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Abstract

We present an automatic and efficient method to extract
spatio-temporal human volumes from video, which com-
bines top-down model-based and bottom-up appearance-
based approaches. From the top-down perspective, our al-
gorithm applies shape priors probabilistically to candidate
image regions obtained by pedestrian detection, and pro-
vides accurate estimates of the human body areas which
serve as important constraints for bottom-up processing.
Temporal propagation of the identified region is performed
with bottom-up cues in an efficient level-set framework,
which takes advantage of the sparse top-down information
that is available. Our formulation also optimizes the ex-
tracted human volume across frames through belief prop-
agation and provides temporally coherent human regions.
We demonstrate the ability of our method to extract hu-
man body regions efficiently and automatically from a large,
challenging dataset collected from YouTube.

1. Introduction

We propose an automatic and efficient algorithm to ex-
tract humans with arbitrary motions and poses from videos
of unknown settings. This problem is critical in many real-
world applications that require accurate and efficient hu-
man motion estimation. For example, a mobile agent that
navigates the world by interacting with humans in real-time
needs to identify and track people in its surroundings. Also,
tasks such as video indexing, search, and intelligent surveil-
lance would benefit greatly by accurate human behavior un-
derstanding. Traditionally, research in this area has been
done mostly from a tracking perspective [8]. However,
tracking humans in natural videos is notoriously challeng-
ing because of background clutter, variety of body poses
and motion, unknown number of subjects, occlusions, illu-
mination changes, unconstrained camera motion, etc.

There are two classes of approaches in human motion
estimation. Model-based methods, or top-down models, en-
code the poses and movements of the human body with an a
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priori structure model [5, 9, 10, 12, 16, 17, 20, 19, 22, 21].
Learning and inference procedures attempt to fit the image
evidence to the best configuration of the model, but typi-
cally involve many degrees of freedom, large search space,
and complex observations; it is painfully slow in general,
due to the large amount of computation.

On the other hand, contour-based representations of de-
formable shape are often used to describe human body
structure and motion efficiently within a level-set frame-
work [2, 3, 25]. In [18], the boundary of a human is iden-
tified through a region-based foreground/background seg-
mentation based on multiple low-level cues. However, these
methods ignore the structure of the human body and/or im-
pose very strong priors, which may lead to critical limita-
tions when estimating articulated and flexible human poses.

In this paper, we present a method that achieves a bal-
ance between efficiency and accuracy for extracting human
motion volumes from uncontrolled videos. We observe that
a combination of top-down and bottom-up modeling can ex-
tract accurate motion volumes with only a relatively small
computational load. Our idea is simple: given a video se-
quence, we apply top-down human models in a very sparse
set of key frames. The bottom-up algorithm then bootstraps
this detailed human information to complete the rest of the
extraction through a temporal propagation and a global op-
timization procedure. Our experiments show that the pro-
posed method achieves a near real-time human tracking in
natural videos. In this study, our contributions can be sum-
marized as below:

e A system is designed to automatically extract human
motion volume from challenging videos by combining
the top-down and the bottom-up method.

e We propose a novel top-down modeling technique to
obtain a probabilistic human body contour.

e A global optimization procedure based on belief prop-
agation is proposed to improve the quality of results.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of our algorithm and discuss
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Figure 1. Algorithm overview. For each identified human obtained
from pedestrian detection, a probabilistic human body shape on a
sparse set of frames is computed by integrating top-down segmen-
tations of detected pedestrian windows, which are driven by up-
right human pose templates (Section 3.1). A bottom-up boundary
extraction based on the level-set formulation is employed to auto-
matically refine and propagate the extracted contours to all frames
(Section 3.2). The final human contours are obtained at all frames
simultaneously, by jointly optimizing the level-set functions at all
frames (Section 3.3).

several key properties. Each step of our algorithm is elabo-
rated in Section 3. Experimental results and discussions are
presented in Sections 4 and 5, respectively.

2. Algorithm Overview

Given an input video sequence, the goal of our algorithm
is to carve out a spatio-temporal volume for each person in
the video. The key strategy of our approach is the sparse in-
troduction of top-down constraints, which are propagated in
time in a bottom-up fashion. In this section, we describe the
overall architecture of our method, which is also depicted in
Fig. 1.

Person Detection and Clustering We first use an upright
human detector [11] to generate potential human regions.
The appearance similarity and the spatio-temporal coher-
ence of the detections are employed to cluster detections in
a similar fashion to [14]. Each resulting cluster is then asso-
ciated to a unique individual, for which the spatio-temporal
volume will be carved out. In practice, each cluster contains
the bounding boxes for a person but there are many missing
frames due to detection errors and pose variations.

Top-down Pose Estimation For each identified person,
our algorithm performs a top-down extraction of the human
region for a small subset of the frames. At each of these
frames, the level-set function for the detected pedestrian is
initialized based on the probabilistic integration of the up-
right human pose templates [24]. Such top-down driven ex-
traction is utilized as an important constraint for the later
bottom-up process. That is, the top-down information is
delivered by the use of a set of fixed templates instead of
more expensive part-based articulated models such as pic-

torial structures [6, 7, 16, 14]. However, it is only applicable
to the frames with pedestrian detection, and the accurate es-
timation of an initial level-set function is still challenging
due to the limited variety in the upright human body tem-
plate database and the lack of discriminative features.

Bottom-up Contour Extraction and Propagation In the
previous step, we obtained the level-set functions for a small
subset of the detected pedestrians. The level-set functions
for the rest of the frames are initialized by propagating exist-
ing ones to adjacent frames bidirectionally using low-level
feature observations, with a procedure based on an exten-
sion of [2]. The bottom-up level-set approach can handle
the arbitrary shape of an object efficiently, but is inher-
ently susceptible to fall in local optima. The combination
of the top-down and the bottom-up approaches reduces the
drawbacks of both methods significantly. In addition, we
jointly optimize the level-set functions at all frames simul-
taneously, which provides accurate and temporally coherent
boundaries of the human body.

3. Efficient Extraction of Human Volumes

In this section, we describe three main components
of our algorithm in detail, which include a top-down
model-based probabilistic level-set initialization, a bottom-
up feature-based propagation of level-set functions, and a
global optimization process for contour extraction.

3.1. Top-Down Estimation of Human Body Region

For each identified person in the detection and cluster-
ing stage, a number of frames with pedestrian detections
are available. Top-down shape priors are applied to the de-
tected pedestrians, where the human poses in the candidate
windows are constrained to be upright and the shape pri-
ors are in the form of pedestrian silhouette templates. Sup-
pose that B = {t1,ta, ..., t,} is a set of the upright human
body templates in the database obtained from [24]. At the j-
th pedestrian detection window selected for top-down pro-
cessing, we generate a set of multiple segmentations, each
of which is driven by a different template in the database.
In practice, we obtain each segmentation h; within a level-
set framework [4, 15], where the initial level-set function is
given by the template t;. Each segmentation corresponds to
an estimate of the human region. We integrate resulting seg-
mentations probabilistically to obtain the probabilistic tem-
plate p; as

p; = Y wih, (1)
=1

where w; is estimated by matching the template and the re-
sulting segmentation using multiple features—shape, color
and edge—as follows:
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Figure 2. Top-down estimation of human region with upright
human templates. (Top) Example templates in the pedestrian
database from [24]. (Bottom) Template-driven segmentation re-
sults.

Shape We measure the shape distance r; between the
original contour of a template in the database and its in-
duced level-set segmentation by

Ts = DXQ(S(ti),S(hi)), (2)

where S(-) are shape descriptors and D, 2 is the x? distance
operator. In practice, we describe shapes using a histogram
computed from the shape of the estimated region, which is
a simplified version of the descriptor in [23].

Color We favor contours that induce the most distinct
foreground and background color distributions. We esti-
mate both distributions using the pixel assignments based
on the estimated region h;. The distance between the
foreground and the background color model—M]%"l‘”” and

Mgolor | respectively—is defined by
re = Dy (M7, MgoloT). 3)

In practice, each color model is a multinomial distribution
over the quantized color space.

Edges The dissimilarity between the edge map in the
pedestrian window and the estimated region is measured by

1 .
Te = N ;Cglg]}:D(ci,ej), (@)

where C is the set of IV points in the contour of h; and F
is the set of edge pixels in the edge map. D measures the
Euclidean distance between two pixels. This is equivalent
to the average distance from the points in the contour to
the edge points in the image. The computation is done via
Distance Transform.

We combine the multiple cues to obtain the weight for
each template by

exXp (HO + Eje{s,c,e} erj)
w; =

= ; (&)
I +exp ("{0 + ZjG{s,c,e} njrj)

refined contour propagated contour refined contour
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Figure 3. Bottom-up boundary extraction. An efficient level-set
method is proposed to extract the human region boundary. Initial
boundaries from the top-down procedure (a) are propagated across
time (b) and refined by evolving the implicit level-set function (c).
The final boundary is generally more accurate after a few itera-
tions. This figure is best viewed in color.

where parameters ; (j = 0, s, ¢, e) are learned from exam-
ples using logistic regression and ), w; = 1.

In our algorithm, the top-down constraints are applied
to a small number of frames since top-down processing is
more computationally expensive than bottom-up process-
ing. Because, we would not gain much benefit from top-
down processing many consecutive frames, it is applied to
some frames that are temporally far apart. We first select
a frame randomly and add more frames that are most dis-
tant from the current set of selected frames. A trade-off
is observed here; the more frames selected for top-down
processing, the more accurate the constraints for bottom-up
processing will be, but at the same time the computational
cost is increased.

The accurately estimated contours of the human body in
this step are used as constraints for the bottom-up propa-
gation. Some examples of the templates and the extracted
contours by the top-down process are presented in Figure 2.

3.2. Bottom-Up Propagation of the Human Volume

After obtaining a sparse set of contours with the top-
down process, we propagate the contours efficiently to other
frames. The problem is formulated within a level-set con-
tour tracking framework based on bottom-up cues. Since
level-set based segmentations frequently converge to local
optima, we alleviate the problem by accurate initialization
of the level-set functions with the top-down constraints.

In the level-set framework [4, 15], a region of interest
R in image [ is implicitly represented by a non-parametric
level-set function ®:

R ={x € I|®(x) > 0}, (6)

where x is a pixel in the image, and the boundary is defined
by the set of points such that ®(x) = 0. A foreground



segment R is obtained by an iterative procedure based on
low-level features from an initial level-set function.

In our formulation, we propagate the level-set functions
induced by the top-down templates in both directions, for-
ward and backward. Let ®'~! be the initialized level-set
function at frame ¢ — 1, and 7" the length of the sequence
of interest. We propagate ®'~! to the temporally adjacent
frames, by employing an image registration technique [1]
that finds a rigid warping of &'~ (o the new frame, e.g.,
frame ¢t. We then apply a fixed small number of level-set
iterations (typically, 5) to partially optimize the level-set
function based on the observation in the image. Such bidi-
rectional propagation terminates when the level-set func-
tions in all frames are initialized.

Let us present how the level-set function ®° is opti-
mized in each frame iteratively based on low-level image
features. ! Fig. 3 shows an illustration of the within-frame
level-set optimization. The goal is to evolve the initial
level-set function by maximizing the conditional probabil-
ity given by

Nt
p(@'[x',y") = [] p(®iIx, ¥)), (7)

=1

where Nt is the number of pixels, y! is the observed image
feature, and the pixel-wise level-set likelihood is given by

p(®i|xLylh) o p(xl|®],yl)p(P) (8)
= p(®)> pxi|®], M)p(Mly!),
M

where M is the model parameter for foreground (My) or
background (Mp).

In [2], only color distribution is utilized to model the
foreground and background regions, but motion informa-
tion based on optical flow is additionally employed in our
method to provide foreground and background probabilities
to each pixel, p(M|y"!). For example, the foreground proba-
bility of a pixel in the new frame is computed by transform-
ing the foreground probability map in the previous frame
using the motion vector. When more than one location in
the old frame is transformed to the same location in the new
frame, the average probability is assigned to the correspond-
ing position in the new frame. If no pixel is transformed to
a location in the new frame, we assign the median of its
spatial neighborhood. We combine color and motion like-
lihoods for a final measurement map as the product of the
two factors, which is given by

p(Mly!) = p(M"[yl) - p(M™o o [yh). (9)

The integration of motion for the measurement process is
particularly helpful to avoid distractions toward background

'Our level-set evolution is based on the algorithm in [2], where a more
detailed presentation is available.

objects visually similar to the target. In practice we use
a simple optical flow estimation algorithm based on the
Lucas-Kanade method [1].

We also introduce a new geometric prior p(®}). The new
prior favors level-set functions which are close to a signed
distance function. In addition to the standard constraint in
the size of the gradient [2, 13], we also constrain its direc-
tion. The geometric prior p(®;) is defined as

P(®;) = P (Pi)pa(P;), (10)

where p,,, and p, are the magnitude and direction term, re-
spectively. Each term is given by

1 (Ve —1)°
m(Pi) = ———— _ 11
P (®) Y ( 207 (11)
. 2
P,)=——¢ —— |, (12
Pa(®:) Ud,i\/ﬂ P 205,1‘ (12)

where «; is the direction of local center of mass around x;,
V@i is normalized gradient of ®; and o,,; and o4, de-
scribe uncertainty of each pixel. We favor gradient direc-
tions of level-set function that coincide with inward direc-
tion to the human body. Such prior tends to yield smoother
level-set functions and human boundaries.

We can now proceed to optimize the objective function
with respect to the level-set function ®. The optimization
problem is equivalent to maximizing the log-likelihood:

N
log (p(®[x,y)) o< > log (p(xi|®s,y;)) — log p(®;), (13)
1=1

and the optimization is performed iteratively by gradient as-
cent method with the following update:

9log (p(®ilxi,yi)) _

od;
0e(Pr = By)  (0logpm(®i) | dlogpa(®i) (14)
(x| ®i,y;) 0P; 0P, '

3.3. Temporally Coherent Global Optimization

We have described the process of obtaining top-down
human region estimates and its efficient propagation using
bottom-up cues. However, the estimated human volumes in
the previous step may not be reliable due to abrupt changes
of a target object, falling in local optima, weak features, and
so on. To overcome these issues, we employ a global opti-
mization that integrates temporal information more tightly.
This is achieved by introducing explicit dependencies be-
tween temporally adjacent frames and jointly optimizing
the level-set functions at all frames simultaneously. Such
dependencies favor the extraction of contours that are more
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Figure 4. Temporally coherent contour extraction. Our formula-
tion globally optimizes the level-set functions at all frames simul-
taneously. The level-set function that represents the human bound-
ary is propagated in both directions, forward and backward, which
yields a temporally coherent and accurate boundary.

Figure 5. Graphical model for the temporally coherent global opti-
mization. Circles indicate random variables, arrows indicate con-
ditional dependencies and undirected links express mutual depen-
dencies. Image locations are represented by x, image observations
by y and appearance models by M. The level-set function that im-
plicitly defines the human contour is represented by ®. The mo-
tion information that registers the level-set function across frames
is indicated by m. Superscripts indicate time step. By introduc-
ing dependencies between the level-set functions from adjacent
frames, we can jointly estimate the optimal &' that exhibits tem-
poral consistency and better extracts the the human boundary.

accurate and temporally coherent. As illustrated in Fig. 4,
the additional dependencies lead to a bidirectional propaga-
tion of the extracted contours among adjacent frames.

The set of "7 resulting from the process described in
previous sections provides initial level set estimates for the
following optimization procedure. We introduce a graphical
model to encode the dependencies between ®* and (®'"*,
‘I>t71), which is shown in Fig. 5. We obtain the globally
optimal "7 by temporal belief propagation in an iterative
message passing procedure.

A new objective function given by Eq. 15, defines the op-
timization problem. The first factor in Eq. 15 specifies the
estimations from individual frames, and the second factor
defines the relationship between adjacent frames that con-
tributes to the temporal coherence of the extracted volume.

The message for temporal propagation between the
frame ¢ and ¢ + 1 is defined as

o! — plit!)?
V(P 7T = exp (—( — ))7 (16)
m

and the update message is

Olog (VB BI) _ 2(ef-e)

o0®! B o2,

which favors the temporal consistency of the human mo-
tion boundaries. Note that messages are received at frame
t from both directions, from frame ¢ — 1 and ¢ + 1. The
gradient ascent update including the messages for temporal
consistency is obtained by the sum of the terms in Eq. 14
and the messages for forward and backward update related
to Eq. 17. After the iterative procedure described in Sec 3.2
converges for each frame, we update the messages in Eq. 16
and synchronously pass it to neighboring frames, which is
repeated until global convergence. Note that, in the above
formulation, the two level-set functions are properly regis-
tered by a rigid transformation. Such registration accounts
for global rigid motion across frames, gives a better prior
to the new frame, and reduces level-set iterations. When all
the level-set functions ®' are converged, the human vol-
ume is finally given by the set of points such that & > 0.

4. Experiments

We evaluate our method in terms of its segmentation ac-
curacy on annotated frames. The YouTube dataset from [14]
is utilized first to compare our algorithm with [14]. It is
a very challenging dataset that has 50 sequences contain-
ing unknown and arbitrary camera motion, cluttered back-
ground, motion blur, compression artifacts, etc. The preci-
sion and recall are computed based on this dataset for three
different algorithms—our full system, our method without
global optimization and the method in [14]. Table 1 summa-
rizes the experimental results of three systems, and shows
that our methods even without global optimization improve
both precision and recall significantly. We attribute this im-
provement to the ability of our tracker to leverage salient
bottom-up cues for human/background separation that are
constrained by effective top-down template-driven segmen-
tation. Our temporally coherent optimization process fur-
ther improves the precision of the system by integrating in-
formation across time. The sample comparative results are
provided in Fig. 7.
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We created a much larger dataset, also composed of
videos downloaded from YouTube, and several examples of
human body extraction are presented in Fig. 8.

Method ‘ Prec ‘ Rec ‘ F-score
Full model 0.74 | 0.75 0.74
Full model without global opt. | 0.62 | 0.76 0.68
Niebles et al. [14] 0.57 | 0.44 0.50

Table 1. Experimental results on the YouTube dataset from [14].
The segmentation of humans in videos is evaluated as a retrieval
problem. Ground truth consists of a set of over 180 masks that cor-
respond to the human regions in selected frames from the dataset.
For each retrieved mask, a precision is computed as the area of the
intersection of the retrieved and ground-truth mask over the area
of the retrieved mask; whereas recall is the area of the intersection
over the area of the ground-truth mask.
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Our model is not only more accurate in moving human
extraction, but also computationally much more efficient. In
our implementation with Matlab, one boundary is obtained
in less than 50 ms per bottom-up propagation.Similarly,
a top-down step with template-driven segmentation takes
about the same time. In practice, we apply the top-down
process to 20% of the pedestrian detections per person in
the video. We use a set of 100 templates in the pedestrian
silhouette database. The method in [14] runs in more than
20 seconds per frame per person on similar hardware.

5. Conclusion and Discussion

We have demonstrated a technique to efficiently extract
moving humans from challenging sequences, where the top-
down modeling provides the shape prior to the bottom-up

Temporal consistency Geometric prior

processing, and the global optimization refines the contour
of human bodies. As shown empirically, our method outper-
forms state-of-the-art techniques at a fraction of the com-
putational cost. This speed allows us to collect a larger set
of annotated natural videos containing human motions from
YouTube. The dataset contains 500 sequences with over 70k
frames. Our dataset and video results will be available at:
http://vision.stanford.edu/projects/niebles/cvpr2010.
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Figure 8. We show results on 8 gymnastics sequences from an assortment of about 500 YouTube videos. The players in the video exhibit
arich variety of challenging motions. Nevertheless, our algorithm is able to retrieve the contour of the person. The colored number at the
corner of each image indicates the frame number in the original sequence. The outlines of the humans are drawn in color curves.



