ(Xi)

= arg max
θ

log
∏
i

pθ(Xi)

= arg max
θ

∑
i

〈T (Xi), θ〉 − nA(θ)−
∑
i

log h(xi)

= arg max
θ

〈
1

n

∑
i

T (Xi), θ

〉
−A(θ) (2.1)

We refer to the optimization in equation (2.1) as the exponential maximum likelihood optimization.
The last equation helps highlight why T (x) is referred to as the sufficient statistic. No other
information is needed about the data points to compute both the likelihood and the maximum
likelihood estimator.

One reason why exponential families are important is that the geometry of the optimization in
equation (2.1) has several nice properties.

Fact 1. A(θ) satisfies the following properties:

1. A(θ) ∈ C∞ on Θ.

2. A(θ) is convex.

3. If the exponential family is minimal, A(θ) is strictly convex.

4. ∇A(θ) = Ex∼p(θ)[T (x)].

While the distributions we use in this paper are not an exponential family, we will show that
the corresponding optimization retains all the properties described above except the smoothness.
These properties will be the fundamental building blocks of the efficient algorithm presented in
section 3.
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Figure 1: A 2D tent function and the corresponding tent density side by side. The two functions
are not plotted to scale.

Figure 2: An example of a tent function and its corresponding regular subdivision.

2.2 Tent Distributions

In this section we define the notation necessary to work with tent densities. Tent densities are
notable because the solution of a log-concave maximum likelihood estimation problem is always
tent density [CSS10].

We define tent functions (and, later, subdivisions) using the notation due to [RSU17]. Take
any X1, ...Xn ∈ Rd and corresponding y1, ...yn ∈ R. We refer to the matrix with columns Xi as X
and the vector with elements yi as y. The tent function hX,y : Rd → R is the pointwise smallest
concave function such that hX,y(Xi) = yi. The points (Xi, yi) are referred to as tent poles. Note
that the function h is −∞ outside of the convex hull of X1, ...Xn and its graph is a polytope. See
figure 1 for a side by side tent density and tent function. See figure 2 for the graph of an example
tent function.

When pX,y(x) = exp(hX,y(x)) integrates to one, we refer to it as a tent density and the corre-
sponding distribution as a tent distribution. The support of a tent distribution must be within the
convex hull of X1, ...Xn.

Recall that tent densities are notable because contain solutions to the log-concave MLE. Con-
sider the log-concave maximum likelihood estimation problem over X1, ...Xn. The solution is always
a tent-density because tent densities with tent poles X1, ..., Xn are the minimal log-concave func-
tions with log densities y1, ...yn at points X1, ...Xn. A function that was not a tent function would
waste density on points that would not improve the likelihood score used in the optimization.

The algorithm which we present can be thought of as an optimization over tent functions.
In section 2.3 we will show a parametric form of tent distributions that looks very similar to
an exponential family and suggests that tent distributions retain many important properties of
exponential families.
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Figure 3: Changing the height of the tent poles can change the induced regular subdivision (shown
in purple).

2.3 Exponential Families and the Polyhedral Sufficient Statistic

In this section we will compare tent distributions to exponential families by defining a sufficient
statistic that makes tent distributions “locally” exponential families. In order to define the sufficient
statistic we need to understand the regular subdivision induced by a tent function.

Given a tent function hX,y with hX,y(Xi) = yi, its associated regular subdivision ∇y of X is
a collection of subsets of X1, ...Xn ∈ Rn whose convex hulls are the regions of linearity of hX,y.
See Figure 2 for an illustration of a tent function and its regular subdivision. We refer to these
polytopes of linearity as cells. We say that δy is a regular triangulation of X if every cell is a
d−dimensional simplex.

It is helpful to think of regular subdivisions in the following way: Consider the hyperplane H in
Rd+1 obtained by fixing the last coordinate. Consider the function hX,y as a polytope and project
each face onto H. Each cell is a projection of a face, and together the cells partition the convex hull
of X1, ..., Xn. Observe that regular subdivisions may vary with y. Figure 3 provides one example
of how changing the y vector changes the regular subdivision.

For a given regular triangulation ∇, the associated consistent neighborhood N∇ is the set of all
y ∈ N , such that ∇y = ∇. That is, consistent neighborhoods are the sets of parameters where
the regular triangulation remains fixed. Note that these neighborhoods are open and their closures
cover the whole space.We note that when y is chosen in general position ∇y is always a regular
triangulation.

Consider a regular triangulation ∇. The polyhedral statistic is the function

Ty(x) : CONV HULL(X1, ...Xn)→ [0, 1]n,

that expresses x as a convex combination of corners of the cell containing x in ∇y. That is
x = XTy(x) where ||Ty(x)||1 = 1 and Ty(x)i = 0 if Xi is not a corner of the cell containing x. The
polyhedral statistic gives an alternative way of writing tent functions and tent densities:

hX,y(x) = 〈Ty(x), y〉

pX,y(x) = exp(〈Ty(x), y〉)
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If we restrict θ such that
∑
i
θi = 1 and define Ay(θ) = log

∫
x
pX,y(x)dx then we can see that for

every consistent neighborhood N∇ we have an exponential family of the form

exp (〈Tθ(x), θ〉 −A(θ)) for θ ∈ N∇. (2.2)

While equation (2.2) shows how subsets of tent distributions are exponential families, it also helps
highlight why tent distributions are not an exponential family. The sufficient statistic depends
on y through the regular subdivision. This means that tent distributions do not admit the same
factorized form as exponential families since the sufficient statistic depends on y.

Note that we can use any ordering of X1, . . . , Xn to define the polyhedral sufficient statistic
everywhere including on regular subdivisions that are not regular triangulations. Also note that
eliminating the last coordinate using the constraint 1Tnθ = 1 makes each exponential family mini-
mal. In other words, over regions where the regular subdivision does not change (for example the
consistent neighborhoods), tent distributions are minimal exponential families. This means the set
of tent distribution can be seen as the finite union of a set of minimal exponential families. We
refer to equation (2.3) as the exponential form for tent densities.

pX,y(x) = exp (〈Ty(x), y〉 −A(y))1CONV HULL(X1,...,Xn)(x). (2.3)

2.4 The Geometry of the Tent Distribution MLE

Understanding tent distributions as “almost” being an exponential family is exactly what enables
the efficient algorithm for computing the log-concave MLE.

Consider the following optimization over tent distributions for some fixed vector µ ∈ [0, 1]n, ||µ||1 =
1. Note the similarity to the exponential family maximum likelihood optimization.

θ? = arg max
θ

(〈µ, θ〉 −A(θ)) (2.4)

By definition, A(θ) = log
∫

exp(〈µ, θ〉)dx, which is, up to a linear component, exactly the
logarithm of the function σ studied in [CSS10]. We use the fact that exp(A(θ)) is convex combined
with the exponential family geometry to prove that A(θ) is convex. This allows us to prove that
the geometry of the log-partition function of tent distributions behaves, in many ways, similarly to
that of exponential families.

Theorem 2. A(θ) is convex and Ex∼pθ [T (x)] ∈ ∂θA(θ).

Please see Appendix B for a proof.
We are now able to characterize the solution to the log-concave MLE in terms of the polyhedral

sufficient statistic. Let θ̂ be the parameters of the log-concave MLE expressed in the exponential
form of tent distributions. Then

θ̂ = arg max
θ

〈
1

n

∑
i

T (Xi), θ

〉
−A(θ)

= arg max
θ

〈
1

n
1, θ

〉
−A(θ) (2.5)

That is, the log-concave MLE is the tent function with polyhedral sufficient statistic equal to 1
n1.

This means we can think of the log-concave MLE as the the tent distribution which has most
even support over its tent poles. Furthermore, we observe that since 1

T θ = 1, equation (2.5) is
equivalent to simply minimizing the log partition function.
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2.5 Tent Distributions and Geometric Combinatorics

The geometric aspect of this paper can be thought of as a continuation of the work started by in
[RSU17]. They observe that solving the log-concave MLE problem over a weighted set of samples
has a strong connection to geometric combinatorics.

They examined the relationship between the weight vector and the combinatorial structure of
the tent density maximizing the weighted likelihoods. In particular, they showed that different
values of the weight vector can induce every regular subdivision. In the context of our work, the
weight vector can be thought of as an expected value of the polyhedral statistic. Then their work can
be interpreted as studying the map from the expected value of the polyhedral sufficient statistic to
regular subdivisions. The consistent neighborhoods are exactly the dual of the preimages of regular
triangulations under this map.

Also of interest is the Samworth body studied by Robeva et al. The Samworth Body S(x) is
defined as follows:

S(X) = {y |
∫

exp(hX,y(x))dx ≤ 1}

Points on the boundary of the Samworth body correspond to tent densities. This means that
parameters of the exponential form of tent distributions are in bijection with the boundary of the
Samworth body using the following map y → y −A(y).

2.6 Algorithmic Toolkit

The algorithm presented in Section 3 requires sample access to a tent distribution. Implementing
this requires several oracles for tent distributions which are briefly describe below. Every oracle is
implemented in detail in Appendix A.

2.6.1 Relative Density Queries

The unscaled density A(y)pX,y(x) can be computed using a linear program. Recall that a tent
function is defined as the minimal concave function containing the tent poles. This means the
density value at a particular point may be computed by finding the largest value still in the convex
hull of the tent poles.

2.6.2 Polyhedral Statistic

The polyhedral statistic can also be computed using the same linear program used to compute
density queries. Instead of using the y value of the point, we use the vector used to express it as a
convex combination of tent poles. This is sufficient for y chosen in general position resulting in ∇y
being a regular triangulation.

Even when y is not chosen in general position, it is possible to modify the procedure to return
a particular polyhedral statistic. However, this is not strictly necessary for the correctness of the
algorithm we present since any valid polyhedral statistic will be a subgradient. In fact taking the
union over different ways to compute the statistic will give us a set that spans the subgradients.

2.6.3 Line-Restricted Sampling

In order to be able to generate samples from a tent distribution we will have to sample along the
tent density restricted to an arbitrary line. It turns out that restricting the tent density to a line
yields another tent distribution with at most n tent poles. We combine this with a characterization
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of the measure of pieces of a 2D tent distribution from [CD08] to create an exact sampler for this
restricted distribution.

2.6.4 Sampling from Tent Functions

In order to be able to generate samples from tent functions we use a hit and run random walk with
analysis from [LV07].

1. Choose a line uniformly at random from the current point.

2. Sample from the density restricted to this line

3. return to step 1

Making this random walk mix quickly requires finding a transformation that makes the tent
density almost isotropic (equivalent to computing its second moment). This and a complete analysis
of the random walk are presented in Appendix A.

2.6.5 Evaluating the Log-Partition Function

It is important that we use a different representation of tent distributions than used by [CSS10]. Our
representation has a strong connection to exponential families and readily admits many important
queries including the following:

1. Unscaled Density Queries

2. First and Second Moments

3. Sampling

4. Linearly-Restricted Distributions

However, for completeness, we include a method to evaluate an additive approximation of the
log-partition function. Converting from the exponential form to the representation used by Cule
et al. requires adding the log-partition function to the parameter vector.

To evaluate the log-partition function we imitate Lebesgue integration of the tent function. We
take advantage of the fact that the density is quasi-concave. We divide up the graph into thin slices
and compute the volume of each slice. Adding them up yields an approximation of the volume. We
use a property of log-concave distributions to bound the number of slices necessary to compute a
good approximation.

3 Method

Our algorithm works by applying stochastic gradient descent to the optimization in equation (2.1)
with a uniform polyhedral statistic. The stochastic gradient is computed by evaluating the polyhe-
dral statistic on a sample from the current tent function. The psuedocode is presented in 3.1. Recall
that these samples can be generated within total variation distance ε in time poly(n, d, 1ε ) using
the oracle described in Appendix A. Section 3.2 will bound the convergence rate of this stochastic
gradient descent.

9



Algorithm 1 Compute the log-concave maximum likelihood

1: function ComputeLogConcaveMLE(X1, ...Xn,m)
2: y ← 1

n1n

3: for i← 1,m do
4: η ← 1/

√
i

5: s ∼ pX,y
6: y ← y + η

(
1
n1n − Ty(s)

)
7: return y

3.1 Pseudocode

The algorithm itself is quiet simple and described in algorithm 1. Note that two steps are abstracted
away above: sampling from the tent function and computing the polyhedral sufficient statistic.
Sampling from the tent function can be done using a hit and run random walk. This is described
briefly in section 2.6 and in detail in Appendix A. The polyhedral sufficient statistic can be computed
using a linear program. This linear program is summarized in section 2.6 and described in detail
in Appendix A.

3.2 Main Analysis

In this section we prove the main theorem.

Theorem 1. Let p? be the solution to the log-concave MLE and l(p) be the log-likelihood of
X1, ..., Xn ∈ Rd. A distribution p such that l(p) − l(p?) ≤ ε can be computed with high proba-
bility in time poly(n, d, 1ε , r) where r bounds the `2 norm of the log-likelihoods of X1, ..., Xn under
p?.

Recall that algorithm 1 is simply applying stochastic gradient descent to the following function:

h(y) =

〈
1

n
1n, y

〉
−A(y)

Recall from theorem 2 that h is convex. In order to analyze the convergence rate we rely on an
analysis due to [SZ13].

Lemma 1 ([SZ13]). Suppose that F is convex with domain W, gt is the stochastic gradient at iter-
ation t, and that for some constants D,G, it holds that E[||gt||] ≤ G2 for all t, and supw,w′∈W ||w−
w′|| ≤ D Consider stochastic gradient descent with step sizes ηt = c/

√
t where c > 0 is a constant.

Then for any T > 1, it holds that

E[F (wT )− F (w?)] ≤
(
D2

c
+ cG2

)
2 + log T√

T

This allows us to prove the main theorem.

Proof. Lemma 1 captures almost everything we need. All that is left is to G and specify the
necessary total variation distances for the hit-and-run sampling.

Notice that at every point the stochastic gradient gt = 1
n1n − T (x) for some x. The norm of

said quantity, | 1n1n − T (x)| is maximized when T (x) = ei for some i. Thus E
[
1
n1n − T (x)

]
<

sup
x

∣∣ 1
n1n − T (x)

∣∣ = O(1).
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The above lets us compute the number of iterations necessary. If m iterations are necessary,
running each hit and run to total variation distance 1

m2 would mean that with probability 1
m the

stochastic gradients would be indistinguishable from the true distribution and the algorithm would
succeed with high probability. If the number of iterations is not known apriori, one could guess the
number of required iterations. If the guess is too low, the algorithm can be restarted with a factor
2 higher iteration limit. This can be repeated until the desired convergence is achieved with only a
constant factor slowdown comparing to knowing the necessary number of iterations in advance.
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A Oracle Implementations

In this appendix we give a complete description of every oracle described in Section 2.6.

A.1 Density Queries

The density pX,y(x) can be computed using the following packing linear program:

max y (A.1)

x =
∑
i

αiXi

y =
∑
i

αiyi

1 =
∑
i

αi

αi ≥ 0

The the point y? that achieves the optimum of (A.1) can be used to compute the density as
pX,y(x) = exp(y?).

A.2 Polyhedral Statistic

The Polyhedral Statistic can also be computed using linear program (A.1) by simply returning α.
Note that if the y’s are in general position there will be a unique solution to the linear program.

If the linear program does not have a unique solution and the solver return α with more than
d nonzero entries, one can simply add a constraint that forces one of the nonzero entry to be zero
and repeat the process. At every stage before a simplex is obtained there exists at one entry for
which the linear program will remain solvable.

A.3 Line-Restricted Sampling

In this section we give a method for sampling from the distribution with density proportional to
g(x) = exp(hX,y(x0 + tθ)) for x0 and θ chosen in general position.

First note that g(x) is itself a 1-dimensional unscaled tent-density. Since θ induces an order
on tent poles of h (by sorting via θTXi), g has at most n tent poles. We can compute these tent
poles and then sample exactly by computing the measure of each segment between tent poles (see
formula in [CD08]), sampling a segment, and then sampling on the distribution restricted to the
segment. The psuedocode for this process can be in Algorithm 2.
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Algorithm 2 Sample from
exp(hX,y(x0+tθ))∫
exp(hX,y(x0+tθ))dt

1: function sample(X1, ...Xn, y1, ...yn)
2: t′ ← arg min

t
x0 + tθ ∈ CONV HULL(X1, ...Xn)

3: z0 ← x0 + t′θ . z0, ...zm,m ≤ n are the tent poles of g.
4: for i← 1, n do

5: βj ←

{
1 : T (zi−1 + εθ)j > 0

0 : otherwise
for j 1, ..., n.

6: t′ ← arg max
t

zi−1 + tθ = αTXβ s.t. α ∈ [0, 1]m, ||α|| = 1.

7: zi ← zi−1 + tθ
8: if zi 6∈ int(CONV HULL(X1, ...Xn) then
9: m← i− 1

10: break
11: αi ← (||zi − zi+1||) |g(zi)−g(zi+1)|

| log g(zi)−log g(zi+1)| for i← 0,m− 1

12: j ← i with probability αi∑
i
αi

13: p1 ∼ exp(log g(xj))
14: p2 ∼ exp(log g(xj+1))
15: return p1

p1+p2
xj + p2

p1+p2
xj+1

A.4 Sampling from Tent Functions

In order to be able to generate samples from tent functions we use a hit and run random walk with
analysis in [LV07].

1. Choose a line uniformly at random from the current point.

2. Sample from the density restricted to this line

3. return to step 1

Consider a tent density f over Rd that is at most C−isotropic. Let the initial point, x0 be
drawn from a distribution at most total variation distance H from πf . Then the distribution of
the mth sample of the above random walk will be at most total variation distance ε from πf if

m ≥ O
(
C4H4n

3

ε4
ln3 2H

ε

)
However, we have no reason to believe that our tent density will be close to isotropic and we

pay a polynomial factor in C above. We alleviate this issue by “rounding” the density [LV07]. That
is we find a linear operator W that transforms the density into approximately isotropic position.

Rounding will require a level set separation oracle. The following idea will be sufficient to design
the separation oracle for the level set: identify a face of the tent function that separates the point
in question and compute it’s intersection with the plane of the level set.

Let Xi =< X1
i , ...X

d
i , yi >, and let ymax = max

i
yi be the highest log-density and Xmax the

corresponding tent pole. To compute a separating hyperplane between the a point Z and the
exp(ymax)δ level set compute the following linear program:

max t
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κ = Xmax + t(Z −Xmax)

κ =
∑
i

αiXi

1 =
∑
i

αi

αi ≥ 0 ∀i∑
i

αiyi ≥ ymax + log δ

The α vector can be used to identify a d+ 1 dimensional face of the tent function. The intersection
of that hyperplane and the hyperplane defined by setting the last coordinate to ymax+log δ provides
a separating hyperplane. Given this oracle, we can now apply the rounding algorithm [LV07].

A.5 Evaluating the Log-Partition Function

Recall the definition of A(y):

A(y) = log

∫
exp(〈T (x), y〉)dx

Let pmax be the maximum value of the unscaled tent density and hmax, its logarithm, the max of
the tent function. In this section, we approximate a Lebesgue integral of

∫
exp(〈T (x), y〉) using

slices [pmax(1− ε)i, pmax(1− ε)i+1). We will aim for a (1− ε) approximation of this volume.
First, however, we must truncate the distribution. For any log-concave density f with maximum

Mf : ∫
f(x)≤Mf exp(−z)

f(x)dx ≤ ε

2

for any z ≥ 2 log(2/ε) + d log(O(d)) due to Lemma 3.2 by [CDSS18]. This allows us to not worry
about tiny level sets since the set of points where the density is low does not contribute much to
the integral.

Now, for i ∈ N we examine the corresponding slice and level set, defined as Li = {x | hX,y(x) ≥
hmax− i log(1− ε/2)}. This is the same as examining the pmax(1− ε/2)ith level set of the unscaled

density. By the above lemma is suffices to examine i ∈
[
0, ...

⌈
−z

log(1−ε/2)

⌉]
. Note that since ε

is small (say less than 0.1), we can use the Taylor approximation of the logarithm to show that
O(poly(1/ε, d)) intervals suffice. Note that the volume of the level set can be computed with
high probability in polynomial time using the separation oracle presented earlier and a standard
volume algorithm [KLS97]. Then the lower approximation of the lesbesgue integral gives us an
approximation with a corresponding bound on its quality:

(1− ε)
∫
f(x)dx ≤ (1− ε/2)

∫
f(x)≥pmax exp(−z)

f(x)dx

≤
∑
i

V ol(Li)pmax((1− ε/2)i − (1− ε/2)i+1)

≤
∫
f(x)dx

We note that the (1− ε) multiplicative approximation of the integral gives us an ε additive approx-
imation of the log partition function.
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B Proofs

Theorem 2. A(θ) is convex and Ex∼pθ [T (x)] ∈ ∂θA(θ).

Proof. Recall that since A(θ) agrees with log-partition functions on consistent neighborhoods, so
A(θ) must be smooth and convex on the consistent neighborhoods. We also use the continuity of
A.

Now assume for the sake of contradiction that A(θ) is non-convex and there exists some θ1, θ2
s.t. A(θ1 + tθ2) is not convex. Let h denote this one dimensional function and let g = exp(h) be
the same slice of exp(A(θ)). Since the closure of the consistent neighborhoods covers the parameter
space, if h is non-convex there must be a point x at which h is non-convex. Let s1 = lim

y→x−
f ′(y)

and s1 = lim
y→x+

f ′(y). These limits must exist because A is smooth on consistent neighborhoods

and their closures cover the space. Since h is nonconvex s1 > s2.
Now consider the equivalent limits s′1, s

′
2 of g. Note that on the smooth parts of the domain

g′(x) = exp(f(x))f ′(x) so s′1 = exp(f(x))s1 and s′2 = exp(f(x))s2. Convexity of g implies that
s′1 ≤ s′2 which contradicts s1 > s2.

Now we prove the fact about the subgradients of the log-partition function. Note that since
A agrees with a log-partition function on the consistent neighborhoods, this holds immediately for
θ in general position. The complement of consistent neighborhoods is also exactly the region in
which there are multiple ways to define T . In fact, the set of valid T s spans the set of subgradients.

Compute T using any appropriate, but fixed, triangulation (i.e. such that T is d−sparse) and
let y be a direction towards the consistent neighborhood corresponding to this triangulation. Then
lim
ε→0+

∇θA(θ + εy) = Ex∼pθ [T (x)] and T (x) is a subgradient in expectation.

In other words, since the triangulation corresponds to a consistent neighborhood adjacent to
the current point, the chosen subgradient is the limit of the gradient when approaching the current
point from that consistent neighborhood.
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