
Byron Cook
Abigail See

Florian Zuleger

Terminator

Terminator proves termination using:

• Iterative algorithm

• Ramsey-based termination arguments

Terminator

Terminator proves termination using:

• Iterative algorithm

• Ramsey-based termination arguments

Question: Can we use the iterative algorithm
without using Ramsey-based termination
arguments?

Answer: Yes, and it’s much faster

Terminator

Terminator proves termination using:

• Iterative algorithm

• Ramsey-based termination arguments

Question: Can we use the iterative algorithm
without using Ramsey-based termination
arguments?

Answer: Yes, and it’s much faster

Lexicographic termination arguments

Proving termination

• A program 𝑃 = (𝑆, 𝑅)

– Set of states S

– Transition relation 𝑅 ⊆ 𝑆 × 𝑆

S S
R

Proving termination

• A program 𝑃 = (𝑆, 𝑅)

– Set of states S

– Transition relation 𝑅 ⊆ 𝑆 × 𝑆

• We want to prove that R is well-founded, i.e. doesn’t
contain infinite sequences

S S
R

Proving termination

• A program 𝑃 = (𝑆, 𝑅)

– Set of states S

– Transition relation 𝑅 ⊆ 𝑆 × 𝑆

• We want to prove that R is well-founded, i.e. doesn’t
contain infinite sequences

• R is well-founded ⟺ P terminates

S S
R

Proving termination

• A program 𝑃 = (𝑆, 𝑅)

– Set of states S

– Transition relation 𝑅 ⊆ 𝑆 × 𝑆

• We want to prove that R is well-founded, i.e. doesn’t
contain infinite sequences

• R is well-founded ⟺ P terminates

• Aim: find a well-founded relation T (the termination
argument) such that 𝑅 ⊆ 𝑇

Usually a condition that
must be met by all
transitions in R

S S
R

Iteratively constructing T

Aim: find well-founded T such that 𝑅 ⊆ 𝑇.

𝑇 ≔ ∅

𝑅 ⊆ 𝑇 ?

Use it to
strengthen T

Proved
termination!

YES

∃ some counterexample
in 𝑅\𝑇.

NO

We change the
conditions of T to
include the
counterexample,
whilst keeping T
well-founded

Ranking functions

• A ranking function is a function 𝑓: 𝑆 ⟼ ℕ (or any well-
ordered set)

Ranking functions

• A ranking function is a function 𝑓: 𝑆 ⟼ ℕ (or any well-
ordered set)

• We use them to construct termination arguments

Ranking functions

• A ranking function is a function 𝑓: 𝑆 ⟼ ℕ (or any well-
ordered set)

• We use them to construct termination arguments

• e.g. 𝑇𝑓 = 𝑠, 𝑡 𝑓 𝑠 > 𝑓 𝑡 ∧ 𝑓 𝑠 > 0

“f decreases and
is bounded
below by 0”

Ranking functions

• A ranking function is a function 𝑓: 𝑆 ⟼ ℕ (or any well-
ordered set)

• We use them to construct termination arguments

• e.g. 𝑇𝑓 = 𝑠, 𝑡 𝑓 𝑠 > 𝑓 𝑡 ∧ 𝑓 𝑠 > 0

• This is well-founded, so if 𝑅 ⊆ 𝑇𝑓 then we have proved

termination.

“f decreases and
is bounded
below by 0”

Ranking functions

• A ranking function is a function 𝑓: 𝑆 ⟼ ℕ (or any well-
ordered set)

• We use them to construct termination arguments

• e.g. 𝑇𝑓 = 𝑠, 𝑡 𝑓 𝑠 > 𝑓 𝑡 ∧ 𝑓 𝑠 > 0

• This is well-founded, so if 𝑅 ⊆ 𝑇𝑓 then we have proved

termination.

• However it is often difficult or impossible to find such a
ranking function.

“f decreases and
is bounded
below by 0”

Ramsey-based termination arguments

• We use several ranking functions 𝑓1, 𝑓2, … , 𝑓𝑛 to construct T:

𝑇 = 𝑇𝑓1
∪ 𝑇𝑓2

∪ ⋯ ∪ 𝑇𝑓𝑛

Ramsey-based termination arguments

• We use several ranking functions 𝑓1, 𝑓2, … , 𝑓𝑛 to construct T:

𝑇 = 𝑇𝑓1
∪ 𝑇𝑓2

∪ ⋯ ∪ 𝑇𝑓𝑛

• This condition says “at least one of 𝑓1, 𝑓2, … , 𝑓𝑛 decreases
towards 0”

Ramsey-based termination arguments

• We use several ranking functions 𝑓1, 𝑓2, … , 𝑓𝑛 to construct T:

𝑇 = 𝑇𝑓1
∪ 𝑇𝑓2

∪ ⋯ ∪ 𝑇𝑓𝑛

• This condition says “at least one of 𝑓1, 𝑓2, … , 𝑓𝑛 decreases
towards 0”

• Unfortunately we must prove 𝑅+ ⊆ 𝑇 to prove P terminates.

The transitive
closure of R

Ramsey-based termination arguments

• We use several ranking functions 𝑓1, 𝑓2, … , 𝑓𝑛 to construct T:

𝑇 = 𝑇𝑓1
∪ 𝑇𝑓2

∪ ⋯ ∪ 𝑇𝑓𝑛

• This condition says “at least one of 𝑓1, 𝑓2, … , 𝑓𝑛 decreases
towards 0”

• Unfortunately we must prove 𝑅+ ⊆ 𝑇 to prove P terminates.

• The proof that this is a sufficient condition uses Ramsey’s
Theorem

The transitive
closure of R

Ramsey-based termination arguments

• We use several ranking functions 𝑓1, 𝑓2, … , 𝑓𝑛 to construct T:

𝑇 = 𝑇𝑓1
∪ 𝑇𝑓2

∪ ⋯ ∪ 𝑇𝑓𝑛

• This condition says “at least one of 𝑓1, 𝑓2, … , 𝑓𝑛 decreases
towards 0”

• Unfortunately we must prove 𝑅+ ⊆ 𝑇 to prove P terminates.

• The proof that this is a sufficient condition uses Ramsey’s
Theorem

• So T is a Ramsey-based termination argument.

The transitive
closure of R

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

 𝑓1, 𝑓2 , 𝑓3 , 𝑓4 , 𝑓5 e.g.

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

 𝑓1, 𝑓2 , 𝑓3 , 𝑓4 , 𝑓5

0

e.g.

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

 𝑓1, 𝑓2 , 𝑓3 , 𝑓4 , 𝑓5

0

e.g.

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

 𝑓1, 𝑓2 , 𝑓3 , 𝑓4 , 𝑓5

0

e.g.

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

 𝑓1, 𝑓2 , 𝑓3 , 𝑓4 , 𝑓5

0

e.g.

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

 𝑓1, 𝑓2 , 𝑓3 , 𝑓4 , 𝑓5

0

e.g.

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

• This is a lexicographic termination argument.

Lexicographic termination arguments

• Put the ranking functions in some order 𝑓1, 𝑓2 , … , 𝑓𝑛

• The condition of T: “at least one of 𝑓1, 𝑓2 , … , 𝑓𝑛 decreases
towards 0, and the preceding ranking functions do not
increase”

• This is a lexicographic termination argument.

• Suffices to prove 𝑅 ⊆ 𝑇 to prove termination.
(No need to consider 𝑅+)

Ramsey vs. lexicographic termination arguments

Ramsey

𝑓1, 𝑓2, … , 𝑓𝑛

𝑅+ ⊆ 𝑇

Lexicographic

 𝑓1, 𝑓2 , … , 𝑓𝑛

𝑅 ⊆ 𝑇 “at least one of the

RFs decreases”

“at least one of the RFs
decreases, and none of
the preceding RFs
increase”

Ramsey vs. lexicographic termination arguments

Ramsey

𝑓1, 𝑓2, … , 𝑓𝑛

𝑅+ ⊆ 𝑇

Prove an easier condition
for all sequences of
transitions

Lexicographic

 𝑓1, 𝑓2 , … , 𝑓𝑛

𝑅 ⊆ 𝑇

Prove a stricter condition
for all single transitions

“at least one of the
RFs decreases”

“at least one of the RFs
decreases, and none of
the preceding RFs
increase”

Overall faster to
construct iteratively

Procedure to construct lexicographic termination arguments

• The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

Procedure to construct lexicographic termination arguments

• The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

• We represent them as relations on S, e.g.
• cycle 𝜋 = "𝑥 ≔ 𝑥 − 1"
• relation 𝜋 = 𝑠, 𝑡 |𝑡 𝑥 = 𝑠 𝑥 − 1

Procedure to construct lexicographic termination arguments

• The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

• We represent them as relations on S, e.g.
• cycle 𝜋 = "𝑥 ≔ 𝑥 − 1"
• relation 𝜋 = 𝑠, 𝑡 |𝑡 𝑥 = 𝑠 𝑥 − 1

• During each step of our iterative algorithm, we have the relations

we’ve found so far, put in some order 𝜌1, … , 𝜌𝑛 .

Procedure to construct lexicographic termination arguments

• The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

• We represent them as relations on S, e.g.
• cycle 𝜋 = "𝑥 ≔ 𝑥 − 1"
• relation 𝜋 = 𝑠, 𝑡 |𝑡 𝑥 = 𝑠 𝑥 − 1

• During each step of our iterative algorithm, we have the relations

we’ve found so far, put in some order 𝜌1, … , 𝜌𝑛 .

• We attempt to find a lexicographic ranking function 𝑓1, … , 𝑓𝑛 such
that ∀𝑖, 𝜌𝑖 decreases 𝑓𝑖 towards 0 and does not increase any of
𝑓1, … , 𝑓𝑖−1.

Procedure to construct lexicographic termination arguments

• The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

• We represent them as relations on S, e.g.
• cycle 𝜋 = "𝑥 ≔ 𝑥 − 1"
• relation 𝜋 = 𝑠, 𝑡 |𝑡 𝑥 = 𝑠 𝑥 − 1

• During each step of our iterative algorithm, we have the relations

we’ve found so far, put in some order 𝜌1, … , 𝜌𝑛 .

• We attempt to find a lexicographic ranking function 𝑓1, … , 𝑓𝑛 such
that ∀𝑖, 𝜌𝑖 decreases 𝑓𝑖 towards 0 and does not increase any of
𝑓1, … , 𝑓𝑖−1.

• Then 𝜌1 ∪ ⋯ ∪ 𝜌𝑛 ⊆ 𝑇.

Procedure to construct lexicographic termination arguments

• The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

• We represent them as relations on S, e.g.
• cycle 𝜋 = "𝑥 ≔ 𝑥 − 1"
• relation 𝜋 = 𝑠, 𝑡 |𝑡 𝑥 = 𝑠 𝑥 − 1

• During each step of our iterative algorithm, we have the relations

we’ve found so far, put in some order 𝜌1, … , 𝜌𝑛 .

• We attempt to find a lexicographic ranking function 𝑓1, … , 𝑓𝑛 such
that ∀𝑖, 𝜌𝑖 decreases 𝑓𝑖 towards 0 and does not increase any of
𝑓1, … , 𝑓𝑖−1.

• Then 𝜌1 ∪ ⋯ ∪ 𝜌𝑛 ⊆ 𝑇.

• We keep adding relations 𝜌 and functions 𝑓 until (hopefully) 𝑅 ⊆ 𝑇.

Procedure to construct lexicographic termination arguments

Stores all the cycles we’ve found so far

Find a cycle that doesn’t obey the termination arg.

Try inserting the new
relation in all possible places

If we can find a lex.
termination arg. for
one of the
orderings, let that
be the new T

Example

while x>0 && y>0 do

 if * then

 x := x - 1;

 else

 x := *

 y := y - 1;

 fi

done

Example

while x>0 && y>0 do

 if * then

 x := x - 1;

 else

 x := *

 y := y - 1;

 fi

done

𝜌1 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 − 1 ∧ 𝑦′ = 𝑦

𝑓1 = 𝑥

Example

while x>0 && y>0 do

 if * then

 x := x - 1;

 else

 x := *

 y := y - 1;

 fi

done

𝜌1 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 − 1 ∧ 𝑦′ = 𝑦

𝑓1 = 𝑥

⇒ 𝑇 = 𝑇𝑓1
. 𝑅 ⊆ 𝑇 ?

Example

while x>0 && y>0 do

 if * then

 x := x - 1;

 else

 x := *

 y := y - 1;

 fi

done

𝜌1 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 − 1 ∧ 𝑦′ = 𝑦

𝑓1 = 𝑥

⇒ 𝑇 = 𝑇𝑓1
. 𝑅 ⊆ 𝑇 ?

No:

𝜌2 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = ∗ ∧ 𝑦′ = 𝑦 − 1

𝑓2 = 𝑦

Example

while x>0 && y>0 do

 if * then

 x := x - 1;

 else

 x := *

 y := y - 1;

 fi

done

𝜌1 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 − 1 ∧ 𝑦′ = 𝑦

𝑓1 = 𝑥

⇒ 𝑇 = 𝑇𝑓1
. 𝑅 ⊆ 𝑇 ?

No:

𝜌2 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = ∗ ∧ 𝑦′ = 𝑦 − 1

𝑓2 = 𝑦

𝑓1, 𝑓2 or 𝑓2, 𝑓1 ?

Valid if 𝜌1 does not increase 𝑓2 Valid if 𝜌2 does not increase 𝑓1

Example

while x>0 && y>0 do

 if * then

 x := x - 1;

 else

 x := *

 y := y - 1;

 fi

done

𝑓1, 𝑓2 or 𝑓2, 𝑓1 ?

𝑅 ⊆ 𝑇 ?

Valid if 𝜌1 does not increase 𝑓2

“𝑓2 decreases towards
0, or 𝑓1 decreases
towards 0 and 𝑓2 does
not increase”

Valid if 𝜌2 does not increase 𝑓1

𝜌1 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 − 1 ∧ 𝑦′ = 𝑦

𝑓1 = 𝑥

⇒ 𝑇 = 𝑇𝑓1
. 𝑅 ⊆ 𝑇 ?

No:

𝜌2 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = ∗ ∧ 𝑦′ = 𝑦 − 1

𝑓2 = 𝑦

Example

while x>0 && y>0 do

 if * then

 x := x - 1;

 else

 x := *

 y := y - 1;

 fi

done

𝑓1, 𝑓2 or 𝑓2, 𝑓1 ?

𝑅 ⊆ 𝑇 ?

Yes: we have proved termination

Valid if 𝜌1 does not increase 𝑓2

“𝑓2 decreases towards
0, or 𝑓1 decreases
towards 0 and 𝑓2 does
not increase”

Valid if 𝜌2 does not increase 𝑓1

𝜌1 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 − 1 ∧ 𝑦′ = 𝑦

𝑓1 = 𝑥

⇒ 𝑇 = 𝑇𝑓1
. 𝑅 ⊆ 𝑇 ?

No:

𝜌2 = 𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑥′ = ∗ ∧ 𝑦′ = 𝑦 − 1

𝑓2 = 𝑦

Results

Many fewer timeouts

A disadvantage of lexicographic termination arguments

• Existence of a Ramsey-based termination
argument does not imply existence of a
lexicographic termination argument.

A disadvantage of lexicographic termination arguments

• Existence of a Ramsey-based termination
argument does not imply existence of a
lexicographic termination argument.

• So occasionally we cannot find a lexicographic
termination argument (when we can find a
Ramsey one).

A disadvantage of lexicographic termination arguments

• Existence of a Ramsey-based termination
argument does not imply existence of a
lexicographic termination argument.

• So occasionally we cannot find a lexicographic
termination argument (when we can find a
Ramsey one).

• In our experience this is rare.

𝑓1 = 𝑥

𝑓2 = −𝑥

A tricky example

while x<>0 do

 if x>0 then

 x := x - 1;

 else

 x := x + 1;

 fi

done

𝑓1 = 𝑥

𝑓2 = −𝑥

A tricky example

while x<>0 do

 if x>0 then

 x := x - 1;

 else

 x := x + 1;

 fi

done

𝑓1 = 𝑥

𝑓2 = −𝑥

A tricky example

while x<>0 do

 if x>0 then

 x := x - 1;

 else

 x := x + 1;

 fi

done

A tricky example

while x<>0 do

 if x>0 then

 x := x - 1;

 else

 x := x + 1;

 fi

done

𝑓1 = 𝑥

𝑓2 = −𝑥

𝑇𝑓1
∪ 𝑇𝑓2

 is a valid Ramsey-
based termination argument.

A tricky example

while x<>0 do

 if x>0 then

 x := x - 1;

 else

 x := x + 1;

 fi

done

𝑓1 = 𝑥

𝑓2 = −𝑥

𝑇𝑓1
∪ 𝑇𝑓2

 is a valid Ramsey-
based termination argument.

 𝑓1, 𝑓2 ?

 𝑓2, 𝑓1 ?

if one decreases, the
other must increase!

A tricky example

while x<>0 do

 if x>0 then

 x := x - 1;

 else

 x := x + 1;

 fi

done

𝑓1 = 𝑥

𝑓2 = −𝑥

𝑇𝑓1
∪ 𝑇𝑓2

 is a valid Ramsey-
based termination argument.

 𝑓1, 𝑓2 ?

 𝑓2, 𝑓1 ?

No (linear) lexicographic termination argument.

if one decreases, the
other must increase!

Solution

c := 0

while x<>0

 if x>0 then

 if c=0 then

 c := 1

 x := x - 1;

 else

 if c=0 then

 c := 2

 x := x + 1;

Prove termination separately for c=1
and c=2, i.e. have different
termination arguments for c=1 and
c=2:

𝑓1 = 𝑥 for c=1
𝑓2 = −𝑥 for c=2

Solution

c := 0

while x<>0

 if x>0 then

 if c=0 then

 c := 1

 x := x - 1;

 else

 if c=0 then

 c := 2

 x := x + 1;

Prove termination separately for c=1
and c=2, i.e. have different
termination arguments for c=1 and
c=2:

𝑓1 = 𝑥 for c=1
𝑓2 = −𝑥 for c=2

This solution deals with cases where
there is a split case into several
disjoint programs.

Conclusion

• Using lexicographic instead of Ramsey-based
termination arguments is much faster in an iterative
termination-proving algorithm such as Terminator’s.

• Occasionally we can’t find lexicographic termination
arguments, but there are some tricks to get around
this.

Any questions?

