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Abstract—This paper addresses the problem of fine-grained
recognition: recognizing subordinate categories such as bird
species, car models, or dog breeds. We focus on two major
challenges: learning expressive appearance descriptors and lo-
calizing discriminative parts. To this end, we propose an object
representation that detects important parts and describes fine-
grained appearances. The part detectors are learned in a fully
unsupervised manner, based on the insight that images with
similar poses can be automatically discovered for fine-grained
classes in the same domain. The appearance descriptors are
learned using a convolutional neural network. Our approach
requires only image level class labels, without any use of part
annotations or segmentation masks, which may be costly to
obtain. We show experimentally that combining these two insights
is an effective strategy for fine-grained recognition.

I. INTRODUCTION

Fine-grained recognition [1]-[7] refers to the task of distin-
guishing sub-ordinate categories such as bird species [8], [9],
dog breeds [10], aircraft [11], or car models [12], [13]. It is one
of the cornerstones of object recognition due to the potential to
make computers rival human experts in visual understanding.

However, two major challenges need to be solved before
fine-grained recognition can achieve this goal. First, recogniz-
ing fine-grained classes typically requires differentiating fine
details in appearance. It calls for an appearance representation
that retains details critical for discrimination and discards
unnecessary information. The retained discriminative details
can be very subtle and highly domain-specific. For example,
the two cars in Fig. 1 differ at the front bumper and turning
signal. Descriptors such as SIFT [14] or HOG [15], while
successful in more coarse-grained recognition tasks, may not
be discriminative enough to differentiate at this level of detail.

Another challenge is in discovering and locating the parts
that contain discriminative details. When humans describe
differences between fine-grained classes, we almost always
point out the location (“‘vertical bars on the car’s grille”, “black
patch on the bird’s beak™). That is, we locate the relevant
object parts and then check the appearance. The Beetles in
Fig. 1 are much easier to differentiate when told to explicitly
look at the front bumper. This brings forward the issue of
part discovery — which parts are discriminative and where are
they? One possibility is to annotate the location of various
parts by hand. However, this approach is costly and it may
be difficult to scale up to handle many different types of fine-
grained classes. We hypothesize that the ultimate solution to
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Fig. 1. The key to fine-grained recognition is localizing important parts and
representing part appearance discriminatively, as global cues describing the
overall shape or color often cannot capture the subtle differences. Without
any information at the level of parts it is difficult to differentiate between
two very similar classes. Similarly, features such as HOG [15], which are not
discriminative for fine-grained classes, do not contain enough information.
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fine-grained recognition should entail both localizing important
parts with minimal supervision and effectively describing their
appearances in a way that does not discard information useful
for classification.

In this paper we simultaneously tackle both feature learn-
ing and part discovery. Our central idea is learning both
features and parts to form a unified object representation.
Specifically, we use convolutional neural networks (CNNs) to
learn appearance descriptors, and perform unsupervised part
discovery to obtain a collection of part detectors. By learning
the features appropriate to describe the object categories in
question, we let the data determine which features are effec-
tive for discrimination, which helps avoid losing information
useful for categorization. By keeping part discovery completely
unsupervised with respect to part annotations, we aim to make
our algorithm scalable to a variety of fine-grained domains,
including ones for which it is not known a priori which parts
are discriminative. In recognition time, we detect parts and



represent their appearances using the learned features, leading
to an “Ensemble of Localized Learned Features” (ELLF),
a novel representation for fine-grained recognition. To our
knowledge our approach is the first to integrate feature learning
and unsupervised part discovery in fine-grained recognition.

II. RELATED WORK
A. Part-based representations

Many fine-grained recognition techniques involve part-
based representations inspired by work on generic object
recognition [16], [17]. Some explicitly model pose [2], [18]
whereas others use less structured approaches [4], [19]-[21].
Typically part detectors are learned using hand-annotated key-
points. Our approach departs from most prior work in that
the part detectors are learned with zero supervision, which
means that we can tackle multiple domains, including ones
for which nothing more than class labels and bounding boxes
are available.

B. Feature Learning

Feature learning is a promising approach that can generate
powerful appearance representations. Much work has focused
on encoding low-level features such as SIFT or HOG (e.g.
[5], [22], [23]) or mining discriminative templates [5], [6].
The recent success of convolutional neural networks [24], [25]
on large-scale classification and face recognition [26], [27]
demonstrates that powerful features can be learned directly
from pixels. This inspires us to adopt convolutional neural
networks (CNNG5) for fine-grained recognition. Note that unlike
the DeCAF system [28] that trains features on ImageNet [29],
we do not perform any pre-training using additional data.
This requires care when choosing the network architecture and
necessitates using a larger variety of data deformations in order
to cope with and increase the size of the training set. To our
knowledge this is the first time deep neural networks have been
used for fine-grained recognition without any form of domain
adaptation.

C. Other approaches

In addition to the approaches outlined above, segmentation
has also been found to be particularly useful [21], [30]-[32] in
fine-grained recognition tasks. Another line of research focuses
on putting humans in the loop [33], [33]-[36]. These are
complementary approaches that can be jointly used with our
method, and we do not attempt to incorporate these additional
cues in our work.

III. APPROACH
A. Overview

Our representation builds on the intuition that we need
to localize parts and then compare their appearances. Fig. 2
provides an overview of the algorithm. The main idea is to
have a representation that enables easy comparison of appear-
ance features on corresponding parts. This leads to ELLF:
Ensemble of Localized Learned Features. Suppose we have
a collection of n object parts with associated part detectors,
which we assume for now have already been trained. Given
an input image (Fig. 2(a)), let a; be the appearance of part

1, as described by a convolutional neural network (Fig. 2(b)).
The ELLF representation is then simply (a1, as,...,a,), the
concatenation of part appearances (Fig. 2(c)). Note that due to
view point change and occlusion, not all parts are necessarily
detected. When part ¢ is not detected, the appearance a; is
set to zero, preventing a classifier (Fig. 2(e)) from using
any information at that part. With images represented by
ELLF, we can then train classifiers such as linear SVMs to
perform fine-grained classification. For us, the collection of
parts is determined in an unsupervised framework and they are
described using features from a convolutional neural network.

One desirable property of using ELLF is that it compares
the appearances of each part and aggregates the similarities
together. This is different from traditional approaches for
generic object recognition such as spatial pyramid matching
(SPM) [37] where a linear kernel compares the appearances
at the same spatial location instead of the same part. SPM is
thus sub-optimal for objects of different poses, because all the
parts are not necessarily visible or at the same location across
images.

We would like to highlight one other difference between
ELLF and traditional bag-of-words representations. A linear
kernel defined on bag-of-words histograms or its softly quan-
tized generalizations such as LLC [22] roughly corresponds
to comparing the presence of each visual word. In this case
we have already quantized the appearances into visual words
and are only checking whether specific visual words occur.
The subtle appearance differences for fine-grained classes
might still get lost in quantization. In contrast, since we
describe object parts using features trained from a CNN, our
representation keeps rich appearance descriptors in the final
representation.

Now that we have defined ELLF, we proceed to de-
scribe the process of generating ELLF. There are two key
components: learning discriminative appearance features and
discovering parts.

B. Feature Learning

A hallmark of fine-grained recognition is that it demands
rich and expressive appearance descriptors, as traditional de-
scriptors like SIFT [14] or HOG [15] may not capture the right
balance between discriminativeness and invariance for fine-
grained classes. To this end we adopt the philosophy of end-
to-end training of feature descriptors using neural networks,
allowing the descriptors to adapt to the idiosyncrasies of
individual categories. To our knowledge this is the first time
deep feature learning is applied on fine-grained recognition
involving no pre-training with additional data. We demonstrate
that even on relatively small datasets, feature learning can be
effective for fine-grained recognition.

In particular, we use a convolutional neural network
(CNN) [24] that accepts pixels as its input and outputs prob-
abilities of classes. We modify the architecture of Krizhevsky
et al. [25] to account for our smaller-scale data, which we
have found to be very important for preventing overfitting.
The network consists of two convolutional layers followed
by three fully connected layers with a softmax loss. Each
convolutional layer performs convolutions with a bank of filters
on the 3D input matrix and outputs filter responses in the
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Overview of our Ensemble of Localized Learned Features (ELLF) representation. Given an input image (a), we detect parts using a collection of

unsupervised part detectors (Sec. III-C). We also feed the image into a convolutional neural network (CNN) (b) that outputs a grid of discriminative features
(Sec. III-B). The CNN is learned with class labels and then truncated, retaining the first two convolutional layers which retain spatial information. We describe
the appearance of each detected part using the learned CNN features by pooling in the detected region of each part (c). Appearance of of any undetected parts
is set to zero. This results in our ELLF representation that is then used to predict fine-grained object categories (e). In comparison, a standard CNN (d) passes
the output of the convolutional layers through several fully connected layers in order to make a prediction.

form of a 3D matrix. Since filter parameters are learned from
the data, the network has the potential to generate feature
descriptors tailored to specific domains. More details are given
in Sec. IV-A.

After training, we remove the fully connected layers and
use the two convolutional layers as a generator of pixel-level
appearance descriptors. Note that it is necessary to cut off the
features at this point in order to maintain spatial information —
features in the fully connected layers are completely unordered.
To obtain a descriptor for a region (such as a bounding box
given by a part detector), we perform max-pooling of the
descriptors located inside the region. Thus, one way to interpret
our parts is as movable pooling regions in a CNN architecture.

C. Part Discovery

The goal of part discovery is to obtain a collection of
reliable part detectors. Our key contribution is a part discovery
algorithm that is fully unsupervised. Previous work has relied
on hand-annotated keypoints to train part detectors [4]. Here
we bypass human annotations completely, which has the
advantage of scaling to very large-scale datasets.

How can we train part detectors without any annotations?
The key observation is that objects with the same pose can
often be automatically discovered by local low-level cues.
Aligning poses between images is, in general, a difficult
problem, because appearance may vary wildly even within the
same category. However, localizing parts primarily depends on
an understanding of the overall object shape without the need
to scrutinize the local details—a blurred image of a dog may
prevent you from recognizing the breed but will likely hold
enough information for you to localize the parts.

This intuition motivates our part discovery procedure. We
first discover sets of aligned images with similar poses. Under
the assumption that images within a set are well aligned, the
same parts have similar locations across images. We can thus
train a part detector using the patches from the same spatial
location as positive examples and patches from elsewhere as
negative examples. Fig. 3 (top) illustrates this intuition. We
now elaborate on the individual steps.

1) Discovering Aligned Images: The first step is discover-
ing sets of aligned images. We use a randomized algorithm.
We pick a seed image at random (Fig. 3(a)) and then retrieve
nearest neighbors in terms of HOG features, extracted at mul-
tiple scales. To help reduce the influence of the background,
we perform GrabCut [38] before extracting HOG features,
initializing the foreground model with the object’s bounding
box, which is typically given in fine-grained recognition. These
foreground segmentations are centered for the purpose of
comparing across images. We repeat this process, randomly
sampling multiple sets and using each set to generate multiple
part detectors. With a reasonable number of training images to
choose from, this method typically results in a set of images
with nearly the same pose (Fig. 3(b)).

2) Part Selection: Next we select the parts to detect, as
every location within the segmented foreground can be a
potential part. To address this issue, we randomly sample
a large number of regions with various sizes as candidates
(Fig. 3(c)). We then select the parts with the highest energy, as
measured by the variance of HOG across images (Fig. 3(d)).
This helps prevent selecting parts which lack discriminative
information — a part which does not vary at all across images
cannot be useful for discrimination. Each time we select a
part, we remove from the candidate list any parts that overlap
more than a fixed threshold p with an already selected part,
set to 15% in our implementation. This helps prevent learning
redundant parts for a given set of aligned images.

3) Detector Learning: We then learn a detector for each
selected part (Fig. 3(e)). Specifically, let I; be the aligned
images and 2T be location of the selected part. Under the
assumption that the images are well aligned, our learning
objective for the part detector is finding a template w that
minimizes the hinge loss

min,, >, max{0,1 — w'h(I;, 2 %)
+2; ZZ; max{0, 1+ w” (I}, z; )}, 1)

where h(I;,2") extracts features (HOG) on image I; at
positive patch location z*. The variable z; are the locations
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Fig. 3.
global HOG appearance. This allows us to identify well aligned images with similar poses. From a large sample of random parts (c) we pick the sub-windows
with high energy (d) as candidate parts, which are then used to train our final part detectors (e), visualized as the average of the patches used as positive examples
in training. Bottom: Examples of parts discovered by our method. Leftmost is the seed image used to generate the set of aligned images, a subset of which is
shown in the middle. Shown at the right are the average of the image patches used as positives to train each part detector and the learned weights. Our method
is able to discover a variety of parts from each neighborhood.

of the negative patches on image I;, chosen randomly such
that they do not overlap with the positive patch at location z*.

We now relax the assumption that the images are well
aligned to be robust to misalignment. Instead of having a fixed
location 2z, we introduce a latent variable z;r to represent the
true location of the part on image zj Our learning objective
is thus

min,, >, max{0,1— max. + wTh(1;, zj"')

+3; ZZ; max{0, 1 + w” h(I;, zi )} @

where we search for the best match over all possible

locations z;r The objective can be optimized by alternating

between optimizing z;r with fixed w and optimizing w with
fixed z;f, similar to the latent SVM optimization introduced
in [17]. We initialize the latent variable z;r with the original
location z*. Also similar to [17], we augment the HOG
feature h(I,z) with (dz - dy,dz?, dy?) to include a spatial
prior that penalizes patches too far away from the original z+.
Here do =z, —x,+ and dy = y, — y.+, where (z,,y,) is the
coordinate of the location z and (z.+,y,+) is the coordinate
of the original location. This effectively defines a Gaussian
prior on the true location relative to the original location 2z,
preventing part detectors from spuriously firing at regions that
by chance appear similar to the part while still allowing the

(c) candidate parts (random)

(d) selected parts

-

(e) part detectors

Top: Our fully unsupervised part discovery pipeline. We randomly sample a seed training image (a) and retrieve the nearest neighbors (b) in terms of

parts themselves to move around in order to best fit the actual
part location in each image.

At detection time, we set a threshold 7 on the detector
response. If the response is below 7, the part is considered not
visible in the image and its appearance descriptor will be set to
zero, preventing the classifier from receiving any information
about a part that is not present.

4) Ensemble of Parts: To obtain a collection of part detec-
tors, we repeat our discovery procedure multiple times. It is
worth noting that the randomization throughout our discovery
procedure can help increase the robustness of the recognition
algorithm. As we will demonstrate in our experiments, increas-
ing the number of randomly sampled part detectors improves
performance. See Fig. 3 (bottom) for more examples of our
part discovery pipeline.

IV. EXPERIMENTS
A. Datasets and Implementation Details

We evaluate our algorithm on the Cars [13] fine-grained
benchmark. We follow the standard evaluation procedure: all
training and testing is performed on cropped images from
the object bounding boxes. We report classification accuracy,
i.e. the accuracy as averaged over the test examples. In our



experiments no annotations except class labels and bounding
boxes are used in training.

We use the cuda-convnet implementation [25] of
CNNs. The network consists of 48 11 x 11 filters with 3 x 3
pooling regions with stride 2 for the first convolutional layer,
and 128 6 x 6 filters with pooling regions of size 6 x 6 every
6 pixels for the second convolutional layer. The number of
units for the three fully connected layers are all 2048. All
units are rectified linear units except for the fully connected
layers, where we found that linear units work best. We resize
each image to 256 x 256 and use various techniques for CNNs
to prevent overfitting, including dropout, color perturbation,
random rotations, and sampling subwindows of 224 x 224,
as described in [25]. This architecture was determined by
extensive experiments using a validation set drawn from the
training set, as the network used in [25] suffers from substan-
tial overfitting on fine-grained datasets, which typically have
over 100x less training data than in ILSVRC2012 [39], the
dataset used to train [25]. At test time, we average predictions
over the four corners, middle patch, and their horizontal flips.

For part discovery, each aligned set consists of 1 query im-
age and 49 nearest neighbors. To generate the candidate parts
from the aligned images, we randomly sample 5000 patches
and pick the top 10 with the highest HOG energy, measured
across images. The threshold 7 used for part detection is set to
—1. While this low threshold results in part detections in nearly
every image, even ones in which the part is not present, we
have found that this improves performance, with the intuition
that the small amount of signal we get by increasing the
number of part detections is worth the corresponding increase
in noise.

To train our final classifier, a linear SVM, we use as data
ELLF features extracted on the original images as well as
their horizontal flips. Note that this means that the classifier
itself does not have access to some of the data deformations —
namely, the color perturbations, random rotations, or subwin-
dow sampling. It also does not use dropout for regularization.
Although in principle one could train the SVM with these de-
formations, part detection remains a relatively costly operation
compared to extracting CNN features, which makes computing
ELLF features on many deformations expensive. At test time
we average predictions over each test image and its horizontal
flip to produce the final classification.

B. Results and Analysis

Table I reports our results compared with prior work. ELLF
beats the previous state of the art, LLC [22], as well as BB [34]
and BB-3D-G [13], two works designed for fine-grained recog-
nition. This validates the claim that learning discriminative
features and using them with parts discovered automatically
is an effective strategy for fine-grained recognition. In the
following sections we present more analysis.

1) Feature Learning: A plain CNN (70.5%) already out-
performs previous work using traditional features such as SIFT
or HOG (BB, BB-3D-G, and LLC). This is without extra
unlabeled data or any kind of pre-training. It suggests that
feature learning is able to generate rich appearance descriptors
that adapt to particular categories, even with our limited
amount of data.

Method Accuracy
BB [34] 63.6
BB-3D-G [13] 67.6
LLC [22] 69.5

CNN-SPM (small) 67.9
CNN-SPM (large) 69.3
CNN 70.5
ELLF (ours) 73.9
TABLE 1. AIN RESULTS ON CLASSIFYING CARS. BB,
BB-3D-G, AND LLC RESULTS AS REPORTED IN [13].

2) Usefulness of Parts: We next perform a control experi-
ment that showcase the key benefits our ELLF representation—
the same segments of the representations from two images
refer to appearances of the same part. To verify this intuition,
we replace our detected parts with SPM grids, where the same
segments of the representations refer to the same image loca-
tion instead of part. CNN-SPM(small) and CNN-SPM(large)
in table I report the results of this control experiments. CNN-
SPM(small) uses 1x1, 2x2, and 4x4 spatial pooling regions,
and CNN-SPM(large) in addition uses 8x8 regions, both build-
ing on top of our CNN features. The ELLF representation
outperforms both standard and very high-dimensional SPM
representations, demonstrating that it is indeed helpful to
enable comparing appearances at corresponding parts and that
the gains from using ELLF are not simply due to feature di-
mension. Note that the performance of both CNN-SPM(small)
and CNN-SPM(large) is below that of a standard CNN, which
is due to the lower number of deformations the SVM classifier
is trained on and the fact that it is not trained using dropout
(see Sec. IV-A for details).

3) Consistency of Parts: To validate that the discovered
parts generalize beyond our training data, we show a sample
of parts and their top ten detections on the test set in Fig. 7.
The top two rows show that discovered parts tend to fire rather
consistently, even under mild changes in viewpoint. Examples
of failure cases are given in the last row, in which 180-
degree rotations of cars cause the part detectors to misfire on
patches which, although locally very similar to the target part
in appearance and position, are nonetheless different parts.

4) Number of Parts: We also investigate how much part
discovery contributes to performance. Fig. 4 plots the classifi-
cation accuracy versus number of part detectors discovered. It
also plots the performance of directly using full CNN models
without part discovery (CNN). Performance increases with the
number of parts, up to a point when it plateaus. Remarkably
100 part detectors are sufficient to significantly improve the
standalone CNN model. This shows that part discovery is an
essential component of our representation. Eventually perfor-
mance saturates (at around 1000 parts discovered).

5) ELLF vs. CNN predictions: In Fig. 5 we show a
sampling of images where our method was correct and a
standard CNN was incorrect, with the parts that contributed
most toward the decision value of the correct class displayed.
Our part detectors fire on a diverse range of parts, whereas a
CNN is confined to a fixed pooling grid. In Fig. 6 we show
example failure modes of ELLF, where the CNN was correct
but ELLF was not. One disadvantage of ELLF’s reliance
on GrabCut for segmentation is that part detection suffers
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Fig. 4. Car classification accuracy versus the number of parts used in our
ELLF representation. Results achieved using CNN alone are also included
(green line).

when the segmentation is flawed, hurting our recognition
performance.

6) Confusing Classes: In Fig. 8 we show the pairs of
classes most confused with one another. The confusion score
between a pair of classes C, D is determined by

Pcp Pp ¢

Conf(C,D) S P, + S Po.
where P, is the number of images with ground truth label
a predicted as class b. These pairs tend to consist of different
models or years within the same make, except for the classes
Chevrolet Express Cargo Van 2007 vs. GMC Savana Van 2012,
in which case the difference in make is visually represented
only by the logo small on the front of the van.

3

7) Most Useful Parts: Which parts, discovered in an unsu-
pervised fashion, are most useful for discrimination across all
196 categories? To measure this, we sum the absolute value of
the learned classifier weights across classes and dimensions for
each part to produce an importance score for each part. The
top 10 parts are shown in Fig. 9. These parts are relatively
large and thus can give information about the overall shape or
type of car, e.g. whether the car is a sedan, SUV, or coupe.
We also observe that these parts tend to occur in the top half
of the automobiles, almost never overlapping with the tires.
This agrees with the intuition that tires are not useful regions
to look at when discriminating cars.

C. Limitations

Although it is a step in the right direction, ELLF is far
from perfect. Performance can be improved by pre-training the
CNN on ImageNet [25], [29], especially for smaller datasets
like the Cars dataset [13] used in this paper. However, such
constraints will be alleviated as fine-grained datasets continue
to grow in size. Second, in our implementation, part detection
takes significantly more time than extracting CNN features. In
order to increase the practicality of ELLF, part detection needs
to be sped up.

Finally, instead of extracting CNN features, disjointly
learning parts and then learning a classifier (an SVM), jointly

learning parts with features would likely bring improvements
to both part discovery and feature learning. This method would
also enable us to further take advantage of data deforma-
tions, since the cost of part detection makes it impractical to
train our classifier on a significant number of deformations
(see Sec. IV-A). Although the advantages of jointly learning
features and parts are clear, training such a non-rigid neural
network efficiently (i.e. on a GPU) poses many implementation
challenges — learning movable parts and pooling regions is
an open problem in the design and implementation of neural
networks.

V. DISCUSSION AND FUTURE WORK

In this paper we have proposed an approach for fine-
grained recognition that tackles both feature learning and part
discovery. Our main results are 1) that learning discriminative
features in a supervised setting can be effective for fine-grained
recognition, even at the small scales present in current fine-
grained datasets, and 2) that one can learn parts useful for
recognition without any part-level annotations. In the future
we would like to combine part discovery and feature learning
into a joint model and lift our part representation into 3D,
which should yield more accurate correspondences.
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5. Example images where ELLF was correct and a standard CNN was incorrect. On each image the five parts for our method that contributed most to a

correct classification are shown. Incorrect predictions are colored gray and in italics.
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Fig. 6. Example failure cases of ELLF. Incorrect predictions are colored gray and in italics. Part detection for ELLF suffers when GrabCut produces an incorrect
segmentation, either by segmenting out too much of the target car or by keeping too much of the background.
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Fig. 7. A sample of parts and the ten test detections with the highest response. Each part is visualized on top of the seed image of the neighborhood which
produced the trained part. The first two rows are success cases: the parts detectors fire consistently on the same parts of the car, even under the presence of
some viewpoint variation. The last row are failure cases: since each part detector is based on local evidence, when different parts have the same appearance and
occur in the same position in the image plane, as can occur when a car undergoes a 180-degree rotation, the part detectors misfire.
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Fig. 8. The five most confusing pairs of classes for ELLF in the Car dataset, in descending order of confusion as determined by Eq. 3. We observe that these
pairs of classes differ only in very small details.

Fig. 9. The most useful parts for overall car classification. These parts tend to be large, giving information about the general type of car (SUV, sedan, etc.).
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