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Abstract

We propose a semi-supervised model which segments
and annotates images using very few labeled images and
a large unaligned text corpus to relate image regions to text
labels. Given photos of a sports event, all that is necessary
to provide a pixel-level labeling of objects and background
is a set of newspaper articles about this sport and one to five
labeled images. Our model is motivated by the observation
that words in text corpora share certain context and feature
similarities with visual objects. We describe images using
visual words, a new region-based representation. The pro-
posed model is based on kernelized canonical correlation
analysis which finds a mapping between visual and textual
words by projecting them into a latent meaning space. Ker-
nels are derived from context and adjective features inside
the respective visual and textual domains. We apply our
method to a challenging dataset and rely on articles of the
New York Times for textual features. Our model outper-
forms the state-of-the-art in annotation. In segmentation
it compares favorably with other methods that use signifi-
cantly more labeled training data.

1. Introduction

In many domains of human cognition, we use context to
disambiguate the meaning of items. For instance, in a text
corpus we might interpret the word blast as an explosion
of dynamite or as a generally exciting experience, depend-
ing on whether it co-occurs with the word TNT or fun. As
pointed out by [18] among many others, context also helps
people and computers with searching and recognizing ob-
jects more efficiently. Several methods in computer vision
exploit context to recognize objects in scene images (an-
notation) and to provide a pixelwise localization of these
objects (segmentation) [23, 11, 13, 19].

These approaches use context mostly to relate objects to
each other inside the visual domain. Our model connects vi-
sual and textual modalities through a common latent mean-
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Figure 1. Our method maps image regions and words to a latent
meaning space using context and adjective features. For instance,
the word sailboat co-occurs with water, wind and the adjective
white while image regions of a sailboat tend to also co-occur with
these objects and inside white image regions. If mappings are
close in meaning space, the items are likely to be instances of the
same underlying semantic concept and can be used for segmenta-
tion and annotation. (Image is a test result. Text is extracted from
training corpus.)

ing space. Image regions (which are clustered into visual
words) and words extracted from semantically related cor-
pora are mapped to this space using context and feature sim-
ilarities that are observable inside the respective domains.
The model uses the fact that words tend to have the same
co-occurence patterns in the textual and visual domains. For
instance, the word sailboat co-occurs with water, wind and
the adjective white while image segments of a sailboat tend
to also co-occur with segments of these objects and white
image regions (Fig. 1).

The input to our algorithm is a set of images of a sports
category, only a handful of which need to be labeled, and
news articles that mention this sport. We use kernelized
canonical correlation analysis (kCCA) to learn a mapping



between textual words and visual words (clusters of pre-
computed image segments). KCCA maps both word types
into a low dimensional meaning space. If mappings are
close in this space, the words are likely to be instances of
the same underlying semantic concept. The learned map-
ping is then used to annotate new images and label all its
segmented regions. With this model only very little human
labeling is needed to automatically annotate and retrieve im-
ages and specific object regions in photo collections.

Related Work. The model is based on the probabilistic
interpretation of canonical correlation analysis [ 1 2] by Bach
et al. [1] and therefore in a line of work that relates items
in different domains. Hardoon et al. [10] use kCCA to re-
trieve images given a multiple word text query and without
using any labels around the retrieved images. Though this
work is similar in that it connects visual and textual modal-
ities, it is different in several aspects. Foremost, it uses a
parallel image and text corpus and it provides only approx-
imate global image labels without a real understanding of
objects and their spatial relationships. Recently, [3] used
kCCA to do unsupervised clustering of images and text in
latent meaning space. Again, there is no object level under-
standing of images and the used corpora were aligned. A
fascinating cross-modality application of CCA is presented
in [14], which uses CCA to relate pixels that are connected
to different sounds in short videos.

The method of [9] uses standard probabilistic CCA in an
EM algorithm to iteratively learn a translation between two
natural languages such as Spanish and English. The E-step
finds word pairs that are likely to be 1-to-1 translations of
each other and the M-step uses CCA to determine the proba-
bility of these words being actual translations. We adapt this
idea to the image-text setting by (i) describing image seg-
ments as visual words, (ii) allowing n-to-1 mappings in the
model and inference to account for many visual words be-
ing mapped to the same textual word and (iii) introducing a
domain specific adjective kernel for both modalities. Other
differences to this approach arise during inference due to
the kernelization, approximations and the challenging set-
ting of mapping an unrestricted number of image segments
to words.

There is a myriad of different approaches for image an-
notation and segmentation which we will not explain in de-
tail here [2, 20, 8, 19, 16].

Contributions. The proposed model is the first to learn
segmentation and annotation with words from large un-
aligned text corpora. Inspired by ideas from language trans-
lation we first develop a new discrete image representation
called visual words. Each visual word is a concatenation of
single feature clusters. We translate them to textual words
via a latent meaning space. Both types of words are mapped
to this space by kernelized Canonical Correlation Analy-
sis, making this the first usage of kCCA in segmentation.

To improve the mapping, we introduce an adjective kernel
that uses visually observable similarities between segments
and distributions of co-occurring adjectives in text. Mat-
lab code of the learning algorithm can be downloaded at
www.socher.org.

2. Generative Model for Region-Text Transla-
tions

We propose a model that recognizes and localizes objects
in scene images using semantically related but unaligned
text corpora and a handful of training images. Fig. 2 (left)
shows the graphical model representation of our kKCCA-type
model. The main idea is that there is a latent item from
which we can sample the feature vectors in the visual and
textual modalities.

The model inputs are (i) a set of discrete visual words
with features that describe them contextually and visually
and (ii) a set of words from a natural language corpus and
their context and adjective features. We first introduce these
representations before we describe the full generative pro-
cess.

2.1. Words and Features

In order to obtain discrete visual words that represent
large parts of objects, we segment all images using the seg-
mentation algorithm of Felzenszwalb [7]. Next, we extract
four types of visual features (see [22]) from these segments:
Color features are simple RGB histograms, texture fea-
tures are the mean responses of filterbanks in each segment.
Position is described as the location in an 8 x 8 grid and
shape is a binary histogram over the centered segment mask
downscaled to 32 x 32. Each of these feature spaces is clus-
tered separately with k-means. A visual word is defined as
a unique sequence of feature cluster assignments and is rep-
resented as the following string:

C'color - C’shape (1)

For all experiments we used & = 40 for color, £k = 8 for
position, k& = 20 for shape and & = 25 for texture. For a
throrough analysis of this representation see Sec. 4.2.

Context features for these words are normalized co-
occurrence counts of neighboring segments’ words. In or-
der to relate the resulting visual words, we use the original
feature vectors of the corresponding centers. Sec. 4.3 de-
scribes the used similarity kernel in detail.

Text features are co-occurrence counts of words, col-
lected over the entire corpus (i.e. ignoring document bound-
aries).

CVposition - Cvt:exture -

2.2. The Generative Process

Words are described by a feature vector in their respec-
tive domains. Let V' = (v1, ..., v,) denote the set of visual
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Figure 2. Left: Graphical model of the generative process. Nodes are random variables and arrows indicate conditional dependencies.
Plates denote repetitions. The latent concept z connects one observed feature value in the textual domain with several in the visual domain.
Right: The goal of the method is to find the optimal mapping M in the above weighted bipartite graph B = (V, T, M, C') with elliptic
nodes denoting words in the corresponding visual (V) and text (T) sets. C is the cost associated with each edge in M, alluded to by
different edge widths. Next to the graph, both domain features are illustrated. Histograms depict normalized co-occurrence counts of
nouns and adjectives in the text domain. Additionally, each visual word has associated with it a set of three visual features of different

dimensionalities: color, position and shape. See text for further details.

word feature vectors: v; € R% for all i. Furthermore, there
are m textual words with the corresponding set of feature
vectors: T' = (t1,...,t,,), we define T' € R7*™_ Given
these two sets, we want to find an n-to-1 mapping M which
translates n words in the visual domain to 1 textual word.

We can describe these sets and the mappings be-
tween them as forming a weighted bipartite graph B =
(V,T, M, C). Edges are formed between translated words.
C is the cost associated with each edge and can be inter-
preted as the inverse of the probability that is learned with
the model.

The full generative process is as follows:

1. Sample an n-to-1 mapping M ~ Matching-Prior

2. For each matched edge (i,5) € M, where i = 1,...,|V|
andj=1,...,|T]:
(a) Sample latent concept: z; ~ N (0, I4)
(b) Sample visual features: ¢y (vi) ~ N(Wyz; +
v, ¥y)
(c) Sample textual features: ¢r(t;) ~ N(Wrz; +
pr, ¥r)

3. For each unmatched visual word v;

e Sample visual features from background distribution:

pv(vi) ~ N(0,0°Ia, )
4. For each unmatched word ¢;

e Sample textual features from background distribution:

¢T(tj) ~ N(07 UzIdT)

First, a mapping M is sampled from a prior over map-
pings in which each visual word indexed by v can occur
only once, but each text word may be used in multiple map-
ping pairs. Changing the prior to allow for n-to-1 mappings
is an important distinction to previous methods in language
translation [9] which only used priors over 1-to-1 match-
ings. We assume a uniform prior over such mappings.

At the core of the generative model is canonical corre-
lation analysis in its probabilistic interpretation introduced
by Bach [1]. A latent concept z; € R? is sampled, where
min{dy,dr} > d > 1 and I, is a d x d identity ma-
trix. Intuitively, latent concepts are object categories which
are language-independent and abstracted from observed in-
stances. We assume that the mapping from the set of con-
cepts to the set of text words is injective'. Given the latent
concept, the feature vectors of the indexed words are sam-
pled in their respective domains from a Gaussian distribu-
tion. The mean of this distribution is the result of projecting
the latent concept into the corresponding feature space via
the matrix Wy, € R% ¥4 and adding the sample mean iy,
(similar for textual features). Sec. 4 describes the employed
domain features. The covariance matrices Wy and U cap-
ture domain specific variations, but are ignored during in-
ference. Unmatched words are assumed to be generated
from a background distribution. If a mapping is reasonable,
generating the participating words through a latent concept
should yield higher likelihood than this background. Fig. 2
(left) shows the corresponding graphical model.

3. Inference

We learn the model described above with a hard EM al-
gorithm that iteratively builds the weighted bipartite graph
B. The inputs are similarity matrices of the visual and tex-
tual words. The output is the complete weighted graph in
which edges indicate mappings between visual and textual
words.

E-step: Approximate the posterior over all mappings by
finding the optimal, weighted n-to-1 mapping M in the
bipartite graph B using weights C'.

M-step: Update the weights C' between all possible pairs
using kCCA trained on the elements that participate in

I Therefore, the number of concepts is upper-bounded by the number of
text words.




the best £ mappings before. The first iteration uses the
visual-textual training pairs to compute the M-step.

3.1. M-step

The idea of the M-step is to maximize the likelihood of
the mapping pairs:

max E log p(v;, t5, M;j;€), 2)
£ -
(1,5)eM

where £ = (Wy, Uy, Wr, Ur). As [1] showed, this is
equal to maximizing the likelihood of the probabilistic inter-
pretation of CCA. We will now shortly revise the intuition
and inference of original CCA and its kernel extension. We
use the original inference equations for kCCA instead of the
maximum likelihood estimator because - as pointed out by
[3] - the latter includes the auto-covariance matrices and is
therefore more susceptible to noise.

Canonical Correlation Analysis Given two sets of sam-
ples such as V' and T" above, CCA seeks to find basis vectors
which (i) project the elements of these sets into the same
space and (ii) maximize the correlation of the projected vec-
tors. This can be formulated as

N i (GRS I 7 3)

Wy, Wy \/E[<U7 wv>2]E[<t7 'U)t>2}

where we use the empirical expectation of the function f
over the number of samples N: E(f(z)) = + Zivzl ).
We assumed that the variables have been normalized to zero
mean. Hardoon et al. [10] gave a detailed derivation of
how this maximization can be cast into a standard eigen-
value problem.

Kernelized Canonical Correlation Analysis Because
CCA can only recover linear relationships, it is useful
to kernelize it by first projecting the data into a higher-
dimensional feature space and then running CCA in this
new space. To this end, we define kernels over V and T
Ky (vi,v;) = (¢v(v;), ¢y (v;)) and similarly for T. The
idea for kCCA is to search for solutions of w,,, w; that lie
in the span of ¢y (v), i.e. w, = ), iy (v;) and ¢ (1)
accordingly. With these kernels, we wish to optimize over:

T
max e Bv R0 (4)
ot \/ng‘Q,wv ~wl K2w;

As shown by Bach [1] and Hardoon [10], learning needs to
be regularized in order to avoid trivial solutions. Hence, we
penalize the norms of the projection vectors. We obtain the
following standard eigenvalue problem:

(Ky + kD) Kp (K + k) ' Kyw, = Mw,.  (5)

The output of learning are the matrices w,,, w; which map
any vector in V' and T to the latent space.

Computational Issues. In order to avoid degeneracy
and problems with non-invertible Gram matrices and to in-
crease computational efficiency, we approximate the Gram
matrices using the Partial Gram-Schmidt Orthogonalization
(PGSO) as suggested by Hardoon [10]. Compared to the
Incomplete Cholesky Decomposition used in [1] and [9],
PGSO does not depend on a permutation matrix P. With
this method we represent the projections with reduced di-
mensionality. During all following experiments, the regu-
larization parameter of KCCA & is set to 5 and the parame-
ter controlling the precision of the Gram-Schmidt process 7
is set to 0.2.

3.2. E-step

The goal of the E-step is to calculate the expected value
over all the possible mapping pairs in the bipartite graph
which is intractable. We therefore revert to hard EM and
approximate only the best &£ such mapping pairs given the
current parameter estimates £ from KCCA:

Myew = argmax log p(V, T, M; €). (6)
M .k

We approximate this maximization problem by mapping the
vectors in V' and T to the latent space and using Euclidean
distance between the projected vectors as a similarity score.
This distance, which can be interpreted as an approxima-
tion to the matching probability, defines the edge weight (or
cost) in the bipartite graph B for all possible pairs (i, 7).

cij = ||pv (vi)wy — dr(t;)wel|2. (7

This yields a new cost matrix C' for the bipartite graph. We
now extract the best possible & mapping pairs’, add those
to the kCCA training set and re-run the M-step. Iteratively
enlarging the training set can be seen as a bootstrapping ap-
proach.

There are several possibilities to obtain the best n-to-1
mappings in B. First, it could be cast a minimum cost,
maximum flow problem of a weighted bipartite graph and
solved as a Linear Program®. However, given the size of the
graph (V' can be over 10,000 elements), this is not compu-
tationally feasible and we therefore use a greedy approxi-
mation. A simple first attempt is to use all pairs of lowest

2For all experiments we set k := 1/10N, where N is the total number
of visual words.
3The LP has the form

mianijmij
2%
subject to : inj =1 VieV and inj <n VjeT,
j i

where we added a source node of capacity one to each visual node and a
sink node to all the textual nodes with an upper-bounded capacity of n.
C'is the cost matrix and X is the flow from the visual nodes in V' to the
textual nodes in T". The last constraint allows each textual node to receive
the flow from at most n visual nodes.



weight where each visual word occurs only once and textual
words may occur multiple times. This, however, tends to
degenerate the learning because it favors those words heav-
ily which occurred frequently in the initial training set.

In order to solve this problem we enforce that the newly
added £ words have the same label ratio as last iterations’
set of training words plus a smoothing term to allow for
unseen labels. Let L be the total number of possible tex-
tual labels and let N; be the number of associated visual
words that appeared in the last iterations’ training images
(I = 1,...,L). At the next iteration we map at most

TSI N, New visual words to object category [. We set
§ = 2 for all experiments.

4. Experiments

This section first describes the data set and demonstrates
the flexibility of the visual word representation for object
recognition. Then the context and adjective kernels and
quantitative results for the two major tasks of annotation
and segmentation are given. Furthermore, we analyze the
method’s behavior under several settings.

4.1. Data Set

We use the image dataset introduced and evaluated
in [16] which consists of 8 sports categories: bad-
minton, bocce, croquet, polo, rock climbing, rowing, sail-
ing and snowboarding. Approximately 800 images were
obtained by searching the online photo sharing website
flickr.com with these 8 names. As a text corpus we
use all articles from the New York Times [6] which men-
tion one of the names of the above 8 sports categories. Un-
fortunately, bocce, polo, croquet and rock climbing do not
have enough articles and can therefore not be used in the
subsequent evaluation.

We use the tree tagger [2 1] to extract part-of-speech tags
and obtain word stems. Words are labeled as nouns (or
adjectives), if their most common tag is noun (or adjec-
tive). We then use the first name database Lexique [17]
to map people’s names to the object category human. We
use Wordnet to find synonyms and map them to the same
unique word. Lastly, we use Wordnet to filter out all nouns
which are not 'physical entities’.

4.2. Analysis of Visual Word Clustering

Visual words represent a cluster of image segments that
share certain similarities. Due to the vast amount of varia-
tion in object appearance, no algorithm is capable of clus-
tering all segments that depict the same category into one
cluster purely based on the region’s appearance.

Intuitively, we would like to obtain visual words that (i)
only appear with one object category and that (ii) occur fre-
quently in the corpus. These properties can be described by
purity: visual words should be as pure as possible, i.e. they
should depict mostly the same object category. Purity can

be computed for different visual words v by:

purity(v) = maxA(U’ ) (3)

ceC A(v,-)’

where A(v, ¢) is defined as the area (sum of pixels) that has
been assigned to the visual word v and the object category c
and A(v,-) is the total area assigned to this visual word.
Second, they should appear as frequently as possible, so
robust context features can be extracted and there are less
nodes in the bipartite graph. Frequency is defined as the
number of times a specific region is assigned to a visual
word. Certainly, both of these goals are orthogonal to each
other and it is easy to obtain a clustering at both extremes.
Pure but rare segments are easy to obtain by defining each
segment as its own unique visual word. Assigning all seg-
ments to the same word results in the opposite.

Clustering image segments has been investigated in the
past. [20] uses a topic model to partition the set of segments
into visual object classes. Such an approach is computa-
tionally very expensive and does not provide the flexibility
to modify the purity-frequency trade-off. For a thorough in-
vestigation of image segment clustering, we recommend the
work of [22].

I.(a) Analysis of visual word clustering. A simple first
approach to clustering regions into discrete words is to con-
catenate their features to one high dimensional vector, run
k-means and assign each segment to its cluster. The number
of words is then equal to the number of clusters. Fig. 3 (left)
shows the purity and frequency results. While frequency is
very high, the purity is too low to be useful.

Instead we use the method described in Sec. 2.1. The
purity and frequency of the resulting visual words is largely
dependent on the number of clusters in each feature space.
This representation allows us to define the number of clus-
ters for each feature. If we increase the number of clusters,
then visual words will be cleaner but also appear less fre-
quently. It is intuitive that having more distinctive colors is
helpful, whereas 8 position clusters (which roughly corre-
spond to 6 different y-ranges and left and right) are suffi-
cient for the position feature.

I.(b) Analysis of visual word clustering. In order to
show how flexible this representation is and how easily one
can trade off purity and frequency for specific applications,
we present 18,265 different combinations of the number of
clusters in the four feature spaces. Fig. 3 (right) shows the
statistics of frequency vs. purity for all combinations. We
select a point in this space for which the average number of
occurrences per visual word is 27 and purity is 80%. Lastly,
this representation allows for a straightforward encoding
of spatial relationships between visual words to learn con-
straints such as sky is always above water.
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Figure 3. 1. Analysis of visual word clustering. Each datapoint
corresponds to the average statistics of a segment clustering. Left:
I.(a). All segment features are concatenated and clustered into k
clusters. The figure shows the number of times a word of that
cluster appears vs how pure the corresponding labels of this clus-
ter are. Notice that no such clustering provides very pure words.
Right: I.(b). Results from using our method of clustering differ-
ent feature types separately and concatenating them (see text for
details). This region-based representation gives much flexibility in
the trade-off between frequency and purity.

4.3. Kernels

Context Kernel For context we use the simple linear
kernel of normalized word frequencies that occur in a win-
dow of size four around each word (where only nouns are
counted). For visual words, we collect such context counts
by counting adjacent visual words for each segment.

Adjective Kernel We also include adjective features.
For text those are normalized frequencies of co-occurring
adjectives. For visual words, we take the values of the cor-
responding cluster centers of the four feature types men-
tioned in Sec. 2.1 and compute a x2-kernel. Let = and y be
one the feature vectors of two visual words®, the x? kernel
normalized by A is computed by:

d
1 zi — yi)?
K(z,y) = exp eV (x—&—y) . ©)
i=1 ’

For all experiments, we define the final visual kernel as the
PrOdUCt? KV = KcontextKcoloerositionKteactureKshape-

4.4. Annotation

We compare the annotation performance of our model to
three state-of-the-art approaches: alipr.com [15], CorrLDA
[4] and Towards Total Scene Understanding [16]. We re-
strict labels to those words used in [16] and [4] in order to
allow a direct comparison. This means we do not allow ar-
bitrary words from the text corpus to be used as labels. We
investigate model performance with and without this restric-
tion in Sec. 4.6.

II. Annotation Comparison. Comparison to these
methods is a difficult undertaking since the amount of train-
ing data varies between each of the methods. Alipr uses

4For instance, z could be the RGB histogram of the 4’th color center,
if the visual word starts with *Clpj0, = 4’

thousands of training images but also has a large space of
textual labels. The model in [16] first uses hundreds of im-
ages for training 20 object models which bootstrap the full
model and then leverages on about 5000 image-tag pairs
from flickr. CorrLDA uses the same number of image-tag
pairs without the bootstrap object images. Our method uses
the least training data (20 images in total) and only a se-
mantically related but unaligned text corpus. For obtaining
visual words we used the same segment features as [16] but
we do not use patches.

In the sports dataset of [16] there are 30 images in each
of the four sports categories annotated with ground truth
segmentations of 20 object categories. In this set of exper-
iments we use only 5 randomly selected images from each
sports category for a total of 20 training images. We train
our model on all four sports together. The remaining 4 x 25
images are used for testing and comparing all the models.
The tests of all methods were performed on the same 100
test images. Table 1 shows average precision, recall and F-
measure for the different models. F-measure is the standard
harmonic mean of precision and recall. Even though our
model uses the least training data, it achieves a 5% increase
in F-measure over the state-of-the-art of [16].

4.5. Segmentation

ITI. Segmentation Comparison. As mentioned above,
our mapping of segments to visual words allows us to
provide a pixel level segmentation unlike previously used
methods that involved CCA. The experimental setup is
equal to the above one in annotation. Precision is calcu-
lated by dividing the correctly segmented pixels by the total
number of pixels assigned to each object category. Table 1
compares our segmentation method with two related state-
of-the-art methods for semantic segmentation: Cao & Fei-
Fei, 2007 [5] and Total Scene [16].

IV. Analysis of single category training. In another set
of experiments (IV. and V.), we train and test the four sports
categories separately. This easier task was motivated in the
introduction: All you need to annotate and segment images
from a sports event is the name of the sport and a handful of
training images. Fig. 4 shows separate precision and recall
values for each sport and both tasks when trained with 5 im-
ages per category. The last columns of table 1 list the results
averaged over the 4 sports. Fig 6 shows several results from
the test set.

Our model does not perform as well in segmentation as
the other model when all categories are jointly trained. This
is mostly due to the considerably smaller training set that
does not provide sufficient information. As a result there
is easy confusion between sky and snow, clouds and sky,
court and water, etc. In these cases visual and contextual
features are very similar and the model lacks a top-down
scene influence to counter-balance the bottom up cues. In



Annotation Alipr Corr LDA Total Scene Our Model (Our Model - Exp. IV)
Results P R F R F P R F P R F P R F
Mean A7 125120 .17 | 3723129 .76 | 42 35| .71 | 47 ) .71 | .79 5
Segmentation Cao,2007 Total Scene Our Model (Our Model - Exp. IV)
Results P R F P R F P R F P R F
Mean 3532|3345 .43 | .44 30| 24| 27| 46| .52 49

Table 1. Top: II. Annotation Comparison. Precision, recall and F-measure for Alipr, Corr-LDA, Total Scene and our model. All models
except Alipr were jointly trained on four sports categories. However, our method uses two orders of magnitude less training images.
Bottom: III. Segmentation Comparison. Results of segmentation averaged over all 20 objects. Last column: IV. Analysis of single
category training. Average results when each sports category is trained and tested separately.
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Figure 4. IV. Analysis of single category training. Annotation
and segmentation results for four different sports categories each
trained with only 5 labeled images.

experimental setting IV. where more training data is given
and less categories are possible, the model and our visual
words perform very well in segmentation.

4.6. Evaluation of Different Settings

V. Influence of the number of training images and
possible text labels. To provide some insight into model
learning and to underline the effectiveness of the model in
dealing with little training data, we provide experimental
results by varying the following two settings: (i) number
of training images ¢t = 1, 5, 10, 15, 20 from which mapping
seed sets are extracted. Results are then computed for the
remaining 30 — ¢ images and their visual words. (ii) pool
of possible textual words: (seed) only words that appeared
in training are used. (20anno) all 20 words that were used
for evaluation in [16]. (all) any word from the text corpus
of the corresponding sports category may participate in the
mapping. Fig. 4 (bottom row) shows the resulting average
F-measures. The more seed mappings are extracted, the bet-
ter the three text settings perform. It is interesting to notice
that with increasing numbers of seed mappings, the full text
model slowly approaches the other more restricted models.
The last row of Fig. 6 shows annotated images, if all corpus
words are allowed. This is hard to evaluate but gives very
interesting results such as the label sea for water.
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—e-only 20
+all words

——only seed

—e-only 20
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Figure 5. V. Influence of the number of training images and
possible text labels. Average F-measures and standard devia-
tion for different numbers of training images (x-axis) and different
pools of textual words that may participate in the mapping. 5 sets
of randomly chosen training images were used for each setting.

5. Conclusion

We presented a model based on kCCA to segment and
annotate images using a handful of labeled images and an
unaligned text corpus. We leverage on contextual similar-
ities between scene images and semantically related arti-
cles and introduce an adjective kernel. Our semi-supervised
method requires very little training data to outperform other
state-of-the-art methods in annotation underlining the use-
fulness of using related text corpora to learn relationships
between objects. In settings with less labels (a single sports
category), 5 training images are sufficient for good perfor-
mance. Possible extensions of this work include the in-
corporation of scene information and geometric constraints
(such as sky being above snow) to the model and using the
new visual word representation for classifying objects with-
out context.
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Figure 6. Top two rows: IV. Analysis of single category training. Results of annotation and segmentation of the test set. Labels are
shown in boxes and the corresponding regions are overlayed with the same color as the boundary box. Bottom row: V. Results with
mappings from all words of the text corpus. If all words of the text corpus are allowed in mappings the evaluation becomes very hard.
Man might replace the human label in badminton images. Wind might show up in front of a sailboat etc.
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