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Result

Let X1, . . . , Xn ∈ Rd. The log-concave MLE is
the log-concave density which maximizes the like-
lihood of X1, . . . , Xn.
Result: We present an algorithm to compute the
log-concave MLE in time poly(n, d).
At a high level, the algorithm mimicks the text-
book first order algorithm for exponential family
maximum likelihood.

Motivation

Learning Distributions:
Given X1, ..., Xn

iid∼ p, find p̂ ≈ p.

Figure 1:Figure source: https://mathisonian.github.io/kde/

Log-Concave Distributions:
Normal Exponential Uniform Logistic
Wishart* Gamma Laplace Chi
Chi-Square* Beta* Weibull* Extreme Value

Log-concave MLE

•Non-parametric
•Parameter Free
• log-concavity is a [relatively] light assumption
•Near-optimal sample complexity
•Previous algorithm had a nd/2 factor in it’s
runtime [CSS18]. Doesn’t scale to medium
dimensional regime.

Tent Distributions

Figure 2:A figure originally presented in [1] of a tent density and log-density arising in a log-concave estimation problem

•Exp of polytope
•Solution to log-concave MLE is always tent with corners at the input points
•Fully defined by corners and their log-likelihoods

Our Algorithm

Algorithm 1 Compute log-concave MLE
θ ← 1

n1
for Polynomially Many Iterations do

zi ∼ pθ
θ ← θ + ηi(1

n1− TX,θ(zi))
end for

Exponential Family MLE

Algorithm 2 Compute Exponential Family MLE
θ ← θinit
for Some Iterations do

zi ∼ pθ
θ ← θ + ηi(µ− T (zi))

end for

Optimization Formulation

Original Formulation: max
θ

∑ log pθ(xi)−
∫
pθ(x)dx

New Formulation: max
θ

∑ log pθ(xi)− n log ∫
pθ(x)dx

•Equivalent to minizing log ∫
pθ(x)dx for a slightly more restrictive definition of p. Why?

•Gradient norms are O(1)
•Easy to find initialization close to opt
•Can compute stochastic gradient in poly time
•Connection to exponential family convex program

Computing TX,θ

•Let X1, . . . , Xn be the corners of our tent density, and θ be the corresponding vector of log-likelihoods
• pθ(y) = exp(θTTX,θ(y)− A(θ)) where TX,θ(z) maps z to the corresponding face of the polytope, and
expresses z as the convex combination of the corners of this face.
• [Note] On regions of X where the regular subdivision remains constant, tent distributions form exponential
families!

Figure 3: Computation of T

Sampling Pθ

Figure 4: Computation of T

•Manually sample using the fact that level sets are polytopes with efficient membership oracles
•ULA, RHMC etc. analysis doesn’t apply directly since density is not:
• Smooth
• Strongly log-concave
•Do first and second order sampling methods work here? Open Question!

Connection To Exponential
Families

•Log-concave MLE has E[T [x]] = 1
n1n.

•Consider a parameter region where the faces of
the polytope don’t change (where the regular
subdivision is constant).
•Here, tent distributions are exponential families! Use
textbook alg.
•To show the proposed algorithm is correct for tent
distributions in general, we must show that the
log-partition function of tent distributions has many of
the properties we expect from exponential families. We
call distributions with these properties “locally”
exponential.

• “locally” exponential family
pθ(x) = exp(θTTθ(x)−A(θ)) when A is convex
and Ex∼pθ[T (x)] = ∇θA(θ)
•For these “locally” exponential families, the
same algorithmic framework applies as for
exponential families (albeit with a reduced
convergence rate)
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