Ramsey vs. Iexicographic termination proving

Byron Cook
Abigail See
Florian Zuleger

Terminator

Terminator proves termination using:

- Iterative algorithm
- Ramsey-based termination arguments

Terminator

Terminator proves termination using:

- Iterative algorithm
- Ramsey-based termination arguments

Question: Can we use the iterative algorithm without using Ramsey-based termination arguments?
Answer: Yes, and it's much faster

Terminator

Terminator proves termination using:

- Iterative algorithm
- Ramsey-based termination arguments Lexicographic termination arguments

Question: Can we use the iterative algorithm without using Ramsey-based termination arguments?
Answer: Yes, and it's much faster

Proving termination

- A program $P=(S, R)$
- Set of states S
- Transition relation $R \subseteq S \times S$

Proving termination

- A program $P=(S, R)$
- Set of states S
- Transition relation $R \subseteq S \times S$
- We want to prove that R is well-founded, i.e. doesn't contain infinite sequences

Proving termination

- A program $P=(S, R)$
- Set of states S
- Transition relation $R \subseteq S \times S$
- We want to prove that R is well-founded, i.e. doesn't contain infinite sequences
- R is well-founded $\Leftrightarrow P$ terminates

Proving termination

- A program $P=(S, R)$
- Set of states S
- Transition relation $R \subseteq S \times S$
- We want to prove that R is well-founded, i.e. doesn't contain infinite sequences
- R is well-founded $\Leftrightarrow P$ terminates

Usually a condition that must be met by all transitions in R

- Aim: find a well-founded relation T (the termination argument) such that $R \subseteq T$

Iteratively constructing T

Aim: find well-founded T such that $R \subseteq T$.

$$
T:=\varnothing
$$

We change the conditions of T to include the counterexample, whilst keeping T well-founded

Proved termination!
\exists some counterexample in $R \backslash T$.

Ranking functions

- A ranking function is a function $f: S \mapsto \mathbb{N}$ (or any wellordered set)

Ranking functions

- A ranking function is a function $f: S \mapsto \mathbb{N}$ (or any wellordered set)
- We use them to construct termination arguments

Ranking functions

- A ranking function is a function $f: S \mapsto \mathbb{N}$ (or any wellordered set)
- We use them to construct termination arguments
- e.g. $T_{f}=\{(s, t) \mid f(s)>f(t) \wedge f(s)>0\} \quad \begin{aligned} & \text { is bounded } \\ & \text { below by } 0^{\prime \prime}\end{aligned}$

Ranking functions

- A ranking function is a function $f: S \mapsto \mathbb{N}$ (or any wellordered set)
- We use them to construct termination arguments
- e.g. $T_{f}=\{(s, t) \mid f(s)>f(t) \wedge f(s)>0\} \quad \begin{aligned} & \text { is bounded } \\ & \text { below by } 0^{\prime \prime}\end{aligned}$
- This is well-founded, so if $R \subseteq T_{f}$ then we have proved termination.

Ranking functions

- A ranking function is a function $f: S \mapsto \mathbb{N}$ (or any wellordered set)
- We use them to construct termination arguments
- e.g. $T_{f}=\{(s, t) \mid f(s)>f(t) \wedge f(s)>0\} \begin{aligned} & \text { " } f \text { decreases and } \\ & \text { is bounded } \\ & \text { below by } 0 \text { " }\end{aligned}$
- This is well-founded, so if $R \subseteq T_{f}$ then we have proved termination.
- However it is often difficult or impossible to find such a ranking function.

Ramsey-based termination arguments

- We use several ranking functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ to construct T :

$$
T=T_{f_{1}} \cup T_{f_{2}} \cup \cdots \cup T_{f_{n}}
$$

Ramsey-based termination arguments

- We use several ranking functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ to construct T :

$$
T=T_{f_{1}} \cup T_{f_{2}} \cup \cdots \cup T_{f_{n}}
$$

- This condition says "at least one of $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ decreases towards 0"

Ramsey-based termination arguments

- We use several ranking functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ to construct T :

$$
T=T_{f_{1}} \cup T_{f_{2}} \cup \cdots \cup T_{f_{n}}
$$

- This condition says "at least one of $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ decreases towards 0"

> The transitive closure of R

- Unfortunately we must prove $R^{+} \subseteq T$ to prove P terminates.

Ramsey-based termination arguments

- We use several ranking functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ to construct T :

$$
T=T_{f_{1}} \cup T_{f_{2}} \cup \cdots \cup T_{f_{n}}
$$

- This condition says "at least one of $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ decreases towards 0 "

> The transitive closure of R

- Unfortunately we must prove $R^{+} \subseteq T$ to prove P terminates.
- The proof that this is a sufficient condition uses Ramsey's Theorem

Ramsey-based termination arguments

- We use several ranking functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ to construct T :

$$
T=T_{f_{1}} \cup T_{f_{2}} \cup \cdots \cup T_{f_{n}}
$$

- This condition says "at least one of $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ decreases towards 0"

The transitive closure of R

- Unfortunately we must prove $R^{+} \subseteq T$ to prove P terminates.
- The proof that this is a sufficient condition uses Ramsey's Theorem
- So T is a Ramsey-based termination argument.

Lexicographic termination arguments

- Put the ranking functions in some order $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$

Lexicographic termination arguments

- Put the ranking functions in some order $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0, and the preceding ranking functions do not increase"

Lexicographic termination arguments

- Put the ranking functions in some $\operatorname{order}\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : "at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0 , and the preceding ranking functions do not increase"

$$
\text { e.g. } \quad\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle
$$

Lexicographic termination arguments

- Put the ranking functions in some order $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : "at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0 , and the preceding ranking functions do not increase"

Lexicographic termination arguments

- Put the ranking functions in some $\operatorname{order}\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : "at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0 , and the preceding ranking functions do not increase"

Lexicographic termination arguments

- Put the ranking functions in some $\operatorname{order}\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : "at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0 , and the preceding ranking functions do not increase"

Lexicographic termination arguments

- Put the ranking functions in some $\operatorname{order}\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : "at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0 , and the preceding ranking functions do not increase"

Lexicographic termination arguments

- Put the ranking functions in some $\operatorname{order}\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : "at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0 , and the preceding ranking functions do not increase"

Lexicographic termination arguments

- Put the ranking functions in some order $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : "at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0 , and the preceding ranking functions do not increase"
- This is a lexicographic termination argument.

Lexicographic termination arguments

- Put the ranking functions in some order $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
- The condition of T : "at least one of $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ decreases towards 0 , and the preceding ranking functions do not increase"
- This is a lexicographic termination argument.
- Suffices to prove $R \subseteq T$ to prove termination.
(No need to consider R^{+})

Ramsey vs. lexicographic termination arguments

Ramsey

$$
\left\{\left\{_{1}, f_{2}, \ldots, f_{n}\right\}\right.
$$

$R^{+} \subseteq T<T^{2}$ RFs decreases"

Lexicographic

$\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
$R \subseteq T\left\{\begin{array}{l}\text { "at least one of the RFs } \\ \begin{array}{l}\text { decreases, and none of } \\ \text { the preceding RFs } \\ \text { increase" }\end{array}\end{array}\right.$

Ramsey vs. lexicographic termination arguments

Ramsey

$\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$

Prove an easier condition for all sequences of transitions

Lexicographic

$\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$
$R \subseteq T\left\{\begin{array}{l}\text { "at least one of the RFs } \\ \begin{array}{l}\text { decreases, and none of } \\ \text { the preceding RFs } \\ \text { increase" }\end{array}\end{array}\right.$
Prove a stricter condition for all single transitions

Overall faster to construct iteratively

Procedure to construct lexicographic termination arguments

- The counterexamples we find during the iterative algorithm are in the form of cycles (paths returning to the same program location).

Procedure to construct lexicographic termination arguments

- The counterexamples we find during the iterative algorithm are in the form of cycles (paths returning to the same program location).
- We represent them as relations on S, e.g.
- cycle $\pi=$ " $x:=x-1 "$
- relation $\llbracket \pi \rrbracket=\{(s, t) \mid t(x)=s(x)-1\}$

Procedure to construct lexicographic termination arguments

- The counterexamples we find during the iterative algorithm are in the form of cycles (paths returning to the same program location).
- We represent them as relations on S, e.g.
- cycle $\pi=$ " $x:=x-1 "$
- relation $\llbracket \pi \rrbracket=\{(s, t) \mid t(x)=s(x)-1\}$
- During each step of our iterative algorithm, we have the relations we've found so far, put in some order $\left\langle\rho_{1}, \ldots, \rho_{n}\right\rangle$.

Procedure to construct lexicographic termination arguments

- The counterexamples we find during the iterative algorithm are in the form of cycles (paths returning to the same program location).
- We represent them as relations on S, e.g.
- cycle $\pi=$ " $x:=x-1 "$
- relation $\llbracket \pi \rrbracket=\{(s, t) \mid t(x)=s(x)-1\}$
- During each step of our iterative algorithm, we have the relations we've found so far, put in some order $\left\langle\rho_{1}, \ldots, \rho_{n}\right\rangle$.
- We attempt to find a lexicographic ranking function $\left\langle f_{1}, \ldots, f_{n}\right\rangle$ such that $\forall i, \rho_{i}$ decreases f_{i} towards 0 and does not increase any of f_{1}, \ldots, f_{i-1}.

Procedure to construct lexicographic termination arguments

- The counterexamples we find during the iterative algorithm are in the form of cycles (paths returning to the same program location).
- We represent them as relations on S, e.g.
- cycle $\pi=$ " $x:=x-1$ "
- relation $\llbracket \pi \rrbracket=\{(s, t) \mid t(x)=s(x)-1\}$
- During each step of our iterative algorithm, we have the relations we've found so far, put in some order $\left\langle\rho_{1}, \ldots, \rho_{n}\right\rangle$.
- We attempt to find a lexicographic ranking function $\left\langle f_{1}, \ldots, f_{n}\right\rangle$ such that $\forall i, \rho_{i}$ decreases f_{i} towards 0 and does not increase any of f_{1}, \ldots, f_{i-1}.
- Then $\rho_{1} \cup \cdots \cup \rho_{n} \subseteq T$.

Procedure to construct lexicographic termination arguments

- The counterexamples we find during the iterative algorithm are in the form of cycles (paths returning to the same program location).
- We represent them as relations on S, e.g.
- cycle $\pi=$ " $x:=x-1 "$
- relation $\llbracket \pi \rrbracket=\{(s, t) \mid t(x)=s(x)-1\}$
- During each step of our iterative algorithm, we have the relations we've found so far, put in some order $\left\langle\rho_{1}, \ldots, \rho_{n}\right\rangle$.
- We attempt to find a lexicographic ranking function $\left\langle f_{1}, \ldots, f_{n}\right\rangle$ such that $\forall i, \rho_{i}$ decreases f_{i} towards 0 and does not increase any of f_{1}, \ldots, f_{i-1}.
- Then $\rho_{1} \cup \cdots \cup \rho_{n} \subseteq T$.
- We keep adding relations ρ and functions f until (hopefully) $R \subseteq T$.

Procedure to construct lexicographic termination arguments

input: program P
$T:=\emptyset$, empty termination argument
$\Pi:=\langle \rangle$, empty sequence of relations
Stores all the cycles we've found so far repeat
$\left.\left.\begin{array}{l}\text { if } \exists \text { cycle } \pi \text { in } P \text { s.t. } \llbracket \pi \rrbracket \nsubseteq T \text { then } \longleftarrow \text { Find a cycle that doesn't obey the termination arg. } \\ \text { let } n=\text { length }(\Pi)=\text { length }\left\langle\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right\rangle \\ \quad \text { for } i=1 \text { to } n+1 \text { do } \\ \quad \text { let } \Pi_{i}=\left\langle\rho_{1}, \rho_{2}, \ldots, \rho_{i-1}, \llbracket \pi \rrbracket, \rho_{i}, \ldots, \rho_{n}\right\rangle\end{array}\right] \begin{array}{l}\text { Try inserting the new } \\ \text { relation in all possible places }\end{array}\right] \begin{aligned} & \text { if we can find a lex. } \\ & \text { if } \exists \text { lex. ranking function }\left\langle f_{1}, f_{2}, \ldots, f_{n+1}\right\rangle \text { for some } \Pi_{i} \text { then } \begin{array}{l}\Pi=\Pi_{i} \\ T:=\text { lex. termination argument given by }\left\langle f_{1}, f_{2}, \ldots, f_{n+1}\right\rangle \\ \text { orderings, let that } \\ \text { be the new } T\end{array} \\ & \text { else } \\ & \quad \text { report "Unknown" }\end{aligned}$
else
report "Success"
end.

Example

while $x>0$ \&\& $y>0$ do if * then $\mathrm{x}:=\mathrm{x}-1$;
else
x := *
$y:=y-1 ;$
fi
done

Example

$$
\begin{aligned}
& \rho_{1}=x>0 \wedge y>0 \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \\
& f_{1}=x
\end{aligned}
$$

Example

Example

$$
\begin{array}{|c|l}
\begin{aligned}
\text { while } \mathrm{x}>0 \text { \&\& } \mathrm{y}>0 \text { do } \\
\text { if } * \text { then } \\
\mathrm{x}:=\mathrm{x}-1 ; \\
\mathrm{else} \\
\mathrm{x}:=* \\
\mathrm{y}:=\mathrm{y}-1 ; \\
\mathrm{fi} \\
\text { done }
\end{aligned} & \begin{array}{l}
\rho_{1}=x>0 \wedge y>0 \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \\
\\
\hline
\end{array} \\
\Rightarrow T=T_{f_{1}} . R \subseteq T ? \\
& \text { No: } \\
\rho_{2}=x>0 \wedge y>0 \wedge x^{\prime}=* \wedge y^{\prime}=y-1 \\
f_{2}=y
\end{array}
$$

Example

$$
\begin{aligned}
& \text { while } x>0 \text { \&\& } y>0 \text { do } \\
& \text { if } * \text { then } \\
& \quad x:=x-1 ; \\
& \text { else } \\
& \quad x:=* \\
& y:=y-1 ; \\
& \text { fi } \\
& \text { done }
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{1}=x>0 \wedge y>0 \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \\
& f_{1}=x \\
& \Rightarrow T=T_{f_{1}} . R \subseteq T ?
\end{aligned}
$$

No:

$$
\begin{aligned}
& \rho_{2}=x>0 \wedge y>0 \wedge x^{\prime}=* \wedge y^{\prime}=y-1 \\
& f_{2}=y
\end{aligned}
$$

Valid if ρ_{2} does not increase f_{1}

Example

```
while \(x>0\) \&\& \(y>0\) do
    if * then
        x :=x - 1;
    else
        x := *
        \(y:=y-1 ;\)
    fi
done
```

$$
\begin{aligned}
& \rho_{1}=x>0 \wedge y>0 \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \\
& f_{1}=x \\
& \Rightarrow T=T_{f_{1}} . R \subseteq T ?
\end{aligned}
$$

No:

$$
\begin{aligned}
& \rho_{2}=x>0 \wedge y>0 \wedge x^{\prime}=* \wedge y^{\prime}=y-1 \\
& f_{2}=y
\end{aligned}
$$

Valid if ρ_{2} does not increase f_{1}

Example

```
while x>0 && y>0 do
    if * then
        x := x - 1;
    else
        x := *
        y := y - 1;
    fi
done
```

while $x>0$ \&\& $y>0$ do
if * then

$$
x:=x-1 ;
$$

else
x := *
$y:=y-1 ;$
fi
done

$$
\begin{aligned}
& \rho_{1}=x>0 \wedge y>0 \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \\
& f_{1}=x \\
& \Rightarrow T=T_{f_{1}} . R \subseteq T ?
\end{aligned}
$$

No:

$$
\begin{aligned}
& \rho_{2}=x>0 \wedge y>0 \wedge x^{\prime}=* \wedge y^{\prime}=y-1 \\
& f_{2}=y
\end{aligned}
$$

Valid if ρ_{2} does not increase f_{1}

Yes: we have proved termination

Results

A disadvantage of lexicographic termination arguments

- Existence of a Ramsey-based termination argument does not imply existence of a lexicographic termination argument.

A disadvantage of lexicographic termination arguments

- Existence of a Ramsey-based termination argument does not imply existence of a lexicographic termination argument.
- So occasionally we cannot find a lexicographic termination argument (when we can find a Ramsey one).

A disadvantage of lexicographic termination arguments

- Existence of a Ramsey-based termination argument does not imply existence of a lexicographic termination argument.
- So occasionally we cannot find a lexicographic termination argument (when we can find a Ramsey one).
- In our experience this is rare.

A tricky example

A tricky example

A tricky example

A tricky example

$f_{1}=x$
$f_{2}=-x$
$T_{f_{1}} \cup T_{f_{2}}$ is a valid Ramseybased termination argument.

A tricky example

 fi
 done

```
while x<>0 do
```

while x<>0 do
if }x>0\mathrm{ then
if }x>0\mathrm{ then
x := x - 1;
x := x - 1;
else
else
x := x + 1;

```
        x := x + 1;
```

$\left\langle f_{1}, f_{2}\right\rangle$?
$\left\langle f_{2}, f_{1}\right\rangle$?
$f_{1}=x$
$f_{2}=-x$
$T_{f_{1}} \cup T_{f_{2}}$ is a valid Ramseybased termination argument.

A tricky example

 \(x:=x+1 ;\)
 fi
 while $x<>0$ do
if $x>0$ then x := $x-1$;
else
done
$\left\langle f_{1}, f_{2}\right\rangle$?
$\left\langle f_{2}, f_{1}\right\rangle$?
$f_{1}=x$
$f_{2}=-x$

if one decreases, the other must increase!
$T_{f_{1}} \cup T_{f_{2}}$ is a valid Ramseybased termination argument.

No (linear) lexicographic termination argument.

Solution

Prove termination separately for $\mathrm{c}=1$ and $c=2$, i.e. have different termination arguments for $\mathrm{c}=1$ and $\mathrm{c}=2$:
$\left\langle f_{1}\right\rangle=\langle x\rangle$ for $\mathrm{c}=1$
$\left\langle f_{2}\right\rangle=\langle-x\rangle$ for $\mathrm{c}=2$

Solution

Prove termination separately for $\mathrm{c}=1$ and $\mathrm{c}=2$, i.e. have different termination arguments for $\mathrm{c}=1$ and $\mathrm{c}=2$:
$\left\langle f_{1}\right\rangle=\langle x\rangle$ for $\mathrm{c}=1$
$\left\langle f_{2}\right\rangle=\langle-x\rangle$ for $\mathrm{c}=2$

This solution deals with cases where there is a split case into several disjoint programs.

Conclusion

- Using lexicographic instead of Ramsey-based termination arguments is much faster in an iterative termination-proving algorithm such as Terminator's.
- Occasionally we can't find lexicographic termination arguments, but there are some tricks to get around this.

Thank you for listening
 Any questions?

