Ramsey vs. lexicographic
termination proving

Byron Cook
Abigail See
Florian Zuleger

Terminator proves termination using:
* |terative algorithm
* Ramsey-based termination arguments

Terminator proves termination using:
* |terative algorithm

* Ramsey-based termination arguments

Question: Can we use the iterative algorithm
without using Ramsey-based termination
arguments?

Answer: Yes, and it’s much faster

Terminator proves termination using:
* |terative algorithm
. | I o
Lexicographic termination arguments
Question: Can we use the iterative algorithm

without using Ramsey-based termination
arguments?

Answer: Yes, and it’s much faster

 Aprogram P = (§,R)

— Set of states S ® O

— Transition relation R € § X S

 Aprogram P = (§,R)

— Set of states S ® O

— Transition relation R € § X S

 We want to prove that R is well-founded, i.e. doesn’t
contain infinite sequences

 Aprogram P = (§,R)

— Set of states S ® O

— Transition relation R € § X S

 We want to prove that R is well-founded, i.e. doesn’t
contain infinite sequences

* Riswell-founded & P terminates

 Aprogram P = (§,R)

— Set of states S @—R>@

— Transition relation R € § X S

 We want to prove that R is well-founded, i.e. doesn’t
contain infinite sequences

Usually a condition that
must be met by all

* Ris well-founded < P terminates transitions in R

 Aim: find a well-founded relation T (the termination
argument) suchthat R € T

Aim: find well-founded Tsuchthat R € T..

T=0
We change the
conditions of T to d
include the Prove
counterexample, RET? e termination!
whilst keeping T :

well-founded m

Use it to — 3 some counterexample
strengthen T in R\T.

* Aranking function is a function f:S +— N (or any well-
ordered set)

* Aranking function is a function f:S +— N (or any well-
ordered set)

 We use them to construct termination arguments

* Aranking function is a function f:S +— N (or any well-
ordered set)

 We use them to construct termination arguments

“f decreases and

ceg Tr={(sDIf()>F) A () >0} | perowsyor

* Aranking function is a function f:S +— N (or any well-
ordered set)

 We use them to construct termination arguments

“f decreases and
is bounded
ceg Tr={(|fs)>f{) N f(s)> Oﬁbelow by 0"]

* Thisis well-founded, so if R © T then we have proved
termination.

* Aranking function is a function f:S +— N (or any well-
ordered set)

 We use them to construct termination arguments

“f decreases and
is bounded
ceg Tr={(|fs)>f{) N f(s)> Oﬁbelow by 0"]

* Thisis well-founded, so if R © T then we have proved
termination.

 However it is often difficult or impossible to find such a
ranking function.

* We use several ranking functions {f, f5, ..., f,,} to construct T:

T —_ Tfl UT]'-“2 U UTfn

* We use several ranking functions {f, f5, ..., f,,} to construct T:

T —_ Tfl UT]'-“2 U UTfn

* This condition says “at least one of {f3, f5, ..., f,,} decreases
towards 0”

* We use several ranking functions {f, f5, ..., f,,} to construct T:

T —_ Tfl UTfZ U UTfn

* This condition says “at least one of {f3, f5, ..., f,,} decreases
towards 0" The transitive

closure of R \

« Unfortunately we must prove R™ € T to prove P terminates.

O ~Q@ @ @ @

* We use several ranking functions {f, f5, ..., f,,} to construct T:

T —_ Tfl UT]'-“2 U UTfn

* This condition says “at least one of {f3, f5, ..., f,,} decreases
towards 0" The transitive

closure of R \

« Unfortunately we must prove R™ € T to prove P terminates.

* The proof that this is a sufficient condition uses Ramsey’s
Theorem

* We use several ranking functions {f, f5, ..., f,,} to construct T:

T —_ Tfl UTf2 U UTfn

* This condition says “at least one of {f3, f5, ..., f,,} decreases
towards 0" The transitive

closure of R \

« Unfortunately we must prove R™ € T to prove P terminates.

* The proof that this is a sufficient condition uses Ramsey’s
Theorem

* So Tis a Ramsey-based termination argument.

* Put the ranking functions in some order { f1, f5, ..., [)

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not

increase”

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not

increase”

€8 (fl' fZJ f3' f4’f5>

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not

increase”

€8 (]il' fZJ f3' f4’f5>

0

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not

increase”

€8 (fl']iZ! f3' f4’f5>

0

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not

increase”

€8 (fl' f21]£3) f4’f5>

0

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not

increase”

€8 (fl' fZJ f3!]£4!f5>

0

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not

XXX

€8 (fl' fZJ f3' f4’]i5>

0

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not

increase”

* Thisis a lexicographic termination argument.

* Put the ranking functions in some order { f1, f5, ..., [)

* The condition of T: “at least one of { f;, f>, ..., [,) decreases
towards O, and the preceding ranking functions do not
increase”

* Thisis a lexicographic termination argument.

e Suffices to prove R € T to prove termination.
(No need to consider RY)

Ramsey Lexicographic

{fl'fZJ""fn} (fl' f2"" fn)

“at least one of the RFs\
Rt CT ﬁ “at least one of the J RCT decreases, and none of

-

RFs decreases” the preceding RFs
increase”

J

Ramsey

Ui [z i fud

RT CT “at least one of the
RFs decreases”

|

Prove an easier condition
for all sequences of
transitions

Lexicographic

-

fu)

“at least one of the RFs
decreases, and none of
the preceding RFs
increase”

(f1r [z

RCT

Y,
Prove a stricter condition
for all single transitions

Overall faster to
construct iteratively

* The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

* The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

* Werepresent them as relations on S, e.g.
e cycler="x=x-1"
* relation [7] = {(s,t)|t(x) = s(x) — 1}

* The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

* Werepresent them as relations on S, e.g.
e cycler="x=x-1"
* relation [7] = {(s,t)|t(x) = s(x) — 1}

* During each step of our iterative algorithm, we have the relations
we’ve found so far, put in some order (p4, ..., py)-

The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

We represent them as relations on S, e.g.
e cycler="x=x-1"
* relation [7] = {(s,t)|t(x) = s(x) — 1}

During each step of our iterative algorithm, we have the relations
we’ve found so far, put in some order (p4, ..., py)-

We attempt to find a lexicographic ranking function (f4, ..., f;;) such
that Vi, p; decreases f; towards 0 and does not increase any of

f1r e fio1-

The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

We represent them as relations on S, e.g.
e cycler="x=x-1"
* relation [7] = {(s,t)|t(x) = s(x) — 1}

During each step of our iterative algorithm, we have the relations
we’ve found so far, put in some order (p4, ..., py)-

We attempt to find a lexicographic ranking function (f4, ..., f;;) such
that Vi, p; decreases f; towards 0 and does not increase any of

f1r e fio1-

Then pU--Up, & T.

* The counterexamples we find during the iterative algorithm are in
the form of cycles (paths returning to the same program location).

* Werepresent them as relations on S, e.g.
e cycler="x=x-1"
* relation [7] = {(s,t)|t(x) = s(x) — 1}

* During each step of our iterative algorithm, we have the relations
we’ve found so far, put in some order (p4, ..., py)-

* We attempt to find a lexicographic ranking function (fy, ..., f;;) such
that Vi, p; decreases f; towards 0 and does not increase any of

1, oo fi-1-
 Then p;U---Up, ©T.

* We keep adding relations p and functions f until (hopefully) R € T.

input: program P

T := {), empty termination argument
IT .= (), empty sequence of relations <«——— | Stores all the cycles we’ve found so far
repeat

if 3 cycle #in P s.t. [7] £ T then <——

Find a cycle that doesn’t obey the termination arg.

let n = length(IT) = length{p1, p2,..., pn)
fori=1ton+1do
let IT; = (p1,p2,...,pi—1, 7], pis---,pn)

Try inserting the new

relation in all possible places

if 3 lex. ranking function (f1, f2,..., fnt1) for some II; then

7 = I,
T := lex. termination argument given by {f1, f2,..., fnt1)
else

report “Unknown”

else

end.

report “Success”

If we can find a lex.
termination arg. for
one of the
orderings, let that
be thenew T

while x>0 && y>0 do
if * then
X =X - 1;
else
X 1= *
y 1=y - 1;
fi
done

pr=x>0Ay>0Ax"=x—1AYy =y
while x>0 && y>0 do _
. f=x
if * then
X =X - 1;
else
X = *
y :i=y - 1;
fi
done

Pp1=x>0ANy>0Ax'=x—-1AYy =y
while x>0 && y>0 do .
: fi=x
if * then
X =X - 1;
else =>T=Tf1.R§T?
X 1= *
y 1=y - 1;
fi
done

pL=x>0Ay>0Ax'"=x—1AYy =y
while x>0 && y>0 do _
X fr=x
if * then
X =X - 1;
else $T=Tf1. RCT?
X 1= *
y :=y - 1; No:
fi P, =x>0ANy>0Ax'=xANy =y—1
done
fa=y

Pp1=x>0ANy>0Ax'=x—-1AYy =y
while x>0 && y>0 do .
: fi=x
if * then
X =X - 1;
else =T=T,. REST?
X 1= *
y :=y - 1; No:
fi P, =x>0ANy>0Ax'=xANy =y—1
done
f2=Yy
Valid if p, does not increase f; Valid if p; does not increase f,

\ /
(B or (2 f1)?

Pp1=x>0ANy>0Ax'=x—-1AYy =y
while x>0 && y>0 do .
: fi=x
if * then
X =X - 1;
else =T=T,. REST?
X := *
y :=y - 1; No:
fi P, =x>0ANy>0Ax'=xANy =y—1
done
f2=y
Valid if p, does not increase f; Valid if p; does not increase f,
\ / o \
5 f> decreases towards
<M or <f2» f1> * | 0, or f; decreases
RCT? towards 0 and f, does
7 not increase”

J

Pp1=x>0ANy>0Ax'=x—-1AYy =y
while x>0 && y>0 do .
: fi=x
if * then
X =X - 1;
else =T=T,. REST?
X := *
y :=y - 1; No:
fi P, =x>0ANy>0Ax'=xANy =y—1
done
f2=y
Valid if p, does not increase f; Valid if p; does not increase f,
\ / o \
5 f> decreases towards
<M or <f2» f1> * | 0, or f; decreases
RCT? towards 0 and f, does
- not increase”

J

Yes: we have proved termination

1000

timeout=300

Ramsey time (seconds)

100

—_
]

Many fewer timeouts

7 T TLX

% ~ vé

T AEEA Y

/11N
L

P

3

Lexicographic time (seconds)

X L
i % KX
X e
X
x
X X X/
o
% >< //
%(X
’ X | |
1 10 100 timeout=300 1000

* Existence of a Ramsey-based termination
argument does not imply existence of a
lexicographic termination argument.

* Existence of a Ramsey-based termination
argument does not imply existence of a
lexicographic termination argument.

* So occasionally we cannot find a lexicographic
termination argument (when we can find a

Ramsey one).

* Existence of a Ramsey-based termination
argument does not imply existence of a
lexicographic termination argument.

* So occasionally we cannot find a lexicographic
termination argument (when we can find a

Ramsey one).

* In our experience this is rare.

while x<>0 do

if x>0 then
X =X - 1;
else
X 1= X + 1;
fi

done

f1
fo=

while x<>0 do

if x>0 then
X =X - 1;
else
X 1= X + 1;
fi

done

f1
fo=

while x<>0 do

if x>0 then
X =X - 1;
else
X = X + 1;
fi

done

f1
fo=

while x<>@ do fi=x
if x>0 then fo =—x
X =X - 1;
else
X := X + 1; Tr, U Tf, is a valid Ramsey-
fi based termination argument.
done

while x<>0 do fl =X if one decreases, the
if x>0 then f2 = —x other must increase!
X =X - 1;
else
X := X + 1; Tr, U Tf, is a valid Ramsey-
fi based termination argument.
done
(fuf2)? XK

(fafi)? XK

while x<>@ do fl =X if one decreases, the
if x>0 then f2 = —x other must increase!
X =X - 1;
else
X := X + 1; Tr, U Tf, is a valid Ramsey-
fi based termination argument.
done
(fuf2)? XK
<f2'f1> ? x

No (linear) lexicographic termination argument.

Prove termination separately for c=1
c =0 and c=2, i.e. have different
while x<>0 termination arguments for c=1 and
if x>0 then c=2:
if c=0 then
c =1 (f1) = (x) for c=1
X i=x -1 (f;) = (—x) for c=2
else
if c=0 then
cC := 2
X 1= X + 1;

c :=0
while x<>0
if x>0 then
if c=0 then

else
if c=0 then
cC := 2
X 1= X + 1;

Prove termination separately for c=1
and c=2, i.e. have different
termination arguments for c=1 and
c=2:

(f1) = (x) forc=1
(f2) = (—x) for c=2

This solution deals with cases where
there is a split case into several
disjoint programs.

» Using lexicographic instead of Ramsey-based
termination arguments is much faster in an iterative
termination-proving algorithm such as Terminator’s.

e Occasionally we can’t find lexicographic termination
arguments, but there are some tricks to get around

this.

Thank you for listening

Any questions?

