A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families

Brian Axelrod¹, Ilias Diakonikolas², Anastasios Sidiropoulos³, Alistair Stewart⁴, Gregory Valiant⁴

¹Stanford University, ²UW Madison, ³University of Illinois at Chicago, ⁴Web3 Foundation

Log-concave MLE

- Non-parametric
- Parameter Free
- log-concavity is a [relatively] light assumption
- Non-optimal sample complexity

Optimization Formulation

Original Formulation: \(\max_\theta \sum \log p_\theta(x_i) - f(p_\theta(x)) \)

New Formulation: \(\max_\theta \sum \log p_\theta(x_i) - n \log f(p_\theta(x)) \)

- Equivalent to minimizing \(\log f(p_\theta(x)) \) for a slightly more restrictive definition of \(p \).
- More robust to initialization and easier to implement.

Connection To Exponential Families

- Log-concave MLE has \(R^2(p') = 1 \).
- Consider a parameter region where the faces of the polytope don’t change (where the log part is constant).
- Call RLA with these properties “locally” exponential.
- “Locally” exponential family \(p(x) = \exp(\theta^T x - A(\theta)) \) when \(A(\theta) \) is convex.

References