Ramsey vs. lexicographic termination proving

Byron Cook Abigail See Florian Zuleger **Terminator** proves termination using:

- Iterative algorithm
- Ramsey-based termination arguments

Terminator proves termination using:

- Iterative algorithm
- Ramsey-based termination arguments

Question: Can we use the iterative algorithm *without* using Ramsey-based termination arguments?

Answer: Yes, and it's much faster

Terminator proves termination using:

- Iterative algorithm
- Ramsey-based termination arguments Lexicographic termination arguments

Question: Can we use the iterative algorithm *without* using Ramsey-based termination arguments?

Answer: Yes, and it's much faster

- A program P = (S, R)
 - Set of states S

– Transition relation $R \subseteq S \times S$

- A program P = (S, R)
 - Set of states S

- Transition relation $R \subseteq S \times S$
- We want to prove that *R* is *well-founded*, i.e. doesn't contain infinite sequences

- A program P = (S, R)
 - Set of states S

- Transition relation $R \subseteq S \times S$
- We want to prove that *R* is *well-founded*, i.e. doesn't contain infinite sequences
- *R* is well-founded \Leftrightarrow *P* terminates

- A program P = (S, R)
 - Set of states S

- Transition relation $R \subseteq S \times S$
- We want to prove that *R* is *well-founded*, i.e. doesn't contain infinite sequences
- *R* is well-founded \Leftrightarrow *P* terminates

Usually a *condition* that must be met by all transitions in R

• Aim: find a well-founded relation T (the *termination* argument) such that $R \subseteq T$

Iteratively constructing T

Aim: find well-founded *T* such that $R \subseteq T$.

• A ranking function is a function $f: S \mapsto \mathbb{N}$ (or any well-ordered set)

- A ranking function is a function $f: S \mapsto \mathbb{N}$ (or any well-ordered set)
- We use them to construct termination arguments

- A ranking function is a function f: S → N (or any wellordered set)
- We use them to construct termination arguments

```
• e.g. T_f = \{(s,t) | f(s) > f(t) \land f(s) > 0\}
```

"f decreases and is bounded below by 0"

- A ranking function is a function f: S → N (or any wellordered set)
- We use them to construct termination arguments

• e.g.
$$T_f = \{(s,t) | f(s) > f(t) \land f(s) > 0\}$$

"f decreases and is bounded below by 0"

• This is well-founded, so if $R \subseteq T_f$ then we have proved termination.

- A ranking function is a function f: S → N (or any wellordered set)
- We use them to construct termination arguments

• e.g.
$$T_f = \{(s,t) | f(s) > f(t) \land f(s) > 0\}$$

"f decreases and is bounded below by 0"

- This is well-founded, so if $R \subseteq T_f$ then we have proved termination.
- However it is often difficult or impossible to find such a ranking function.

$$T = T_{f_1} \cup T_{f_2} \cup \cdots \cup T_{f_n}$$

• We use *several* ranking functions $\{f_1, f_2, ..., f_n\}$ to construct *T*:

$$T = T_{f_1} \cup T_{f_2} \cup \cdots \cup T_{f_n}$$

 This condition says "at least one of {f₁, f₂, ..., f_n} decreases towards 0"

$$T = T_{f_1} \cup T_{f_2} \cup \cdots \cup T_{f_n}$$

- This condition says "at least one of $\{f_1, f_2, ..., f_n\}$ decreases towards 0" The transitive closure of R
- Unfortunately we must prove $R^+ \subseteq T$ to prove *P* terminates.

$$T = T_{f_1} \cup T_{f_2} \cup \cdots \cup T_{f_n}$$

- This condition says "at least one of $\{f_1, f_2, ..., f_n\}$ decreases towards 0" The transitive closure of R
- Unfortunately we must prove $R^+ \subseteq T$ to prove *P* terminates.
- The proof that this is a sufficient condition uses *Ramsey's Theorem*

$$T = T_{f_1} \cup T_{f_2} \cup \cdots \cup T_{f_n}$$

- This condition says "at least one of $\{f_1, f_2, ..., f_n\}$ decreases towards 0" The transitive closure of R
- Unfortunately we must prove $R^+ \subseteq T$ to prove *P* terminates.
- The proof that this is a sufficient condition uses *Ramsey's Theorem*
- So T is a **Ramsey-based termination argument**.

• Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"

e.g.
$$\langle f_1, f_2, f_3, f_4, f_5 \rangle$$

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"

e.g.
$$\langle f_1, f_2, f_3, f_4, f_5 \rangle$$

 \downarrow
0

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

e.g.

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"

$$(f_1, f_2, f_3, f_4, f_5)$$

e.g.

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"

e.g.

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"
- This is a **lexicographic termination argument**.

- Put the ranking functions in some **order** $\langle f_1, f_2, ..., f_n \rangle$
- The condition of T: "at least one of (f₁, f₂, ..., f_n) decreases towards 0, and the preceding ranking functions do not increase"
- This is a **lexicographic termination argument**.
- Suffices to prove R ⊆ T to prove termination.
 (No need to consider R⁺)

Ramsey vs. lexicographic termination arguments

Lexicographic Ramsey $\{f_1, f_2, \dots, f_n\}$ $\langle f_1, f_2, \dots, f_n \rangle$ "at least one of the RFs $R^+ \subseteq T$ $R \subseteq T$ "at least one of the decreases, and none of the preceding RFs RFs decreases" increase"

Ramsey vs. lexicographic termination arguments

Ramsey

 $\{f_1, f_2, \dots, f_n\}$ $R^+ \subseteq T$ "at least one of the RFs decreases"

Prove an **easier** condition for all **sequences** of transitions

Lexicographic

 $\langle f_1, f_2, \dots, f_n \rangle$

 $R \subseteq T$ "at least one of the RFs decreases, and none of the preceding RFs increase"

Prove a **stricter** condition for all **single** transitions

Overall faster to construct iteratively

• The counterexamples we find during the iterative algorithm are in the form of **cycles** (paths returning to the same program location).

- The counterexamples we find during the iterative algorithm are in the form of **cycles** (paths returning to the same program location).
- We represent them as **relations** on S, e.g.
 - cycle $\pi = "x \coloneqq x 1"$
 - relation $[\![\pi]\!] = \{(s,t)|t(x) = s(x) 1\}$

- The counterexamples we find during the iterative algorithm are in the form of **cycles** (paths returning to the same program location).
- We represent them as **relations** on S, e.g.
 - cycle $\pi = "x \coloneqq x 1"$
 - relation $[\![\pi]\!] = \{(s,t)|t(x) = s(x) 1\}$
- During each step of our iterative algorithm, we have the relations we've found so far, put in some order $\langle \rho_1, \dots, \rho_n \rangle$.

- The counterexamples we find during the iterative algorithm are in the form of **cycles** (paths returning to the same program location).
- We represent them as **relations** on S, e.g.
 - cycle $\pi = "x \coloneqq x 1"$
 - relation $[\![\pi]\!] = \{(s,t) | t(x) = s(x) 1\}$
- During each step of our iterative algorithm, we have the relations we've found so far, put in some order $\langle \rho_1, \dots, \rho_n \rangle$.
- We attempt to find a lexicographic ranking function $\langle f_1, \dots, f_n \rangle$ such that $\forall i, \rho_i$ decreases f_i towards 0 and does not increase any of f_1, \dots, f_{i-1} .

- The counterexamples we find during the iterative algorithm are in the form of **cycles** (paths returning to the same program location).
- We represent them as **relations** on S, e.g.
 - cycle $\pi = "x \coloneqq x 1"$
 - relation $[\![\pi]\!] = \{(s,t)|t(x) = s(x) 1\}$
- During each step of our iterative algorithm, we have the relations we've found so far, put in some order $\langle \rho_1, \dots, \rho_n \rangle$.
- We attempt to find a lexicographic ranking function $\langle f_1, \dots, f_n \rangle$ such that $\forall i, \rho_i$ decreases f_i towards 0 and does not increase any of f_1, \dots, f_{i-1} .
- Then $\rho_1 \cup \cdots \cup \rho_n \subseteq T$.

Procedure to construct lexicographic termination arguments

- The counterexamples we find during the iterative algorithm are in the form of **cycles** (paths returning to the same program location).
- We represent them as **relations** on S, e.g.
 - cycle $\pi = "x \coloneqq x 1"$
 - relation $[\![\pi]\!] = \{(s,t)|t(x) = s(x) 1\}$
- During each step of our iterative algorithm, we have the relations we've found so far, put in some order $\langle \rho_1, \dots, \rho_n \rangle$.
- We attempt to find a lexicographic ranking function $\langle f_1, \dots, f_n \rangle$ such that $\forall i, \rho_i$ decreases f_i towards 0 and does not increase any of f_1, \dots, f_{i-1} .
- Then $\rho_1 \cup \cdots \cup \rho_n \subseteq T$.
- We keep adding relations ρ and functions f until (hopefully) $R \subseteq T$.

input: program P

 $T := \emptyset$, empty termination argument $\Pi := \langle \rangle$, empty sequence of relations \checkmark Stores all the cycles we've found so far repeat

else

report "Success"

end.

```
while x>0 && y>0 do
    if * then
        x := x - 1;
    else
        x := *
        y := y - 1;
    fi
done
```

$$\label{eq:rho_1} \begin{split} \rho_1 &= x > 0 \ \land \ y > 0 \ \land \ x' = x - 1 \ \land \ y' = y \\ f_1 &= x \end{split}$$

$$\rho_1 = x > 0 \land y > 0 \land x' = x - 1 \land y' = y$$

$$f_1 = x$$

$$\Rightarrow T = T_{f_1}. \ R \subseteq T ?$$

$$\rho_1 = x > 0 \land y > 0 \land x' = x - 1 \land y' = y$$

$$f_1 = x$$

$$\Rightarrow T = T_{f_1}. \ R \subseteq T ?$$

No:

$$\begin{split} \rho_2 &= x > 0 \ \land \ y > 0 \ \land \ x' = * \ \land \ y' = y - 1 \\ f_2 &= y \end{split}$$

$$\rho_{1} = x > 0 \land y > 0 \land x' = x - 1 \land y' = y$$

$$f_{1} = x$$

$$\Rightarrow T = T_{f_{1}}. R \subseteq T?$$
No:
$$\rho_{2} = x > 0 \land y > 0 \land x' = * \land y' = y - 1$$

$$f_{2} = y$$

Valid if ρ_2 does not increase f_1

Valid if ρ_1 does not increase f_2

 $\langle f_1, f_2 \rangle$ or $\langle f_2, f_1 \rangle$?

$$\rho_1 = x > 0 \land y > 0 \land x' = x - 1 \land y' = y$$
$$f_1 = x$$
$$\Rightarrow T = T_{f_1}. R \subseteq T?$$

No: $\rho_2 = x > 0 \land y > 0 \land x' = * \land y' = y - 1$ $f_2 = y$

Valid if ρ_2 does not increase f_1 Valid if ρ_1 does not increase f_2 (f_1, f_2) or $\langle f_2, f_1 \rangle$? $R \subseteq T$? Valid if ρ_1 does not increase f_2 " f_2 decreases towards 0, or f_1 decreases towards 0 and f_2 does not increase"

$$\begin{array}{l} \rho_1 = x > 0 \ \land \ y > 0 \ \land \ x' = x - 1 \ \land \ y' = y \\ f_1 = x \end{array}$$

$$\Rightarrow T = T_{f_1}. \ R \subseteq T ?$$
No:
$$\begin{array}{l} \rho_2 = x > 0 \ \land \ y > 0 \ \land \ x' = * \ \land \ y' = y - 1 \end{array}$$

Valid if ρ_2 does not increase f_1 $\langle f_1, f_2 \rangle$ or $\langle f_2, f_1 \rangle$? $R \subseteq T$? Yes: we have proved termination Valid if ρ_1 does not increase f_2 (f_2, f_1) ? (f_2, f_1) ? (f_2, f_1) ? (f_2, f_1) ? (f_2, f_1) ?

 $f_2 = y$

Results

A disadvantage of lexicographic termination arguments

 Existence of a Ramsey-based termination argument does not imply existence of a lexicographic termination argument.

A disadvantage of lexicographic termination arguments

- Existence of a Ramsey-based termination argument **does not imply** existence of a lexicographic termination argument.
- So occasionally we cannot find a lexicographic termination argument (when we can find a Ramsey one).

A disadvantage of lexicographic termination arguments

- Existence of a Ramsey-based termination argument **does not imply** existence of a lexicographic termination argument.
- So occasionally we cannot find a lexicographic termination argument (when we can find a Ramsey one).
- In our experience this is rare.

$$f_1 = x$$
$$f_2 = -x$$

```
while x<>0 do
    if x>0 then
        x := x - 1;
    else
        x := x + 1;
    fi
done
```

$$f_1 = x$$
$$f_2 = -x$$

$$f_1 = x$$
$$f_2 = -x$$

```
while x<>0 do
    if x>0 then
        x := x - 1;
    else
        x := x + 1;
    fi
done
```

$$f_1 = x$$
$$f_2 = -x$$

 $T_{f_1} \cup T_{f_2}$ is a valid Ramseybased termination argument.

```
while x<>0 do
    if x>0 then
        x := x - 1;
    else
        x := x + 1;
    fi
done
```

$$f_1 = x$$

 $f_2 = -x$ if one decreases, the other must increase!

 $T_{f_1} \cup T_{f_2}$ is a valid Ramseybased termination argument.


```
while x<>0 do
    if x>0 then
        x := x - 1;
    else
        x := x + 1;
    fi
done
```

$$f_1 = x$$

$$f_2 = -x$$
 if one decreases, the other must increase!

 $T_{f_1} \cup T_{f_2}$ is a valid Ramseybased termination argument.

No (linear) lexicographic termination argument.

Solution

```
c := 0
while x<>0
  if x>0 then
    if c=0 then
      c := 1
    x := x - 1;
  else
    if c=0 then
      c := 2
    x := x + 1;
```

Prove termination separately for c=1 and c=2, i.e. have different termination arguments for c=1 and c=2:

$$\langle f_1 \rangle = \langle x \rangle$$
 for c=1
 $\langle f_2 \rangle = \langle -x \rangle$ for c=2

Solution

```
c := 0
while x<>0
  if x>0 then
    if c=0 then
      c := 1
    x := x - 1;
  else
    if c=0 then
      c := 2
    x := x + 1;
```

Prove termination separately for c=1 and c=2, i.e. have different termination arguments for c=1 and c=2:

$$\langle f_1 \rangle = \langle x \rangle$$
 for c=1
 $\langle f_2 \rangle = \langle -x \rangle$ for c=2

This solution deals with cases where there is a split case into several disjoint programs.

- Using lexicographic instead of Ramsey-based termination arguments is much faster in an iterative termination-proving algorithm such as Terminator's.
- Occasionally we can't find lexicographic termination arguments, but there are some tricks to get around this.

Thank you for listening Any questions?