Result

Let X1,...,X, € R The log-concave MLE is
the log-concave density which maximizes the like-
lihood of X;,...,X,.

Result: We present an algorithm to compute the
log-concave MLE in time poly(n, d).

At a high level, the algorithm mimicks the text-
book first order algorithm for exponential family

maximum likelihood.

Motivation

Learning Distributions:
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Figure 1:Figure source: https://mathisonian.github.io/kde/

Log-Concave Distributions:
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Log-concave MLE

e Non-parametric

e Parameter Free

e log-concavity is a

e Near-optimal sam

relatively| light assumption

ble complexity

e Previous algorithm had a n%? factor in it’s
runtime |CSS18]. Doesn’t scale to medium

dimensional regim

C.

A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via
Locally Exponential Families

Brian Axelrod?, llias Diakonikolas?, Anastasios Sidiropoulos’, Alistair Stewart*, Gregory Valiant!

!Stanford University, ZUW Madison, “University of Illinois at Chicago, *Web3 Foundation

Tent Distributions
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(a) Density (b) Log-density

Figure 2:A figure originally presented in [1] of a tent density and log-density arising in a log-concave estimation problem

e Eixp of polytope

e Solution to log-concave MLE is always tent with corners at the input points

e Fully defined by corners and their log-likelihoods

Our Algorithm Exponential Family MLE

Algorithm 1 Compute log-concave MLE Algorithm 2 Compute Exponential Family MLE

f L1 0 < Oinit
for Polynomially Many lterations do for Some lterations do

Zi ™~ Do <i ™ D6

0 < 0+ n,(;1 — Tx () 0 0+ ni(p—T(2))
end for end for

Optimization Formulation

Original Formulation: max > log pg(x;) — | pe(x)dx

New Formulation: max > log pg(x;) — nlog [ pg(x)dx

e Equivalent to minizing log [ pg(x)dx for a slightly more restrictive definition of p. Why?
e Gradient norms are O(1)

e Fasy to find initialization close to opt

e Can compute stochastic gradient in poly time

e Connection to exponential family convex program

Computing 1y g

e Let Xq,...,.X, be the corners of our tent density, and 6 be the corresponding vector of log-likelihoods
o po(y) = exp(6' Tx o(y) — A()) where Tx ¢(z) maps z to the corresponding face of the polytope, and
expresses z as the convex combination of the corners of this face.

e [Note| On regions of X where the regular subdivision remains constant, tent distributions form exponential
families!

Figure 3: Computation of T

Sampling F)

Figure 4: Computation of T

e Manually sample using the fact that level sets are polytopes with efficient membership oracles
e ULA, RHMC etc. analysis doesn’t apply directly since density is not:

e Smooth
e Strongly log-concave

e Do first and second order sampling methods work here? Open Question!

Connection To Exponential
Families

» Log-concave MLE has E[T[z]] = +1,,.

e Consider a parameter region where the faces of
the polytope don’t change (where the regular
subdivision is constant).

e Here, tent distributions are exponential families! Use
textbook alg.

e To show the proposed algorithm is correct for tent
distributions in general, we must show that the
log-partition function of tent distributions has many of
the properties we expect from exponential families. We
call distributions with these properties “locally”
exponential.

® “locally” exponential family
po(x) = exp(0' Ty(x) — A(0)) when A is convex
and E,,,|T(x)] = VoA(6)

e For these “locally” exponential families, the

same algorithmic framework applies as for

exponential families (albeit with a reduced

convergence rate)
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