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Real-world scenes are complex but lawful: blenders are more likely to be found in kitchens than beaches,
and elephants are not generally found inside homes. Research over the past 40 years has demonstrated
that contextual associations influence object recognition, change eye movement distributions, and
modulate brain activity. However, the majority of these studies choose object-scene pairs from
experimenters’ intuitions because the statistical relationships between objects and scenes had yet to
be systematically quantified. How do intuitive estimations compare to actual object frequencies?
Across six experiments, observers estimated the frequency with which an object is found in a particular
environment, such as the frequency of ‘‘mug” in an office. Estimated frequencies were compared to
observed frequencies in two fully labeled scene databases (Greene, 2013). Although inter-observer sim-
ilarity was high, observers systematically overestimated object frequency by an average of 32% across
experiments. Altogether, these results speak to the richness of scene schemata and to the necessity of
measuring object frequencies.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the last 40 years, a growing body of research has highlighted
our remarkable scene understanding capabilities (Biederman,
1972; Greene & Oliva, 2009; Intraub, 1981; Li, VanRullen, Koch,
& Perona, 2002; Potter & Levy, 1969; Potter, Wyble, Hagmann, &
McCourt, 2014; Thorpe, Fize, & Marlot, 1996). These results present
challenges to leading theories of visual perception that are built on
results from sparse laboratory displays. Specifically, visual search
appears to be more efficient in scenes (Wolfe, Alvarez,
Rosenholtz, Kuzmova, & Sherman, 2011) compared to unstructured
displays, and our recall for complex scenes is no worse than that of
single objects (Konkle, Brady, Alvarez, & Oliva, 2010). It has been
proposed that stored knowledge of scene-object relations aids
these abilities (Bar, 2004; Wolfe, Võ, Evans, & Greene, 2011), but
testing this hypothesis requires knowing both the strength of the
contextual relations, and extent to which human observers
accurately encode them. While recent work has addressed the first
issue by characterizing the statistical frequencies of objects in sce-
nes (Greene, 2013), the current work aims to address the second:
how accurate are human object frequency estimates?

I asked human observers to estimate the frequency with which
they would find various objects in different environments. I then
compared these estimates to the observed frequencies from the
Greene (2013) databases. Several possible patterns of results may
be expected. On one hand, we readily learn statistical relationships
and contingencies from visual displays (Brady & Oliva, 2008;
Brockmole & Võ, 2010; Chun & Jiang, 1998), and our frequency
estimates of physical entities is generally good (Attneave, 1953;
Tversky & Kahneman, 1973). Furthermore, scene and object recog-
nition are subject to strong contextual effects (Davenport & Potter,
2004) even though the contextual relationships are experimenter-
defined. Taken together, these results would predict near-veridical
estimations of object frequency.

Contrastingly, human frequency estimation in other domains
can be badly skewed. Highly representative items can cause obser-
vers to discount prior probabilities (Tversky & Kahneman, 1973),
we exhibit an optimistic bias when estimating task durations
(Kahneman & Tversky, 1977), and we overestimate salient, low
probability events such as airplane crashes (Lichtenstein, Slovic,
Fischhoff, Layman, & Combs, 1978). Within vision, our place mem-
ories are schematic, and observers often report objects in a display
that, while absent, fit within the scene context (Brewer & Treyans,
1981; Lampinen, Copeland, & Neuschatz, 2001). Similarly, we tend
to remember a more expansive scene view than was presented
(boundary extension, (Intraub & Richardson, 1989)), suggesting
that our memories reflect constructions and simulations of the
environment as a whole. These results predict that our estimates
of object frequency may be overestimated.

Here, I demonstrate that human estimates of object frequency
are consistently overestimated, despite high agreement between
observers. This holds over experiments held in the laboratory
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and online, and in the normative rankings of previously published
work. This holds over multiple labeled databases, so these results
are not due to one biased sample. Together, these results highlight
the deeply constructive nature of human scene representations.
2. Methods

2.1. Free response task

10 participants (5 male, ages 22–35) were provided with a 16-
page packet with the name of a scene category listed on top. The
categories were taken from (Greene, 2013) and included bathroom,
bedroom, conference room, dining room, kitchen, living room, office,
skyscraper, city center, street, highway, coast, open country, mountain
and forest. The order of categories was randomized across partici-
pants. For each category, participants were asked to freely list all
the objects they could think of that were found in that scene
category with the following frequencies: ‘‘always”, ‘‘often”, ‘‘some-
times” and ‘‘never”. Here, an ‘‘object” was defined as any visual,
nameable entity, following (Greene, 2013). Participants were
encouraged to list at least ten instances per frequency bin when-
ever possible. They were allowed to take the packet home and to
bring it back completed one week later. Participants were not
given any instructions about the ordering of objects.

The listswere transcribed into a spreadsheet,with spelling errors
corrected. Using WordNet (Miller, 1995), I unified synonyms. The
raw tabulations were translated into estimated frequencies by cod-
ing object frequencies from 3 to 1 for ‘‘always”, ‘‘often” and ‘‘some-
times” ratings respectively, with the weight of �1 to objects listed
in the ‘‘never” frequency bin. For each object, I tabulated the number
of participants who listed that object along with the average value
from these codes. I multiplied these two values together to get an
overall weight for each object, and then divided each value by the
maximal score (30, reflecting the situation in which all 10 observers
rate the object as ‘‘always” present). This accounts for the number of
participants naming the object as well as the estimated frequency
within each participant.1
2.2. Online object frequency rating experiments

In the online experiments, observers directly estimated the
frequency of a provided scene-object pair. I chose 30 objects for
each scene category. Of these, ten objects were very frequent (most
frequent objects observed in (Greene, 2013), ten were of moderate
frequency (most common objects that were the nearest to 0.5
frequency) and the remaining ten were very low frequency objects
(objects that had <0.05 frequency but had at least 10 instances in
the (Greene, 2013) database).

In two experiments conducted on Amazon’s Mechanical Turk
(AMT), observers were presented with a category name along with
an object name and a frequency slider that could be set between 0
(never found in category) and 100 (always found in category). In
the first experiment, participants were instructed to estimate
how often the object would be found in a photograph of the target
scene category using the sliding bar. In the second experiment,
participants were explicitly told to think of a single, photograph-
like view of a scene that might not show every object present in
the environment.

43 individuals participated in the first experiment while 46 new
1 Estimated object frequencies were also calculated in two additional ways: (1
Giving ‘‘always” a frequency of 0.95, ‘‘often” a frequency of 0.75 and ‘‘sometimes” a
frequency of 0.5 with 0 given to ‘‘never”; (2) Giving ‘‘always” a frequency of 0.95
‘‘often” a frequency of 0.6 and ‘‘sometimes” a frequency of 0.3 with 0 given to ‘‘never”
However, as these other methods were not well-correlated with observed frequencies
(r = 0.39 and r = 0.42 respectively), they were not used for further analysis.
)

,
.

individuals took part in the second experiment. All were US-based
workers with at least 2000 previously submitted hits with at least
98% approval. Participants completed between 1 and 480 estima-
tions in both experiments, with a median of 32 per participant in
the first experiment, and 36 per participant in the second.
Participants were compensated $0.01 per trial for their time. All
submitted work was analyzed.
2.3. Observed object frequencies

Observed object frequencies were taken from the labeled data-
bases of Greene (2013). In these databases, photographs of scene
environments (at least 95 per category) were hand-labeled by
trusted observers such that each pixel in each scene was annotated
with an object label. Object frequency was defined as the propor-
tion of category images containing the given object. The main data-
base contained images from the web, while the auxiliary database
contained images uploaded by researchers.
3. Results

3.1. Free response experiment

Each participant listed an average of 39.9 (SD: 2.5) objects in
each of the 16 basic-level categories. Any repeated items within
a category were omitted, along with any non-visual item such as
‘‘air”. This left an average of 38.9 (SD: 3) objects per participant
per category. Across participants, 1,086 unique objects were listed,
390 of which were listed in the database of (Greene, 2013).
3.1.1. Consistency of objects listed as present
How similar are observers’ listings? For each category, I

tabulated the number of participants listing a particular object as
‘‘always”, ‘‘often” and ‘‘sometimes” present. On average, an object
was listed by 2.8 observers (SD: 2.4). Each category had at least
one object listed by all 10 observers. To what extent does this
behavior deviate from random listing? To simulate chance, I con-
sidered the case of an observer randomly listing objects, without
replacement, from a set of 30,000 possible objects, estimated by
(Biederman, 1987). In each of 10,000 simulations, ten simulated
observers were created, and the number of unique objects listed
and the maximum number of simulated observers listing a partic-
ular object were recorded. A Wilcoxan sign-rank test indicated that
the maximum number of listings for each category was signifi-
cantly more consistent than was observed in the chance simulation
(all p < 0.0001, see Fig. 1A). Additionally, I examined the amount of
overlap (intersection over union) in the objects listed as ‘‘always”
present between each pair of observers. The mean overlap was
0.3 (range: 0.18–0.44 across categories), and this was found to be
significantly higher than what would be the maximum expected
from chance (0.08) from permutation tests. Therefore, human
observers have more similar object listings than would be expected
from chance alone.
3.1.1.1. Consistency of objects listed as never present. I next applied
the same analysis to the objects listed as ‘‘never” present in each
category. Overall, there was less consistency among observers,
with any given object listed by an average of 1.4 observers (SD:
0.95). However, when comparing these listings to the simulated
chance condition, each category demonstrated inter-subject
consistency that was higher than expected from chance (all
p < 0.0001, see Fig. 1B). Remarkably, observers share not only
consistent notions of the objects that belong in a scene category,
but also the objects that never belong in that scene category.



Fig. 1. (A) Histogram of participant agreement in objects listed as present in a scene category (blue). Chance-level agreement is shown in gray. (B) Histogram of participant
agreement in objects listed as absent in a scene category (red) with chance-level agreement shown in gray. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Inter-subject rank-order correlations in the objects listed as ‘‘always”
present in each of the sixteen basic-level scene categories. Each cell of each matrix
represents the rank-order correlation between a pair of observers.
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Why does this consistency exist? As category order was ran-
domized across participants, the consistency cannot be attributed
to priming from a previously viewed category. Perhaps participants
listed objects that are diagnostic of a different scene category (e.g.
a ‘‘toilet” in a bedroom). I compared the mutual information
between the never-present objects and compared it to the mutual
information for all objects in the database. Objects with high
mutual information give the most discriminative evidence for or
against a scene category. I found that the objects listed as absent
had higher mutual information for distinguishing among scene cat-
egories (Mdn = 0.04) compared to the general population of objects
(Mdn = 0.006, Z = 12.4, p < 0.0001), suggesting that the consistency
is driven by our contextual knowledge of diagnostic objects.

Additionally, the consistency of participants’ responses in the
‘‘never present” condition could reflect the increased availability
of more frequent objects in memory (Anderson & Schooler,
1991). I examined the overall frequency of objects listed as ‘‘never
present” and compared these to overall object frequencies in
(Greene, 2013). I found that the median frequency of objects listed
as never present (Mdn = 38) was significantly larger than the
overall median frequency in the database (Mdn = 5, Z = 12.5,
p < 0.0001). Therefore, both overall object frequencies as well as
mutual information appear to contribute to the inter-observer con-
sistency of absent objects.

3.1.2. Consistency of object ordering
In this free-response paradigm, an additional type of inter-

subject consistency could exist in the order of objects named by
participants, even within a frequency bin. I examined the rank-
order correlations between observers for the ‘‘always” present
objects, and compared them to permutations of random order-
ings.2 Remarkably, the mean Spearman’s rho across observers was
0.43 (range: 0.21–0.72, see Fig. 2) while the maximum correlation
that would be expected from chance was 0.08, suggesting that
2 For each observer, the objects listed in ‘‘always”, ‘‘often”, and ‘‘sometimes” were
considered to be numbered 1–10. This ordering was compared to the ordering of each
other observer in the same manner. If an observer listed an object not included by the
original observer, it was given a rank of 11. Then, for each pair of observers, rank order
correlations were computed for each category.
observers agree on how representative they are of the category, even
without specific instructions concerning object ordering. Insofar as
cognitive availability reflects ecological frequency (Anderson &
Schooler, 1991; Tversky & Kahneman, 1973), these results could
indicate that human observers have near-veridical estimates of
object frequency. Next, I will compare estimated frequencies from
this experiment with observed frequencies from the (Greene,
2013) scene database.
3.1.3. Overestimation of object frequency
To what extent are estimated object frequencies reflective of

real-world frequencies? For each category, I correlated the
estimated frequency with observed frequency. As shown in
Fig. 3, observers overestimated object frequency in all scene
categories by an average of 11% (range: 5–17%). I observed no
significant difference in the overestimation for indoor and outdoor
scene categories (t(14) = 1.5, p = 0.15).



Fig. 3. Difference between estimated versus observed object frequency (in %) for
each of the sixteen basic-level scene categories. Filled dots indicate the median
while the open dots indicate the 95% confidence interval for each category.
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To determine that this over-estimationwas not solely due to bias
in the dataset used by Greene (2013), I compared observers’
frequencyestimates to the independent auxiliarydatabase provided
by Greene (2013). I compared estimated frequency to observed
frequency and found that on average, observers’ estimates were
overestimated by 19% (range: 3–33%).
3.2. Online object frequency rating experiments

The free response experiment aggregates frequency estimates
across participants, but does not directly ask observers to rank fre-
quencies. I conducted two online experiments asking participants
Fig. 4. Summary plot for all experiments. Orig refers to the main database in (Greene, 201
experiments, observers overestimate object frequency by an average of 32%. Filled dots in
experiment.
to directly estimate object frequency using an analog slider.
Although estimates were highly correlated with free response esti-
mates (r = 0.73), participants overestimated object frequency by
31%. However, because I was unsure that participants understood
that I was asking for frequency estimates in a single view of a scene,
I ran the second experiment with the explicit instructions to con-
sider frequencies in a single view, such as in a photograph. Despite
the change in instructions, the two experiments produced nearly
identical frequency estimates (r = 0.92), with an overestimation of
object frequency of 28%. Comparing the overestimations to the
observed frequencies in the auxiliary database, I found overestima-
tions of 50% and 45% respectively. Therefore, participants overesti-
mate object frequencies when asked directly about frequency, and
do so even when explicitly told to consider single scene views.
3.3. Comparing to Friedman’s 1979 normative rankings

Last, I used the object frequency estimates published in
(Friedman, 1979) to the observed frequencies in my database. Con-
sidering the 93 scene-object pairs from her normative rankings
that were observed in my database, observers in her experiment
overestimated object frequencies by an average of 36%. Fig. 4
shows the extent of overestimation in all experiments. Over all
experiments, observers overestimated object frequency by an
average of 32%.
4. Discussion

Six experiments demonstrate that human observers have
strikingly consistent estimations of object frequency. Despite this
consistency, observers overestimate frequencies by nearly one
third on average.
3), while Aux refers to the auxiliary database in that same paper. Over each of these
dicate the median while the open dots indicate the 95% confidence interval for each
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The overestimation is robust to task changes as it was observed
in both free response and direct estimation. It was also found when
observers were explicitly told to think about single scene views
rather than the whole environment. These results cannot be attrib-
uted to demand characteristics, as they show up in estimates from
previously published work (Friedman, 1979) that was not designed
to test this question. Furthermore, the overestimation was not sim-
ply due to database bias (Torralba & Efros, 2011), as the same pat-
terns of results were found in an independent dataset.

A large literature exists on how scene-object contextual relations
can be used to aid scene and object understanding (Biederman,
Mezzanotte, & Rabinowitz, 1982; Davenport & Potter, 2004;
DeGraef, Christiaens, & d’Ydewalle, 1990; Hollingworth &
Henderson, 1998; Võ & Henderson, 2009, for review see Bar, 2004).
Yet all of these studies have defined contextual relations by the intu-
itions of the experimenter becausewe had not objectivelymeasured
contextual statistics fromrealworld scenes.With theadventof large,
labeled scene databases (Greene, 2013; Russell, Torralba, Murphy, &
Freeman, 2008) we can do just that. The current work highlights the
utility ofmining these statistics by demonstrating that the statistical
intuitions of observers are systematically skewed. Understanding
how human estimates vary from objective measurements provides
insights into the nature of scene representations.

Despite the consistency of the current results, they are not
without limitation. Although overestimation cannot be attributed
to the biases of a particular database, it could be the result of biases
in photography as a whole. Photographers tend to place informa-
tive objects at the center of a photograph (Parkhurst & Niebur,
2003; Schumann et al., 2008; Tatler, 2007). It is possible that this
bias systematically pushes other objects out of the frame. Aesthet-
ics may also create bias: in Greene (2013), only 60% of bathroom
scenes contained a ‘‘toilet”, for example. Future work can examine
the extent to which these biases arise from photographs by asking
observers for object frequencies from real environments. To what
extent are these biases implicit in object representations
themselves, and to what extent do they arise while activating the
representation? Future work will use implicit measures such as
priming to disentangle these possibilities.

Context is only useful insofar as it provides lawful information
about theworld. These results challenge the view that context helps
recognition because our contextual knowledge is biased. However,
we experience a continuous three-dimensional world synthesized
through discrete fixations (Hochberg, 1968; Potter, 1975). The strik-
ing inter-observer consistency in estimated frequencies suggests
that our contextual knowledge follows our continuous percepts,
rather than our discrete sensory inputs. This would allow us to use
these schemata for predicting and finding objects that are not
currently within view, allowing us to act efficiently in the world.
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