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2 Purpose of the Essay

The purpose of this essay is to give an accessible introduction to smoothed
analysis, including a complete presentation of two smoothed analysis results
relevant to machine learning:

� D. Arthur and S. Vassilvitskii. Worst-case and smoothed analysis of the
ICP algorithm, with an application to the k-means method. In Proceed-
ings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pages 153–164. IEEE Computer Society Press, 2006.

� A. Blum and J. Dunagan. Smoothed analysis of the perceptron algorithm
for linear programming. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 905–914. Society for Industrial
and Applied Mathematics, 2002.

This essay seeks to simplify the presentation of these results by refocussing on
machine learning and including more explanation, commentary and diagrams.
All diagrams are by me unless otherwise stated. I have also fixed what appear to
be minor errors in the original work (see Appendix A). The essay is therefore of
interest to anyone who wishes to acquaint themselves with smoothed analysis,
anyone with an interest in theoretical machine learning, or anyone who would
like to understand the above two results more easily than by reading the original
papers. All sources used are listed in the bibliography.

Overview: In Section 3 we motivate and define smoothed analysis, discuss
the definition, and give some history. We also discuss why machine learning
is a particularly suitable area for smoothed analysis. In Sections 4 and 5 we
present smoothed analyses of the k-means method and perceptron algorithm
respectively. In Section 6 we discuss some of the subtleties and open problems
of smoothed analysis.
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3 Introduction to Smoothed Analysis

3.1 The Problem: A Gap Between Theory and Practice

Sometimes there are gaps between theory and practice. For example, the simplex
algorithm solves linear programs (LPs) of the form

max cTx

subject to Ax ≤ y
(1)

where c, x and y are real vectors and A a real matrix. The algorithm, invented
in 1947 by Dantzig [11], works by walking along the edges of the feasible region,
which is a convex polytope, until the optimal vertex is found. In 1972 Klee
and Minty [19] proved that the simplex algorithm has exponential worst-case
complexity. Despite this, the simplex algorithm is very efficient in practice and,
despite decades of effort to oust it, remains the most widely-used linear program
solving algorithm today [30].

This situation is not uncommon; there are many other algorithms whose
practical usefulness contradicts their poor worst-case complexity (see Section
3.3 for examples). Ideally, a measure of complexity should reflect an algorithm’s
practical usefulness, to aid our design and selection of better algorithms for real
world applications. We use worst-case complexity as our traditional measure
of complexity for good reason; we would like guarantees on the running time.
However it seems that worst-case complexity is overly pessimistic, declaring
many algorithms intractable when in reality the worst case input occurs rarely,
or never, in practice. In fact, many proofs of bad worst-case complexity tend
to use contrived constructions of ‘bad’ input, whose naturality in any real-life
setting is dubious.

One alternative is average-case complexity. While worst-case complexity
asks ‘what is the longest possible running time?’, average-case asks ‘what is the
expected running time?’ While this definition avoids the problem of overempha-
sis on unnatural worst-case examples, it implicitly assumes some probability
distribution of the input. This can be problematic, as it is often unclear or
unknown what distribution is representative for a particular application. In
addition, average-case complexity results are not transferable: a result with re-
spect to one distribution does not apply for another distribution. Therefore a
single algorithm may need to be analysed many times, once for each distribution
deemed relevant. This can be time-consuming.

3.2 A Solution: Smoothed Complexity

Imagine you are playing a game with an adversary. You have an algorithm,
which you want to run quickly; your adversary wants it to run slowly. Your
adversary may choose any input and you must run your algorithm on it. Worst-
case complexity asks ‘what is the longest running time, given that your adversary
can choose any input?’ Smoothed complexity weakens the adversary — they
now have a trembling hand (to quote [18]). That is, your adversary can still
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choose whatever input they like, but a small random perturbation (outside the
adversary’s control) is applied to their choice. Smoothed complexity then asks
‘what is the longest expected running time, given that your adversary can choose
any input which will then be perturbed?’

Formally, suppose A is an algorithm with input space X. Let Xn denote
inputs of size n. There are a number of ways of measuring ‘size of input’, but
for our purposes we take this to mean the number of real variables in the input,
so Xn = Rn. For x ∈ X, let CA(x) denote the running time of A on x. The
worst-case complexity of A is

max
x∈Xn

CA(x). (2)

The average-case complexity of A (given some distribution µn) is

E
x

µn←−−Xn

CA(x). (3)

Note that worst-case and average-case complexities are functions of n, the input
size. The smoothed complexity [30] of A is

max
x∈Xn

E
g
(CA(x+ σ∥x∥g)) (4)

where g is a vector of n Gaussian random variables with mean 0 and variance
1, σ is a positive scalar, and ∥x∥ = max{|x1|, . . . , |xn|} is the uniform norm
for Xn = Rn. Note that smoothed complexity is a function of n and σ, taking
into account the size of the input and the size of the perturbation. The ∥x∥
in Equation (4) is necessary to prevent the adversary from choosing arbitrarily
large input, rendering the effect of the perturbation negligible. If A satisfies
CA(sx) = CA(x) for all scalars s > 0 (that is, the algorithm’s running time is
unaffected by scaling the input) then Equation (4) is equal to

max
x∈[−1,1]n

E
g
(CA(x+ σg)). (5)

That is, by restricting the magnitude of the real variables of the input, we do
not need to make the perturbation proportional to the input [33]. Another
equivalent formulation is to consider

max
x∈Xn

E
g
(CA(x+ σg)) (6)

as a function of n and ∥x∥
σ . As the running times of both the k-means method

and perceptron algorithm are unaffected by scaling, we use the more convenient
definitions given by Equations (5) and (6).

We say A has polynomial smoothed complexity [30] if Equation (4) or (5) is
bounded above by a polynomial in n and 1/σ, or equivalently if (6) is bounded

above by a polynomial in n and ∥x∥
σ . Following the Equation (5) definition,

we say A has probably polynomial smoothed complexity [7, 33] if there exists
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Figure 1: Top: worst-case and average-case complexity. Bottom: smoothed
complexity. Pictures by Daniel Spielman, used with permission.

a polynomial p(n, 1/σ, 1/δ) such that for all n ∈ N, σ > 0, δ ∈ [0, 1], and
x ∈ [−1, 1]n, the probability that CA(x+σg) exceeds p(n, 1/σ, 1/δ) is at most δ.
Probably polynomial smoothed complexity is weaker than polynomial smoothed
complexity.

The typical effect of smoothed complexity can be seen in Figure 1. On top
is a plot of the running time of an algorithm for different inputs. The running
time is mostly small, except for some isolated steep spikes, where the running
time is large. The worst-case complexity is the height of the tallest spike. The
average-case complexity is low (assuming, say, uniform distribution over the
input space). Neither of these are satisfactory: the worst-case complexity is too
pessimistic, and the average-case does not pay enough attention to the spikes.
In the bottom plot, the vertical axis measures expected running time, with
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the expectation taken over a small Gaussian perturbation. The perturbation
‘smooths down’ the steep spikes. The smoothed complexity of the algorithm
is then the maximum height of the plot on the bottom (much smaller than
the worst-case complexity). Note that it is possible that the input achieving
the worst-case complexity is not the same as the input achieving the smoothed
complexity.

Why is Equation (4) a good definition? Firstly, smoothed complexity is a
hybrid of worst- and average-case complexity, achieving the best of both. As
σ tends to 0, Equation (4) becomes worst-case complexity, and as σ tends to
∞, Equation (4) becomes average-case complexity (with respect to a Gaussian
distribution centred at 0 with large variance). Smoothed complexity avoids
the pessimism of worst-case complexity by lessening the influence of isolated
worst-case examples, but avoids the arbitrary nature of average-case complexity
by considering the maximum (i.e. worst case) over all unperturbed inputs.
Secondly, smoothed complexity can help us to distinguish between ‘bad’ and
‘really bad’ worst-case complexity. That is, if an algorithm has isolated worst-
case spikes as in Figure 1, the smoothed complexity will be much less than the
worst-case complexity. However, if there is a whole dense area of worst-case
behaviour (unlike Figure 1), the smoothed complexity will be similar to the
worst-case complexity. Lastly, smoothed complexity is especially suitable in
settings where the input to an algorithm is subject to noise, because in such
cases we would be unconcerned by isolated worst-case inputs.

3.3 History of Smoothed Analysis

Smoothed analysis was invented in 2001 by Spielman and Teng in order to ex-
plain the good practical performance of the simplex algorithm (described in
Section 3.1). They showed that the algorithm has polynomial smoothed com-
plexity [30] and won the Godel Prize for their work. Since then, smoothed anal-
ysis has been used to explain the good performance of many other algorithms
such as the Nemhauser-Ullmann heuristic for the knapsack problem [5, 6, 25],
quicksort [4, 13, 21], the 2-opt heuristic for TSP [12], Goldberg’s algorithm for
single shortest path [4], binary programming [7], and integer programming [26].
See [33] for a recent summary article.

3.4 Machine Learning and Smoothed Analysis

Machine learning is a particularly suitable area for smoothed analysis for two
reasons. Firstly, it is an area where theory lags behind practice. Experimen-
talists have made great progress in recent years, but the good performance of
many machine learning algorithms are yet to be explained. Secondly, in many
machine learning applications such as machine vision, natural language process-
ing and medical diagnosis, the input, which involves real-world measurements,
contains inherent noise.

The two algorithms analysed in the remainder of this essay, the k-means
method for clustering and the perceptron algorithm for perceptron learning,
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are central to machine learning. Other applications of smoothed analysis in
machine learning include Kalai and Teng’s proof that all decision trees are PAC-
learnable from most product distributions [18], and the work of Kalai et al. on
PAC-learning DNFs and agnostically learning decision trees [17].
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4 The k-Means Method

Clustering is a vital machine learning task, used in diverse applications such as
social network analysis, recommender systems, image segmentation and medical
imaging. In particular, we have the following problem:

The k-Means Clustering Problem: Given a set of n points X =
{x1, . . . , xn} in Rd, find k cluster centres {c1, . . . , ck} minimising the po-
tential function

ϕ =
∑
x∈X

min
1≤i≤k

∥x− ci∥2. (7)

That is, we want to partition n points into k clusters, each with a centre,
so that each point is closest to its cluster centre, and the sum of the squared
distance between each point and its cluster centre is minimised.

4.1 Description of the k-Means Method

The k-means method, sometimes called Lloyd’s algorithm (developed by Lloyd
in [20]), proceeds as follows.

The k-Means Method

1. Choose an arbitrary set of k cluster centres.

2. Set the cluster Ci to be the set of points of X closer to ci than any
other cj .

3. Recompute the optimal centres for these clusters by setting ci =
1

|Ci|
∑

x∈Ci
x, the centre of mass of Ci.

4. Repeat steps 2 and 3 until the partitioning stabilises.

See Figure 2 for a demonstration of the k-means method in action. The
dotted lines are perpendicular bisectors between the cluster centres that help
us perform Step 2 (assigning points to closest centres). These hyperplanes are
called Voronoi boundaries [3], dividing the space into Voronoi cells. Note that
we will always denote a cluster by C and a fixed subset of X by S. That is, Ci
may change value many times over the course of the algorithm. For example,
C3 is ‘all points of X shaped like a square’ in Figure 2.

The k-means method takes advantage of the following facts:

� If the partition is fixed, then it is easy to choose optimal cluster centres
(just take centres of mass; see Lemma 4.6 for proof).
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Figure 2: A demonstration of the k-means method with d = 2 and k =
3. (a): The point set X . (b): Choose arbitrary centres and assign points to
nearest centres. (c): Recalculate the centres and assign points to nearest centres.
(d): Recalculate the centres. Algorithm terminates because points are already
assigned to nearest centres.

� If the cluster centres are fixed, then it is easy to choose an optimal partition
(just assign each point to its nearest centre).

The algorithm simply iterates between these two actions until there are no
changes to be made. This is guaranteed: each step strictly decreases the poten-
tial ϕ, therefore no partition can be repeated. As there are only finitely many
possible k-partitions, the k-means method always terminates.

4.2 Analysis of the k-Means Method

The algorithm trivially terminates in kn iterations, as this is the number of ways
to k-partition n objects. This bound was improved by [16], who showed that the
k-means method never takes more than O(nkd) iterations. The proof works by
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counting the number of ways to partition n points into k clusters using Voronoi
boundaries in d-dimensional space. However this bound is not Poly(n) when
k or d is unfixed. As for lower bounds: the k-means method has been shown
to have superpolynomial worst-case complexity of 2Ω(

√
n) [2]. In addition, the

k-means method is not optimal — the solution it finds is only locally optimal.
Despite these major theoretical drawbacks, the k-means method is widely

used for its simplicity and its good practical performance [8]. This motivated
a smoothed analysis of the algorithm, which emerged over a series of papers
[1, 3, 22]. In 2006, Arthur and Vassilvitskii proved that

Theorem 4.1 (Main Theorem (Arthur, Vassilvitskii [3])). Fix an arbitrary set
X ′ ⊂ Rd of n points and assume that each point in X ′ is independently perturbed
by a Gaussian distribution with mean 0 and variance σ2, yielding a new set X
of points, and let D denote the diameter of X . Then the expected running time
of the k-means method on X is bounded above by a polynomial in nk and D/σ.

If we had n instead of nk in this statement, we would have polynomial
smoothed complexity in the sense of Equation (6). However, nk is still an
improvement on the worst-case bound of O(nkd), as it is independent of the
dimension d. Theorem 4.1 was later improved slightly by Manthey and Roglin
[22]. Finally, in 2009 Arthur, Manthey and Roglin showed that

Theorem 4.2 (Arthur, Manthey, Roglin [1]). Fix an arbitrary set X ′ ⊆ [0, 1]d

of n points and assume that each point in X ′ is independently perturbed by a
Gaussian distribution with mean 0 and variance σ2, yielding a new set X of
points. Then the expected running time of k-means on X is bounded above by a
polynomial in n and 1/σ.

Thus the k-means method has polynomial smoothed complexity in the sense
of Equation (5). Both Theorems 4.1 and 4.2 have intricate proofs, but the
earlier result is significantly simpler. We will therefore prove Theorem 4.1 in
full (excepting one technical lemma) and then give a very high level sketch of
Theorem 4.2.

4.3 Overview of the Proof

All proofs in the rest of this section are due to [3] unless otherwise stated, though
all diagrams are by me. The most significant difference between my presentation
and that of [3] is the proof of Theorem 4.14, which appeared to have an error
in the original paper. I have resolved the apparent error, and my corrections
make no difference to the main theorem. See Appendix A for details.

The proof proceeds as follows. After giving some preliminary lemmas and
definitions (Section 4.4), we consider two cases: either some cluster makes a
‘large change’ (meaning it gains ≥ 2kd points in a single iteration or loses
≥ 2kd points in a single iteration), or no cluster makes a ‘large change’. In
the ‘large change’ scenario (Section 4.6), we find that if X is ‘separated’ then
there is a large potential change during the iteration with the ‘large change’
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of points, and that furthermore X is likely to be ‘separated’. In the ‘small
change’ scenario (Section 4.5), we find that if X is ‘sparse’ then there is a large
potential change within a certain timeframe, and that furthermore X is likely
to be ‘sparse’. We put these results together to obtain the main bound (Section
4.7). In Section 4.8 we briefly sketch the more advanced result showing that
k-means has polynomial smoothed complexity.

4.4 Preliminaries

The following preliminary lemma gives a simple upper bound on the probability
that a variable with Gaussian distribution is in any fixed ball.

Lemma 4.3 (‘Gaussian variable unlikely to be in a fixed ball’). Suppose y has
d-dimensional Gaussian distribution with mean µ ∈ Rd and variance σ2. Then,
given any fixed ball of radius ϵ, y is in the ball with probability at most (ϵ/σ)d.

Proof. The probability distribution function for y has maximum value 1/(
√
2πσ)d.

The volume of the ball is at most (2ϵ)d (by considering the hypercube containing
the ball), so the probability that y is in the ball is at most (2ϵ)d/(

√
2πσ)d <

(ϵ/σ)d.

Definition 4.4. Given a point x and hyperplane H, d(x,H) is the minimum
distance from x to H.
Definition 4.5. Given a set of points S, the centre of mass of S is

c(S) =
1

|S|
∑
s∈S

s (8)

The next lemma proves that the centre of mass is the optimal choice for
a cluster centre. It will also help us measure the change in potential when a
cluster centre is changed.

Lemma 4.6 (‘Potential change wrt centre of mass’). For any set of points S
and arbitrary point x,∑

s∈S

∥s− x∥2 =
∑
s∈S

∥s− c(S)∥2 + |S| · ∥c(S)− x∥2. (9)

Proof.∑
s∈S

∥s− x∥2 =
∑
s∈S

(s− x) · (s− x)

=
∑
s∈S

(s− c(S) + c(S)− x) · (s− c(S) + c(S)− x)

=
∑
s∈S

(s− c(S)) · (s− c(S)) +
∑
s∈S

(c(S)− x) · (c(S)− x)

+ 2
∑
s∈S

(c(S)− x) · (s− c(S))

=
∑
s∈S

∥s− c(S)∥2 +
∑
s∈S

∥c(S)− x∥2 + 2(c(S)− x) ·
∑
s∈S

(s− c(S))
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Lastly note that
∑

s∈S(s− c(S)) = 0.

4.5 Small Cluster Changes

We begin the ‘small changes’ case with the following definition.

Definition 4.7. Given a set of points X ⊂ Rd with |X | = n, a key-value is any
expression of the form

n1

n2
c(S), (10)

where S ⊂ X has at most 4kd points, and where n1 and n2 are coprime positive
integers satisfying n1 ≤ n2 and n2 < n.

A key-value is a special kind of linear combination of points in X . Given
any two linear combinations a and b of points of X , we write a ≡ b to mean
that the coefficients for each point of X are the same.

Definition 4.8. X ⊂ Rd is δ-sparse if any key-values (a, b, c, d) that satisfy
∥a+ b− c− d∥ ≤ δ also satisfy a+ b ≡ c+ d.

Intuitively, δ-sparseness is a notion of sparseness because any linear combi-
nations of points that are close enough must be the same.

Definition 4.9. Given a constant C, a C-epoch is a sequence of iterations of
the k-means method during which the potential decreases by a total of at most C.

Our overall goal in this section is to show that under certain conditions, C-
epochs are short. The next theorem shows that in the ‘small changes’ case, if X
is 2n2

√
C-sparse, then any cluster can have at most two different values during

one C-epoch. We will then deduce that a C-epoch lasts at most 2k iterations.

Theorem 4.10. Suppose the k-means method is run on a 2n2
√
C-sparse set

X ⊂ Rd of size n. Take some cluster C, and suppose C never gains at least
2kd points in a single iteration, and never loses at least 2kd points in a single
iteration. Then C can have at most two different values during one C-epoch.

Proof. Suppose not: C takes on at least three different values in a single epoch.
Then there exist S1, S2, S3 ⊂ X , all distinct, that occur as consecutive values of
C. Let A = S1 ∩ S2 ∩ S3 and let Bi = Si −A for i = 1, 2, 3. Then

|B1| = |S1 − S1 ∩ S2 ∩ S3|
= |S1 − S1 ∩ S2|+ |S1 ∩ S2 − S1 ∩ S2 ∩ S3|
≤ |S1 − S1 ∩ S2|+ |S2 − S2 ∩ S3|

(11)

which is < 4kd as C never loses ≥ 2kd points in a single iteration. We similarly
show that |B2|, |B3| < 4kd.

Now consider ∥c(S1) − c(S2)∥. When we recalculate the centre of C and
change it from c(S1) to c(S2), by Lemma 4.6 (‘potential change wrt centre of
mass’) the potential drop is at least |S2|.∥c(S2) − c(S1)∥2 ≥ ∥c(S2) − c(S1)∥2.
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As the transition from S1 to S2 happens within a single C-epoch, then ∥c(S2)−
c(S1)∥ ≤

√
C. We also have

c(S2)− c(S1) =
|A|c(A) + |B2|c(B2)

|A|+ |B2|
+
|A|c(A) + |B1|c(B1)

|A|+ |B1|
. (12)

Equivalently,

|A|(|B1| − |B2|)c(A) =
|S1|.|S2|(c(S2)− c(S1)) + |B1|.|S2|c(B1)− |B2|.|S1|c(B2).

(13)

Furthermore note that |S1|.|S2|∥c(S2)− c(S1)∥ ≤ n2
√
C.

We wish to divide by |B1| − |B2| in Equation (13). Note that |B1| ̸= |B2|,
because if |B1| = |B2|, Equation (13) tells us that a = |B1|.|S2|c(B1) and
b = |B2|.|S1|c(B2) are within distance n2

√
C, then as X is 2n2

√
C-sparse, a ≡ b,

and hence B1 = B2, a contradiction as S1 ̸= S2.
Dividing by |B1| − |B2| in Equation (13) we find that

x =
|B1|.|S2|
|B1| − |B2|

c(B1)−
|B2|.|S1|
|B1| − |B2|

c(B2) (14)

is within n2
√
C of |A|c(A). Applying all the above reasoning to the transition

from S2 to S3, we find that

y =
|B2|.|S3|
|B2| − |B3|

c(B2)−
|B3|.|S2|
|B2| − |B3|

c(B3) (15)

is also within n2
√
C of |A|c(A). So ∥x− y∥ ≤ 2n2

√
C. Since x and y are both

differences of two key-values (as |Bi| < 4kd), and X is 2n2
√
C-sparse, we have

x ≡ y.
Now, we show B1 ∩ B2 = ∅. Suppose there exists p ∈ B1 ∩ B2. Then the

coefficient of p in x is −1 (by rearranging), and if p ̸∈ B3, its coefficient in y is
|A|+|B3|
|B2|−|B3| ̸= −1. So p ∈ B1 ∩ B2 ∩ B3, contradicting the definition of the Bi.

Similarly B2 ∩B3 = ∅.
Therefore the set of points of X for which x has nonzero coefficient is precisely

B1 ∪ B2, and the points for which y has nonzero coefficient is B2 ∪ B3. Then
B1 ∪B2 = B2 ∪B3 so B1 = B3, contradicting S1 ̸= S3.

We can now deduce that C-epochs are short, under the ‘small changes’
condition.

Corollary 4.11. Suppose the k-means method is run on a 2n2
√
C-sparse set

X ⊂ Rd of size n. Then, during any 2k consecutive iterations, either some
cluster has gained at least 2kd points in a single iteration, or has lost at least
2kd points in a single iteration, or the potential has decreased by a total of at
least C.
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Proof. If no cluster gains/loses 2kd points in a single iteration, then Theorem
4.10 says that all clusters have at most two values in a single C-epoch. As the
k-means method can never repeat configurations, this means that there are at
most 2k − 1 iterations in a single epoch, i.e. the potential must decrease by at
least C during the 2k consecutive iterations.

It remains to show that X is likely to be δ-sparse.

Theorem 4.12. Let X be a σ-perturbed set of n points in Rd. Then X is

δ-sparse with probability at least 1− n16kd+12
(

n4δ
σ

)d
.

Proof. First consider key-values a, b, c, d satisfying a+ b ̸≡ c+ d. We can write
a+ b− c− d =

∑
y∈X kyy for some rationals ky with denominator at most n4.

Since a+ b− c− d ̸≡ 0, ∃x ∈ X with kx ̸= 0. Then ∥a+ b− c− d∥ ≤ δ iff x is in
some ball of radius δ/|kx|, which by Lemma 4.3 (‘Gaussian variable unlikely to

be in a fixed ball’) happens with probability at most
(

δ
|kx|σ

)d
≤
(

n4δ
σ

)d
. Now,

P(X is δ-sparse) = P

 ∩
a,b,c,d

∥a+ b− c− d∥ ≤ δ =⇒ a+ b ≡ c+ d


= 1− P

 ∪
a,b,c,d

∥a+ b− c− d∥ ≤ δ and a+ b ̸≡ c+ d


≥ 1−

∑
a,b,c,d

a+b̸≡c+d

P(∥a+ b− c− d∥ ≤ δ)

≥ 1−
((

n

4kd

)
n3

)4(
n4δ

σ

)d

≥ 1− n16kd+12

(
n4δ

σ

)d

The penultimate inequality is because there are ≤
(

n
4kd

)
n3 ways to choose a

key-value.

4.6 Large Cluster Changes

We begin the ‘large changes’ case with the following definition, which is illus-
trated in Figure 3.

Definition 4.13. Take a point set P in Rd and ϵ > 0. We say P is ϵ-separated
if for any hyperplane H, there are at most 2d points in P within distance ϵ of H.

The next theorem shows that if X is ϵ-separated, then the ‘large change’
causes a large potential drop. This theorem appeared to have an error in the
original paper; the version below features alterations by me; see Appendix A
for details.
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ϵ
ϵ

H

Figure 3: A point set P is ϵ-separated if for all hyperplanes H there are at
most 2d points in the dotted area.

Theorem 4.14. Suppose the k-means algorithm is run on an ϵ-separated point
set X ⊂ Rd. Suppose that in a single iteration, one cluster loses at least 2kd
points. Then the potential drops by at least 2ϵ2/n on that iteration. Similarly
replacing ‘loses’ with ‘gains’.

Proof ([3] with corrections). Suppose a cluster C loses at least 2kd points in a
single iteration. Then ∃ another cluster C′ which gains at least 2d+1 points from
C. Let S1 and S2 be the values of C before and after the iteration respectively,
and similarly S′

1 and S′
2 for C′. Let c and c′ be the centres of S1 and S′

1. Let H2

be the hyperplane bisecting c and c′. Let H1 be the previous Voronoi boundary
between C and C′. To clarify, the sequence of events is this:

(i) Draw the Voronoi boundary H1.

(ii) Assign points according to H1. C ← S1; C′ ← S′
1.

(iii) Recalculate centres. c← c(S1); c
′ ← c(S′

1).

(iv) Draw the Voronoi boundary H2 which bisects c and c′.

(v) Assign points according to H2. C ← S2; C′ ← S′
2.

We know at least 2d + 1 points transfer from C to C′ on step (v). As X is ϵ-
separated, one of those points x is at least ϵ from H2 (see Figure 4). Therefore
on step (v), the potential ϕ decreases by at least ∥x− c∥2 − ∥x− c′∥2 = (2x−
c − c′).(c′ − c). Now note x is at least ϵ from H2, and on the same side as c′;
equivalently (2x−c−c′).(c′−c) ≥ 2ϵ∥c′−c∥. So suffices to show ∥c′−c∥ ≥ ϵ/n.

Note that all points of S1 are on one side of H1, so c = c(S1) is on the
same side of H1. Similarly all points of S′

1 are on the other side of H1, so c′

is too. So H1 divides c and c′ (see Figure 4). Suppose ∥c′ − c∥ < ϵ/n. Then
d(c,H1) < ϵ/n. But c is the centre of S1 which has size ≤ n and is all on one
side of H1. So all points of S1 are within ϵ of H1 (if not, c must be at least ϵ/n
from H1). See Figure 5. Then as X is ϵ-separated, |S1| ≤ 2d. Contradiction, as
|S1| ≥ 2d+ 1 (because C loses at least 2d+ 1 points to C′ in the iteration).

In the case that C gains at least 2kd points, we proceed similarly, finding
some C′ that loses at least 2d + 1 points to C, and one of those points x is at
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ϵϵ

H
2

c

c′

b
x

bc

bc

S′
1 onS1 on

this side this side
of H1of H1

H1

Figure 4: There are at least 2d + 1 points of S1 in the shaded area, one of
which is x.

least ϵ from H2 (but on the same side as c). Then the potential decrease is
at least ∥x − c′∥2 − ∥x − c∥2 = (2x − c′ − c).(c − c′) ≥ 2ϵ∥c′ − c∥. If ∥c′ −
c∥ < ϵ/n then d(c′,H1) < ϵ/n, so all points of S′

1 are within ϵ of H2, so
|S′

1| ≤ 2d. Contradiction, as |S′
1| ≥ 2d+ 1 (as C′ loses at least 2d+ 1 points in

the iteration).

It remains to show X is likely to be ϵ-separated. We make use of the following
technical lemma (a proof can be found in [3]).

Lemma 4.15. Let P be a set of at least d points in Rd, and let H be an arbitrary
hyperplane. Then there exists a hyperplane H′ passing through d points of P
that satisfies

max
p∈P

(dist(p,H′)) ≤ 2d ·max
p∈P

(dist(p,H)) . (16)

Theorem 4.16. Let X be a σ-perturbed set of n points in Rd. Then X is

ϵ-separated with probability at least 1− n2d
(
4dϵ
σ

)d
.

Proof. First we show that if X is not ϵ-separated, then ∃ a hyperplaneH passing
through d points in X and within distance 2dϵ of d other points in X : we have
some hyperplane J s.t. 2d + 1 points of X are within ϵ of J . Let P denote
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c

S1 in here

H1

Figure 5: If d(c,H1) <
ϵ
n then all points of S1 are within ϵ of H1.

those 2d+ 1 points. Then by Lemma 4.15, ∃ some H passing through d points
of P such that maxp∈P (dist(p,H)) ≤ 2d ·maxp∈P (dist(p,J )) ≤ 2dϵ.

Therefore suffices to prove that there exists such a hyperplane with proba-

bility at most n2d
(
4dϵ
σ

)d
. First consider any disjoint P1, P2 ⊂ X with |P1| =

|P2| = d, and let H be the hyperplane passing through all points of P1. The
probability that some x ∈ P2 is within 2dϵ of H is at most 2dϵ/σ < 4dϵ/σ by
applying Lemma 4.3 (‘Gaussian variable unlikely to be in a fixed ball’) in the
one-dimensional case. So the probability that H is within 2dϵ of all points of
P2 is at most (4dϵ/σ)d. So P(∃ such a hyperplane) is

P

 ∪
disj.P1,P2⊂X
|P1|=|P2|=d

The H passing through P1 is within 2dϵ of P2


≤

∑
disj.P1,P2⊂X
|P1|=|P2|=d

(
4dϵ

σ

)d

=

(
n

d

)(
n− d

d

)(
4dϵ

σ

)d

≤ nd(n− d)d
(
4dϵ

σ

)d

≤ n2d

(
4dϵ

σ

)d

.

4.7 Establishing the Bound

We are almost ready to prove the main theorem.

Theorem 4.17. Let X be a σ-perturbed set of points in Rd. Let D denote the
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diameter of X . Then there exists a polynomial in nk, p−1/d, and D/σ which,
with probability at least 1 − 2p, is an upper bound on the number of iterations
taken by the k-means method on X .

Proof. Take C = σ2p2/d

4n32k+36 , δ = 2n2
√
C, and ϵ = σp1/d

4dn2 . Then Theorem 4.16 says
that

P(X is ϵ-separated ) ≥ 1− n2d

(
4dϵ

σ

)d

= 1− p

and Theorem 4.12 says that

P(X is δ-sparse) ≥ 1− n16kd+12

(
n4δ

σ

)d

= 1− n12(1−d)p ≥ 1− p.

So P(X is δ-sparse and ϵ-separated) ≥ 1 − 2p. In that case, we show that the
potential drops by at least C every 2k iterations. Given any sequence of 2k

iterations, either:

(i) No cluster gains or loses at least 2kd points in a single iteration, then
Corollary 4.11 tells us that the potential drops by at least C over those 2k

iterations.

(ii) Otherwise some cluster gains or loses at least 2kd points in a single it-
eration, then Theorem 4.14 tells us that the potential drops by at least
2ϵ2

n = Cn32k+31

2d2 ≥ C on that iteration.

Then as the potential is at most nD2 after the first iteration, the number of
iterations is at most

2knD2

C
=

2k+2n32k+37D2

σ2p2/d
≤ n33k+39(p−

1
d )2
(
D

σ

)2

.

The main theorem follows by appropriate choice of p:

Theorem 4.18 (Main Theorem (Arthur, Vassilvitskii [3])). Fix an arbitrary
set X ′ ⊂ Rd of n points and assume that each point in X ′ is independently
perturbed by a Gaussian distribution with mean 0 and variance σ2, yielding a
new set X of points, and let D denote the diameter of X . Then the expected
running time of the k-means method on X is bounded above by a polynomial in
nk and D/σ.

Proof. The k-means method never takes more than O(nkd) iterations (see Sec-
tion 4.2), so taking p = 1/O(nkd) we obtain, using the previous theorem,

E(#iterations) ≤ (1− 2p)Poly(nk, p−1/d, D/σ) + 2p ·O(nkd)

≤ Poly(nk, D/σ).
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4.8 Polynomial Smoothed Complexity of k-Means Method

As noted in Section 4.2, the result we have just proved is a precursor to the
proof that the k-means has polynomial smoothed complexity [1]. In this section
we briefly indicate how the improvement was achieved. In [1], Arthur et al.
write that Theorem 4.18’s use of the O(nkd) upper bound on the number of
iterations is ‘quite wasteful’. The problem is resolved by introducing the notion
of transition blueprints.

‘Such a blueprint is a description of an iteration of k-means that
almost uniquely determines everything that happens during the it-
erations, which will dramatically reduce the number of cases that
have to be considered’.

The idea is that these blueprints capture all the important information about
an iteration needed for analysis, but the reduction in number of cases leads to
the tighter bound given by Theorem 4.2.
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5 The Perceptron Algorithm

The perceptron algorithm solves the following problem:

Problem A: Given a set of points a1, . . . , am ∈ Rd and labels l1, . . . , lm ∈
{−1,+1}, find (if they exist) w ∈ Rd and w0 ∈ R s.t. aTi w > w0 for all i
s.t. li = +1 and aTi w < w0 for all i s.t. li = −1.

That is, given a set of points in d-dimensional space, each labelled ‘positive’
or ‘negative’, find a hyperplane separating the positive from the negative points,
if one exists. This is a classic task in machine learning — the labelled points
can be thought of as training data, which we use to construct a perceptron (a
function that classifies future points as ‘positive’ or ‘negative’). In this case,
the perceptron we seek is a linear classifier. The perceptron algorithm can also
be used to approximately solve linear programs: Suppose we want to maximise
cTx. We perform binary search on c0, repeatedly using the perceptron algorithm
to find feasible solutions that also satisfy cTx > c0. See [10] for details.

We can simplify the formulation of Problem A. First, we may write the
constraint aTi w > w0 as (ai, 1)

T (w,−w0) > 0, and similarly for the ‘negative’
constraints. Second, we may replace the ‘negative’ constraints aTi w < 0 with
(−ai)Tw > 0, making them ‘positive’ constraints. Therefore Problem A reduces
to:

Problem B: Given a set of points a1, . . . , am ∈ Rd, find w ∈ Rd s.t.
aTi w > 0 for all i, if it exists.

5.1 Description of the Perceptron Algorithm

The perceptron algorithm (often called the perceptron learning algorithm in the
literature) solves Problem B as follows:

The Perceptron Algorithm

1. Initialise ω = 0.

2. Pick some ai such that aTi ω ≤ 0 and update ω by

ω ← ω +
ai
|ai|

(17)

3. If we do not have aTi ω > 0 for all i, go back to step 2.

21



a1
a2

a3

(a)
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Figure 6: A demonstration of the perceptron algorithm with d = 2 and m = 3.
In this example, |ai| = 1 for all i. (a): The points a1, a2 and a3. ω = 0. (b):
After updating with respect to a1. (c): After updating with respect to a2. (d):
After updating with respect to a3. Algorithm terminates as aTi ω > 0 for all i.

See Figure 6 for a demonstration of the algorithm in action. The algorithm
clearly doesn’t terminate in the case when there is no solution. However in that
case it is known that some value of ω must occur twice during the algorithm,
provided the ai have rational coefficients [23, Section 11.9]. Conversely, we will
see from the proof of Theorem 5.2 that if there is a solution, ω cannot repeat
a value. Therefore, assuming the ai are rational, we may modify the algorithm
so that it terminates, reporting ‘no solution’, when the problem is unsolvable.
This is also useful for general ai ∈ Rd which can be approximated by rationals.

It is also non-obvious from the definition that the algorithm terminates for
solvable problems. This is proved in the next section by the Perceptron Con-
vergence Theorem. This may be surprising, as the perceptron algorithm is a
simple greedy algorithm, using only local information on each step to update
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ω. Minsky and Papert offer an explanation in [23, Section 11.6] by likening
the perceptron algorithm to a hill-climbing algorithm. Let ω∗ be any solution.

Then the function to be maximised (the hill function) is ωTω∗

|ω| . Though we do

not know ω∗ when we are running the algorithm, it can be shown that our up-
date step ‘climbs the hill’. Minsky and Papert argue that (restricting ω to the
unit ball) the hill is well-behaved: ‘there are no false local maxima, no ridges,
no plateaus’, accounting for the effectiveness of this hill-climbing algorithm. In
fact, this is the essence of the proof of the Perceptron Convergence Theorem.

One advantage of being a local greedy algorithm is that the perceptron
algorithm can be used for online learning (if a new point is added during the
running of the algorithm, the algorithm can continue).

5.2 Wiggle Room and the Perceptron Convergence The-
orem

It turns out that in the solvable case, the running time of the perceptron algo-
rithm can be bounded in terms of the problem’s wiggle room, which essentially
measures how much room there is to ‘wiggle’ inside the feasible region.

Definition 5.1. Given some feasible ω, define the wiggle room of ω to be

ν(ω) = min
i

aTi w

|ai||w|
. (18)

That is, not only is ω feasible, but every ω′ within an angle sin−1(ν(ω))
of ω is feasible. Given an instance of the perceptron learning problem, the
wiggle room of the problem is the wiggle room of the feasible solution with
maximal wiggle room. The following theorem, proved independently by Block
and Novikoff in 1962 [9, 24], shows that problems with larger wiggle room are
solved more quickly.

Theorem 5.2 (Perceptron Convergence Theorem (Block-Novikoff 1962)). When
the perceptron algorithm is run on a solvable problem with wiggle room ν, it ter-
minates in at most 1/ν2 iterations.

Proof [10]. Take some ω∗ with wiggle room ν. We may assume ω∗ is a unit
vector (as scaling ω∗ does not change the value of ν). Consider the value of
ωTω∗ on each step. It starts as 0, and on each step it increases by at least ν,

as
(
ω + ai

|ai|

)T
ω∗ = ωTω∗ +

aT
i ω∗

|ai| ≥ ωTω∗ + ν. However by Cauchy-Schwarz

ωTω∗ ≤ |ω| for all ω, as ω∗ is a unit vector.
Now consider the value of |ω|2 on each step. It never increases by more than

1 in a single step because
(
ω + ai

|ai|

)2
= ω2 +2

aT
i ω
|ai| +1 ≤ ω2 +1, as aTi ω ≤ 0 in

order for i to have been chosen for the update step. Putting these observations
together, we see that after the first t iterations,

νt ≤ ωTω∗ ≤ |ω| ≤
√
t (19)

so t ≤ 1/ν2.

23



5.3 Analysis of the Perceptron Algorithm

The perceptron algorithm was invented in 1957 by Rosenblatt [28]. It is known
to have exponential worst-case complexity but ‘fairly efficient’ average-case com-
plexity (under some sensible distribution) [27, Section 4.4]. That, and the al-
gorithm’s wide use in machine learning, motivates a smoothed analysis. We
will present Blum and Dunagan’s 2002 smoothed analysis of the perceptron
algorithm [10].

Blum and Dunagan use the following perturbation model. LetM be Problem
B (given on page 21) with the extra assumption that |ai| ≤ 1 for all i. Let
di = ai+σgi, where each gi is chosen independently according to a d-dimensional
Gaussian distribution of mean 0 and variance 1. Then M̃ is Problem B but
with input points di. This is the obvious choice of perturbation model for this
problem.

Theorem 5.3 (Smoothed Complexity of Perceptron [10]). Let M be a percep-
tron problem with |ai| ≤ 1 and let M̃ be M under a Gaussian perturbation of
variance σ2, where σ2 ≤ 1/2d. For any δ, with probability at least 1− δ, either

(i) the perceptron algorithm finds a solution to M̃ in O
(

d3m8 log8(m/δ)
σ2δ8

)
iter-

ations, or

(ii) M̃ is infeasible.

Theorem 5.3 shows that the perceptron algorithm has probably polynomial
smoothed complexity in the sense of Equation (5). The condition σ2 ≤ 1/2d
is another limitation of the result; as the bound only tells us about close to
worst-case behaviour, and not close to average-case behaviour. However, we are
more interested in behaviour as we approach worst-case.

5.4 Overview of the Proof

We will prove Theorem 5.3 in full, excepting some technical lemmas that are
not of interest to the main argument. All proofs are due to [10] unless otherwise
stated, though all diagrams are by me. Blum and Dunagan’s original paper
analysed the perceptron algorithm in the context of solving linear programs
in order that their result could be directly compared to Spielman and Teng’s
simplex result [30]. Consequently their proof is tailored to that setting, con-
sidering only perceptron problems with the structure of a LP. Here we present
a smoothed analysis of the algorithm for the original perceptron problem, sig-
nificantly simplifying the exposition, and the proofs of Lemmas 5.10 and 5.11.
Lastly, there appeared to be a small error in the original proof of Lemma 5.10.
My correction has resulted in slight differences in the bounds in the statements
of Lemmas 5.10, 5.11 and Theorem 5.12. However, the bound of Theorem 5.12
is still polynomial and so is essentially unchanged. See Appendix A for details.

The proof proceeds as follows. First we give two preliminary lemmas (Section
5.5), then we prove the Brunn-Minkowski Theorem from the Brunn-Minkowski
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Inequality (Section 5.6). In Section 5.7 we prove two lemmas (one using the
Brunn-Minkowski Theorem), showing that the wiggle room is unlikely to be
small. The main result follows by the Perceptron Convergence Theorem.

5.5 Preliminaries

This section may be skipped now and referred to later as needed. We will
state without proof the following technical lemma, which states that ‘small
boundaries are easily missed’ by a variable with Gaussian distribution. While
the statement of this lemma appears easily believable, the proof (which is given
in the appendix of [10]) is surprisingly long. However, no details of the proof
are relevant to our main argument.

Lemma 5.4 (‘Small boundaries are easily missed’). Let K be an arbitrary
convex body, and let ∆(K, ϵ) denote the ϵ-boundary of K, i.e.

∆(K, ϵ) = {x : ∃x′ ∈ K, |x− x′| ≤ ϵ} \K. (20)

Let g have d-dimensional Gaussian distribution with mean g and variance σ2.
Then

P(g ∈ ∆(K, ϵ)) = O

(
ϵ
√
d

σ

)
. (21)

We will also require the following bound on the sum of squared Gaussians.

Lemma 5.5 (‘Sum of squared Gaussians’). Let X1, . . . , Xd be independent
N(0, σ) random variables. Then

P

(
d∑

i=1

X2
i ≥ κ2

)
≤ e

d
2

(
1− κ2

dσ2 +log κ2

dσ2

)
. (22)

Proof. We derive a standard Chernoff bound. First consider Yi ∼ N(0, 1). For

Y ∼ N(0, 1), a simple integration shows that E(etY 2

) = (1 − 2t)−1/2 for all
t > 1/2. Now

P

(
d∑

i=1

Y 2
i ≥ k

)
= P

(
et

∑d
i=1 Y 2

i ≥ etk
)

∀t > 0

≤ E
(
et

∑d
i=1 Y 2

i

)
e−tk by Markov’s Inequality

= (1− 2t)−d/2e−tk

≤
(
k

d

)d/2

e−
k
2+

d
2 taking optimal t =

1

2
− d

2k

= e
d
2 (1−

k
d+log k

d ).

Then as P(
∑d

i=1 X
2
i ≥ κ2) = P(

∑d
i=1 Y

2
i ≥ κ2

σ2 ), we obtain the desired bound.
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Figure 7: An example Schwarz rounding for d = 3.

5.6 The Brunn-Minkowski Theorem

We now turn to the Brunn-Minkowski Theorem, which we will need for our
main proof. It will follow from the well-known Brunn-Minkowski Inequality,
given below.

Theorem 5.6 (The Brunn-Minkowski Inequality). For convex bodies A,B in
Rn and for 0 ≤ λ ≤ 1,

(voln((1− λ)A+ λB))1/n ≥ (1− λ)(voln(A))
1/n + λ(voln(B))1/n

where + denotes the vector sum: X + Y = {x+ y : x ∈ X, y ∈ Y }.

A proof of the inequality as stated here can be found in [29, Section 7.1].
The inequality is a powerful fundamental tool for both geometry and analysis;
see [14] for an extensive survey.

Theorem 5.7 (The Brunn-Minkowski Theorem). Let K be a d-dimensional
convex body, and let x denote the centre of mass of K, x = Ex∈Kx. Then
∀w ∈ Rd,

maxx∈K wT (x− x)

maxx∈K wT (x− x)
≤ d. (23)

Proof [10]. Let K and ω be fixed. Wlog ω is a unit vector, and x is the origin.
Let K ′ be the body that is rotationally symmetric about ω and has the same
(d− 1)-dimensional volume for every cross-section Kr = {x : x ∈ K,wTx = r}.
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Figure 8: The smallest possible value of r1 is given by this situation, where
K ′ is a cone.

That is, vold−1(Kr) = vold−1(K
′
r) for all r. This transformation is called a

Schwarz rounding ; see Figure 7. Clearly K ′ has the same centre of mass as K.
We claim K ′ is convex. To that end take r1, r2 ∈ R. Suffices to show

radius
(
K ′

r1+r2
2

)
≤ 1

2
radius(K ′

r1) +
1

2
radius(K ′

r2). (24)

Let A = Kr1 , B = Kr2 . As K is convex, 1
2A+ 1

2B ⊆ K r1+r2
2

(where + denotes

the vector sum). So

vold−1

(
K r1+r2

2

) 1
d−1 ≥ vold−1

(
1

2
A+

1

2
B

) 1
d−1

≥ 1

2
vold−1(A)

1
d−1 +

1

2
vold−1(B)

1
d−1 (B-M ineq)

=
1

2
vold−1(K

′
r1)

1
d−1 +

1

2
vold−1(K

′
r2)

1
d−1 (def of K ′).

Then as the radius of a (d− 1)-dimensional sphere is proportional to the 1
d−1 th

power of its volume, we deduce Equation (24). So K ′ is convex.
Let r0 = maxx∈K wTx, r1 = maxx∈K(−wTx). We wish to show that

r0/r1 ≤ d, equivalently, r1 ≥ r0/d. Let R = radius(K ′
0). By convexity of K ′,

radius(K ′
r) ≥ R(1 − r

r0
) for all r ∈ [0, r0]. Similarly radius(K ′

r) ≤ R(1 − r
r0
)

for all r ∈ [−r1, 0]. See Figure 8.
However, K ′ has the origin as its centre of mass, so the least possible value

for r1 is given by∫ r1

r=0

r

(
1 +

r

r0

)d−1

dr =

∫ r0

r=0

r

(
1− r

r0

)d−1

dr. (25)
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sinφ = ti

Figure 9: Illustration of the definition of ti in two dimensions. Hi is the
hyperplane representing the ith constraint. φ is maximum possible for feasible
ω′.

Integrating by parts yields r1 = r0/d as desired.

The above theorem is very similar to [15, Theorem 5.7, p.56], which states
that the Schwarz rounding of a convex body is convex. Interestingly, in [15],
that fact is used to prove the Brunn-Minkowski Inequality (not the reverse). We
will use the following corollary of the Brunn-Minkowski Theorem in our main
proof. It says that given a convex body and a tangent hyperplane, if the body
contains a point far from the hyperplane then the centre of mass of the body is
also far from the hyperplane.

Corollary 5.8 (‘Tangent hyperplane to a convex body’). Let K be a d-dimensional
convex body with centre of mass x, and H a (d−1)-dimensional hyperplane tan-
gent to K. If maxx∈K d(H,x) ≥ t, then d(x,H) ≥ t

d+1 .

Proof. Wlog we may assume H is of the form {x : aTx = 0} with a a unit
vector, and that aTx ≥ 0 for all x ∈ K. The Brunn-Minkowski Theorem tells
us that

maxx∈K aT (x− x)

maxx∈K aT (x− x)
≤ d

or equivalently,
(d+ 1)aTx ≥ max

x∈K
aTx− dmax

x∈K
(−aTx).

Note maxx∈K aTx = maxx∈K d(H,x) ≥ t by assumption and maxx∈K(−aTx) =
0 as K is tangent to H. So d(x,H) = aTx ≥ t

d+1 .

5.7 Proof of the Main Theorem

Recall that M̃ is the perturbed version of the perceptron problem M , with input
points di = ai + σgi.

Definition 5.9. When M̃ is feasible, we define

ti = max
w′ feasible for M̃

dTi w
′

|di||w′|
. (26)
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That is, ti is the cosine between di and ω′, or the sine of the maximum angle
between a feasible point and the hyperplane Hi representing the ith constraint.
See Figure 9. The following lemma shows that for feasible M̃ , ti is unlikely
to be small. The proof works by showing that for ti to be small, di must hit
some small boundary, then applying Lemma 5.4 (‘small boundaries are easily
missed’). This lemma appeared to have a small error in the original paper which
has been corrected here; see Appendix A for details.

Lemma 5.10 (‘ti is unlikely to be small’). Fix i ∈ {1, . . . ,m}. Then

P(M̃ is feasible and ti ≤ ϵ) = O

(ϵ
√
d

σ

)1/4

log
σ

ϵ
√
d

 (27)

as ϵ→ 0.

Proof ([10] with corrections). Suppose all aj , j ̸= i, have already been per-
turbed, i.e. we have dj for all j ̸= i. Let R = {w : dTj w > 0∀j ̸= i}, the
set of points satisfying these constraints. We show that no matter what R
is, the random perturbation of ai will be enough to prove the lemma. If R
is empty then M̃ is infeasible no matter what di is, so we may assume R is
nonempty. Let D = {di : dTi w ≤ 0∀w ∈ R}, the set of values di could take
on so that M̃ is infeasible. Note that D is a convex cone from the origin. Let

F = {di : ∃d′i ∈ D :
dT
i d′

i

|di|.|d′
i|
≥
√
1− ϵ2} \D. F is an ‘ϵ-boundary’ to D in the

angle sense: F consists of points di which are at an angle with sine less than ϵ
from a point d′i of D. That is, the points of F are close to choices of di making
M̃ infeasible. We claim that F is precisely those di that make ti ≤ ϵ. The proof
is supplied in the appendix of [10].

It now suffices to show that P(di ∈ F ) = O

((
ϵ
√
d

σ

)1/4
log σ

ϵ
√
d

)
. In order to

use Lemma 5.4 (‘small boundaries are easily missed’), we wish to show that F
is contained in an ‘ϵ-boundary’ of D in a distance sense. As small angle implies
small distance only for small values of |di|, we will condition on the probability
that |di| is large. See Figure 10.

Take any κ ≥ 1. We have di = ai + σgi where |ai| ≤ 1. So by Lemma 5.5
(‘sum of squared Gaussians’):

P(|di| ≥ κ+ 1) ≤ P(|σgi| ≥ κ) as |ai| ≤ 1

= P(|σgi|2 ≥ κ2)

≤ e
d
2

(
1− κ2

dσ2 +log κ2

dσ2

)
by Lemma 5.5.

(28)
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κ+ 1

D

F

O(κϵ)

ψ
sinψ = ϵ

F

Figure 10: The shaded area D is a convex cone. F consists of points which are
at an angle with sine less than ϵ from a point of D. Points of F with magnitude
less than κ+ 1 are within O(κϵ) of a point of D.

Now note that

d

2

(
1− κ2

dσ2
+ log

κ2

dσ2

)
≤ d

2

(
1− 2κ2 + log 2κ2

)
(see explanation below)

≤ d

2

(
−2κ2 +

3

2
κ2

)
for κ ≥ 1 (computation)

≤ 1

2

(
−κ2

2

)
as d ≥ 1

= −κ2

4
(29)

where the first inequality is because the function f(x) = x− log x is increasing

for x ≥ 1, and σ2 ≤ 1/2d so κ2

dσ2 ≥ 2κ2 > 1. Putting together Equations (28)

and (29), we obtain P(|di| ≥ κ+ 1) ≤ e−κ2/4 for all κ ≥ 1.
Now, we show that if |di| ≤ κ + 1 and di ∈ F , then di is within O(κϵ) of a

point of D. See Figure 10. There exists a point d′i ∈ D at an angle with sine
at most ϵ from di. Wlog we may assume |d′i| = |di|. Then by the cosine rule,
|di − d′i|2 ≤ 2(κ+ 1)2(1−

√
1− ϵ2) = O(κ2ϵ2) so |di − d′i| = O(κϵ). Now let H

be the event that di ∈ F . By Lemma 5.4 (‘small boundaries are easily missed’),
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P(H|di ≤ κ+ 1) = O
(

κϵ
√
d

σ

)
. So

P(H) = P(H|di ≤ κ+ 1)P(di ≤ κ+ 1) + P(H|di > κ+ 1)P(di > κ+ 1)

≤ O

(
κϵ
√
d

σ

)
· 1 + 1 · e−κ2

4 .

We now choose κ = log(σ/ϵ
√
d) ≥ 1 and note e−

κ2

4 ≤ e−
κ
4 to obtain

O

(
ϵ
√
d

σ
log

(
σ

ϵ
√
d

))
+

(
ϵ
√
d

σ

)1/4

= O

(ϵ
√
d

σ

)1/4

log
σ

ϵ
√
d


as ϵ→ 0.

We have shown that ti is unlikely to be small. By showing that if all ti are
large, then M̃ has large wiggle room, we can now prove that the wiggle room is
unlikely to be small. This proof will use the corollary of the Brunn-Minkowski
Theorem from Section 5.6.

Lemma 5.11 (‘Wiggle room is unlikely to be small’). Take any ν > 0. Let E
be the event that M̃ is feasible yet contains no solution of wiggle room ν. Then

P(E) = O

(
m

(
d1.5ν

σ

)1/4

log
σ

d1.5ν

)
(30)

as ν → 0.

Proof. Setting ϵ = 2(d+ 1)ν, we find

P(M̃ is feasible and ∃i: ti ≤ ϵ) ≤
m∑
i=1

P(M̃ is feasible and ti ≤ ϵ)

≤ mO

(ϵ
√
d

σ

)1/4

log
σ

ϵ
√
d

 (Lemma 5.10)

= O

(
m

(
d1.5ν

σ

)1/4

log
σ

d1.5ν

)
.

Therefore it suffices to show that if M̃ is feasible and there is no solution of
wiggle room ν, then ti ≤ ϵ for some i. To prove the contrapositive, suppose
ti > ϵ for all i. Let ω∗ be the unit vector that satisfies M̃ with maximum wiggle
room ν′, and suppose for contradiction that ν′ < ν.

Recall that the feasible region M̃ is a d-dimensional cone. Let M̃ ′ = M̃∩{ω :
ωTω∗ = 1}, a (d−1)-dimensional hyperplane. M̃ ′ is clearly convex. Recall that
ω∗ has wiggle room ν′. This means that any vector at an angle with sine less than
ν′ from ω∗ is feasible. Therefore in M̃ ′, ω∗ is the centre of a (d−1)-dimensional
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R

ω∗

M̃ ′

M̃

H
i

H ′i

θ

sin θ = ν ′

Figure 11: An example with d = 3 and three constraints (m = 3).

Hi

di

ω̂

1

ti

ϕ

cosϕ = ti

Figure 12: ω̂ is distance exactly ti from Hi.

sphere of radius R = ν′
√
1−ν′2 ≤ 2ν′ for ν′ ≤ 1/2 (we may assume ν′ ≤ 1/2 as we

are considering ν → 0). The sphere is in contact with the bounding constraints
so ω∗ forms the centre of a sphere of maximum radius over all spheres lying
within M̃ ′. Let Hi = {ω : dTi ω = 0} denote the hyperplane representing the ith

constraint, and H ′
i = Hi ∩ {ω : ωTω∗ = 1}. See Figure 11 for an illustration of

the construction so far.
Define si = maxω′∈M̃ ′ d(ω′,H ′

i), the furthest distance of a point in M̃ ′ from

H ′
i. We claim si ≥ ti for all i. To that end, fix i and take ω̂ ∈ M̃ a unit vector

such that
dT
i ω̂
|di| = ti (we can do this by definition of ti). Then ω̂ is distance

exactly ti from Hi; see Figure 12 to justify this. Now take ω̂′ a scalar multiple
of ω̂ such that ω̂′ ∈ M̃ ′. Then |ω̂′| ≥ |ω̂| so ω̂′ is distance at least ti from Hi. So

ti ≤ d(ω̂′,Hi) ≤ d(ω̂′,H ′
i) ≤ si. (31)

Let ω = Eω∈M̃ ′(ω), the centre of mass of M̃ ′. We will show that ω is

the centre of a sphere of radius > 2ν′ contained in M̃ ′, deriving a contra-
diction. We apply Corollary 5.8 (‘tangent hyperplane to a convex body’) to
the (d − 1)-dimensional convex body M̃ ′ with tangent hyperplane H ′

i. As
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maxω′∈M̃ ′ d(H ′
i, ω

′) = si ≥ ti, then d(ω,H ′
i) ≥ ti

d > ϵ
d = 4(d+1)ν

d > 4ν > 4ν′. So

ω is the centre of a sphere of radius 4ν′ contained in M̃ ′, a contradiction.

We can now prove the main theorem.

Theorem 5.12 (Smoothed Complexity of Perceptron [10]). Let M be a percep-
tron problem with |ai| ≤ 1 and let M̃ be M under a Gaussian perturbation of
variance σ2, where σ2 ≤ 1/2d. For any δ, with probability at least 1− δ, either

(i) the perceptron algorithm finds a solution to M̃ in O
(

d3m8 log8(m/δ)
σ2δ8

)
iter-

ations, or

(ii) M̃ is infeasible.

Proof ([10] with alterations). Set ν = O
(

σ
d1.5

(
δ
m

)4 1
log4(m/δ)

)
. Lemma 5.11

(‘wiggle room is unlikely to be small’) tells us that the probability that M̃
is feasible yet has no solution of wiggle room ν is at most

O

(
m

(
d1.5ν

σ

)1/4

log
σ

d1.5ν

)
= O

δ ·
log
((

m
δ

)4
log4

(
m
δ

))
log
(
m
δ

)


= O(5δ) = O(δ)

where the second equality is because

log(x4 log4 x)

log x
=

4 log x+ 4 log log x

log x
= 4 +

4 log log x

log x

and this is≤ 5 for x sufficiently large, as the second term tends to zero as x→∞.
Lastly, the Perceptron Convergence Theorem tells us that if M̃ has wiggle room

ν, then the perceptron algorithm terminates in O(1/ν2) =
(

d3m8 log8(m/δ)
σ2δ8

)
iterations.
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6 Closing Remarks

In this essay we have seen the need for smoothed analysis as a tool to close the
observed gaps between theory and practice, as well as its application to two
problems in machine learning. In this section we briefly discuss some of the
pitfalls to avoid when performing smoothed analysis, some interesting future
work, and reflect on what we have seen.

6.1 Subtleties of Smoothed Analysis

Before performing smoothed analysis, one needs to choose the perturbation
model carefully. In some settings, it may be appropriate to use a non-Gaussian
distribution, or to apply the perturbation multiplicatively rather than additively
(Spielman and Teng call the latter a relative perturbation [30]). There is also
the question of what parts of the input to perturb. For example, the input of a
linear program (see Equation (1) on p4) is the vectors c and y and the matrix
A. Which of these should be perturbed? In [30], Spielman and Teng choose to
perturb y and A.

When we apply our perturbation, we want to avoid destroying important
properties of the input e.g. we may wish to preserve the zeros of a matrix, the
feasibility of a linear program, or the planarity of a graph. These are called
property-preserving perturbations [31]. Lastly, what is a sensible perturbation
model for discrete problems e.g. sorting algorithms where the input is an ordered
list? The choice of model is important, as shown by Fouz et al. [13] who consider
two different perturbation models (additive noise and partial permutations) for
a smoothed analysis of quicksort, and obtain differing results for each. Spielman
and Teng discuss perturbation models for discrete problems in [31].

6.2 Open Problems and Future Work

There are a number of open problems in smoothed analysis; see [32] for an
overview. Spielman and Teng’s original result [30] on the simplex algorithm
applied to the shadow pivot rule version of the algorithm. What is the smoothed
complexity under other pivot rules? Many existing smoothed analyses do not
use property-preserving perturbations when it may be appropriate. Do these
results still hold under property-preserving perturbations?

Smoothed analysis appears to be very difficult to carry out; most papers
proving the smoothed complexity of an algorithm are quite long and intricate.
It would be easier if smoothed complexity was more integrated into existing
complexity theory. For example, is there a notion of completeness for smoothed
complexity? Can we relate smoothed complexity to hardness of approximation?
The only general theoretical result I have seen is Beier and Vöcking’s result that
a binary optimisation problem has polynomial smoothed complexity iff it has
pseudopolynomial (worst-case) complexity [7].
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6.3 Conclusion

Smoothed analysis is a valuable tool to help us explain and predict the be-
haviour of algorithms. As a hybrid of worst- and average-case complexity, it
has the advantages of both. It has successfully explained the good performance
of the simplex algorithm, the k-means method, the perceptron algorithm, and
many others. In particular, smoothed analysis has the potential to aid the
understanding of many other machine learning algorithms.
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A Corrections

This appendix contains the details of the corrections made to apparent errors
in [3] and [10].

A.1 Correction to Theorem 4.14 in k-Means Proof

Theorem 4.14 corresponds to Proposition 5.4 in [3] (or Proposition 5.7 in the
journal version). In the original paper, the proposition states that the potential

drops by at least 4ϵ2

n . The proof gets to the point where it suffices to show
∥c−c′∥ ≥ 2ϵ

n , then says: ‘On the other hand, since x ∈ C when c was calculated,
and since |C| ≤ n, the distance from c to H is at least ϵ/n.’ (H is H2 in our
notation). This statement does not appear to follow: all we know is that c is
the centre of mass of S1, which contains x, which is at least ϵ from H2 on the
opposite side from c. We know nothing about S1 in relation to H2.

The key to the correction is considering the preceding Voronoi boundary H1

to H2. This results in changing the statement of the theorem from 4ϵ2

n to 2ϵ2

n .
This factor of two makes no difference to the proof of the main theorem.

A.2 Correction to Lemma 5.10 in Perceptron Proof

Lemma 5.10 corresponds to Lemma 6.1 in [10]. In the original paper, the lemma

gives a bound of O
(

ϵ
√
d

σ log σ
ϵ
√
d

)
. The proof gets to the point where we have

O

(
ϵ
√
d

σ
log

σ

ϵ
√
d

)
+

(
ϵ
√
d

σ

)1/4

(32)

and concludes that this is O
(

ϵ
√
d

σ log σ
ϵ
√
d

)
. However, we are considering ar-

bitrarily small ϵ, so in fact we have
(

ϵ
√
d

σ

)1/4
≥
(

ϵ
√
d

σ

)
, so the bound should

be O

((
ϵ
√
d

σ

)1/4
log σ

ϵ
√
d

)
. The power of 1/4 carries through the statements of

Lemma 5.11 and Theorem 5.12, causing us to choose a slightly different value

of ν in the proof of Theorem 5.12, making our final bound O
(

d3m8 log8(m/δ)
σ2δ8

)
instead of O

(
d3m2 log2(m/δ)

σ2δ2

)
, but this is still polynomial in d, m, 1/σ and 1/δ.

Note: any other differences in the proof of Lemma 5.10 (for example we choose
κ = log(σ/ϵ

√
d) and the original chooses κ2 = log(σ/ϵ

√
d)) are due to our pre-

sentation for the perceptron problem and the original paper’s presentation for
linear programming.
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