A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families

Brian Axelrod 1 , Ilias Diakonikolas 2 , Anastasios Sidiropoulos 3 , Alistair Stewart 4 , Gregory Valiant 1

 1 Stanford University, 2 UW Madison, 3 University of Illinois at Chicago, 4 Web3 Foundation

Result

Let $X_1, \ldots, X_n \in \mathbb{R}^d$. The log-concave MLE is the log-concave density which maximizes the likelihood of X_1, \ldots, X_n .

Result: We present an algorithm to compute the log-concave MLE in time poly(n, d).

At a high level, the algorithm mimicks the text-book first order algorithm for exponential family maximum likelihood.

Motivation

Learning Distributions:

Given $X_1, ..., X_n \stackrel{iid}{\sim} p$, find $\hat{p} \approx p$.

Figure 1:Figure source: https://mathisonian.github.io/kde/

Log-Concave Distributions:

Normal Exponential Uniform Logistic Wishart* Gamma Laplace Chi

Chi-Square* Beta* Weibull* Extreme Va

Log-concave MLE

- Non-parametric
- Parameter Free
- log-concavity is a [relatively] light assumption
- Near-optimal sample complexity
- Previous algorithm had a $n^{d/2}$ factor in it's runtime [CSS18]. Doesn't scale to medium dimensional regime.

Tent Distributions

Figure 2:A figure originally presented in [1] of a tent density and log-density arising in a log-concave estimation problem

- Exp of polytope
- Solution to log-concave MLE is always tent with corners at the input points
- Fully defined by corners and their log-likelihoods

Our Algorithm

Algorithm 1 Compute log-concave MLE $\theta \leftarrow \frac{1}{1}$

for Polynomially Many Iterations do

 $z_i \sim p_\theta$ $\theta \leftarrow \theta + \eta_i(\frac{1}{n}1 - T_{X,\theta}(z_i))$

end for

Exponential Family MLE

Algorithm 2 Compute Exponential Family MLE

 $\theta \leftarrow \theta_{init}$ **for** Some Iterations **do**

 $\gamma \sim \gamma \gamma_0$

 $z_i \sim p_\theta$ $\theta \leftarrow \theta + \eta_i(\mu - T(z_i))$

end for

Optimization Formulation

Original Formulation: $\max_{\theta} \sum \log p_{\theta}(x_i) - \int p_{\theta}(x) dx$

New Formulation: $\max_{\theta} \sum \log p_{\theta}(x_i) - n \log \int p_{\theta}(x) dx$

- Equivalent to minizing $\log \int p_{\theta}(x) dx$ for a slightly more restrictive definition of p. Why?
- Gradient norms are O(1)
- Easy to find initialization close to opt
- Can compute stochastic gradient in poly time
- Connection to exponential family convex program

Computing $T_{X,\theta}$

- Let X_1, \ldots, X_n be the corners of our tent density, and θ be the corresponding vector of log-likelihoods
- $p_{\theta}(y) = \exp(\theta^T T_{X,\theta}(y) A(\theta))$ where $T_{X,\theta}(z)$ maps z to the corresponding face of the polytope, and expresses z as the convex combination of the corners of this face.
- ullet [Note] On regions of X where the regular subdivision remains constant, tent distributions form exponential families!

Figure 3: Computation of T

Sampling P_{θ}

Figure 4: Computation of T

- Manually sample using the fact that level sets are polytopes with efficient membership oracles
- ULA, RHMC etc. analysis doesn't apply directly since density is not:
 Smooth
- Strongly log-concave
- Do first and second order sampling methods work here? Open Question!

Connection To Exponential Families

- Log-concave MLE has $\mathbb{E}[T[x]] = \frac{1}{n}1_n$.
- Consider a parameter region where the faces of the polytope don't change (where the regular subdivision is constant).
- Here, tent distributions are exponential families! Use textbook alg.
- To show the proposed algorithm is correct for tent distributions in general, we must show that the log-partition function of tent distributions has many of the properties we expect from exponential families. We call distributions with these properties "locally" exponential.
- "locally" exponential family $p_{\theta}(x) = \exp(\theta^T T_{\theta}(x) A(\theta)) \text{ when } A \text{ is convex }$ and $E_{x \sim p_{\theta}}[T(x)] = \nabla_{\theta} A(\theta)$
- For these "locally" exponential families, the same algorithmic framework applies as for exponential families (albeit with a reduced convergence rate)

References

- [1] Madeleine Cule, Richard Samworth, and Michael Stewart.

 Maximum likelihood estimation of a multi-dimensional log-concave density.
- Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(5):545–607, 2010.
- [2] Brian Axelrod, Ilias Diakonikolas, Anastasios Sidiropoulos,
 Alistair Stewart, and Gregory Valiant.
 A polynomial time algorithm for log-concave maximum likelihood via locally exponential families.
 NeurIPS, 2019.
- [3] Madeleine Cule, Richard Samworth, et al.
 Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density.

 Electronic Journal of Statistics, 4:254–270, 2010.
- [4] Timothy Carpenter, Ilias Diakonikolas, Anastasios Sidiropoulos, and Alistair Stewart.

 Near-optimal sample complexity bounds for maximum likelihood estimation of multivariate log-concave densities. In Conference On Learning Theory, pages 1234–1262, 2018.