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Proving termination 

• A program 𝑃 = (𝑆, 𝑅) 

– Set of states S 

– Transition relation 𝑅 ⊆ 𝑆 × 𝑆 

 

• We want to prove that R is well-founded, i.e. doesn’t 
contain infinite sequences  
 

• R is well-founded ⟺ P terminates 
 

• Aim: find a well-founded relation T (the termination 
argument) such that 𝑅 ⊆ 𝑇 

Usually a condition that 
must be met by all 
transitions in R 

S S 
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Iteratively constructing T 

Aim: find well-founded T such that 𝑅 ⊆ 𝑇. 

 
𝑇 ≔ ∅ 

𝑅 ⊆ 𝑇 ? 

Use it to 
strengthen T 

Proved 
termination! 

YES 

∃ some counterexample 
in 𝑅\𝑇. 

NO 

We change the 
conditions of T to 
include the 
counterexample, 
whilst keeping T 
well-founded 
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• e.g.  𝑇𝑓 = 𝑠, 𝑡  𝑓 𝑠 > 𝑓 𝑡   ∧   𝑓 𝑠 > 0  

 

• This is well-founded, so if 𝑅 ⊆ 𝑇𝑓 then we have proved 

termination. 

 

• However it is often difficult or impossible to find such a 
ranking function. 

“f decreases and 
is bounded 
below by 0” 
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Ramsey-based termination arguments 

• We use several ranking functions 𝑓1, 𝑓2, … , 𝑓𝑛  to construct T: 
 

𝑇 = 𝑇𝑓1
∪ 𝑇𝑓2

∪ ⋯ ∪ 𝑇𝑓𝑛
 

 

• This condition says “at least one of 𝑓1, 𝑓2, … , 𝑓𝑛  decreases 
towards 0” 

 

• Unfortunately we must prove 𝑅+ ⊆ 𝑇 to prove P terminates. 

 

• The proof that this is a sufficient condition uses Ramsey’s 
Theorem 

 

• So T is a Ramsey-based termination argument. 

 

The transitive 
closure of R 
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Lexicographic termination arguments 

• Put the ranking functions in some order  𝑓1,  𝑓2 , … , 𝑓𝑛   

 

• The condition of T: “at least one of  𝑓1,  𝑓2 , … , 𝑓𝑛  decreases 
towards 0, and the preceding ranking functions do not 
increase” 

 

• This is a lexicographic termination argument. 

 

• Suffices to prove 𝑅 ⊆ 𝑇 to prove termination.  
(No need to consider 𝑅+) 

 

 



Ramsey vs. lexicographic termination arguments 

Ramsey 

 
𝑓1, 𝑓2, … , 𝑓𝑛  

 
𝑅+ ⊆ 𝑇 

Lexicographic 

 
 𝑓1,  𝑓2 , … , 𝑓𝑛  

 
𝑅 ⊆ 𝑇 “at least one of the 

RFs decreases” 

“at least one of the RFs 
decreases, and none of 
the preceding RFs 
increase” 



Ramsey vs. lexicographic termination arguments 

Ramsey 

 
𝑓1, 𝑓2, … , 𝑓𝑛  

 
𝑅+ ⊆ 𝑇 

 

Prove an easier condition 
for all sequences of 
transitions 

Lexicographic 

 
 𝑓1,  𝑓2 , … , 𝑓𝑛  

 
𝑅 ⊆ 𝑇 

 

Prove a stricter condition 
for all single transitions 

“at least one of the 
RFs decreases” 

“at least one of the RFs 
decreases, and none of 
the preceding RFs 
increase” 

Overall faster to 
construct iteratively 
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𝑓1, … , 𝑓𝑖−1. 
 

• Then  𝜌1 ∪ ⋯ ∪ 𝜌𝑛 ⊆ 𝑇.  
 

• We keep adding relations 𝜌 and functions 𝑓 until (hopefully) 𝑅 ⊆ 𝑇. 



Procedure to construct lexicographic termination arguments 

Stores all the cycles we’ve found so far 

Find a cycle that doesn’t obey the termination arg. 

Try inserting the new 
relation in all possible places 

If we can find a lex. 
termination arg. for 
one of the 
orderings, let that 
be the new T 
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while x>0 && y>0 do 

  if * then 

    x := x - 1; 

  else 

    x := * 

    y := y - 1; 

  fi 

done 

𝑓1, 𝑓2   or  𝑓2, 𝑓1  ? 

𝑅 ⊆ 𝑇 ?  

Yes: we have proved termination 

Valid if 𝜌1 does not increase 𝑓2 

“𝑓2 decreases towards 
0, or 𝑓1 decreases 
towards 0 and 𝑓2 does 
not increase” 

Valid if 𝜌2 does not increase 𝑓1 
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Results 

Many fewer timeouts 
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• Existence of a Ramsey-based termination 
argument does not imply existence of a 
lexicographic termination argument. 
 

• So occasionally we cannot find a lexicographic 
termination argument (when we can find a 
Ramsey one). 
 

• In our experience this is rare. 
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while x<>0 do 

  if x>0 then 

    x := x - 1; 

  else 

    x := x + 1; 

  fi 

done 

𝑓1 = 𝑥 

𝑓2 = −𝑥 

 

𝑇𝑓1
∪ 𝑇𝑓2

 is a valid Ramsey-
based termination argument. 

 𝑓1, 𝑓2  ? 
 
 𝑓2, 𝑓1  ? 
 
No (linear) lexicographic termination argument. 

if one decreases, the 
other must increase! 



Solution 

c := 0 

while x<>0 

  if x>0 then 

    if c=0 then 

      c := 1 

    x := x - 1; 

  else 

    if c=0 then 
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    x := x + 1; 

Prove termination separately for c=1 
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termination arguments for c=1 and 
c=2: 
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Solution 

c := 0 

while x<>0 

  if x>0 then 

    if c=0 then 

      c := 1 

    x := x - 1; 

  else 

    if c=0 then 

      c := 2 

    x := x + 1; 

Prove termination separately for c=1 
and c=2, i.e. have different 
termination arguments for c=1 and 
c=2: 
 
𝑓1 = 𝑥  for c=1  
𝑓2 = −𝑥  for c=2 

 
This solution deals with cases where 
there is a split case into several 
disjoint programs. 



Conclusion 

• Using lexicographic instead of Ramsey-based 
termination arguments is much faster in an iterative 
termination-proving algorithm such as Terminator’s. 

 

• Occasionally we can’t find lexicographic termination 
arguments, but there are some tricks to get around 
this. 



Any questions? 


