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Abstract Although we are able to rapidly understand novel
scene images, little is known about the mechanisms that support
this ability. Theories of optimal coding assert that prior visual
experience can be used to ease the computational burden of
visual processing. A consequence of this idea is that more prob-
able visual inputs should be facilitated relative to more unlikely
stimuli. In three experiments, we compared the perceptions of
highly improbable real-world scenes (e.g., an underwater press
conference)with common imagesmatched for visual and seman-
tic features. Although the two groups of images could not be
distinguished by their low-level visual features, we found pro-
found deficits related to the improbable images: Observers wrote
poorer descriptions of these images (Exp. 1), had difficulties
classifying the images as unusual (Exp. 2), and even had lower
sensitivity to detect these images in noise than to detect their
more probable counterparts (Exp. 3). Taken together, these re-
sults place a limit on our abilities for rapid scene perception and
suggest that perception is facilitated by prior visual experience.
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Free-response

Research in high-level visual perception has shown that hu-
man observers have a truly impressive ability to recognize
complex real-world scenes in a mere glance. Upon viewing
a new scene for less than 250 ms, observers are able to name

the scene at a semantic level (Potter, 1976), to categorize the
scene (Torralbo et al., 2013; Walther, Caddigan, Fei-Fei, &
Beck, 2009), to name a few large objects (Fei-Fei, Iyer, Koch,
& Perona, 2007) including animals (Thorpe, Fize, & Marlot,
1996), to understand spatial properties such as depth
(Gajewski, Philbeck, Pothier, & Chichka, 2010; Greene &
Oliva, 2009) and affordance properties such as navigability
(Greene &Oliva, 2009), and even to rate a scene for aesthetics
(Kaplan, 1992). However, these studies may have biased par-
ticipants toward success and overestimated our rapid scene
understanding abilities: In addition to using highly typical
stimuli, for which there are strong top-down expectations,
most of the tasks have promoted or leveraged those expecta-
tions. For example, many studies have presented observers
with a target class of scenes, such as scenes containing animals
(Thorpe et al., 1996) or forest scenes (Greene & Oliva, 2009),
and have asked observers to detect target scenes among the
nontarget distractor scenes. However, such explicit categori-
zation tasks provide a strong top-down signal biasing visual
processing toward features that are diagnostic of the target
class (Johnson & Olshausen, 2003; McCotter, Gosselin,
Sowden, & Schyns, 2005). In other words, if an observer
reports seeing (e.g.) an animal in a scene, we do not know
whether this is because she has fully processed the image or
because she detected diagnostic animal features (Evans &
Treisman, 2005). Rapid scene understanding has also been
evaluated by asking observers to write descriptions of briefly
viewed images (Fei-Fei et al., 2007). Although this task may
reflect a less biased view of what is understood from a brief
glance at a scene, the results can still be influenced by expec-
tations.What an observer writes depends not only on what she
has perceived, but also on her inferences given the information
she has gleaned. These inferences will, in turn, influence
what she remembers, what she chooses to mention, and
any guesses or assumptions that she makes. Because
observers are prone to false recollections based on in-
ference (Brewer & Treyans, 1981), this is a serious
problem for the free-report paradigm.
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Although theories of optimal coding, such as predictive-
coding models, have posited that prior experience and ex-
pectations can be used to disambiguate complex visual in-
put (Rao & Ballard, 1999), our survival depends on being
able to rapidly and accurately detect novelty in the environ-
ment, and surprising information seems to guide visual at-
tention (Walther & Koch 2006). Given the strong statistical
regularity of the natural world (Olshausen & Field, 1996;
Torralba & Oliva, 2003), these two coding principles are
rarely in conflict. However, by examining how the visual
system handles violations of visual expectations, we can
understand the extent to which our first visual representa-
tions depend on matching the current input to stored repre-
sentations of typical past experience.

In the present experiments, we presented observers with
images of improbable real-world situations (or visually and
semantically matched control images) and asked them to write
a comprehensive description of everything that they saw in the
scene (Fei-Fei et al., 2007). The free-response paradigm al-
lows us to understand a participant’s overall understanding of
a scene, which includes more than just the scene’s category
and objects (Zelinsky, 2013). By comparing the descriptions
of typical (Bprobable^) and unusual (Bimprobable^) scenes,
we can disentangle perception from mere inference in rapid
scene perception. Since the probable and improbable image
pairs did not differ in terms of low-level visual features, the
results could not be driven by bottom-up conspicuity or
salience.

Our results indicated that observers strongly rely on prior
probabilities in rapid scene perception: They failed to describe
many of the unexpected details in the improbable scenes,
while simultaneously writing in many false details (Exp. 1).
Furthermore, these deficits appear to be perceptual in origin.
Participants required a remarkably long image presentation
time to reliably report that an improbable scene was unusual
(Exp. 2), and they even had difficulties detecting briefly pre-
sented improbable images in noise (Exp. 3). Taken together,
these results show that it takes observers much longer to un-
derstand and even perceive improbable visual images, indicat-
ing that our rapid scene categorization abilities depend criti-
cally on our prior experience with real-world environments,
highlighting the importance of our lifetime of experience with
typical environments to our ability to rapidly parse the com-
plex visual world.

Experiment 1: Written descriptions

In order to understand how prior experience influences our
ability to rapidly perceive scenes, we asked observers to write
detailed descriptions of briefly viewed scenes that depicted
either very-low-probability events in the world or visually
matched images depicting more typical events.

Method

Materials

Image selection The image database consisted of 100 images,
composed of 50 image pairs. Each pair contained an improb-
able image and a probable image that was hand-chosen to
match the style, content, and structure of the improbable im-
age as much as possible. Unusual images were collected from
the Web and were chosen to depict low-probability real-world
events that were free from overtly emotional content. Example
image pairs are shown in Fig. 1. These images were screened
from a larger set of images and rated by five observers for
oddness as well as emotional content in a pilot experiment
(see the Supplementary Materials for details). To the best of
our knowledge, these images were real-world photographs
and not the product of photo manipulation.

Image-based analysis: saliency and image feature
differences In order to determine what (if any) influence

Fig. 1 Examples of matched probable and improbable image pairs
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visual salience had on responses, we analyzed each of our
images using the Itti and Koch (2000) saliency toolbox for
MATLAB (Walther & Koch, 2006). We manually created tight
bounding boxes around the central feature or concept most
integral to the meaning of each image. We computed the area
of each box and found no significant differences between the
probable and improbable images [t(49) < 1]. We then assessed
the mean and max saliency magnitude within the bounding
boxes, and found no significant differences between the prob-
able and improbable images in the mean saliency of these re-
gions [t(49) = 1.22, p = .23], nor in the maximum [t(49) < 1].
Therefore, any differences in observers’ perceptions of these
images cannot be attributed to the salience of the images, nor to
the spatial extent of the scenes’ meaningful content.

In order to ensure that our probable and improbable images
could not be distinguished according to low-level visual fea-
tures, we computed four types of biologically relevant visual
features for each of our images: color histograms, scene gist
features, edge density, and multiscale Gabor filter weights.

Color histograms Images were converted from RGB into
LAB color space, and two-dimensional histograms were cre-
ated from the a* and b* channels of each image using 50 bins
per channel (Oliva & Schyns, 2000).

Multiscale Gabor wavelets This model expresses an image’s
dominant orientations and spatial frequencies and is similar to
those used to model responses in early visual areas (Kay,
Naselaris, Prenger, & Gallant, 2008). Images were down-
sampled to 128 × 128 pixels and convolved with a bank of
Gabor filters at three spatial scales (3, 6, and 11 cycles per
image with a luminance-only wavelet that covered the entire
image), four orientations (0, 45, 90, and 135 deg), and two
quadrature phases (0 and 90 deg). An isotropic Gaussian mask
was used for each wavelet, with its size relative to spatial fre-
quency such that each wavelet had a spatial frequency band-
width of one octave and an orientation bandwidth of 41 deg.
Wavelets were truncated to lie within the borders of the image.

Gist features These features represent summary statistics of
scenes and represent a successful baseline for scene classification
in computer vision. Images were down-sampled to 350 ×
350 pixels and represented with the Gist descriptor of Oliva and
Torralba (2001). This descriptor creates a summary representation
of a scene by measuring the dominant orientations at multiple
spatial scales, coarsely localized throughout the image plane.

Edge density Edge density was measured by summing the
edge elements from a Canny edge map of each image. The
probable and improbable images did not have significantly
different edge densities [t(49) < 1]. Since this was a relatively
coarse measurement, we also fit Weibull functions to the dis-
tribution of the edge contrasts for each image. The two

parameters of the Weibull distribution have been shown to
be useful for distinguishing among different types of scenes
(Scholte, Ghebreab, Waldorp, Smeulders, & Lamme, 2009),
and also seem to be driving early neural responses to scenes
(Groen, Ghebreab, Prins, Lamme, & Scholte, 2013). Howev-
er, our image set did not differ significantly in either the beta
[t(49) = 1.62, p = .11] or the gamma [t(49) = 1.8, p = .07]
parameters of the Weibull distribution.

SVM analysis Given the multidimensional natures of the color,
Gabor, and gist features, we employed a classifier to test the
extent to which these features could be used to distinguish the
probable from the improbable images. The logic of this ap-
proach is that if a classifier can use a feature to predict whether
an image is probable or improbable, the two image groups differ
according to this feature, and human observers might make use
of this difference in perception. On the other hand, an inability
to classify the scenes by a given feature can be taken as evidence
that the two image groups do not differ in terms of that feature.

The image features (color histograms, Gabor wavelets, or
Gist descriptor) were fed into a support vector machine with a
linear kernel. The task of the classifier was to predict whether
an image depicted a probable or improbable situation. Each
image was used separately for testing, with the remaining
images being used for training. Both the wavelet and color
histograms yielded 44% correct performance at classifying
an image as probable or improbable (not different from
chance, p = .27 binomial test). Gist features led to 45% correct
classifications (not different from chance, p = .38). Combining
all features yielded 42% correct performance (not different
from chance, p = .13). Given the low level of performance
and the simplicity of these features, we also trained an SVM
classifier on the top-level features from a state-of-the-art neu-
ral network (Sermanet et al., 2013) to represent the best-case
scenario for the contribution of low-level visual features
(Razavian, Azizpour, Sullivan, & Carlsson, 2014). This clas-
sifier achieved 59% correct classifications (not better than
chance, p = .09, binomial test). Taken together, these image-
based analyses indicated that any observed differences be-
tween the improbable and probable image pairs were unlikely
to be attributed to differences in the low-level visual features.

Image presentation The stimuli were presented at 15.8 ×
10.8 deg of visual angle on a 21-in. CRT monitor (resolution
1,280 × 1,024) with an 85-Hz refresh rate. Pattern masks were
created by making a texture of each experimental image using
the Portilla and Simoncelli (2000) texture synthesis algorithm.

Participants

Ten participants (ages 19 to 25; seven male, three female; all
native English speakers with normal or corrected-to-normal
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vision) took part in Experiment 1. They provided informed
consent and were compensated for their time.

Design and procedure

Each participant viewed 50 images total. Of these, 25 were
improbable and 25 were probable images. Observers saw ei-
ther the probable or the improbable version of each pair, and
the version was counterbalanced across observers. Each im-
age was viewed once for one of five presentation times (24,
47, 82, 153, and 506 ms), and the presentation times were
counterbalanced across participants such that the final data
set contained one written description of each image at each
presentation time across the ten participants. Our sample size
allowed us to examine our primary hypotheses concerning
differences in image group (probable or improbable), while
maintaining a reasonable workload for the participants who
rated the image descriptions (see below).

The 50 images were shown to participants in a random
order. Each trial commenced with a fixation point for 500 ms,
followed by the experimental image, followed by a dynamic
pattern mask of four pattern masks, chosen randomly from the
set of masks, shown in an RSVP stream of 24 ms each (Greene
& Oliva, 2009). Participants were instructed to type a detailed
description of the image and to be as thorough and accurate as
possible. In order to ensure that the descriptions were not ab-
breviated due to time pressure, participants were given a full
hour to complete the experiment. They were not given any
information about the types of images they would be viewing.

Assessing the written descriptions We used crowdsourcing to
quantitatively evaluate the written descriptions. Workers on
Amazon’s Mechanical Turk (AMT) rated and assessed the
quality of the text descriptions with respect to the photograph.
Assessment was carried out in three different phases with 157
independent workers. Five individuals assessed each image
and its associated description. Workers qualified for our task
by having a previous approval rating at or equal to 98% for at
least 2,000 previous AMT tasks. In addition, the potential
workers were required to pass an extensive qualification and
training session culminating in a graded exam. In the training,
potential workers viewed detailed example trials along with
explanations of the correct responses. The images that were
used in the training were taken from the pool of nonexperi-
mental images described in the Supplementary Materials. The
tests were formulated exactly as the real assignments, and
prospective workers were required to respond correctly to all
of the test questions in order to gain eligibility to participate in
real assignments. In addition to the 157 qualified workers, 73
workers attempted the training but failed.

In the first phase of assessment, workers viewed an image
along with the text description given by one of the participants
from Experiment 1. These workers were asked to rate the

quality of the description from 0 (very bad) to 4 (outstanding).
For the improbable images, workers were also asked to rate
the degree to which the description captured the oddness of
the scene, on a 0 (did not understand at all) to 3 (understood
completely) scale. In order to assess observers’ understanding
of the objects and details within the images, workers were
asked to click on keywords within the descriptions to indicate
which words were object or scene names. In the second phase
of assessment, AMT workers were asked to label keywords
containing adjectives that described any of the object and
scene terms identified in the first phase of the assessment.
Descriptors included the number, appearance, emotion, ac-
tion, and position of an object. Any descriptor that did not fit
into these categories could be listed as Bother.^ In the last
phase of assessment, the workers indicated which of the pre-
viously identified keywords (objects, scenes and descriptors)
were actually present in the image. For each stage of the as-
sessment, five workers graded each response. For rankings,
the average of the five participants’ ratings was used, and for
keywords, the ruling of the majority was used in the analysis.

In order to assess the completeness of the responses, one of
the authors (A.B...) wrote ground-truth descriptions of each
image after viewing for unlimited time. These responses were
also graded by AMT workers using the previously described
procedure. The probable and improbable ground-truth de-
scriptions did not differ significantly in word length [t(49) <
1], number of keywords [t(49) = 1.5, p = .14], number of
objects listed [t(49) = 1.34, p = .19], or the number of details
or descriptors mentioned [t(49) = 1.45, p = .15].

Results and discussion

Example descriptions for two images can be found in Fig. 2a.
Overall, participants wrote an average of 106 words per image
(range: 8–743). Of these, 19 words on average were identified
as being keywords (object name, scene name, or descriptor).
The number of keywords increased significantly with in-
creased presentation time [F(4, 36) = 2.66, p < .0001, gη2 =
.38] but did not vary with the probability of the image [F(1, 9)
< 1], nor did probability interact with presentation time [F(4,
36 = 1.01, p = .42, gη2 = .008]; see Fig. 2b.

Although participants wrote descriptions of similar length
for both the probable and improbable scenes, the quality of
these descriptions varied considerably. We found a significant
main effect of scene type on the quality ratings, with descrip-
tions of improbable images being rated as lower quality than
those for the probable images (M = 1.45 vs. 1.88) [F(1, 9) =
28.6, p < .001, gη2 = .24]. As expected, the ratings increased
with presentation time [F(4, 36) = 79.8, p < .0001, gη2 = .71].
We observed a marginal interaction between scene type and
presentation time [F(4, 36) = 2.58, p = .053, gη2 = .20], sug-
gesting that description quality improved more with presenta-
tion time for the improbable than for the probable images; see
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Fig. 2c. These differences were not found in the ground-truth
descriptions, however, since these were rated as having similar
quality by the AMT workers (M = 2.9 vs. 3.1, respectively)
[t(49) = 1.85, p = .07]. If anything, the ground-truth descrip-
tions of the improbable images were more highly rated than
those of the probable images.

Why did observers write worse descriptions of the improbable
images? In order to investigate, we examined (1) the degree to
which the descriptions captured the unusual aspects of the image;

(2) the number of items present in the images that were not men-
tioned (misses); and (3) the number of items mentioned by ob-
servers that were not actually present in the images (false alarms).

(1) Descriptions of improbable images did not capture
oddness

For each improbable image, AMTworkers rated how well the
writer seemed to understand the oddness of the scene on a 0–3

A

B C

Fig. 2 (a) Sample free responses to a pair of images from each presentation time. (b) Numbers of keywords used for the probable and improbable images
at each presentation time. (c) Description quality ratings for the probable and improbable images at each presentation time. Error bars indicate ±1 SEM
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scale. This assessment increased monotonically with presen-
tation time, from an average of 0.12 for 24-ms presentations to
2.06 for 506-ms presentations. Tellingly, only nine of the 50
improbable images received a top score even at the longest
presentation time, suggesting that even when viewing for
506 ms—enough time to have executed one saccade (Rayner
& Pollatsek, 1992)—observers had insufficient time to fully
understand the odd features of the improbable scenes.

Additional analyses revealed that the oddness ratings were
not significantly modulated by the visual saliency of the unusu-
al scene aspects. The overall quality score of an image descrip-
tion was not strongly related to the mean salience of the image
(r = .03). Similarly, the oddness score of the improbable images
was not strongly related to the image’s mean salience (r = .08).
Taken together, these results indicate that salience alone did not
drive the quality of the scene descriptions.

(2) Descriptions of improbable images missed many
important scene features

In order to examine omissions, we compared the experimental
descriptions to the ground-truth descriptions. For each de-
scription, a hit rate was calculated as the proportion of

keywords (objects, scene categories, and descriptive adjec-
tives) identified in the ground-truth description that were cor-
rectly mentioned in the experimental descriptions. Observers
had a higher hit rate for objects in probable than in improbable
scenes (M = .31 vs.M = .22) [F(1, 9) = 32.3, p < .0005, gη2 =
.24], and the hit rate increased with presentation time [F(4, 36)
= 32.5, p < .0001, gη2 = .55], but there was no significant
interaction between these two factors [F(4, 36) < 1; see
Fig. 3a]. Paired t tests indicated that the improbable scenes
had a significantly lower hit rate than their probable counter-
parts at every presentation time before 506 ms, suggesting that
observers saw fewer objects in the unusual scenes. Although it
is striking that observers reported fewer than half of a scene’s
objects on average, this result is consistent with the low esti-
mates of working memory capacity for objects in scenes when
guessing is controlled for (Liu & Jiang, 2005).

Since most participants did not write scene category terms
in their descriptions, we could not compute reliable hit rates
for these terms. Nonetheless, the results for scene terms are
reported in the Supplemental Materials.

For descriptor terms (descriptions of appearance, actions,
quantities, or positions for both objects and scenes), the hit
rate also increased with presentation time [F(4, 36) = 23.1, p <

A B

C D

Fig. 3 (a) Proportions of objects named for the probable and improbable
scenes at each presentation time. (b) Proportions of descriptors correctly
named at each presentation time. (c) Proportions of objects falsely named

at each presentation time. (d) Proportions of descriptors falsely identified
at each presentation time. Error bars indicate ±1 SEM
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.0001, gη2 = .49], and probable images had a higher hit rate (M
= .19) than improbable images (M = .13) [F(1, 9) = 40.9, p <
.0001, gη2 = .22]. However, again image typicality did not
interact with presentation time [F(4, 36) < 1; see Fig. 3b].
Paired t tests indicated that improbable scenes had lower hit
rates than did probable scenes at all presentation times.

Next, we examined the hit rates for each type of object
descriptor (scene descriptors were omitted because they were
rare). Overall, the hit rates were low and ranged from .22
(action) to .07 (position). The hit rate for each type of descrip-
tor (action, appearance, position, and quantity) increased with
presentation time (all ps < .05; see the Supplemental
Materials). Although probable images resulted in higher hit
rates for the action and appearance object descriptors (each p <
.005; see the Supplement), probability did not significantly
influence the hit rates of the position and quantity descriptors.
No significant interactions were observed between presenta-
tion time and scene probability, as is shown in Fig. 3b. That
position and quality descriptors were frequently missed is
consistent with a number of other studies in scene perception
that have demonstrated that we often do not pick up details in
a glance (Fei-Fei et al., 2007). The especially low hit rate for
position information is in line with the fact that observers are
often not able to localize objects that they have detected in
briefly presented scenes (Evans & Treisman, 2005), and that
scene-selective areas such as the parahippocampal place area
(PPA) are insensitive to mirror reversals of a scene that change
the locations of objects within it (Dilks, Julian, Kubilius,
Spelke, & Kanwisher, 2011).

(3) Descriptors of unusual images included many errors

To what extent did the image descriptions contain incorrect or
fabricated details? For each type of keyword (object and de-
scriptor), we computed a false alarm rate from the third phase
of the AMTassessment, in which workers indicated whether a
keyword was correct or incorrect. For object keywords, the
participants had an average false alarm rate of .20 and a lower
false alarm rate for probable (M = .15) than for improbable (M
= .26) images [F(1, 9) = 15.8, p < .001, gη2 = .11]. As expect-
ed, the false alarm rates decreased with increased presentation
time [F(4, 36) = 19.2, p < .0001, gη2 = .52]. We did not
observe an interaction between image probability and presen-
tation time [F(4, 36) = 1.6, p = .19, gη2 = .11]; see Fig. 3c.
Paired t tests indicated significantly more false alarms to ob-
jects in improbable than in probable scenes only at the 24-ms
and 153-ms presentation times.

As with hit rates, we pooled all descriptors together to
calculate an overall descriptor false alarm rate of .19. As ex-
pected, descriptor false alarms decreased with presentation
time [F(4, 36) = 20.7, p < .0001, gη2 = .54]. Additionally,
the probable images had a lower false alarm rate (M = .15)
than did the improbable images (M = .23) [F(1, 9) = 14.8, p <

.001, gη2 = .06], and there was a significant interaction be-
tween presentation time and image typicality [F(4, 36) = 5.4, p
< .005, gη2 = .10; see Fig. 3d].

Altogether, we found that written descriptions of briefly
viewed improbable scenes were systematically poorer than
descriptions written about matched typical scenes. To what
extent are these deficits perceptual in nature? In Experiments
2 and 3, we examined this question in detail.

Experiment 2: Presentation time threshold

Experiment 1 demonstrated that participants’ descriptions of
briefly viewed improbable images were significantly worse than
their descriptions of more probable images, suggesting that the
fidelity of our initial scene representations depends on one’s vi-
sual experience with the depicted environments and situations.
Were these failures a result of having a less accurate perception of
the improbable images, or merely of participants being unable to
accurately describe the unusual aspects of the image? If the
impoverished descriptions were due to writers’ inability to ex-
press the strange situations, then we would expect to find equal
performance for both scene types in a categorization task. How-
ever, if the description deficits were due to an impoverished
initial representation, then we would expect observers to need
more time to even categorize an image as improbable.

Method

Materials The stimuli consisted of the 100 images used in
Experiment 1. We presented this experiment on a 21-in.
CRT monitor (resolution 1,280 × 960 at 100 Hz). Stimuli
subtended 15.8 × 11.6 deg of visual angle.

Participants A total of 21 participants (12 female, nine male;
ages 18–36, with normal or corrected-to-normal vision) par-
ticipated in Experiment 2. None of these individuals had par-
ticipated in Experiment 1. They provided informed consent
and were compensated for their time.

Design and procedure We employed a linear 3-up–1-down
psychophysical staircase on image presentation times in order
to determine how long participants needed to view an image to
accurately classify it as probable or improbable. Observers
viewed all 100 images from Experiment 1 in a random order,
with the initial presentation time set to 100 ms. We employed
separate psychophysical staircases on both groups of images
in order to estimate the image durations needed to support the
classification of images as probable versus improbable. We
predicted longer durations for improbable images.

Participants were instructed that theywould see images that
depicted either scenes of typical, daily-life events or scenes
that contained events and activities that were very improbable
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in the world, and that they were to classify each scene as
probable or improbable. Each trial commenced with a fixation
point for 500 ms. A scene image was then shown for 10–
200 ms, as required by the staircase, followed by a dynamic
pattern mask that was identical to that of Experiment 1. The
participant then indicated with a keypress whether the image
was probable or improbable. No performance feedback was
given. When a participant had answered three consecutive
trials correctly in a given staircase, the presentation time of
subsequent trials decreased by 10 ms (to a floor of 10 ms),
whereas each incorrect answer resulted in an increase of pre-
sentation time by 10 ms.

For each participant and each condition, the final presenta-
tion time threshold was calculated as the average of four
values: the final presentation time viewed, the minimum pre-
sentation time at which the observer could achieve at or above
75% correct, the mean presentation times of the last three
correctly answered trials, and the modal presentation time.
Since we did not observe any systematic differences in the
threshold estimates from the four methods used [one-way
analyses of variance: F(3, 75) < 1 for probable images; F(3,
75) = 1.33, p = .27, gη2 = .02, for improbable images], aver-
aging over multiple threshold estimates would produce a more
robust estimation.

Results and discussion

Two participants were dropped from the analysis due to floor
performance (>20% of trials at the maximum presentation
time for either of the two staircases).

Critically, participants required significantly less viewing
time to classify an image as probable (M = 47 ms) than to
classify it as improbable (M = 135 ms) [t(18) = 6.53, p <
.0001]; see Fig. 4. Interestingly, the presentation time required
for the probable scenes was quite similar to the presentation
times required to classify the scenes into basic-level categories
using the same method (50 ms, range 30–67 ms; Greene &
Oliva, 2009), whereas the 135-msmasked presentation time to
classify an image as improbable represents a deviation from
much of the data in scene understanding, which have almost
universally shown outstanding performance in scene-
understanding tasks.

We wanted to ensure that the large difference in thresholds
for probable and improbable images was not due to a subset of
observers being biased toward always classifying images as
Bprobable.^ If some observers had a strong inclination to clas-
sify an image as probable, this could result in an artificially
low threshold for probable images and an artificially high
threshold for improbable ones. Of the 19 observers included
in the analysis, we identified only four who had a significant
bias toward responding Bprobable^ using a binomial test.
When we reanalyzed the data without these observers, we still
found a significantly longer presentation time threshold for

improbable (M = 126 ms) than for probable (M = 54 ms)
images [t(14) = 5.4, p < .0005]. Although this pattern of re-
sults cannot solely be attributed to a few biased participants,
we could not fully rule out bias in this experiment. Many of
the participants had a slight tendency toward answering
Bprobable,^ possibly driving up the presentation times for
improbable images while driving down the presentation times
for probable images. However, the magnitude of the duration
effect (improbable presentation threshold minus probable du-
ration threshold) showed no correlation with the bias of the
observer (r = .01), so it is unlikely that the difference between
the groups was due solely to bias.

Overall, Experiment 2 demonstrated that although partici-
pants can detect scene improbability in a glance, this classifi-
cation task requires a great deal more image exposure than do
most scene classification tasks. Although some observers had
a significant bias toward classifying a scene as probable, ob-
servers without this bias still needed to view improbable im-
ages for more than twice as much time as the probable images
in order to make reliable classifications. These results suggest
that the poor descriptions observed in Experiment 1 were not
due solely to observers’ inabilities to describe the unusual
scenes in words, and they give credence to the idea that the
deficits are perceptual in nature. At what stage of perceptual
processing does image probability begin to exert an effect?
Experiment 3 tested the extent to which even image detection
can be influenced by the prior probability of the scene.

Experiment 3: Detection

So far, we have shown that human rapid scene perception
abilities are modulated by scene probability: Descriptions of
briefly viewed improbable scenes were markedly error-prone
relative to matched probable scenes (Exp. 1), and observers

Fig. 4 Distribution of presentation time thresholds for probable and
improbable images in Experiment 2. Individual participants are shown
in gray, whereas the mean of all participants is shown in the central color
line
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needed to view an improbable scene for well over 100 ms
before they understood that anything was amiss (Exp. 2), sug-
gesting that the deficits observed in the first experiment were
not simply due to observers’ inability to verbally express what
they had seen, or to the fleeting nature of conceptual short-
term memory (Potter, 1976). However, we were still left with
the fundamental question of how early in perception image
probability has an effect. We reasoned that if the deficits occur
early in perceptual processing, then observers should have less
sensitivity to detect improbable images in noise, a low-level
task. In Experiment 3, we presented participants with trials
consisting of either a phase-randomized scene image or one
of the experimental images, and tested for observers’ detection
sensitivities for both probable and improbable images.

Method

Materials The stimuli consisted of the 100 scene images used
in Experiments 1–2, as well as full-color, fully phase-
randomized versions of these scenes. Additional images for
the practice session were taken from the original set of prob-
able images that were not chosen for the final set (see the
Supplementary Materials).

Participants Fourteen participants (eight female, six male;
ages 19–30, with normal or corrected-to-normal vision) took
part in Experiment 3. None of these participants had taken part
in Experiment 1 or 2, and all provided informed consent and
were compensated for their time.

Design and procedure After a short block of three practice
trials to familiarize participants with the task, the experiment
commenced with a block of 100 trials designed to obtain the
75% presentation time thresholds for detecting an image as a
scene or phase-randomized noise image. Half of the trials
were real-world scenes, and half were full-color phase-scram-
bled versions of these scenes. Each image was followed by the
same dynamic pattern mask used in the previous experiments,
based on probable scenes that were not used in the main ex-
periment. As with Experiment 2, the initial presentation time
was 100 ms, and a 3-up–1-down psychophysical staircase was
employed to keep observers at 75% correct. The threshold for
each observer was defined as the lowest presentation time
with at least 75% correct performance. Observers were
instructed to respond with a keypress as to whether an image
was Bintact^ versus Bscrambled.^

After the threshold time was determined, each observer
viewed an experimental block of 200 images, consisting of
the 100 experimental images and 100 phase-randomized ver-
sions of these scenes; see Fig. 5a. The images were shown in a
randomized order and viewed for the presentation time deter-
mined in the initial block. Each image was followed by the

dynamic pattern mask. Performance feedback was given dur-
ing practice trials only.

Results and discussion

The average presentation time threshold across participants
was 28.9 ms (range: 10–80 ms). The data from one participant
were removed from the analysis due to near-ceiling perfor-
mance in the main block (92% correct), indicating that the
presentation time threshold was overestimated during
staircasing.

In the experimental block, we found that observers’ detec-
tion sensitivities (using d′) for probable images were higher
than those for improbable images (M = 2.21 vs. 1.78) [t(12) =
6.5, p < .0001; see Fig. 5b]. All but one observer had a higher
d′ for probable images.

This result indicates that it was more difficult for observers
to distinguish the improbable images from noise than to dis-
tinguish their probable counterparts. Although some re-
searchers have found similar information requirements for de-
tection and categorization (Grill-Spector & Kanwisher, 2005),
others have found that categorization tasks can be made more
difficult without affecting detection (Mack, Gauthier, Sadr, &
Palmeri, 2008). Our results show that both categorization and
detection are negatively affected in cases in which we cannot
rely on past experience and expectations. Although category
typicality has been shown to influence scene categorization in
the same task (Torralbo et al., 2013), the probable images in
our study were chosen to be as similar as possible to their
improbable pairs. Additionally, image-level analyses indicat-
ed that our images could not be classified as probable or im-
probable on the basis of low-level visual features such as color
or edge density. Taken together, these results indicate that
subtle differences between scenes can influence our abilities
to rapidly recognize not only their content, but also that they
are in fact scenes. These results also strongly support the view
that our rapid scene recognition abilities are aided by our
familiarity with the visual inputs.

General discussion

These three experiments demonstrate that human observers
cannot accurately understand very improbable visual scenes
in a brief glance. Observers wrote poorer descriptions of im-
probable scenes (Exp. 1), had more difficulty in classifying
situations as improbable (Exp. 2), and even had difficulties in
determining that briefly presented improbable images were
scenes, rather than phase-randomized noise (Exp. 3). Alto-
gether, these results support the view that rapid scene percep-
tion is aided by our lifetime of visual experience in typical
environments, as has been suggested by theories of optimal
visual coding.
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In this work, we examined scenes that we had classified as
Bprobable^ or Bimprobable^ real-world situations, rather that
focusing on typicality within a scene category, such as beach
scenes. Although we feel that this encompassing definition is
more true to the overall meaning of a scene (Zelinsky, 2013),
we can draw parallels between our definition of typicality and
other scene perception studies that have examined the role of
either category typicality (Ehinger, Xiao, Torralba, & Oliva,
2011; Torralbo et al., 2013) or object typicality (Biederman,
Mezzanotte, & Rabinowitz, 1982; Davenport & Potter, 2004;
Joubert, Fize, Rousselet, & Fabre-Thorpe, 2008; Rémy et al.,
2013; Võ & Henderson, 2009) on scene understanding. It has
been shown that images that are more typical exemplars of a
scene category are recognized better by both human observers
(Torralbo et al., 2013) and computer vision classifiers (Ehinger
et al., 2011), possibly because typical images have lower

within-class variability (Torralbo et al., 2013). Similarly, prim-
ing studies have shown facilitated visual processing for stimuli
that conform to an observer’s expectations (Eger, Henson,
Driver, & Dolan, 2007; Esterman & Yantis, 2010). However,
in these studies, low-level differences between typical and atyp-
ical images could have driven the results. Our results show that
observers are better at recognizing more-typical situations,
even when these images cannot be distinguished from images
of improbable situations on the basis of low-level visual fea-
tures, and thus they support the view that our visual experience
allows us to create more-efficient visual codes.

Evidence from the eye movement literature also supports
the notion that unusual visual stimuli lead to slower perceptual
and cognitive processing. Although visually salient inconsis-
tent objects can draw early saccades (Becker, Pashler, &
Lubin, 2007; Loftus & Mackworth, 1978; Underwood,

A

B

Fig. 5 (a) Image presentation sequence for Experiment 3. (b) Detection sensitivities (d′) for probable and improbable images. Error bars indicate ±1
SEM
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Templeman, Lamming, & Foulsham, 2008), most studies have
shown that first saccades are not systematically drawn to in-
consistent objects (Henderson, Weeks, & Hollingworth, 1999;
Rayner, Castelhano, & Yang, 2009; Võ & Henderson, 2009),
suggesting that the objects might not be fully understood in the
first fixation. Furthermore, inconsistent objects are fixated lon-
ger than other objects (Becker et al., 2007; Henderson et al.,
1999; Loftus & Mackworth, 1978; Rayner et al., 2009; Under-
wood et al., 2008; Võ & Henderson, 2009), possibly indicating
the increased visual or cognitive processing necessary to un-
derstand these objects. Taken together, these results support the
view that unusual stimuli require processing above and beyond
that needed by more typical stimuli. This literature has
remained controversial, due in part to the difficulties with con-
trolling experimenter-manipulated images for visual salience
and conspicuity. The present results demonstrate that observers
show deficits in understanding unusual visual scenes from the
real world that are not distinguishable from typical images
solely by their low-level visual features.

In contrast to the relative difficulties of initially recognizing
atypical input, unusual elements tend to be remembered better
once they are recognized (Isola, Xiao, Parikh, Torralba, &
Oliva, 2013; Lampinen, Copeland, & Neuschatz, 2001). In-
deed, participants’ memories for objects that are consistent
with a particular scene schema can even be at chance
(Lampinen et al., 2001), suggesting that observers may adopt
an efficient memory-encoding scheme in which attention is
preferentially directed toward the least typical elements of an
image and the remainder of the image is encoded as a schema
(Brady, Konkle, & Alvarez, 2011). Taken together, these re-
sults suggest that the goals of top-down processing for visual
perception are different from the goals of top-down processing
for memory: Vision uses expectations to disambiguate com-
plex input, whereas memory uses expectations to shorten the
representation in memory, sometimes at the expense of repre-
sentational uniqueness.

Future work will examine the generation of this schema
over time. The keywords in Experiment 1 were assessed in a
binary way—as either correct or incorrect. However, an ex-
amination of the descriptions shows that some incorrect re-
sponses were somewhat understandable, whereas others
seemed completely random. For example, the participant
who viewed the urban pillow fight image for 47 ms described
the image as a Briot^ (see Fig. 2), and indeed, urban pillow
fights and riots share some featural and conceptual similari-
ties. Many of the responses seemed to be conceptually driven.
For example, for an image of two women sitting at a
Bbathroom themed^ restaurant with seats made from toilets
and a table made from a sink, all participants wrote about
the Brestaurant,^ but no participants made mention of the un-
usual seats or table. Other responses seemed driven by fea-
tures from the visual masks. For example, a participant view-
ing the top-right improbable image from Fig. 1 described this

image as B. . . another movie picture. There is a fire on the
right. The scene is generally blue and orange. There is a house
on fire and running people on the left.^ Still other descriptions
defy simple classification. A participant viewing a row of
Batmobiles driving down the road described the image as
BA dead German Shepard^ (sic). Therefore, future work will
examine these false responses directly, asking how many of
the incorrect responses were driven by assumptions given by
scene schema? Did these occur at all presentation times? Un-
derstanding the type of inference errors made during rapid or
noisy perception will be key to understanding errors made in
the eyewitness testimony of events.

The present results challenge the generally accepted view
that scene Bgist^ understanding can take place within a feed-
forward Bsweep^ through the ventral visual stream (Fei-Fei
et al., 2007; Potter, Wyble, Hagmann, & McCourt, 2014;
Thorpe et al., 1996). Why, then, are all scenes not created
equally for perception? One possibility is that these deficits
are more related to visual working memory than to perception.
Perhaps observers can keep fewer objects in the improbable
scenes in workingmemory because the probable scenes afford
more opportunities to create compressed memory representa-
tions (Brady, Konkle, & Alvarez, 2009). Although this hy-
pothesis could explain the patterns of results obtained in Ex-
periments 1 and 2, this view cannot explain why the observers
in Experiment 3 were worse at merely detecting improbable
scenes. Instead, the results imply that the initial visual repre-
sentation activates a template of a frequently viewed scene
that acts in a top-down manner to refine the perceptual repre-
sentation (Bar et al., 2006; Summerfield et al., 2006). This
view would predict lower detection performance for improb-
able images because these presumably have lower resem-
blance to stored templates. Such a view is also compatible
with predictive-coding schemes in which the probable scene
is accommodated more quickly by upstream Bexpectations,^
thus providing a smaller error signal (and fewer iterations)
through the cortical hierarchy in order to achieve recognition.

More broadly, being able to rapidly assess and react to
novel or unexpected events is critical to our survival. Howev-
er, our results suggest that this ability is limited. We deal with
the difficult perceptual situations presented in rapid visual
presentations by relying on top-down knowledge gleaned
from a lifetime of experience in typical environments.

Although future work will be needed to understand why
particular errors occurred, the data presented here clearly in-
dicate that not all natural images can be accurately
apprehended with brief presentations. The inadequacy of a
single glance for understanding unusual visual input is even
typified in the well-known comedic device known as the
Bdouble take^—an actor turns around to look again at an
unusual event that he initially ignored. The results of these
experiments show that our initial perception of unusual events
is poor, so we all can benefit from a second glance.
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