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Abstract

Most online optimization algorithms focus on one of two things: performing well
in adversarial settings by adapting to unknown data parameters (such as Lipschitz
constants), typically achieving O(

√
T ) regret, or performing well in stochastic

settings where they can leverage some structure in the losses (such as strong
convexity), typically achieving O(log(T )) regret. Algorithms that focus on the
former problem hitherto achieved O(

√
T ) in the stochastic setting rather than

O(log(T )). Here we introduce an online optimization algorithm that achieves
O(log4(T )) regret in a wide class of stochastic settings while gracefully degrading
to the optimal O(

√
T ) regret in adversarial settings (up to logarithmic factors).

Our algorithm does not require any prior knowledge about the data or tuning of
parameters to achieve superior performance.

1 Extending Adversarial Algorithms to Stochastic Settings

The online convex optimization (OCO) paradigm [1, 2] can be used to model a large number of
scenarios of interest, such as streaming problems, adversarial environments, or stochastic optimization.
In brief, an OCO algorithm plays T rounds of a game in which on each round the algorithm outputs
a vector wt in some convex space W , and then receives a loss function `t :W → R that is convex.
The algorithm’s objective is to minimize regret, which is the total loss of all rounds relative to w?,
the minimizer of

∑T
t=1 `t in W :

RT (w
?) =

T∑
t=1

`t(wt)− `t(w?)

OCO algorithms typically either make as few as possible assumptions about the `t while attempting
to perform well (adversarial settings), or assume that the `t have some particular structure that can
be leveraged to perform much better (stochastic settings). For the adversarial setting, the minimax
optimal regret is O(BLmax

√
T ), where B is the diameter of W and Lmax is the maximum Lipschitz

constant of the losses [3]. A wide variety of algorithms achieve this bound without prior knowledge of
one or both of B and Lmax [4, 5, 6, 7], resulting in hyperparameter-free algorithms. In the stochastic
setting, it was recently shown that for a class of problems (those satisfying the so-called Bernstein
condition), one can achieve regret O(dBLmax log(T )) where W ⊂ Rd using the METAGRAD
algorithm [8, 9]. This approach requires knowledge of the parameter Lmax.

In this paper, we extend an algorithm for the parameter-free adversarial setting [7] to the stochastic
setting, achieving both optimal regret in adversarial settings as well as logarithmic regret in a wide
class of stochastic settings, without needing to tune parameters. Our class of stochastic settings is
those for which E[∇`t(wt)] is aligned with wt − w?, quantified by a value α that increases with
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increasing alignment. We call losses in this class α-acutely convex, and show that a single quadratic
lower bound on the average loss is sufficient to ensure high α.

This paper is organized as follows. In Section 2, we provide an overview of our approach. In Section
3, we give explicit pseudo-code and prove our regret bounds for the adversarial setting. In Section
4, we formally define α-acute convexity and prove regret bounds for the acutely convex stochastic
setting. Finally, in Section 5, we give some motivating examples of acutely convex stochastic losses.
Section 6 concludes the paper.

2 Overview of Approach

Before giving the overview, we fix some notation. We assume our domain W is a closed convex
subset of a Hilbert space with 0 ∈W . We write gt to be an arbitrary subgradient of `t at wt for all
t, which we denote by gt ∈ ∂`t(wt). Lmax is the maximum Lipschitz constant of all the `t, and B
is the diameter of the space W . The norm ‖ · ‖ we use is the 2-norm: ‖w‖ =

√
w · w. We observe

that since each `t is convex, we have RT (w?) ≤
∑T
t=1 gt(wt −w?). We will make heavy use of this

inequality; every regret bound we state will in fact be an upper bound on
∑T
t=1 gt(wt −w?). Finally,

we use a compressed sum notation g1:t =
∑t
t′=1 gt′ , and we use Õ to suppress logarithmic terms in

big-Oh notation. All proofs omitted from the main text appear in the appendix.

Our algorithm works by trading off some performance in order to avoid knowledge of problem
parameters. Prior analysis of the METAGRAD algorithm [9] showed that any algorithm guaranteeing

RT (w
?) = Õ

(√∑T
t=1(gt · (wt − w?))2

)
will obtain logarithmic regret for stochastic settings

satisfying the Bernstein condition. We will instead guarantee the weaker regret bound:

RT (w
?) ≤ Õ


√√√√Lmax

T∑
t=1

‖gt‖‖wt − w?‖2

 (1)

which we will show in turn implies
√
T regret in adversarial settings and logarithmic regret for

acutely convex stochastic settings. Although (1) is weaker than the METAGRAD regret bound, we
can obtain it without prior knoweldge.

In order to come up with an algorithm that achieves the bound (1), we interpret it as the square root
of E[‖w−w?‖2], where w takes on value wt with probability proportional to ‖gt‖. This allows us to
use the bias-variance decomposition to write (1) as:

RT (w
?) ≤ Õ

‖w? − w‖√Lmax‖g‖1:T +

√√√√ T∑
t=1

Lmax‖gt‖‖wt − w‖2

 (2)

where w =
∑T

t=1 ‖gt‖wt

‖g‖1:T . Certain algorithms for unconstrained OCO can achieve RT (u) =

Õ(‖u‖Lmax

√
‖g‖1:T ) simultaneously for all u ∈ W [10, 6, 11, 7]. Thus if we knew w ahead

of time, we could translate the predictions of one such algorithm by w to abtain RT (w
?) ≤

Õ(‖w? − w‖Lmax

√
‖g‖1:T ), the bias term of (2). We do not know w, but we can estimate it

over time. Errors in the estimation procedure will cause us to incur the variance term of (2). We
implement this strategy by modifying FREEREX [7], an unconstrained OCO algorithm that does not
require prior knowledge of any parameters.

Our modification to FREEREX is very simple: we set wt = ŵt + wt−1 where ŵt is the tth output of
FREEREX, and wt−1 is (approximately) a weighted average of the previous vectors w1, . . . , wt−1
with the weight of wt equal to ‖gt‖. This wt offset can be viewed as a kind of momentum term that
accelerates us towards optimal points when the losses are stochastic (which tends to cause correlated
wt and therefore large offsets), but has very little effect when the losses are adversarial (which tends
to cause uncorrelated wt and therefore small offsets).
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3 FREEREXMOMENTUM

In this section, we explicitly describe and analyze our algorithm, FREEREXMOMENTUM, a modifica-
tion of FREEREX. FREEREX is a Follow-the-Regularized-Leader (FTRL) algorithm, which means
that for all t, there is some regularizer function ψt such that wt+1 = argminW ψt(w) + g1:t · w.
Specifically, FREEREX uses ψt =

√
5

atηt
φ(atw), where φ(w) = (‖w‖ + 1) log(‖w‖ + 1) − ‖w‖

and ηt and at are specific numbers that grow over time as specified in Algorithm 1. FREEREXMO-
MENTUM’s predictions are given by offsetting FREEREX’s predictions wt+1 by a momentum term

wt =
∑t−1

t′=1
‖gt′‖wt

1+‖g‖1:t . We accomplish this by shifting the regularizers ψt by wt, so that FREEREXMO-
MENTUM is FTRL with regularizers ψt(w − wt).

Algorithm 1 FREEREXMOMENTUM

Initialize: 1
η20
← 0, a0 ← 0, w1 ← 0, L0 ← 0, ψ(w) = (‖w‖+ 1) log(‖w‖+ 1)− ‖w‖

for t = 1 to T do
Play wt
Receive subgradient gt ∈ ∂`t(wt)
Lt ← max(Lt−1, ‖gt‖). // Lt = maxt′≤t ‖gt‖
1
η2t
← max

(
1

η2t−1
+ 2‖gt‖2, Lt‖g1:t‖

)
.

at ← max(at−1, 1/(Ltηt)
2)

wt ←
∑t−1

t′=1
‖gt′‖wt

1+‖g‖1:t

wt+1 ← argminW
[√

5φ(at(w−wt)
atηt

+ g1:t · w
]

end for

3.1 Regret Analysis

We leverage the description of FREEREXMOMENTUM in terms of shifted regularizers to prove a
regret bound of the same form as (1) in four steps:

1. From [7] Theorem 13, we bound the regret by

RT (w
?) ≤

T∑
t=1

gt · (wt − w?)

≤ ψT (w?) +
T∑
t=1

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt · (wt − w+

t+1)

+ ψ+
T (w

?)− ψT (w?) +
T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

where ψ+
t (w) ≈

√
5φ(at(w−wt−1)

atηt
is a version of ψt shifted by wt−1 instead of wt, and

w+
t+1 = argminW ψ+

t (w) + g1:tw. This breaks the regret out into two sums, one in which
we have the term ψt−1(w

+
t+1)−ψ

+
t (w

+
t+1) for which the two different functions are shifted

by the same amount, and one with the term ψ+
t (w

+
t+2)− ψt(w

+
t+2), for which the functions

are shifted differently, but the arguments are the same.
2. Because ψt−1 and ψ+

t are shifted by the same amount, the regret analysis for FREEREX
in [7] applies to the second line of the regret bound, yielding a quantity similar to ‖w? −
wT ‖

√
Lmax‖g‖1:T .

3. Next, we analyze the third line. We show that wt − wt−1 cannot be too big, and use this

observation to bound the third line with a quantity similar to
√∑T

t=1 Lmax‖gt‖(wt − wT )2.
At this point we have enough results to prove a bound of the form (2) (see Theorem 1).

4. Finally, we perform some algebraic manipulation on the bound from the first three steps to
obtain a bound of the form (1) (see Corollary 2).
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The details of Steps 1-3 procedure are in the appendix, resulting in Theorem 1, stated below. Step 4
is carried out in Corollary 2, which follows.

Theorem 1. Letψ(w) = (‖w‖+1) log(‖w‖+1)−‖w‖. SetLt = maxt′≤t ‖gt′‖, andQT = 2‖g‖1:TLmax
.

Define 1
ηt

and at as in the pseudo-code for FREEREXMOMENTUM (Algorithm 1). Then the regret of
FREEREXMOMENTUM is bounded by:

T∑
t=1

gt·(wt−w?) ≤
√
5

QT ηT
ψ(QT (w

?−wT ))+405Lmax+2LmaxB+3
Lmax

√
2Lmax√

1 + L1

B log(BaT+1)

+

√√√√2Lmax

(
‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)(

2 + log

(
1 + ‖g‖1:T
1 + ‖g1‖

))
log(BaT + 1)

Corollary 2. Under the assumptions and notation of Theorem 1, the regret of FREEREXMOMENTUM
is bounded by:

T∑
t=1

gt · (wt − w?) ≤ 2
√
5

√√√√Lmax

(
‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2BT + 1)(2 + log(T ))

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

Observe that since wt and w? are both in W , ‖w?‖ and ‖wt − w?‖ both are at most B, so that
Corollary 2 implies that FREEREXMOMENTUM achieves Õ(BLmax

√
T ) regret in the worst-case,

which is optimal up to logarithmic factors.

3.2 Efficient Implementation for L∞ Balls

A careful reader may notice that the procedure for FREEREXMOMENTUM involves computing
argminW

[√
5ψ(at(w−wt)

atηt
+ g1:t · w

]
, which may not be easy if the solution wt+1 is on the boundary

of W . When the wt+1 is not on the boundary of W , then we have a closed-form update:

wt+1 = wt −
g1:t

at‖g1:t‖

[
exp

(
ηt‖g1:t‖√

5

)
− 1

]
(3)

However, when wt+1 lies on the boundary of W , it is not clear how to compute it for general W . In
this section we offer a simple strategy for the case that W is an L∞ ball, W =

∏d
i=1[−b, b].

In this setting, we can use the standard trick (e.g. see [12]) of running a separate copy of FREEREX-
MOMENTUM for each coordinate. That is, we observe that

RT (w
?) ≤

T∑
t=1

gt · (wt − u) =
d∑
i=1

T∑
t=1

gt,i(wt,i − ui) (4)

so that if we run an independent online learning algorithm on each coordinate, using the coordinates
of the gradients gt,i as losses, then the total regret is at most the sum of the individual regrets. More
detailed pseudocode is given in Algorithm 2.

Coordinate-wise FREEREXMOMENTUM is easily implementable in time O(d) per update because
the FREEREXMOMENTUM update is easy to perform in one dimension: if the update (3) is outside
the domain [−b, b], simply set wt+1 to b or −b, whichever is closer to the unconstrained update.
Therefore, coordinate-wise FREEREXMOMENTUM can be computed in O(d) time per update.

We bound the regret of coordinate-wise FREEREXMOMENTUM using Corollary 2 and Equation (4),
resulting the following Corollary.
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Algorithm 2 Coordinate-Wise FREEREXMOMENTUM

Initialize: w1 = 0, d copies of FREEREXMOMENTUM, F1,. . . ,Fd, where each Fi uses domain
W = [−b, b].
for t = 1 to T do

Play wt, receive subgradient gt.
for i = 1 to d do

Give gt,i to Fi.
Get wt+1,i ∈ [−b, b] from Fi.

end for
end for

Corollary 3. The regret of coordinate-wise FREEREXMOMENTUM is bounded by:

T∑
t=1

gt · (wt − w?) ≤ 2
√
5

√√√√dLmax

(
d‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2Tb+ 1)(2 + log(T ))

+ 405dLmax + 2Lmaxdb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

4 Logarithmic Regret in Stochastic Problems

In this section we formally define α-acute convexity and show that FREEREXMOMENTUM achieves
logarithmic regret for α-acutely convex losses. As a warm-up, we first consider the simplest case in
which the loss functions `t are fixed, `t = ` for all t. After showing logarithmic regret for this case,
we will then generalize to more complicated stochastic settings.

Intuitively, an acutely convex loss function ` is one for which the gradient gt is aligned with the
vector wt − w? where w? = argmin `, as defined below.
Definition 4. A convex function ` is α-acutely convex on a set W if ` has a global minimum at some
w? ∈W and for all w ∈W , for all subgradients g ∈ ∂`(w), we have

g · (w − w?) ≥ α‖g‖‖w − w?‖2

With this definition in hand, we can show logarithmic regret in the case where `t = ` for all t for
some α-acutely convex function `. From Corollary 2, with w? = argmin `, we have

T∑
t=1

gt · (wt − w?) ≤ Õ


√√√√Lmax

(
‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)

≤ Õ


√√√√Lmax

(
‖w?‖+ 1

α

T∑
t=1

gt · (w? − wt)

) (5)

Where the Õ notation suppresses terms whose dependence on T is at most O(log2(T )). Now we
need a small Proposition:
Proposition 5. If a, b, c and d are non-negative constants such that

x ≤ a
√
bx+ c+ d

Then

x ≤ 4a2b+ 2a
√
c+ 2d

Applying Proposition 5 to Equation (5) with x =
∑T
t=1 gt · (wt − w?) yields

RT (u) ≤ Õ
(
Lmax‖w?‖

α

)
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where the Õ again suppresses logarithmic terms, now with dependence on T at most O(log4(T )).

Having shown that FREEREXMOMENTUM achieves logarithmic regret on fixed α-acutely convex
losses, we now generalize to stochastic losses. In order to do this we will necessarily have to
make some assumptions about the process generating the stochastic losses. We encapsulate these
assumptions in a stochastic version of α-acute convexity, given below.
Definition 6. Suppose for all t, gt is such that E[gt|g1, . . . gt−1] ∈ ∂`(wt) for some convex function
` with minimum at w?. Then we say gt is α-acutely convex in expectation if:

E[gt] · (wt − w?) ≥ αE[‖gt‖‖wt − w?‖2]
where all expectations are conditioned on g1, . . . , gt−1.

Using this definition, a fairly straightforward calculation gives us the following result.
Theorem 7. Suppose gt is α-acutely convex in expectation and gt is bounded ‖gt‖ ≤ Lmax with
probability 1. Then FREEREXMOMENTUM achieves expected regret:

E[RT (w?)] ≤ Õ
(
Lmax‖w?‖

α

)
Proof. Throughout this proof, all expectations are conditioned on prior subgradients. By Corollary 2
and Jensen’s inequality we have

E

[
T∑
t=1

gt · (wt − w?)

]
≤ E

[
405Lmax + 2LmaxB + 3

Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

+2
√
5

√√√√Lmax

(
‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2TB + 1)(2 + log(T ))


≤ 405Lmax + 2LmaxB + 3

Lmax

√
2Lmax√
δ

B log(2BT + 1)

+ 2
√
5

√√√√Lmax

(
‖w?‖2 +

T∑
t=1

E[‖gt‖‖w? − wt‖2]

)
log(2TB + 1)(2 + log(T ))

≤ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√
δ

B log(2BT + 1)

+ 2
√
5

√√√√Lmax

(
‖w?‖2 + 1

α

T∑
t=1

E[gt · (wt − w?)]

)
log(2TB + 1)(2 + log(T ))

Set R = E
[∑T

t=1 gt(wt − w?)
]
. Then we have shown

R ≤ 2
√
5

√
Lmax

(
‖w?‖2 + R

α

)
log(2TB + 1)(2 + log(T ))

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√
δ

B log(BT + 1)

= Õ

[√
Lmax

(
‖w?‖2 + R

α

)]
And now we use Proposition 5 to conclude:

T∑
t=1

E[gt · (wt − w?)] = Õ

(
Lmax‖w?‖

α

)
as desired, where again Õ hides at most a O(log4(T )) dependence on T .

Exactly the same argument with an extra factor of d applies to the regret of FREEREXMOMENTUM
with coordinate-wise updates.
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5 Examples of α-acute convexity in expectation

In this section, we show that α-acute convexity in expectation is a condition that arises in practice,
justifying the relevance of our logarithmic regret bounds. To do this, we show that a quadratic lower
bound on the expected loss implies α-acute convexity, demonstrating acutely convexity is a weaker
condition than strong convexity.

Proposition 8. Suppose E[gt|g1, . . . , gt−1] ∈ ∂`(wt) for some convex ` such that for some µ > 0
and w? = argmin `, `(w) − `(w?) ≥ µ

2 ‖w − w
?‖2 for all w ∈ W . Suppose ‖g‖ ≤ Lmax with

probability 1. Then gt is µ
2Lmax

-acutely convex in expectation.

Proof. By convexity and the hypothesis of the proposition: E[gt] · (wt − w?) ≥ `(wt)− `(w?) ≥
µ
2 ‖wt − w

?‖2 ≥ µ
2Lmax

E[‖gt‖‖wt − w?‖2

With Proposition 8, we see that FREEREXMOMENTUM obtains logarithmic regret for any loss that is
larger than a quadratic, without requiring knowledge of the parameter µ or the Lipschitz bound Lmax.
Further, this result requires only the expected loss ` = E[`t] to have a quadratic lower bound - the
individual losses `t themselves need not do so.

The boundedness of W makes it surprisingly easy to have a quadratic lower bound. Although a
quadratic lower bound for a function ` is easily implied by strong convexity, the quadratic lower
bound is a significantly weaker condition. For example, since W has diameter B, ‖w‖ ≥ 1

B ‖w‖
2

and so the absolute value is 1
B -acutely convex, but not strongly convex. The following Proposition

shows that existence of a quadratic lower bound is actually a local condition; so long as the expected
loss ` has a quadratic lower bound in a neighborhood of w?, it must do so over the entire space W :

Proposition 9. Supppose ` : W → R is a convex function such that `(w)− `(w?) ≥ µ
2 ‖w − w

?‖
for all w with ‖w − w?‖ ≤ r. Then `(w)− `(w?) ≥ min

(
µr
2B ,

µ
2

)
‖w − w?‖2 for all w ∈W .

Proof. We translate by w? to assume without loss of generality that w? = 0. Then the statement
is clear for ‖w‖ ≤ r. By convexity, `(w) − `(w?) ≥ ‖w‖

r

[
`
(
rw
‖w‖

)
− `(w?)

]
≥ µr

2 ‖w‖ ≥
µr
2B ‖w‖

2.

Finally, we provide a simple motivating example of an interesting problem we can solve with an
α-acutely convex loss that is not strongly convex: computing the median.

Proposition 10. Let W = [a, b], and `t(w) = |w−xt| where each xt is drawn i.i.d. from some fixed
distribution with a continuous cumulative distribution function D, and assume D(x?) = 1

2 . Further,
suppose |2D(w) − 1| ≥ F |w − x?| for all |w − x?| ≤ G. Suppose gt = `′t(wt) for wt 6= xt and

gt = ±1 with equal probability if wt = xt. Then gt is min
(
FG
b−a , F

)
-acutely convex in expectation.

Proof. By a little calculation, E[gt] = `′(wt) = 2D(wt) − 1, and E[|gt|] = 1. Since `′(x?) = 0,
w? = x? (the median). For |wt − x?| ≥ G, we have |2D(w)− 1| ≥ FG, which gives E[gt] · (wt −
w?) ≥ FG

b−a E[|gt|](wt−w
?)2. For |wt−x?| ≤ G, we have E[gt] ·(wt−w?) ≥ F E[|gt|](wt−w?)2,

so that gt is min
(
FG
b−a , F

)
-acutely convex in expectation.

Proposition 10 shows that we can obtain low regret for an interesting stochastic problem without
curvature. The condition on the cumulative distribution function D is asking only that there be
positive density in a neighborhood of the median; it would be satisfied if D′(w) ≥ F for |w| ≤ G.

If the expected loss ` is µ-strongly convex, we can apply Proposition 8 to see that ` is µ/2-aligned,
and then use Theorem 7 to obtain a regret of Õ(Lmax‖w?‖/µ). This is different from the usual regret
bound of Õ(L2

max/µ) obtained by Online Newton Step [13], which is due to an inefficiency in using
the wearker α-alignment condition. Instead, arguing from the regret bound of Corollary 2 directly,
we can recover the optimal regret bound:
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Corollary 11. Suppose each `t is an independent random variable with E[`t] = ` for some µ-strongly
convex ` with minimum at w?. Then the expected regret of FREEREXMOMENTUM satisfies

E

[
T∑
t=1

`(wt)− `(w∗)

]
≤ Õ(L2

max/µ)

Where the Õ hides terms that are logarithmic in TB.

Proof. From strong-convexity, we have

‖wt − w?‖2 ≤
2

µ
(`(wt)− `(w?))

Therefore applying Corollary 2 we have

E[RT (w?)] = E

[
T∑
t=1

`(wt)− `(w∗)

]
≤ Õ


√√√√L2

max E[
T∑
t=1

‖wt − w?‖2]


≤ Õ(

√
L2
max E[RT (w?)])

So that applying Proposition 5 we obtain the desired result.

As a result of Corollary 11, we see that FREEREXMOMENTUM obtains logarithmic regret for α-
aligned problems and also obtains the optimal (up to log factors) regret bound for µ-strongly-convex
problems, all without requiring any knowledge of the parameters α or µ. This stands in contrast to
prior algorithms that adapt to user-supplied curvature information such as Adaptive Gradient Descent
[14] or (A,B)-prod [15].

6 Conclusions and Open Problems

We have presented an algorithm, FREEREXMOMENTUM, that achieves both Õ(BLmax

√
T ) regret in

adversarial settings and Õ
(
LmaxB
α

)
regret in α-acutely convex stochastic settings without requiring

any prior information about any parameters. We further showed that a quadratic lower bound on
the expected loss implies acute convexity, so that while strong-convexity is sufficient for acute
convexity, other important loss families such as the absolute loss may also be acutely convex. Since
FREEREXMOMENTUM does not require prior information about any problem parameters, it does not
require any hyperparameter tuning to be assured of good convergence. Therefore, the user need not
actually know whether a particular problem is adversarial or acutely convex and stochastic, or really
much of anything at all about the problem, in order to use FREEREXMOMENTUM.

There are still many interesting open questions in this area. First, we would like to find an efficient
way to implement the FREEREXMOMENTUM algorithm or some variant directly, without appealing
to coordinate-wise updates. This would enable us to remove the factor of d we incur by using
coordinate-wise updates. Second, our modification to FREEREX is extremely simple and intuitive,
but our analysis makes use of some of the internal logic of FREEREX. It is possible, however, that
any algorithm with sufficiently low regret can be modified in a similar way to achieve our results.
Finally, we observe that while log4(T ) is much better than

√
T asymptotically, it turns out that

log4(T ) >
√
T for T < 1011, which casts the practical relevance of our logarithmic bounds in doubt.

Therefore we hope that this work serves as a starting point for either new analysis or algorithm design
that further simplifies and improves regret bounds.
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A Theorems from Literature

In this section we reproduce here some previous theorems and notation for reference.

A.1 Follow-the-Regularized-Leader

The Follow-the-Regularized-Leader (FTRL) framework for online optimization suggests choosing wt+1 accord-
ing to the rule:

wt+1 = argmin
W

g1:t · w + ψt(w)

where ψt(w) is a function chosen by the algorithm called a regularizer. We use the following bound on the
regret of FTRL, which is proved in [7]:

Theorem 12. Let gt, . . . , gT be an arbitrary sequence of subgradients. Define g0 = 0 for notational conve-
nience. Let ψ0, ψ1, . . . , ψT−1 be a sequence of regularizer functions, such that ψt is chosen without knowledge
of gt+1, . . . , gT . Let ψ+

1 , . . . , ψ
+
T be an arbitrary sequences of regularizer functions (possibly chosen with

knowledge of the full subgradient sequence). Define w1, . . . , wT to be the outputs of FTRL with regularizers ψt:
wt+1 = argminψt(w) + g1:t · w, and define w+

t for t = 2, . . . , T + 1 by w+
t+1 = argminψ+

t (w) + g1:t · w
Then FTRL with regularizers ψt obtains regret

T∑
t=1

gt · (wt − u) ≤ ψ+
T (u)− ψ0(w

+
2 ) +

T∑
t=1

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt · (wt − w+

t+1)

+

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

In the next subsection we recall the notion of an adaptive regularizer [7], which is a function ψ whose properties
make it an easy building block for FTRL regularizers ψt. The analysis of FREEREXMOMENTUM is based upon
the observation that its regularizers are constructed using an adaptive regularizer.

A.2 Adaptive Regularizers

Before defining adaptive regularizers, we briefly introduce a minor generalization of strong-convexity below:

Definition 13. Let W be a convex space and let σ : W 2 → R by an arbitrary function. We say a convex
function f :W → R is σ(·, ·)-strongly convex with respect to a norm ‖ · ‖ if for all x, y ∈W and g ∈ ∂f(x)
we have

f(y) ≥ f(x) + g · (y − x) + min(σ(x), σ(y))

2
‖x− y‖2

We will exclusively make use of the special case σ(w, z) = min(σ(w), σ(z)), and we will write σ-strongly
convex instead of σ(·)-strongly convex in all cases. Next we give the definition of adaptive regularizers:

Definition 14. Any differentiable function ψ : W → R is called a (σ, ‖ · ‖)-adaptive regularizer if it that
satisfies the following conditions:

1. ψ(0) = 0.

2. ψ(x) is σ-strongly-convex with respect to some norm ‖ · ‖ for some σ :W → R such that ‖x‖ ≥ ‖y‖
implies σ(x) ≤ σ(y).

3. For any C, there exists a B such that ψ(x)σ(x) ≥ C for all ‖x‖ ≥ B.

Associated to every adaptive regularizer ψ, we define the function h(w) = ψ(w)σ(w), and define h−1(x) =
maxh(x)≤x ‖x‖

Finally, we provide a general construction that converts an adaptive regularizer into a sequence of regularizers
ψt used in FTRL (and in particular in FREEREXMOMENTUM). In the following we make use of the dual norm
‖ · ‖?, which is defined by ‖x‖? = sup‖y‖=1 x · y.
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Definition 15. Let ‖ · ‖ be a norm and ‖ · ‖? be the dual norm (‖x‖? = sup‖y‖=1 x · y). Let g1, . . . , gT be a
sequence of subgradients and set Lt = maxt′≤t ‖gt‖?. Define the sequences 1

ηt
and at recursively by:

1

η20
= 0

1

η2t
= max

(
1

η2t−1

+ 2‖gt‖2?, Lt‖g1:t‖?
)

a1 =
1

(L1η1)2

at = max

(
at−1,

1

(Ltηt)2

)
Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and k > 0. Let w1, . . . , wT be an arbitrary sequence of vectors.
Define

ψt(w) =
k

ηtat
ψ(at(w − wt))

wt+1 = argmin
w∈W

ψt(w) + g1:t · w

In order to use Theorem 12, we’ll need do define some “shadow regularizers” ψ+
t , which we do below:

Definition 16. Given a norm ‖ · ‖ and a sequence of subgradients g1, . . . , gT , define Lt and 1
ηt

as in Definition
15, and define L0 = L1. We define 1

η+t
recursively by:

1

η+0
=

1

η0

1

(η+t )
2
= max

(
1

η2t−1

+ 2‖gt‖?min(‖gt‖?, Lt−1), Lt−1‖g1:t‖?
)

Further, given a k ≥ 1 and a non-decreasing sequence of positive numbers at, define ψ+
t by:

ψ+
t (w) =

k

η+t at−1

ψ(at−1(w − wt−1))

w+
t+1 = argmin

w∈W
ψ+
t (w) + g1:t · w

The following is the key technical Lemma from [7]. That paper does not take into account the “shifting”
parameter wt and so technically the Lemma as proven there does not apply. However, by applying the change-
of-coordinates w 7→ w − wt−1 we see that the “shifting” does not effect the conclusion.

Lemma 17. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and g1, . . . , gT is an arbitrary sequence of sub-
gradients (possibly chosen adaptively). We use the regularizers of Definition 15. Recall that we define
h(w) = ψ(w)σ(w) and h−1(x) = argmaxh(w)≤x ‖w‖. Define

σmin = inf
‖w‖≤h−1(10/k2)

kσ(w)

and

D = 2max
t

h−1
(
5 Lt
kLt−1

)
at−1

Then

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt(wt − w+

t+1)

≤

{
‖gt‖?min(D,maxt(‖wt − w+

t+1‖)) when ‖gt‖ > 2Lt−1

3‖gt‖2?η
+
t

at−1σmin
otherwise

We copy over four final Lemmas from [7] that we include here for reference:

Proposition 18. Suppose ψ :W → R is a (σ, ‖ · ‖)-adaptive regularizer. Then ψ(aw)
a

is an increasing function
of a for all a > 0 for all w ∈W .
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Lemma 19. Let αt be defined by

α0 =
1

(L1η1)2

αt = max

(
αt−1,

1

(Ltηt)2

)
Then

2(‖g‖?)1:t
Lt

≥ at ≥
2(‖g‖2?)1:t

L2
t

Lemma 20. 1. ∑
t| ‖gt‖?≤2Lt−1

‖gt‖2?η+t ≤
2

η+T

2. Suppose αt is defined by

α0 =
1

(L1η1)2

αt = max

(
αt−1,

1

(Ltηt)2

)
then ∑

t| ‖gt‖?≤2Lt−1

‖gt‖2?
η+t
αt−1

≤ 15Lmax

Lemma 21. Let a1, . . . , aM be a sequence of non-negative numbers such that ai+1 ≥ 2ai. Then
M∑
i=1

ai ≤ 2aM

B Proof of Main Theorem

B.1 Proposition 5

First, we prove the simple Proposition 5, restated below for reference:
Proposition 5. If a, b, c and d are non-negative constants such that

x ≤ a
√
bx+ c+ d

Then
x ≤ 4a2b+ 2a

√
c+ 2d

Proof. Suppose x ≥ 2d. Then we have
x

2
≤ a
√
bx+ c

x2 ≤ 4a2bx+ 4a2c

Now we use the quadratic formula to obtain

x ≤ 4a2b

2
+

√
16a4b2 + 16a2c

2

≤ 4a2b+ 2a
√
c

Since we assumed x ≥ 2d to obtain this bound, we conclude that x is at most the maximum of 4a2b+ 2a
√
c

and 2d, which is bounded by their sum.

B.2 Proof of Theorem 1

Our strategy is based on the observation that FREEREXMOMENTUM is FTRL with regularizers ψt(w) =
k

atηt
φ(at‖w − wt‖) for φ(x) = (x+ 1) log(x+ 1)− x and k =

√
5, as can be easily verified by inspection

of the updates. We will derive results for the case of arbitrary k and wt =
∑t

t′=1
‖gt‖wt

δ+‖g‖1:t
for arbitrary δ, and then

substitute k =
√
5 and δ = 1 at the end to derive the bound for FREEREXMOMENTUM. We think this strategy

clarifies the roles of the constants in the regret bound.

The following Theorem is nearly identical to the result in [7], but is very slightly generalized to our purposes:
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Theorem 22. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and g1, . . . , gT is some arbitrary sequence of
subgradients.

Set
σmin = inf

‖w‖≤h−1(10/k2)
kσ(w)

D = max
t

max

(
L2
t−1

(‖g‖2?)1:t−1
h−1

(
5Lt

k2Lt−1

)
, ‖wt − w+

t+1‖
)

QT = 2
‖g‖1:T
Lmax

Then FTRL with regularizers ψt achieves regret

RT (u) ≤
k

QT ηT
ψ(QT (u− wT )) +

45Lmax

σmin
+ 2LmaxD + ψ+

T (u)− ψT (u) +
T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

Proof. Using Theorem 12 and Lemma 17, our regret is bounded by

RT (u) ≤ ψT (u) +
T∑
t=1

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt(wt − w+

t+1)

+ ψ+
T (u)− ψT (u) +

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

≤ ψT (u) +
T∑
t=1

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt(wt − w+

t+1)

+ ψ+
T (u)− ψT (u) +

T∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

≤ ψT (u) +
∑

‖gt‖?≤2Lt−1

3‖gt‖2η+t
at−1σmin

+
∑

‖gt‖?>2Lt−1

‖gt‖?D′

+ ψ+
T (u)− ψT (u) +

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

where D′ is defined by

D′ = 2max
t

h−1
(
5 Lt
kLt−1

)
at−1

Now we use Lemma 19 to conclude that

D′ ≤ D = max
t

L2
t−1

(‖g‖2?)1:t−1
h−1

(
5

Lt
kLt−1

)
so that we have

RT (u) ≤ ψT (u) +
∑

‖gt‖?≤2Lt−1

3‖gt‖2η+t
at−1σmin

+
∑

‖gt‖?>2Lt−1

‖gt‖?D

+ ψ+
T (u)− ψT (u) +

T∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

Now using Lemma 20 we can simplify this to

RT (u) ≤
k

aT η
+
T

ψ(aTu) +
45Lmax

σmin
+

∑
‖gt‖?>2Lt−1

‖gt‖?D

+ ψ+
T (u)− ψT (u) +

T∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)
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Next, observe that each value of ‖gt‖? in the sum
∑
‖gt‖?>2Lt−1

‖gt‖?D is at least twice the previous value,
so that by Lemma 21 we conclude

RT (u) ≤
k

aT η
+
T

ψ(aTu) +
45Lmax

σmin
+ 2LmaxD

+ ψ+
T (u)− ψT (u) +

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

Finally, we observe that (by Lemma 19), aT ≤ 2 ‖g‖1:T
LT

= QT , which gives the first inequality in the Theorem
statement.

We need the next theorem to convert 45Lmax
σmin

to 405Lmax:

Lemma 23. Suppose ψ(w) = ((‖w‖+ 1) log(‖w‖+ 1)− ‖w‖). Then ψ is a ( 1
‖·‖+1

, ‖ · ‖)-adaptive regular-

izer. Using the terminology of Theorem 22, for k =
√
5, 45Lmax

σmin
≤ 405Lmax.

Proof. The fact that ψ is an adaptive regularizer is proved in [7] Proposition 9. For the second statement, we
have

45Lmax

σmin
=

45Lmax

inf‖w‖≤h−1(10/k2) kσ(w)

= sup
‖w‖≤h−1(10/k2)

45Lmax(‖w‖+ 1)

k

=
45Lmax(h

−1(10/k2) + 1)

k

Now it remains to compute an expression for h−1. First we compute a bound on h:

h(w) =

(
log(‖w‖+ 1)− ‖w‖

‖w‖+ 1

)
≥ log(‖w‖+ 1)− 1

so that

h−1(x/k2) ≤ exp(x/k2 + 1)− 1

Now we numerically evaluate 45Lmax
σmin

= 45Lmax(h
−1(10/k2)+1)
k

using k =
√
5 to conclude the desired

bound.

So now we go to work to bound ψ+
T (u)− ψT (u) +

∑T−1
t=1 ψ+

t (w
+
t+2)− ψt(w

+
t+2).

Lemma 24. For any increasing sequence of numbers {xt},
T∑
t=1

xt − xt−1

xt
≤ log

(
xT
x1

)

Proof. By concavity of log, we have

log(xt)− log(xt−1) ≥
xt − xt−1

xt

from which the result easily follows by telescoping a sum.

Lemma 25. Suppose {xt} and {σt} are non-negative real numbers such that
√
xtσt ≥

√
xt−1σt−1 for all t.

Then
T∑
t=1

(xt − xt−1)σt√
xt

≤
√
xTσT log

(
xT
x1

)

Proof. We have
√
xtσt ≤

√
xTσT so that

σt ≤
√
xTσT√
xt
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Therefore
T∑
t=1

(xt − xt−1)σt√
xt

≤
T∑
t=1

(xt − xt−1)
√
xTσT

xt

≤
√
xTσT log

(
xT
x1

)

We make a suggestive definition:

Definition 26. Given some δ > 0,

xt = δ + (‖g‖?)1:t

wt =
(‖g‖?w)1:t

xt

σt =

√
δ‖wt‖2 +

∑t
t′=1 ‖gt‖?‖wt′ − wt‖2

xt

Observe that the values of wt given in the psuedo-code for FREEREXMOMENTUM match the values above for
δ = 1. We will carry through all our calculations for general δ, and then substitute δ = 1 at the very end to
obtain our regret bound.

Consider a random vector that takes on value wt 6= 0 for t ≤ T with probability proportional to ‖gt‖? and value
0 with probability proportional to δ +

∑T
wt=0 ‖gt‖?. Then the expectation of this vector is wT and σ2

T is its
variance. Thus for any vector X , by a standard bias-variance decomposition we have

δX2 +

T∑
t=1

‖gt‖?‖X − wT ‖2 = xT (σ
2
T + ‖X − wT ‖2)

Lemma 27. Using the definitions in Definition 26, for all T :

σT
√
xT − σT−1

√
xT−1 ≥

‖gT ‖?‖wT − wT ‖2

2σT
√
xT

Proof.

σT
√
xT =

√√√√δ‖wT ‖2 +
T∑
t=1

‖gt‖?‖wt − wT ‖2

≥

√√√√δ‖wT ‖2 +
T−1∑
t=1

‖gt‖?‖wt − wT ‖2 +
‖gT ‖?‖wT − wT ‖2

2
√
δ‖wT ‖2 +

∑T
t=1 ‖gt‖?‖wt − wT ‖2

=

√√√√δ‖wT ‖2 +
T−1∑
t=1

‖gt‖?‖wt − wT ‖2 +
‖gT ‖?‖wT − wT ‖2

2σT
√
xT

And also we have

δ‖wT ‖2 +
T−1∑
t=1

‖gt‖?‖wt − wT ‖2 = xT−1(σ
2
T−1 + ‖wT − wT−1‖2)

≥ xT−1σ
2
T−1

and so we can conclude the desired inequality.

Lemma 28. Again using the terms from Definition 26, we have

T∑
t=1

‖gt‖?‖wt − wt‖√
xt

≤ σT
√
xT

(
2 + log

(
xT

δ + L1

))
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Proof. From Lemma 27, we see that when ‖wt−wt‖ ≥ σt, we have ‖gt‖?‖wt−wt‖√
xt

≤ 2σt
√
xt−2σt−1

√
xt−1

so that we can write:
T∑
t=1

‖gt‖?‖wt − wt‖√
xt

≤ 2σT
√
xT +

T∑
t=1

‖gt‖?σt√
xt

Now we observe (e.g. by Lemma 27) that σt
√
xt ≥ σt−1

√
xt−1 for all t and that ‖gt‖? = xt − xt−1 so that

applying Lemma 25 we have
T∑
t=1

‖gt‖?‖wt − wt‖√
xt

≤ 2σT
√
xT + σT

√
xT log

(
xT
x1

)
as desired.

Proposition 29. Let a1, . . . , aT be non-negative numbers. Then
T∑
t=1

at
(a1:t)3/2

≤ 3√
a1
− 2√

a1:T

Proof. We proceed by induction. For the base case, we have
1∑
t=1

at
(a1:t)3/2

=
1√
a1

Suppose that
∑T
t=1

a2t
(a1:t)

3/2 ≤ 3√
a1
− 2√

a1:T
.

By concavity of − 1√
x

we have(
3√
a1
− 2
√
a1:T+1

)
−
(

3√
a1
− 2√

a1:T

)
≥ aT+1

(a1:T+1)3/2

By the induction assumption we have
T+1∑
t=1

at
(a1:t)3/2

≤ 3√
a1
− 2√

a1:T
+

aT+1

(a1:T+1)3/2

≤ 3√
a1
− 2
√
a1:T+1

as desired.

Lemma 30. Define wt as in Definition 26. Define Mt = supw,w′∈W ‖∇ψ(at(w − w′))‖?. Then using the
terminology of Definition 15, we have

ψ+
T (u)− ψT (u) +

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2) ≤ σT

√
2LmaxxT

(
2 + log

(
xT
x1

))
max
t
Mt

+ 3
Lmax

√
2Lmax√

δ + L1

max
t
‖wt−1 − wt‖max

t
Mt

Proof. From Proposition 18, we see that 1
at−1

ψ(at−1x) ≤ 1
at
ψ(atx) for all x. Therefore we have:

ψ+
t (w

+
t+2)− ψt(w

+
t+2) =

1

η+t at−1

ψ(at−1(w
+
t+2 − wt−1))−

1

ηtat
ψ(at(w

+
t+2 − wt))

≤ 1

ηtat
ψ(at(w

+
t+2 − wt−1))−

1

ηtat
ψ(at(w

+
t+2 − wt))

≤ 1

ηtat
‖∇ψ(at(w+

t+2 − wt−1))‖?at‖wt − wt−1‖

≤ ‖wt − wt−1‖
ηt

max
t
‖∇ψ(at(w+

t+2 − wt−1))‖?

≤ ‖wt − wt−1‖
√
2Lmaxxtmax

t
‖∇ψ(at(w+

t+2 − wt−1))‖?

≤ ‖wt − wt−1‖
√
2Lmaxxtmax

t
Mt
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Where in the last step we observe 1
ηt
≤
√

2Lmax(‖g‖?)1:t ≤
√
2Lmaxxt, which can be easily deduced by

induction, or from Proposition 19 of [7].

The exact same argument can be used to show

ψ+
T (u)− ψT (u) ≤ ‖wT − wT−1‖

√
2LmaxxT max

t
Mt

Next we characterize wt − wt−1:

wt−1 − wt = wt−1 −
(δ + (‖g‖?)1:t−1)wt−1 + ‖gt‖?wt

δ + (‖g‖?)1:t

=
‖gt‖?

δ + (‖g‖?)1:t
(wt−1 − wt)

We can take this calculation one step further:

ψ+
T (u)− ψT (u) + wt−1 − wt =

‖gt‖?
δ + (‖g‖?)1:t

(wt−1 − wt)

=
‖gt‖?

δ + (‖g‖?)1:t
(wt − wt) +

‖gt‖?
δ + (‖g‖?)1:t

(wt−1 − wt)

=
‖gt‖?

δ + (‖g‖?)1:t
(wt − wt) +

‖gt‖2?
(δ + (‖g‖?)1:t)2

(wt−1 − wt)

Thus we have
T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2) ≤

T∑
t=1

‖wt − wt−1‖
√
2Lmaxxtmax

t
Mt

=

T∑
t=1

√
2Lmax‖gt‖?‖wt − wt‖√

xt
max
t
Mt

T∑
t=1

√
2Lmax‖gt‖2?‖wt−1 − wt‖

x
3/2
t

max
t
Mt

≤ σT
√
2LmaxxT

(
2 + log

(
xT
x1

))
max
t
Mt

+ 3
Lmax

√
2Lmax√

δ + L1

max
t
‖wt−1 − wt‖max

t
Mt

Where we’ve used Proposition 29 to conclude that
T∑
t=1

‖gt‖2?
x
3/2
t

≤ 3Lmax√
δ + L1

and also used Lemma 28 in the last inequality.

Now if we restrict ourselves to a bounded domain of diameter B and use the regularizer ψ(w) = (‖w‖ +
1) log(‖w‖+ 1)− ‖w‖, we obtain

max
t
Mt ≤ log(BaT )

so that we have

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2) ≤

√√√√2Lmax

(
δ‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)(

2 + log

(
δ + ‖g‖1:T
δ + ‖g1‖

))
log(BaT )

+ 3
Lmax

√
2Lmax√

δ + L1

B log(BaT )

Combining this with Theorem 22 and Lemma 23 and using δ = 1 and k =
√
5 we have proved a regret bound

on FTRL with regularizers ψt =
√

5
ηt
ψ(wt − wt) with ψ = (‖w‖ + 1) log(‖w‖ + 1) − ‖w‖. Recall that

FREEREXMOMENTUM is precisely FTRL with these regularizers, so we have proved Theorem 1:
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Theorem 1. Let ψ(w) = (‖w‖ + 1) log(‖w‖ + 1) − ‖w‖. Set Lt = maxt′≤t ‖gt′‖, and QT = 2 ‖g‖1:T
Lmax

.
Define 1

ηt
and at as in the pseudo-code for FREEREXMOMENTUM (Algorithm 1). Then the regret of FREEREX-

MOMENTUM is bounded by:

T∑
t=1

gt · (wt −w?) ≤
√
5

QT ηT
ψ(QT (w

? −wT )) + 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(BaT + 1)

+

√√√√2Lmax

(
‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)(

2 + log

(
1 + ‖g‖1:T
1 + ‖g1‖

))
log(BaT + 1)

B.3 Proof of Corollaries 2 and 3

First we prove Corollary 2, restated below:

Corollary 2. Under the assumptions and notation of Theorem 1, the regret of FREEREXMOMENTUM is
bounded by:

T∑
t=1

gt · (wt − w?) ≤ 2
√
5

√√√√Lmax

(
‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2BT + 1)(2 + log(T ))

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

Proof. We need the observations

ψ(w) ≤ ‖w‖ log(‖w‖+ 1)

1

ηT
≤
√

2Lmax(1 + ‖g‖1:T )

aT ≤ 2T

Using these identities with Theorem 1 gives us

T∑
t=1

gt · (wt − w?) ≤
√
5
√

2‖w? − wT ‖2Lmax(1 + ‖g‖1:T ) log(2BT + 1)

+

√√√√2Lmax

(
‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)
(2 + log (T )) log(2BT + 1)

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

Now use
√
a+
√
b ≤
√
2a+ 2b to reach the conclusion:

T∑
t=1

gt · (wt − w?) ≤ 2
√
5

√√√√Lmax

(
‖w? − wT ‖2(1 + ‖g‖1:T ) + ‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)

× log(2BT + 1)(2 + log(T ))

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

≤ 2
√
5

√√√√Lmax

(
‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2TB + 1)(2 + log(T ))

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

Now we Corollary 3, again restated below:
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Corollary 3. The regret of coordinate-wise FREEREXMOMENTUM is bounded by:

T∑
t=1

gt · (wt − w?) ≤ 2
√
5

√√√√dLmax

(
d‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2Tb+ 1)(2 + log(T ))

+ 405dLmax + 2Lmaxdb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

Proof. The Corollary follows by application of Cauchy-Schwarz inequality to Corollary 2. Recall that

RT (u) ≤
T∑
t=1

gt · (wt − u) =
d∑
i=1

T∑
t=1

gt,i(wt,i − ui)

So that the regret can be computed by summing the regret bound of Corollary 2 across dimensions:

RT (u) ≤ 2
√
5

d∑
i=1

√√√√Lmax

(
(w?i )

2 +

T∑
t=1

|gt,i|(w?i − wt,i)2
)
log(2bT + 1)(2 + log(T ))

+ d405Lmax + 2dLmaxb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

≤ 2
√
5

√√√√dLmax

(
d‖w?‖2 +

d∑
i=1

T∑
t=1

|gt,i|(w?i − wt,i)2
)
log(2bT + 1)(2 + log(T ))

+ d405Lmax + 2dLmaxb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

≤ 2
√
5

√√√√√dLmax

d‖w?‖2 + T∑
t=1

‖gt‖

√√√√ d∑
i=1

(w?i − wt,i)4

 log(2bT + 1)(2 + log(T ))

+ d405Lmax + 2dLmaxb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

≤ 2
√
5

√√√√dLmax

(
d‖w?‖2 +

T∑
t=1

‖gt‖
d∑
i=1

‖w?i − wt,i)‖2
)
log(2bT + 1)(2 + log(T ))

+ d405Lmax + 2dLmaxb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

where the first inequality follows from convexity of
√
x, the second from Cauchy-Schwarz, and the third because

‖x‖24 =
√∑d

i=1 x
4
i ≤ ‖x‖

2
2.
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