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Abstract. Robust low-level image features have proven to be effective
representations for a variety of high-level visual recognition tasks, such
as object recognition and scene classification. But as the visual recogni-
tion tasks become more challenging, the semantic gap between low-level
feature representation and the meaning of the scenes increases. In this
paper, we propose to use objects as attributes of scenes for scene clas-
sification. We represent images by collecting their responses to a large
number of object detectors, or “object filters”. Such representation car-
ries high-level semantic information rather than low-level image feature
information, making it more suitable for high-level visual recognition
tasks. Using very simple, off-the-shelf classifiers such as SVM, we show
that this object-level image representation can be used effectively for
high-level visual tasks such as scene classification. Our results are supe-
rior to reported state-of-the-art performance on a number of standard
datasets.

1 Introduction

Objects: 
water, person, rowing boat, oar

Scene class: Rowing Scene class: Sailing

Objects: 
water, sailboat, person, sky, mt.

Scene class: Sailing

Objects: 
water, sailboat, person, sky, mt.

Fig. 1. Classifying complex, event scenes such as “sailing” and “rowing” involves high-
level understanding of the images. The “sailing” image in the middle has similar low-
level texture statistics as the “rowing” image on the left, and a significantly different
texture distribution from the “sailing” image on the right. Humans, however, would
classify the middle and the right images as belonging to the same event class (“sailing”)
based on the objects and the high-level meaning pertaining to the scenes.

Much of the recent progress in high-level vision has been made by designing
robust image features for recognition tasks such as object and scene recogni-
tion. Nearly all of these features are based on some kind of low-level image

*indicates equal contributions.
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properties (e.g. SIFT [29], filterbanks [14, 34], GIST [33], etc.). With the help
of more and more sophisticated statistical models, these features have achieved
good successes in high-level recognition tasks. Particularly exciting is the recent
development of robust single object detectors ([5, 12]) based on these features.
Using these as off-the-shelf detectors, researchers have developed algorithms to
further incorporate context information such as scene layout [19], background
class [32], and object co-occurrences [35] to achieve better detections of objects
in scenes. But as the visual task becomes higher and higher level, the limita-
tions of low-level features become more obvious. Take Fig. 1 as an example. A
classification algorithm based mostly on texture statistics would easily confuse
the left and middle scenes as the same class. Even introducing some contextual
information such as background scene environment or overall layout would do lit-
tle to differentiate the left “rowing” scene from the middle “sailing” scene. Our
visual experiences and intuition suggest that a straightforward way of distin-
guishing many complex real-world scenes would be object-based – the presence
of a sailboat is more indicative of a “sailing” scene rather than a “rowing” scene.

“Semantic gap” is a widely accepted notion to capture the discrepancy be-
tween image representations and image recognition goals. In general, the lower-
level the feature is (think of raw pixel values), the more work a model has to do
towards higher-level recognition goals, analogous to the concept of “potential en-
ergy” in physics. One way to close the semantic gap is by deploying increasingly
sophisticated models, such as the probabilistic grammar model [42], composi-
tional random fields [21], and graphical models [11, 38]. While these approaches
are based on rigorous statistical formulation, good learning and inference are
still extremely difficult. Most of the papers have shown promising results on
only small scale datasets.

Attribute-based methods have shown promising potential in object recogni-
tion in recent few years. Its success in recognition is largely accredited to the
introduction of “attribute”, a high-level semantically meaningful representation.
In attribute-based methods for object recognition, an object is represented by
using visual attributes. For example, a polar bear can be described as white,
fluffy object with paws. Such visual attributes summarize the low-level features
into object parts and other properties, and then are used as the building blocks
for recognizing the object.

Similarly, we hypothesize that an image representation based on objects
would be very useful in high-level visual recognition tasks for scenes cluttered
with objects. It provides complementary information to that of the low-level
features.

In this paper, we introduce the concept of using object as attributes for
scene representation. We describe complex real-world scenes by collecting the
responses of many object detectors. Drawing an analogy to low-level image rep-
resentation, instead of using image filters (and their alike) to represent local
texture, we introduce object filters to characterize local image properties related
to the presence/absence of objects. By using a large number of such object fil-
ters, our object bank representation of the image can provide rich information of
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the scene that captures much of the high-level meaning (Sec. 3). As a proof of
concept, we test this new image representation on a series of scene recognition
tasks by using simple, off-the-shelf SVM classifiers. Our results show that our
object-level image representation delivers superior scene recognition results to
all reported state-of-the-art on a number of standard scene datasets (Sec.4).

2 Related work

A plethora of image feature detectors and descriptors have been developed for ob-
ject recognition and image classification [33, 1, 22, 30, 29]. We particularly draw
the analogy between our object filters and filter banks and the texture filters and
filter banks [34, 14].

Object detection and recognition also entail a large body of literature [10,
3]. In this work, we mainly use the current state-of-the-art object detectors of
Felzenszwalb et. al. [12], as well as the geometric context classifiers (“stuff”
detectors) of Hoeim et. al. [18].

The idea of using many object detectors as the basic representation of images
is analogous to work in the multi-media community on applying a large number
of “semantic concepts” to video and image annotation [16] and semantic index-
ing [37]. In contrast to our work, in [16] and [37] each semantic concept is trained
by using entire images or frames of videos. There is no sense of localized repre-
sentation of meaningful object concepts in scenes. As a result, this approach is
difficult to use for understanding cluttered images composed of many objects.

Finally, our approach is inspired by earlier approaches of attribute-based ob-
ject recognition [24, 23, 13, 8]. Similar to the “semantic concepts” approaches,
attributes classifiers in these works are also trained by using the entire images
instead of those regions containing the visual attributes. Furthermore, these ap-
proaches focus on single object classification based on human-defined attributes.
Our approach, however, investigates the contribution of objects to scene classi-
fication.

We evaluate the utility of our object bank representation on a number of
scene classification tasks. It is outside of the scope of this paper to discuss in de-
tail the large pool of related literature. To summarize, a number of papers have
focused on using low-level features for image classification, such as GIST [33],
filterbanks [14, 34, 27], and Bag of Words of local features [2, 11]. Hierarchical
modeling of images or images and texts is popular for more complex scene clas-
sification [21, 38, 17].

3 The Object Bank Representation of Images

3.1 What is an Object Filter?

Given an image, an object filter response can be viewed as the response of a
“generalized object convolution.” In the simplest case, we take an object tem-
plate (e.g., a picture of a face), and scan it across the image, resulting in a map
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Fig. 2. (Best viewed in colors and magnification.) Illustration of the object filter repre-
sentation. Given an input image, we first run a large number of object detectors at mul-
tiple scales. For each object at each scale, use a three-level spatial pyramid representa-
tion of the resulting object filter map, resulting in No.Objects×No.Scales×(12+22+42)
grids. An object filter descriptor of an image is a concatenation of features described in
each of these grids. We compute the maximum response value of each object, resulting
in a feature vector of No.Objects length for each grid.

of face filter responses. Thanks to the recent development of more robust object
detectors, we are able to use more sophisticated methods than simple image
templates as object filters.

We point out here that we use the word “object” in its very general form –
while cars and dogs are objects, so are sky and water. Our image representation
is agnostic to any specific type of object detector; we take the “outsourcing”
approach and assume the availability of these detectors. In this paper, we use
the latent SVM object detectors [12] for most of the blobby objects such as tables,
cars, humans, etc, and a texture classifier by Hoiem [18] for more texture- and
material-based objects such as sky, road, sand, etc.

Fig. 2 illustrates the general setup for obtaining the object bank image repre-
sentation. A large number of object detectors are run across an image at different
scales. For each scale and each detector, we obtain an initial response map of
the image by using the state-of-the-art object detectors [12, 18]. In this paper,
we use 200 objects detectors at 12 detection scales and 3 spatial pyramid levels
(L=0,1,2) [26].

We now compare the object bank image representation to two popular low-
level image representations: GIST [33] and the Spatial Pyramid (SPM) represen-
tation of SIFT [26], illustrated by Fig. 3. It is interesting to observe that images
with very similar low-level statistics might carry very different meanings (e.g.,
mountain and city street). The GIST and SIFT-SPM representations often show
similar distributions for such images. In contrast, the object bank representation
can easily distinguish such scenes due to the semantic information provided by
the object filter responses.



Objects as Attributes for Scene Classification 5

Tower Sky

Object Filters

MountainTree

GIST (!lters) SIFT-SPM (L=2)Original Image

Tower SkyMountainTree

Fig. 3. (Best viewed in colors and magnification.) Comparison of the object bank
representation with two low-level feature representations, GIST and SIFT-SPM of two
types of images, mountain vs. city street. For each input image, we first show the
selected filter responses in the GIST representation [33]. Then we show a histogram
of the SPM representation of SIFT patches [26] at level 2 of the SPM representation
where the codeword map is also shown as a histogram. Finally, we show a selected
number of object filter responses.

Object bank representation is built upon image responses to object detectors
that have been pre-trained with a large number of images. These detectors might
not yet be perfect, but are designed to capture much of the variations of their
respective objects. The result is a stable representation of scenes that has already
encoded much of the prior information of the visual space. We show in an analysis
experiment of a scene classification task that even when there is only a very small
number of scene training examples, our object bank representation can achieve
reasonable recognition results on two challenging scene datasets, significantly
outperforming low-level features (Fig.4 Left).

In a similar vein, we vary the number of object filters in the image represen-
tation to investigate its effect on a scene classification task (Fig.4 Right). Our
experiment shows that performance plateaus after applying a relatively small
number of object filters (a couple of dozen). This result suggests that our object
bank representation captures rich image information even with a modest number
of object detectors. It is also good news for a practical system that would use
the object bank representation: one does not need an extremely large number of
object filters to start achieving reasonable results.

We emphasize that object filter bank features are not meant to replace low-
level image features. Instead, we observe (and will show in Fig. 7(c)) that they
offer important complementary information of the images. While this paper itself
is focused on the utility of the object filter bank features, we envision that future
algorithms and systems would combine both low-level features as well as these
high-level features for visual recognition tasks.

Before moving onto the next section, we make the observation that there
is an increasing trend in computer vision and multi-media communities to use
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Fig. 4. (Best viewed in colors and magnification. ) Left: Comparison of scene classifica-
tion performance vs. the number of training examples among different features: GIST,
SIFT-BoW and OB. Right: Scene classification performance vs. the number of object
filters. 10 round of randomized sampling is performed to choose the object filters among
177 object detectors (We excluded object detectors obtained from LabelMe training
data to avoid possible contamination with the testing images in LabelMe Scene. More
details of the datasets are described in Sec. 4.). Standard deviation is plotted as the
error bar at each sample point.

stand-alone detectors as the training data becomes more freely available and also
more heterogeneous (Flickr, Google, Facebook, etc.). Just like most of today’s
object recognition systems are built upon interest point detectors and descrip-
tors instead of raw pixels, we hypothesize that solving more complex and large
scale image understanding problems will depend more and more on basic object
detectors in addition to local image features. Object bank representation largely
decouples the development of individual object detectors and higher level visual
recognition tasks, making it possible for us to make progress now on higher level
visual recognition tasks.

3.2 What are the Objects Filters for the Object Filter Bank?

So what are the “objects” to use in these object filters? And how many? An
intuitive answer to this question is to use all possible objects. As the detectors
become more robust, and especially with the emergence of large-scale datasets
such as LabelMe [36] and ImageNet [6], this goal has become more reachable.

But time is not fully ripe yet to consider using all objects in, say, the LabelMe
dataset. Not enough research has yet gone into building robust object detector
for tens of thousands of generic objects. As we increase the number of objects, the
issue of semantic hierarchy becomes more prominent. Not much is understood
about what it means to detect a mammal and a dog simultaneously. And even
more importantly, not all objects are of equal importance and prominence in
natural images. As Fig. 5 shows, the distribution of objects follows Zipf’s Law,
which implies that a small proportion of object classes account for the majority
of object instances. Hauptmann and colleagues have postulated that using 3000-
4000 concepts should suffice to satisfactorily annotate most of the video data [16].
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For this paper, we will choose a few hundred most useful (or popular) objects
in images1. An important practical consideration for our study is to ensure the
availability of enough training images for each object detectors. We therefore
focus our attention on obtaining the objects from popular image datasets such
as ESP [41], LabelMe [36], ImageNet [6]. We also consider image search engines
such as Google image search, Ask.com image search and Bing image search and
the Flickr! online photo sharing community. After ranking the objects according
to their frequencies in each of these image data sources, we take the intersec-
tion set of the most frequent 1000 objects, resulting in 200 objects, where the
identities and semantic relations of some of them are illustrated in Fig. 6. To
train each of the 200 object detectors, we use 100∼200 images and their object
bounding box information from the LabelMe [36] (86 objects) and ImageNet [6]
datasets (177 objects). We use a subset of LabelMe scene dataset to evaluate the
object detector performance. Final object detectors are selected based on their
performance on the validation set from LabelMe.
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Fig. 5. (Best viewed in colors and magnification.)The frequency (or popularity) of
objects in the world follows Zipf‘s law trend: a small proportion of objects occurs
much more frequently than the majority. While there are many ways of measuring
this, e.g., by ranking object names in popular corpora such as the American National
Corpora [20] and British National Corpus [7], we have taken a web-based approach
by counting the number of downloadable images corresponding to object classes in
WordNet on popular search engines such as Google, Ask.com and Bing. We show here
the distribution of the top 2000 objects.

1 This criterion prevents us from using the Caltech101/256 datasets to train our object
detectors [9, 15] where the objects are chosen without any particular considerations
of their relevance to daily life pictures.
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Fig. 6. Rough grouping of the chosen object filters based loosely on the WordNet
hierarchy [31]. The size of each unshaded node corresponds to the number of images
returned by the search.

To our knowledge, no previous work has applied more than a handful of
object detectors in scene recognition tasks [4]. But our initial object filter bank
of 200 object detectors is still of modest size. We show in Sec. 4 that even with
this relatively small number of objects we achieve excellent recognition results
(e.g., Fig. 4 Right). A future study for our work is to increase the number of
object detectors to possibly thousands.

4 Using Object Filter Bank for Scene Recognition

The object bank representation can be useful for many high-level visual recogni-
tion tasks, especially where the images contain many objects. In this paper, we
focus on the general problem of scene classification to illustrate the usefulness
of the object filter bank. Scene classification involves many degrees of abstrac-
tion [39]. Here we take a loose definition from the psychology literature, and
consider the simple basic-level scene recognition task to be classifying generic
places such as kitchen vs. mountain vs. highway. We further investigate the per-
formance of our object bank representation on higher level tasks like activity
and event recognition as super-ordinate scene recognition.
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4.1 Basic-level Scene Classification: 15-Scene and LabelMe Scene

We first use two basic-level scene classification datasets to evaluate the utility of
the object bank representation: the 15-Scene dataset [26] and a LabelMe 9-class
scene dataset2.

For the 15-Scene dataset, we follow the experimental setting in [26] by using
100 images in each class for training, and the rest for testing. For the LabelMe
Scene dataset, 50 randomly drawn images from each scene classes are used for
training and 50 for testing. In Fig. 7, we show the average performance of multi-
way classification results. We compare our object bank features to SIFT-BoW,
GIST, and SPM. For all image representations, we use a simple liblinear SVM
classifier.
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Fig. 7. Comparison of classification performance of different features on LabelMe scene
(a) and 15 scene (b) datasets. In the LabelMe dataset, we also show an “ideal” exper-
iment where we use the human ground-truth object identities to predict the labels of
the scene classes. (c) Classification performances of different combinations of image
representations on the LabelMe scene dataset.

Our object bank representation significantly outperforms the other features in
the LabelMe Scene dataset, and is on par with the current state-of-the-art results
in the 15-Scene dataset [26]. It is worth noticing that in our experiment, we have
used a much simpler classifier (linear SVM) compared to the SPM results in [26].
Our results show that when using object-level features, our image representation
carries rich enough semantic information for understanding various types of real-
world scenes.

In Fig. 7(c), we further investigate the complementarity of low- and high-
level image representations for scene classification tasks. We apply a multiple
kernel learning algorithm [40] to different combinations of image representa-
tions. We show that the combination of object filter and GIST or SIFT features
significantly boosts the performance over each individual type of feature. On the

2 From 100 popular scene names, we obtained 9 classes from the LabelMe dataset in
which there are more than 100 images: beach, mountain, bathroom, church, garage,
office, sail, street, and forest. The maximum number of images in those classes is
1000.
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other hand, the combination of SIFT and GIST features does not improve the
classification performance, suggesting that these two low-level representations
are largely similar to each other, offering little complementary information for
further discrimination of the scenes.

4.2 Super-ordinate Level, Complex Scenes: UIUC-Sports

We further consider a higher-level scene recognition task involving activities and
events. Here we use UIUC-Sports dataset. The images in this datasets are highly
cluttered by objects. Further, referring back to Fig. 1, images of activities such
as sailing and rowing have very similar background and thus almost indistin-
guishable image statistics, but they do differ in the types of object present.

For the UIUC-Sports dataset, we follow the experiment setting of [28], and
train on 70 images and test on 60 images.
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Fig. 8. Confusion matrices of three different image feature representations on the
UIUC-Sports scene dataset: GIST [33], SIFT-SPM [26] and OB. The average accu-
racy for each method is the mean of the diagonal entries of each confusion table.

We show the performance of different feature representations on the UIUC-
Sports dataset in Fig. 8. Our object bank representation shows significantly
superior results to the low-level image features, where the OB representation
shows 6% and 14% improvement over the GIST and SPM features respectively.
Our result (77.88%) is also substantially higher than the reported state-of-the-art
performance of 73.40%. It is worth noticing that the state-of-the-art performance
is obtained by using a fully supervised algorithm where all object outlines and
identities are given during the training stage [28], whereas we only have the class
label of each training image. Upon closer examination of the confusion patterns
among different scene classes, we can see that a more semantic-level image rep-
resentation overcomes some of the usual confusion caused by low-level features,
such as the confusion between sailing images and rowing images (see the confu-
sion tables for GIST and SPM). When incorporating object-level information,
sailing class and rowing class are no longer confusing.
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5 Discussions

As we try to tackle higher level visual recognition problems, we show that more
semantic level image representation such as the object filter bank can capture
important information in a picture without evoking highly elaborate statistical
models to build up the features and concepts from pixels or low-level features. We
emphasize that low-level image texture-based features are still extremely useful
in recognition task. The object filter bank features offer a complementary set of
information. When either used alone or in combination with low-level features,
these features yield very promising results in scene classification. But a number
of issues still need to be addressed and improved.

One important consideration is computation. Training hundreds and thou-
sands of object filters could be expensive. In this work, we have taken the “out-
source” philosophy, where we assume that reasonable object detection algorithms
are available for us to use. Obtaining an increasingly large number of trained de-
tections is becoming more and more achievable with the emergence of large-scale
datasets which provide available data and computing services such as cloud com-
puting and large scale computing grid. But there is still an “object filtering” step
in image representation. In this paper, we have used the naive scanning window
approach. For each image, the total time for extracting the object filter feature
for all 200 object filters is ∼1 minute on a modern CPU. Efficient algorithms
such as robust branch and bound scheme proposed by Lampert et. al. [25] can
further speed up the computation time.

As we mentioned in the introduction, a wave of recent work has shown the
importance of context in visual recognition tasks. Roughly speaking, context can
be grouped into semantic (or probability) context related to accounting for co-
occurrences of objects and stuff, as well as geometric context related to the layout
of scenes and constraints of camera(s). Our object bank representation implicitly
encodes the co-occurrences context by concatenating the response maps of dif-
ferent detectors. In this paper, we have only used very weak spatial information
in the image representation through the spatial pyramid representation. In the
future, we will investigate how to incorporate more explicit or robust geometrical
context of scenes into the representation, such as depth and layout information.
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