
Graph Search
Algorithms
Steve Mussmann and Abi See

Shortest Path Problems

Find the shortest path from source to target

Applications: Robotics

Commercial Search & Rescue Domestic

Applications: Route-Planning

Applications: Game-playing

Tic-tac-toe Go

Graphs have nodes and edges.

How many nodes are there?
How many edges?

Graphs

Graphs

We cast real-world problems as graphs.

Graphs can be undirected or directed.

Edges can have weights.

Graphs

3
10

81

7

How to represent grids as graphs?

Each cell is a node. Edges connect adjacent cells.

Walls have no edges

How to represent grids as graphs?

Graph Traversal
Algorithms

Graph Traversal Algorithms

◎ These algorithms specify an order to search through
the nodes of a graph.

◎ We start at the source node and keep searching until
we find the target node.

◎ The frontier contains nodes that we've seen but
haven't explored yet.

◎ Each iteration, we take a node off the frontier, and
add its neighbors to the frontier.

Breadth First Search Demo

cs.stanford.edu/people/abisee/tutorial/bfs.html

http://cs.stanford.edu/people/abisee/tutorial/bfs.html
http://cs.stanford.edu/people/abisee/tutorial/bfs.html
http://cs.stanford.edu/people/abisee/tutorial/bfs.html

DFS uses "last in first out".

This is a stack.

Breadth First Search vs. Depth First Search

BFS uses "first in first out".

This is a queue.

Depth First Search Demo

cs.stanford.edu/people/abisee/tutorial/dfs.html

http://cs.stanford.edu/people/abisee/tutorial/dfs.html
http://cs.stanford.edu/people/abisee/tutorial/dfs.html
http://cs.stanford.edu/people/abisee/tutorial/dfs.html

Activity: BFS vs DFS

cs.stanford.edu/people/abisee/tutorial/bfsdfs.html

Explore:

◎ Try moving the source and target
◎ Try drawing walls

http://cs.stanford.edu/people/abisee/tutorial/bfsdfs.html
http://cs.stanford.edu/people/abisee/tutorial/bfsdfs.html
http://cs.stanford.edu/people/abisee/tutorial/bfsdfs.html

Discussion

◎ Does BFS necessarily return the shortest path?

◉ Note that BFS explores nodes in the order of
increasing distance.

◎ Does DFS necessarily return the shortest path?

◎ Once the target is found, how does the algorithm
obtain the path itself?

◎ Disadvantages of BFS?

◎ Disadvantages of DFS?

Greedy Best First
Search

Every step, Greedy Best First moves in the direction of the target.

A greedy algorithm is one that chooses
the best-looking option at each step.

◎ Recall: BFS and DFS pick the next node off the
frontier based on which was "first in" or "last in".

◎ Greedy Best First picks the "best" node according to
some rule of thumb, called a heuristic.

Greedy Best First Algorithm

Definition: A heuristic is an approximate measure of how
close you are to the target.

A heuristic guides you in the right direction.

Heuristics for Greedy Best First

◎ We want a heuristic: a measure of how close we are to
the target.

◎ A heuristic should be easy to compute.

◎ Try Euclidean distance or Manhattan distance.

◎ These are approximations for the actual shortest path,
but easier to compute.

Heuristics for Greedy Best First

◎ Why is the Manhattan distance heuristic only an
approximation for the true shortest path?

◉ Answer: walls!

◎ A heuristic is often the solution for an easier version of
the problem, that leaves out the constraints (e.g. walls)

Activity
We name a problem, you suggest a heuristic

Problem: Google Maps route-planning

What is a possible heuristic?

An easy-to-compute
approximation of

how close you are to
the target

Want: CAT DOG

CAT COT COG DOG

PAT

CAD

DOT

COP CON

LOG

CUT POT FOG

Problem: "Mutate the word" game

What is a possible heuristic?

Problem: Find the shortest chain of Facebook friends that
goes from Person A to Person B

What is a possible heuristic?

Problem: Find a sequence of moves to win

What is a possible heuristic?

Greedy Best First Demo and activity

cs.stanford.edu/people/abisee/tutorial/greedy.html

Challenge: trick Greedy Best First!

Can you draw the walls so that Greedy Best First comes up
with a path that is much longer than Breadth First Search?

http://cs.stanford.edu/people/abisee/tutorial/greedy.html
http://cs.stanford.edu/people/abisee/tutorial/greedy.html
http://cs.stanford.edu/people/abisee/tutorial/greedy.html

Discussion

◎ Recall: Breadth First Search is optimal (always returns
the shortest path). Is Greedy Best First also optimal?

◎ Strengths of Greedy Best First?

◎ Weaknesses of Greedy Best First?

◎ How might you improve Greedy Best First?

A* Search
Not so easily tricked...

Developed by at Stanford

in 1968 to help Shakey the Robot

navigate a room of obstacles.

A* Search

Peter Hart
Nils Nilsson
Bertram Raphael

Now in the Computer History Museum!

A* Search

◎ A* Search combines the strengths of Breadth First
Search and Greedy Best First.

◎ Like BFS, it finds the shortest path, and like Greedy
Best First, it's fast.

◎ Each iteration, A* chooses the node on the frontier
which minimizes:

steps from source + approximate steps to target

Like BFS, looks at nodes close
to source first (thoroughness)

Like Greedy Best First, uses heuristic to
prioritize nodes closer to target (speed)

A* Search Demo and activity

cs.stanford.edu/people/abisee/tutorial/astar.html

Explore:

◎ Try moving the source and target
◎ Try drawing the walls

http://cs.stanford.edu/people/abisee/tutorial/astar.html
http://cs.stanford.edu/people/abisee/tutorial/astar.html
http://cs.stanford.edu/people/abisee/tutorial/astar.html

Discussion

◎ Which algorithm was fastest?

◎ Which explored the most area before finding the
target?

◎ Do A* and BFS always find the same path?

Theorem: If the heuristic function is a lower bound for the
true shortest path to target, i.e.

for all nodes, then A* search is optimal (always finds the
shortest path).

Proof Idea: The heuristic is optimistic so it never ignores a
good path. As all good paths are explored, we therefore
discover the optimal path.

A* is optimal

heuristic(node) ≤ shortest_path(node,target)

Algorithms for
Weighted Graphs

Example: Google Maps

27

26

13 20

19

14

3017

27

Weight of edge = time to travel

Incorporates information like:
● length of road
● speed limit
● current traffic conditions

Now we want the minimum cost path

Terrain to weighted graph

How to alter our algorithms?

Minimum cost path
Minimum number of steps

Dijkstra's algorithm

◎ Like BFS for weighted graphs.

◉ If all costs are equal, Dijkstra = BFS!

◎ Explores nodes in increasing order of cost from
source.

◎ Let’s work through some examples on the board!

Dijkstra contour demo

cs.stanford.edu/people/abisee/tutorial/dijkstra.html

http://cs.stanford.edu/people/abisee/tutorial/dijkstra.html
http://cs.stanford.edu/people/abisee/tutorial/dijkstra.html
http://cs.stanford.edu/people/abisee/tutorial/dijkstra.html

Regular A* priority function:

Weighted A* priority function:

Weighted A*

steps from source + approximate steps to target

cost from source + approximate cost to target

Activity: Dijkstra vs weighted A*

cs.stanford.edu/people/abisee/tutorial/customize.html

Explore:

◎ Can you alter the map so that A* finishes much more
quickly than Dijkstra?

◎ Do Dijkstra and weighted A* ever find paths of
different lengths?

◎ Do Dijkstra and weighted A* ever find different paths?

◎ Is Dijkstra or weighted A* faster?

◉ Always or just sometimes?

http://cs.stanford.edu/people/abisee/tutorial/customize.html
http://cs.stanford.edu/people/abisee/tutorial/customize.html
http://cs.stanford.edu/people/abisee/tutorial/customize.html

Recap

Search algorithms for unweighted and weighted graphs

Breadth First Search First in first out, optimal but slow

Depth First Search Last in first out, not optimal and meandering

Greedy Best First Goes for the target, fast but easily tricked

A* Search "Best of both worlds": optimal and fast

Dijkstra Explores in increasing order of cost, optimal but slow

Weighted A* Optimal and fast

Questions?
about this or anything else...

