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Preface

Hundreds of billions of photographs are created on the web each year. An important step towards

understanding the content of these photographs is to be able to understand all objects that are

depicted. My research focuses on the problem of automatically naming and localizing objects in

large collections of images. This is referred to as the task of object detection.

There are multiple challenges that I have addressed that help scale up object detection algorithms

in both the number of images and the number of objects that can be recognized. First, algorithms for

analyzing such large collections of images need to be very efficient. I’ve developed an object detection

algorithm that was an order of magnitude faster than previous methods. Second, recognizing all

objects in images is difficult because of the large diversity of object classes. I’ve studied using

shareable generic object attribute descriptions to effectively describe a variety of object classes

without learning individual object models. Third, extensive manual annotation is required for

training object detectors at scale, which can be very time-consuming and expensive. The core of my

thesis focuses on this third challenge.

I’ve addressed the challenge of required extensive manual annotation in three ways. First, I

developed a weakly supervised learning method for localizing objects in images using just cheap

binary-level image labels. This method eliminates the need for significantly more expensive bounding

box annotations at a small reduction in accuracy.

However, even these simple binary labels are very expensive to obtain at the scale of hundreds

of object classes and tens of thousands of images, leading to my second contribution. Therefore,

my colleagues and I created the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

ILSVRC serves as a benchmark large-scale object recognition for hundreds of international research

teams. I led the effort to construct the object detection benchmark, scaling up by more than an

order of magnitude compared to previous dataset (e.g., the PASCAL VOC [48]). The construction

of this dataset required developing novel crowd engineering techniques for reducing annotation cost.

By taking on the massive labeling task ourselves on behalf of the community, we were able to

eliminate the need for costly annotation by individual research teams. Further, the availability of

this large-scale data enabled us to perform detailed analysis of the current state of the field of object

recognition, providing insights for future research efforts.
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The ILSVRC dataset and corresponding competition enabled incredible progress in object recog-

nition accuracy over the past few years. Thinking ahead about scaling up object detection even

further, I developed a framework for bringing together the state-of-the-art automatic large-scale ob-

ject detection with state-of-the-art crowd engineering techniques into a principled human-in-the-loop

framework for accurately and efficiently localizing objects in images.

By designing efficient object detection algorithms and using novel crowd engineering techniques

to quickly label large amounts of data, we hope to be able to localize most objects in large collections

of images.
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Chapter 1

Introduction

Hundreds of billions of photographs are created on the web each year. An important step towards

understanding the content of these photographs is to be able to understand all objects that are

depicted. My research focuses on the problem of automatically naming and localizing objects in

large collections of images. This is referred to as the task of object detection. Figure 1.1 shows some

examples of the types of results that we hope to obtain automatically.

There are multiple challenges that I have addressed that help scale up object detection algorithms

in both the number of images and the number of objects that can be recognized. First, algorithms

for analyzing such large collections of images need to be very efficient. The sliding windows method,

where all image regions are progressively examined (e.g., [34, 165, 184]) is very common in the

object detection literature. I developed an algorithm that was significantly more efficient than the

sliding windows method. The core insight is to first generate a small set of candidate regions and

then only evaluate these likely image locations instead of examining every image region. Similar

insights have been utilized in both earlier [73, 157, 113] as well as later literature [186, 3, 66]. My

method in particular aims to optimize the cost of generating the candidate region proposals across

multiple object classes in the image. It yields an object detector that is an order of magnitude

faster than sliding windows while maintaining comparable detection accuracy. More details about

the algorithm and the results are provided in Chapter 2 and in [156].

The second challenge of scaling up object detection is that recognizing all objects in images is

difficult because of the large diversity of object classes. I’ve studied using shareable generic object

attribute descriptions to effectively describe a variety of object classes without learning individual

object models. For example, by learning the generic attributes “striped” and “black and white” we

can effectively describe the object class zebra or panda. In general, by learning N binary attributes

we may in theory be able to describe up to 2N object classes. Instead of studying specific domains

such as birds [19, 207] or animals [108, 148], we focus on generic attributes such as “red” or “shiny”

that are applicable to a wide range of object classes. More details about the large-scale attribute

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: This thesis studies the problem of object detection, or automatically naming and localizing
objects in images. Instead of focusing on just a small subset of object classes [48] we aim to scale
up object detection to hundreds of object categories and hundreds of thousands of images.

dataset we collected, the algorithm and the insights into generic attribute prediction are provided

in Chapter 3 and in [153].

The third challenge of scaling up object detection is that extensive manual annotation is required

for training object detectors at scale, which can be very time-consuming and expensive. The core of

my thesis focuses on this third challenge.

I’ve addressed the challenge of required extensive manual annotation in three ways. First, I

developed a weakly supervised learning method for localizing objects in images that reduces the need

for detailed manual annotations. Standard object detection algorithms are trained from bounding

box annotations around every object in the image [195, 34, 54, 48, 152]. However, it is also possible

to train object detectors using just binary image annotations for whether the object appears in the

image or not [27, 129, 40, 136]. We improve upon a standard image classification pipeline [203, 227,

215] to simultaneously classify and localize objects in images. This method eliminates the need for

significantly more expensive bounding box annotations at a small reduction in accuracy. Details

about the algorithm and both quantitative and qualitative results are available in Chapter 4 and

in [155].

However, even these simple binary annotations are very expensive to obtain at the scale of
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hundreds of object classes and tens of thousands of images. For the second contribution addressing

the expense of manual annotation, my colleagues and I created the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). ILSVRC serves as a benchmark large-scale object recognition

for hundreds of international research teams. Chapter 5 describes the ILSVRC history, provides

insights into the concrete large-scale recognition tasks we formulated, and presents some of the

leading algorithms. For my thesis, I led the effort to construct the object detection benchmark,

scaling up by more than an order of magnitude compared to previous dataset (e.g., the PASCAL

VOC [48]). This required insights into defining an appropriate set of object categories, collecting

images on a large scale, and developing novel crowd engineering techniques for reducing annotation

cost. Chapter 6 goes into details of our data collection efforts. By taking on the massive labeling

task ourselves on behalf of the community, we were able to eliminate the need for costly annotation

by individual research teams. Further, the availability of this large-scale data enabled us to perform

detailed analysis of the current state of the field of object recognition, providing insights for future

research efforts. Chapter 7 presents our insights – for example, the fact that objects that are highly

textured are on average easier for current algorithms to recognize than man-made untextured objects.

My work on ILSVRC was published in [152, 38, 151].

The ILSVRC dataset and corresponding competition enabled incredible progress in object recog-

nition accuracy over the past few years. [152] Thinking ahead about scaling up object detection even

further, I introduce the third contribution for overcoming the challenges of time-consuming large-

scale manual annotation. In [154], we design a principled framework for accurately and efficiently

localizing objects in images. Instead of relying purely on manual annotation, the system brings to-

gether state-of-the-art automatic large-scale object detection with state-of-the-art crowd engineering

techniques for a human-in-the-loop method. One key component of our method, in contrast to prior

work [19, 91, 140, 200, 192], is the incorporation of feedback from multiple types of human input

and from multiple computer vision models. Details about this work are in Chapter 8.

This thesis describes the progression of scaling up object detection along multiple dimensions:

increasing the number of images, increasing the number of object classes, reducing the required

detailed manual annotation and lowering annotation cost. One important lesson of this work is that

scaling up a visual recognition system is not just a matter of throwing more computational resources

at the problem. There is always a human cost to be paid; there is a direct tradeoff between the

human effort and the computer vision capabilities. This human cost comes in many forms. Detailed

large-scale training annotations opens up avenues for development of algorithms for new objects

domains [152, 38]. Careful algorithmic design can compensate for the lack of detailed training

annotations [155, 150]. Direct integration of human and machine efforts can allow for additional

benefits [154]. Human cost should be carefully accounted for as it is inevitably present in computer

vision systems.



Chapter 2

A Steiner tree approach to efficient

object detection

2.1 Introduction

Object detection has seen significant advances in the last few years [48], but many algorithms are

still slow and unsuitable for real-time performance. The standard sliding window approach to object

detection analyzes a large number of image regions (on the order of 50,000 for a 640x480 pixel image)

to see which of them may contain an object of interest. For many applications, multiple object classes

need to be recognized in each scene, and so multiple binary classifiers are run over each region. Thus,

if we are trying to detect any of 10 object classes, we may need about 500,000 classifications per

image.

In our approach, we propose only a small subset of “promising” regions for each classifier to

analyze. By sharing the computation for selecting appropriate regions across the different object

classes, we show we can often achieve a 10x computational speedup, without sacrificing accuracy.

At the heart of our approach is a reduction of a feature selection problem to a directed Steiner tree

optimization problem. Briefly, in a directed Steiner tree problem [221], we are given a directed graph

with weights on the edges, a subset of nodes designated as special Steiner nodes and a root note.

Our goal is to find a directed tree of minimum weight rooted at the root node that spans all Steiner

nodes. This problem is NP-hard [64] but can be efficiently approximated [24, 229]. Concretely,

image segmentation, which is used to select the “promising” windows, is expensive to compute.

Further, different segmentations are suited for finding different sorts of objects; a segmentation into

many small segments may be more suited for small objects such as coffee mugs, whereas a coarser

segmentation may be better for larger objects such as computer monitors. When we are interested

in detecting many object classes, we would like to find a small number of segmentations that can be

4
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shared across multiple object classes. We show how a directed Steiner tree optimization formulation

can be used to select the segmentation parameters efficiently.

We apply these ideas to speeding up object detection, and test our approach on eleven object

classes from the LabelMe and StreetScenes datasets, along with our own collected images, in con-

junction with a classification algorithm inspired by Torralba et al. [184]. We achieve significant

run-time improvement without sacrificing detection accuracy. More broadly, however, we make

three main contributions: (1) we present a classifier-agnostic approach to speeding up the sliding

windows algorithm, (2) we address the task of efficiently recognizing multiple object classes within

the same scene, and (3) we introduce a novel Steiner tree formulation for parameter selection.

2.2 Related work

Efficient detection. The sliding window approach is common in object detection [34, 48, 184], and

much work has been done to improve its running time. Viola and Jones [195] (see also Wu et al. [212],

Rowley et al. [149], and, recently, Harzallah et al. [78]) sped up localization by quickly rejecting

many of the rectangles as not containing the object of interest. In contrast, our algorithm works by

proposing only the rectangles that appear likely to contain an object, based on the segmentation,

without needing to analyze each sliding window individually.

Some techniques for object localization avoid using sliding windows entirely by instead applying

the generalized Hough transform [61, 124, 201]. Among the latest such tools is the work of Gall

and Lempitsky on Hough Forests [61] with running times of 6 seconds per 720x576 pixel image,

scaling linearly in the number of objects to be detected. Our approach runs in roughly 1.5 seconds

per image per object with 9 objects and amortizes part of its running time as more objects are

added. Further, our method is classifier-independent and can be used in conjunction with any type

of classifier, including Hough forests-based classifiers.

Another approach to speeding up localization is to use local optimization methods, by first

identifying promising regions of interest and then using iterative refinement to obtain better region

boundaries [27]. Lampert et al. [109] proposed a branch-and-bound algorithm to repeatedly decrease

the region of interest from the entire image to a bounding box around the desired object using a

bag of words sparse feature model. While their method is highly effective, our technique applies to

a much broader class of visual features; for instance, the dense responses of the location-sensitive

patch-based classifiers of [184] that we consider in our experiments cannot be used within their

framework.

There are methods which use low-level features to create a saliency map of the image [90, 93]

and focus attention for object localization that way; their techniques could be used in our Steiner

tree framework to replace the segmentation algorithm and instead propose windows at various gran-

ularities using the detected interest points. However, we believe that merging together superpixel
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segmented regions is more intuitive than combining interest points which are intended to emphasize

regions of high variability.

Joint segmentation and detection. There are many methods for using segmented superpixels

and merging them together to form an object boundary [60, 69]. Russell et al. [157] introduced the

“soup of segments” idea, where multiple segmentations of an image are obtained, and then all the

segments are considered together as building blocks in tasks such as object discovery [157], spatial

support [125], or joint object classification and segmentation [69, 137]. As discussed below, our

framework also allows multiple combinations of segmentation parameters for each object class.

Many algorithms exist as well for simultaneously performing both image segmentation and object

recognition that combine bottom-up and top-down models [111, 113, 115, 211, 218]. These methods

have generally focused on improving the accuracy of both segmentation and object detection, rather

than on minimizing the object detector running time.

Gu et al. [73] recently introduced a technique for using regions for object detection instead

of the sliding-window approach, and reported significant run-time improvements. They make the

assumption that each segment corresponds to a probabilistically recognizable object part, whereas

our algorithm is specifically designed to compensate for imperfections in the segmentation algorithms

by automatically considering a large number of schemes for merging superpixel regions to create an

object. Further, their classifier directly utilizes the segmented regions while our techniques can be

used in conjunction with any classifier.

Similar insights of using segmentation to propose object detection regions have also been utilized

in literature published after this work, e.g., [186, 66, 3].

Multi-class classification. Sharing computation for multi-class detection has been explored

by [159, 181, 184] among others; e.g., Todorovic and Ahuja [181] consider a taxonomy of object

subcategories (parts) which can be detected in images and then used to construct multiple object

classes.

Steiner trees. We use the algorithm due to Charikar et al. [24] in our parameter selection method

to find the approximate minimal cost Steiner tree. It is impossible to do justice to all Steiner tree

literature here, but briefly [221] analyzes the general directed acyclic case, [127] presents a new

primal-dual approximation algorithm, [44] discusses the terminal Steiner tree problem, and [229]

presents a solution using a linear program which is polynomial-time but too computationally expen-

sive for us to use in practice.

Also, Parikh et al. [139] recently applied Steiner trees to the task of learning spatial hierarchy in

images.
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Figure 2.1: Sample images from our object detection dataset with the desired objects outlined in
green.

2.3 Fast object detection

A common way to detect object begins by building a binary classifier that takes as input a small

(say 32x40) rectangular image patch, and classifies that image patch as either containing a cup (or

other object of interest) or not [34, 78, 184]. Given a full-size image, object detection is performed

by running this classifier on every 32x40 sub-image of this larger image. To detect the same object

at multiple sizes, we scale the image down and repeat.1

Given an image to analyze, our approach consists of three main steps: (1) Segmentation,

where we use a standard unsupervised algorithm to segment the image into small locally coherent

regions; (2) Rectangle selection, where we take these irregular-shaped image segments, and com-

bine/reshape them as needed to obtain a small number of rectangular windows; (3) Classification,

where we apply a binary classifier to each of these windows to decide if an object of interest appears

in it.

We may have to run the segmentation algorithm multiple times and use different rectangle

selection strategies for the different objects, so as to generate the most appropriate rectangles for

each. For example, we may want to generate square rectangles to detect objects with a square

bounding box (like monitors, mugs and wall-clocks), and longer rectangles to detect longer objects

(like keyboards). Further, a segmentation into many small segments may be necessary for finding

small objects such as coffee mugs, whereas a coarser segmentation with fewer regions may be sufficient

for larger coherent objects such as computer monitors.

1To detect the same object with varying aspect ratios, a fourth search dimension is required in the sliding windows
algorithm, greatly slowing down the algorithm. While for this work we restrict our attention to objects with fixed
aspect ratios, our algorithm can easily be extended to the more general cases since the bounding boxes extracted from
segmentation inherently represent the varying aspect ratios of the different objects.
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The segmentation and rectangle selection steps are themselves computationally expensive. Thus,

if we can share parts of these computations among different object classes, then their cost can be

amortized, thus further reducing the overall running time of the system. In section 2.5, we address

this optimization problem using directed Steiner trees.

2.4 Segmentation and rectangle selection

We begin by briefly describing the various parameters of the segmentation and rectangle selection

algorithms. The goal is to identify promising regions of the image that may contain an object,

so that the classifier can analyze only these regions. Our pipeline consists of five sequential steps,

diagrammed in Figure 2.3 left.

2.4.1 Segmentation

We use the segmentation algorithm of Felzenszwalb and Huttenlocher [56], which has parameters s,

k, and m. Briefly, s controls how much we smooth the original image, k determines roughly how

many segments the image is broken into, and m controls a post-processing step that ensures that

all resulting segments are of size at least m pixels. Even though [56] gives suggestions for parameter

settings that produce visually pleasing segmentations, we found that it was impossible to find a

single parameter setting that works well for detecting all the objects of interest.

When the image is over-segmented (into a large number of regions, corresponding to small k),

ski boots, which are often very detailed in the image, tend to be broken into many individual

segments (Figure 2.2). It is then difficult to automatically combine these segments together to find

a rectangle that correctly bounds the entire ski boot. Conversely, it is difficult for a segmentation

algorithm to detect the correct object boundaries around cups and mugs, and so unless the image

is over-segmented, these tend to be merged with the background.

2.4.2 Rectangle selection

Given an image segmented into irregular regions, there are various methods of using these regions to

generate rectangular windows likely to contain objects. Three simple ways are computing bounding

boxes (1) around individual segments, (2) around each segment and all of its neighbors, and (3)

around all pairs of adjacent segments. By analyzing the typical segmentations of wide or tall objects

(such as keyboards or paper cups) we found it beneficial to also take bounding boxes around triples

of segments lined up either vertically or horizontally.

These five merging schemes seem robust to a large range of object shape, size and pose variations,

which makes it possible to use the same segmentation parameters for groups of objects and partially

amortize the large segmentation cost. However, often no single merging scheme is sufficient to detect
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Figure 2.2: Left. Original image. Center. Segmentation with the parameter k = 1600. It works
remarkably very well for ski boots (shown in blue) and contains only 88 segments, most of them too
small or too big to even be considered by the classifier. However, there is no hope of recovering any
of the smaller objects, such as the coffee mugs and paper cups on the table. Right. Segmentation
with k = 100 (s = 0.8, m = 20). Notice that good bounding boxes around the mugs and cups
can now be reconstructed by combining a small number of segments, yet ski boots are extremely
over-segmented and thus very difficult to reconstruct.

a specific object class robustly. On the other hand, employing all schemes together results in an

excessive number of boxes for the classifier to analyze, increasing the running time and potentially

decreasing object detection precision if the classifier makes errors.

We introduce the parameter b which takes on one of 25 − 1 = 31 values and corresponds to

generating all the rectangles from any possible non-empty subset of these five merging schemes.

This allows the learning algorithm to automatically tradeoff speed and classification accuracy.

Note that the framework for using multiple combinations of merging scenes can be extended to

the other parameters as well; for example, combinations of the segmentation parameter k could be

considered, resulting in multiple segmentations of the same image used to propose regions.

2.4.3 Trimming parameter

Finally, the rectangles generated from this segmentation and merging process are often too large, in

a specific and repeatable way. For example, a mug on a table may be segmented almost correctly

except that the segmentation merges the mug with the edge of the table (which is very long and

thin; see level 5 in Figure 2.3 left). This effect seems common to many segmentation algorithms,

including [56, 166]. The bounding rectangle around this segment would be much larger than the

object itself, making it very difficult for the classifier to recognize the object. To account for it,

we introduce the final parameter p that determines how aggressively we trim down the generated

boxes.2

2Specifically, consider a segment (or a few segments merged together as described above) and its bounding box.
We compute the number of pixels within the left-most column of the bounding box that are also contained within
the segment. If this number is smaller than p% of the bounding box height, we consider the column “sparse” and, if
it helps bring the aspect ratio of the bounding box closer to the desired value, remove the column. We run the same
process repeatedly on right/top/bottom edges as well.
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Figure 2.3: Left. Illustration of the five sequential steps of our segmentation and rectangle selection
pipeline described in section 2.4. (1) Smooth the original image (s = 1 shown). (2) Segment (k = 150
shown). (3) Merge small segments together (m = 160 shown). (4) Propose rectangular bounding
boxes around groups of segments (only boxes around individual segments are shown). (5) Trim each
of the bounding boxes using parameter p to eliminate long sparse tails (p = 40 here). The bounding
box shown is obtained by merging three vertically aligned segments (purple, brown and blue, top to
bottom). The new bounding box is tight enough for the classification algorithm to detect the paper
cup. (Classification) Finally, evaluate each proposed rectangle with the object classifier. Note that
the picture shown here is for illustration purposes only; there is no single assignment to the five
segmentation and rectangle selection parameters that would allow the classifier to perform well on
all 3 object types in this image. Right. Illustration of the directed graph G generated by the Steiner
tree algorithm, described in section 2.5.

2.5 Steiner Trees for Parameter Selection

Since the segmentation and rectangle selection steps described above are computationally expensive,

we want to share these computations among different object classes. This sharing can occur at mul-

tiple levels; e.g., if two object detection algorithms can share the image segmentation computation

but not the rectangle selection step (which is based on the segmentation), then that would still be

preferable to sharing neither segmentation nor rectangle selection. We show how the problem of

parameter selection reduces to a directed Steiner tree.

2.5.1 Directed Steiner Trees

In the directed Steiner tree problem [221], we are given a directed graph G = (E, V ) with weights

w(E) on the edges, a set of Steiner nodes S ⊆ V , and a root node r ∈ V . Our goal is to find a

directed tree that is rooted at r so that the tree spans all vertices in S, while minimizing the total

weight of all the edges in the tree. Note that this is a somewhat different problem from the standard

Steiner tree problem [87], where the graph is undirected and there is no special “root” node.
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The directed Steiner tree problem is NP-hard;3 however, there are efficient approximation algo-

rithms. Below, we describe how our problem can be formulated as a directed Steiner tree; we then

discuss approximation algorithms.

2.5.2 Constructing the Steiner Tree

We now show how to construct the Steiner tree for our problem. An illustration of the graph G that

we use is shown in Figure 2.3 right. Recall that our segmentation and rectangle selection approach

comprises five sequential steps with parameters s, k, m, b and p. The interpretation of the graph

is as follows. The root node has five children, corresponding to the five possible (discretized) values

of s that we will consider. Each of these edges from the root has a cost equal to performing the

first step of the algorithm using the selected parameter s. Traversing the graph from the root r to a

node at level 5 corresponds to assigning values to each of the parameters s, k, m, b, and p. The cost

of each edge corresponds to the running time of performing the corresponding step of the pipeline

using the parameter selected.

The number of Steiner nodes |S| in our tree is equal to the number of object classes we are trying

to recognize (i.e., the number of classification problems we would like to do well on). The Steiner

nodes are square in the figure, and together comprise the bottom-most 6th level of the graph. A

node at level 5 of the graph, which corresponds to a set of rectangles generated using a specific

set of parameters s, k, m, b, and p, will be connected to a Steiner node at level 6 only if that

set of rectangles, when analyzed with the classifier corresponding to that Steiner node, achieves a

minimum desired level of performance. Further, the cost of this edge is the running time of the

classifier applied to the corresponding set of rectangles (which is roughly linear in the number of

rectangles examined).

By construction of the graph G and the associated costs, we see that if we are able to find a

minimum cost Steiner tree, then we will have found the set of parameters that minimize the overall

computational cost, while achieving the desired classification performance for each of our objects.

This allows trading off between classification performance and running time; for example, by relaxing

the constraints on the performance requirements of the classifiers, many more edges between level 5

and 6 nodes will be added to G, and thus the minimal Steiner tree of G will likely have smaller cost

– implying that the corresponding classifiers have faster running times.

Choosing subsets of merging methods. One final detail is necessary to correctly compute the

costs on the edges. For the sake of simplicity, we will describe this detail ignoring level 5 of the tree

(i.e., as if there was no parameter p), and imagine that level 4 nodes were directly connected to the

level 6 Steiner nodes.

3For example, when all terminals of G are exactly 2 edges away from the root r and all costs are 1, this reduces to
the minimum set cover problem [64].
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Recall the five different merging schemes for the rectangle selection step discussed in section 2.4.

If one object requires taking the union of all the rectangles from merging schemes (i) and (ii),

and another requires the rectangles from (i) and (iii), then we should not separately “charge” the

algorithm twice for computing the rectangles for (i). Instead, we want to allow the algorithm to

choose a value for parameter b that corresponds to generating all the rectangles using methods (i),

(ii) and (iii). Then, having paid the cost on the incoming edge corresponding to this value of b,

we want to allow it to use any subset of methods (i), (ii) and (iii)’s boxes to perform different

classification tasks. To accomplish this, the level 4 node corresponding to b will be connected to a

Steiner node n whenever any subset of b’s merging schemes (in this example, 23 − 1 = 7 subsets)

results in satisfactory classifier accuracy on the corresponding object. Furthermore, the cost on

this edge from b to n will be the minimum of the classifier running times for obtaining satisfactory

accuracy on this object (where in this example the minimum is taken over the 7 possible subsets of

b’s merging schemes).

2.5.3 Approximation Algorithms

Even though the directed Steiner tree problem is NP-complete even on planar graphs [64], there exist

a variety of approximation algorithms. For our application, we used the algorithm of Charikar et

al. [24]. This algorithm is extremely efficient in practice for our formulation (because of our tree-like

G), and gives good results for our problem sizes with running times ranging from a few seconds to

just under half an hour when the total number of vertices in the graph is on the order of 20, 000

(MATLAB implementation).

Briefly, the algorithm, which is parameterized by i, works as follows. For i = 1, it simply

computes the shortest paths from the root to each of the terminals, and combines them to output a

spanning tree. This gives a trivial |S|-approximation (where |S| is the number of objects). Because

there is at most one directed path from any node v to any other node u in our input graph G, these

shortest path computations can be done extremely efficiently. The algorithm is recursive, and for

higher values of i it successively finds better approximations, using the output of the algorithm with

parameter i− 1 run on different subgraphs of G. (See [24] for details.)

2.6 Experiments

Given the setup described above we test our algorithm on (1) a combination of 359 images of indoor

office scenes from the LabelMe dataset [158], combined with our own collected dataset of 557 indoor

images, and (2) the outdoor StreetScenes dataset [14].
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2.6.1 Training stage 1: Object classifiers

We analyze the performance of our algorithm on 9 common indoor objects (cans, clocks, computer

monitors, door handles, keyboards, paper cups, ski boots, and wastebaskets) and 2 outdoor objects

(cars and pedestrians). For each object we wish to recognize, we train a binary classifier using

the method of Torralba et al. [184]. Briefly, for each object of interest, we obtain a set of positive

and negative training examples, all cropped to the same default window size chosen based on the

object’s aspect ratio (e.g. mugs and clocks were scaled to fit into a 32 × 32 window, keyboards

96 × 32, cups 32 × 40). We build a patch dictionary for each object by extracting a set of random

patches from the positive training examples, and recording the location within the image that each

patch originated from. The patches are extracted from the intensity and gradient magnitude images.

For each patch and for each training image, we then compute the corresponding feature by finding

the maximum normalized cross-correlation between the patch and the training example within a

small window around the original location of the patch. Given these features, we use the Gentle

AdaBoost algorithm to train a binary decision tree classifier.

We used the implementation of [70] for this stage of training. The indoor object detectors were

trained using 214 of our collected scenes of office environments, and took around 2-4 hours each to

train. For the outdoor images we used 80% of the 3547 StreetScene images, along with the INRIA

dataset [34], to train the classifiers.

Run-time object detection. During test time, the standard approach is to apply the classifier

to every subwindow of a full-size image to determine if this subwindow outlines the object of interest.

To detect objects of multiple sizes, this is done for a discrete set of scales, e.g., by repeatedly making

the image 1.2 times smaller.

As suggested by [184], in this case the feature computation step can be significantly sped up

by pre-computing convolutions over the entire image. At each scale σ, one first computes, for each

patch gf , the response image Ifσ (x, y) = (Iσ⊗gf ), where ⊗ is the normalized cross-correlation and Iσ

is the image at that scale. These full-sized response images are then used to analyze each subwindow

(in 4 pixel shifts) within Iσ using our trained classifier.

When running detection on the sparse candidate set of regions obtained using our segmentation

and rectangle selection method, full-image convolutions are no longer effective. Thus we have to

compute the features individually within each promising window. Despite this, we are able to

reduce the number of windows so drastically that our algorithm still shows significant run-time

improvements.

2.6.2 Training stage 2: Steiner trees

In the second stage of training, we learn the best parameter settings for our object detection pipeline

using the Steiner tree formulation. For every possible setting of the 5 segmentation and rectangle



CHAPTER 2. A STEINER TREE APPROACH TO EFFICIENT OBJECT DETECTION 14

selection parameters, we obtain a set of windows to analyze, and then evaluate the performance of

each of the object classifiers on these regions. To provide a more controlled comparison to sliding

windows, our algorithm is constrained to only return boxes which would have been considered by

sliding windows (so shifts of 4 pixels, and successive changed in scales of 1.2). Each bounding

box proposed by the segmentation and rectangle selection pipeline is mapped to 8 sliding window

location boxes (4 at the smaller scale and 4 at the larger scale). This part of Steiner tree training

takes on the order of 8 hours parallelized over 20 machines for around 500 704x480 training images.

We report results using the Steiner approximation algorithm [24] with i = 2. We also experi-

mented with i = 3, since larger values of i give better approximations, but due to the structure of

our graph, i = 3 typically gave identical results to i = 2, while increasing the training time of this

stage from 1-2 minutes to up to half an hour.

2.6.3 Evaluation

During the object detection test phase, for each object we generate proposed windows in the test set

images using the chosen segmentation and rectangle selection parameter, making sure to reuse com-

putation whenever possible between objects (i.e., if the Steiner tree learned the same segmentation

parameter setting for both monitors and keyboards, but different rectangle selection parameters,

then we will only segment the image once but then will run multiple rectangle selection methods).

These windows are then evaluated using our binary classifiers, and the results are reported below.

Indoor scenes

To analyze our approach, we use a combination of the remaining 343 images from our collected

dataset (which were not used for classifier training) along with 359 images from LabelMe [158], all

scaled to 704x480 resolution. 70% of these images are used for Steiner tree training and 30% for

testing. We employ the evaluation criteria of Pascal VOC [48], so a detection is considered positive

only if its intersection with a ground truth bounding box divided by their union is greater than 50%,

and at most a single detection per groundtruth object is considered correct.

We compare the test set classification accuracy and the test set running times (Table 2.1) to

those of the sliding window detector. The reported running times include feature computation, and

represent the average processing time per image per object. As mentioned in section 2.6.1, the image

features in the sliding window approach can be simultaneously computed very efficiently on the

full image using convolutions and integral images. In contrast, our approach computes the features

separately for each selected window.

For the first experiment, we simply choose, for each object independently, the parameter setting

which achieves the best performance (area under the PR curve) on the training set. We refer to this

method as “100B”, and use it as a baseline to compare against the Steiner tree-based algorithm. In

this setting, there is very little sharing amongst objects (the single best performing parameter setting
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Method Sliding Windows 100B 95B 90B 80B

Detection time (seconds) 18.85 4.62 2.43 1.72 1.29
Number of windows 52398 1685 917 570 394

Detection
Accuracy

Average 0.443 0.489 0.462 0.446 0.421
Boot 0.322 0.550 0.572 0.555 0.565
Can 0.455 0.486 0.452 0.391 0.359
Clock 0.793 0.722 0.618 0.736 0.629
Cup 0.514 0.532 0.470 0.421 0.383
Handle 0.089 0.173 0.173 0.182 0.247
Keyboard 0.452 0.535 0.526 0.457 0.456
Monitor 0.647 0.695 0.665 0.664 0.630
Mug 0.564 0.590 0.547 0.473 0.392
Trashcan 0.152 0.120 0.132 0.134 0.125

Table 2.1: Test set performance of each parameter selection method on the supplemented LabelMe
dataset. Detection time and the average number of windows analyzed are reported per image
per object. The “Average” row contains the average area under the PR curve over all 9 objects.
Performance superior to the sliding windows approach is bold-faced.

for one object is in practice very different from the best performing parameter setting on each of the

other objects). Even with this simple method, which does not take advantage of the Steiner tree

formulation, just from using the segmentation algorithm we obtained a 31x reduction in the number

of windows considered, resulting in running 4 times faster than standard sliding windows (despite the

added computational cost of computing features independently for each window). Further, because

the segmentation eliminated many false positive windows which were previously considered by the

classifier, this method yielded a 10% improvement in average area under the PR curve over the 9

objects we considered.

For “100B” we chose (for each object independently) the parameter setting that gives the best

classification performance on the training set; in the next set of experiments, we consider any

parameter setting that performs within 5%, 10%, and 20% of this optimum (referred to as methods

“95B”, “90B”, and “80B” respectively). This results in more connections between the 5th and 6th

levels in the graph G, and thus in minimal Steiner trees of lower cost.

With these methods, the detection accuracy slowly degrades down to 5% below the performance

of sliding windows, while the reduction in the number of windows analyzed and the speedup in

the detection running time increase to 133x and 14.5x respectively. Most notable is the 90B algo-

rithm which achieves an 11x improvement in running time (92x fewer windows considered) without

sacrificing average detection accuracy.

Outdoor scenes

We also evaluated the performance of our approach on the StreetScenes dataset [14]. The 710 images

remaining after classifier training were split in half and used for training and evaluating our detection
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Figure 2.4: Accuracy of our algorithm on 355 images from the StreetScenes dataset. The blue line
corresponds to the sliding windows algorithm, and the red bold line is our algorithm.

approach. The images were scaled down to 320x240 resolution. For each ground truth object at

most one detection was considered correct. A detection was considered positive when its intersection

with the ground truth bounding box divided by their union was at least 20%.4

We used all parameter settings that performed within 99% of optimal as measured by maximum

F-score, and obtained the PR curves shown in Figure 2.4. Since objects are often occluded, it is very

difficult to obtain a good segmentation of this dataset, and the ability to combine multiple segments

in various ways to generate better bounding boxes was key to getting good performance.

The number of regions classified per object class on average went down from 9548 per image to

158 (60.4x). The running time of the sliding windows algorithm was 7.95 seconds per image per

object; we are able to run in 0.524 seconds per object (15.2x). In this case only two object classes

are being detected; our approach is designed to achieve even greater speed-ups with more classes.

2.7 Conclusions

We have described a method for speeding up object detection algorithms to enable them to be used

in real-time applications. We present an approach that segments the image and uses the resulting

segments to propose image windows most likely to contain the objects of interest. We then use

object classifiers to analyze only these proposed regions. Central to our approach is a method for

choosing a small subset of segmentation parameters to use for all object classes, so that the cost of

4This criteria was used e.g., by [79], and was chosen because the object size in the images is so small: the smallest
car in the test set is just 7 × 7 pixels, and the smallest pedestrian is 7 × 14 pixels. Our classifiers expected the input
size of 40 × 20 and 32 × 64, which helps explain the poor baseline recognition performance on this dataset.
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segmentation is amortized across multiple object classes. This is done using a directed Steiner tree

formulation. Our method results in a significant (10x) speedup compared to the standard sliding

window technique without sacrificing accuracy, and a 15x speedup with a slight drop in accuracy.

More generally, the directed Steiner tree formulation also applies to other multitask learning

scenarios [20] in which features have different costs to compute or measure, and certain computations

may be prerequisites of others, but where we would like to find the minimum cost set of the features

while maximizing classification performance.



Chapter 3

Attribute learning in large-scale

datasets

3.1 Introduction

Computer vision has traditionally focused on object categories: object classification, object segmen-

tation, object retrieval, and so on. Recently, there has been some interest in transitioning from

learning visual nouns (whether object categories, such as cars or pedestrians, or object parts, such

as “wheel” or “head”) to visual adjectives (such as “red” or “striped” or “long”) which can be used

to describe a wide range of object categories [108, 58, 50, 49, 106, 148]. Learning visual attributes

has been shown to be beneficial for improving performance of detectors [50] but especially for trans-

ferring learned information between object categories. For example, learning the color “red” or the

pattern “striped” from a series of training images can then be used to recognize these attributes in

a variety of unseen images and object categories [108, 50].

The term “attribute” is defined in Webster’s dictionary as “an inherent characteristic” of an

object, and various types of attributes have been explored in the literature: appearance adjectives

(such as color, texture, shape) [108, 58, 50, 49, 106, 214], presence or absence of parts [108, 49, 148]

and similarity to known object categories [108, 106, 148]. Attributes have also been broken up into

(1) semantic, i.e., those that can be described using language [108, 49, 214], and (2) non-semantic but

discriminative [50] or similarity-based [106, 148]. In this chapter, we focus on semantic appearance

attributes.

Attributes and parts-based models are particularly important when building large-scale systems,

where it is infeasible to train an object classifier independently for each object class. Given a

sufficiently rich dataset of learned adjectives, new categories of objects can be recognized simply

from a verbal description consisting of a list of the attributes [108, 50] or a verbal description in

18



CHAPTER 3. ATTRIBUTE LEARNING IN LARGE-SCALE DATASETS 19

Figure 3.1: The goal of our work is to build visual connections between object categories. We
focus on the large-scale ImageNet dataset which currently uses WordNet [128] to provide a semantic
hierarchy provides a semantic hierarchy of categories. Discovering a visual hierarchy would be useful
for a variety of tasks; for example, targeted retrieval.

combination with just a few training examples [50].

In this chapter, we consider learning multiple visual attributes on ImageNet [36], which is a

large-scale ontology of images built upon WordNet [128]. It contains more than 11 million images

representing more than 15 thousand concepts. While the dataset already provides useful structure

and connections between object classes through the hierarchical semantic ontology of WordNet, we

want to learn visual relationships or hierarchies between the classes (see Figure 3.1). We begin by

describing the existing connections within the ImageNet dataset in Section 3.2, and discussing prior

work for attribute learning in Section 3.3. In Section 3.4 we describe our approach to obtaining

ground truth human labeling of attributes. We then learn 20 visual attributes on the ImageNet data

and present results on a number of tasks in Section 3.5. We conclude and discuss future work in

Section 3.6.

3.2 Learning visual connections in ImageNet

The ImageNet dataset [36] contains representative images for more than 15 thousand image cate-

gories, or synsets as they are called in WordNet.1 Recently, bounding box annotations have been

released for some of the categories, making it easier to perform object categorization or attribute

learning. However, the dataset remains highly challenging, with lots of variety within the synsets,

as shown in Figure 3.2.

1We use the terms “synset” and “object category” interchangeably.
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Edible fruit subtree
Fig synset Pineapple synset Mango synset Kiwi synset

Figure 3.2: Example images of synsets that are direct descendants of the edible fruit synset. First, the
high variability within each of the four synsets makes classification on this dataset very challenging.
Second, the four object classes are sibling synsets in WordNet since they are all children of the
“edible fruit” synset; however, visually they are quite different from each other in terms of color,
texture and shape.

Noun hierarchies such as WordNet have been very successfully used in natural language process-

ing. However, the WordNet noun hierarchy is far from visual; for example, human-made objects

within ImageNet are organized by their high-level purpose and animals are organized by their evolu-

tionary relation, and as a result the sibling synsets are often very far from each other in appearance

(see Figure 3.2). Evolutionary hierarchies are fundamental in genomics and evolutionary biology,

but for computer vision, it would be more useful to be able to derive a hierarchy of (or at least a

set of relations between) object categories that’s based on visual adjectives or attributes of objects,

rather than their evolutionary relation.

Connections based on the visual attribute such as “striped” are missing: striped animals (zebras,

raccoons, tigers), striped insects (hairstreak butterfly), striped flowers (butterfly orchid, moosewood

tree), striped vegetables (cushaw, watermelon), striped fish (black sea bass, lionfish) and inanimate

objects such as striped fabric are not related within ImageNet. To the best of our knowledge,

previous work on attributes has focused on making connections within a much more narrow set

of object categories (such as animals [108, 148], cars [50, 49] or faces [106]). We are interested in

discovering visual relations between all categories of ImageNet, from fruits to animals to appliances

to fabrics. We show in Section 3.5.4 that our algorithm indeed manages to do that.

3.3 Related work

Ferrari and Zisserman [58] proposed learning attributes using segments as the basic building blocks.

They distinguish between unary attributes (colors) involving just a single segment and binary at-

tributes (stripes, dots and checkerboards) involving a pattern of alternating segments. Since their

method relies on obtaining a near-perfect segmentation of the pattern, in practice it’s difficult to

apply to challenging natural images – for example, the stripes of a tiger are very difficult to segment

out perfectly, and the orange background stripes would often get merged into a single segment,
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contrary to what their attribute classification algorithm expects.

Yanai and Barnard [214] learned the “visualness” of 150 concepts by performing probabilistic

region selection for images labeled as positive and negative examples of a concept, and computing

the entropy measure which represents how visual this concept is. They evaluated their algorithm on

Google search images, and also considered each image to be a collection of regions obtained from

segmentation, but didn’t consider the pairwise relationship between the regions.

Recently, Lampert et al. [108] considered the problem of object classification when the test set

consists entirely of previously unseen object categories, and the transfer of information from the train-

ing to the test phase occurs entirely through attribute text labels. They introduced the Animal with

Attributes dataset with 30,000 images annotated with 50 classes. They are interested in performing

zero-shot object classification (where the object classes in the training and test sets are disjoint)

based on attribute transfer rather than learning the attributes themselves or building an attribute

hierarchy. Interestingly, some of their attributes are not even fundamentally “visual” (for example,

“strong” or “nocturnal”), but were nevertheless found to be useful for classification [108]. One in-

teresting thing to point out in relation to our work is that ImageNet already has subtrees for some

of their adjectives, such as edible, living, predator/prey/scavenger, young, domestic, male/female,

even insectivore/omnivore/herbivore. While many of their other attributes are animal-specific, such

as “has paws,” and thus not as useful in our setting for making connections between a broad range

of object categories, we were inspired by their list in creating our own.

Farhadi et al. [50] worked on describing objects by parts, such as “has head,” or appearance

adjectives, such as “spotty.” They wanted to both describe unfamiliar objects (such as “hairy and

four-legged”) and learn new categories with few visual examples. They distinguished between two

types of attributes: semantic (“spotty”) and discriminative (dogs have it but cat don’t). Similarly,

Kumar et al. [106] considered two types of attributes for face recognition: those trained to recognize

specific aspects of visual appearance, such as gender or race, and “simile” classifiers which represent

the similarity of faces to celebrity faces. We focus on semantic attributes in the current work, but

argue that ultimately discriminative and comparative attributes are necessary because language is

insufficient to precisely describe, e.g., the typical shape of a car or the texture of a fish.

Rohrbach et al. [148] use semantic relationships mined from language to achieve unsupervised

knowledge transfer. They found that path length in WordNet is a poor indicator of attribute

association (for example, the “tusk” synset is very far from the “elephant” synset in the hierarchy,

making it impossible to infer that elephants would have tusks). They show that web search for

part-whole relationships is a better way of mining attribute annotations for object categories. In our

work, we also explore using WordNet to mine attribute associations, but consider using the WordNet

synset definitions rather than path length.

Most recently, Farhadi et al. [49] discussed creating the right level of abstraction for knowledge

transfer. They learned part and category detectors of objects, and described objects by spacial
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arrangement of their attributes and the interaction between them. They focused on finding animal

and vehicle categories not seen during training, and inferring attributes such as function and pose.

They learn both the parts that are visible and not visible in each image.

Literature after the publication of this work has examined relative attributes [138], scene at-

tributes [1], attribute calibration [164] and efficient learning with attributes [140, 15, 107] among

other related topics.

3.4 Building and labeling an attribute dataset

In order to learn and evaluate attribute labels, we first need to obtain ground truth annotations of the

images. [148] discusses various data mining strategies; however, it focuses on parts-based attributes,

mining for relations such as “leg is a part of dog” or “dog’s leg.” WordNet provides a definition

for every synset it contains; since we are instead interested in appearance-based attributes, we

considered two strategies: mining these definitions directly (which is different than the path length

discussed in [148]), and manual labeling (which was the approach of [108, 49]).

WordNet synset definitions are not well-suited for mining visual adjectives for several reasons.

First, the mined adjectives don’t necessarily correspond to visual characteristics of the full object

and require understanding of the object parts (e.g., animals with a “striped tail”). Second, the

mined adjectives often need to be understood in the context of other adjectives in the definition

(e.g., a flower described as “yellow or red or blue”). Also, sometimes the adjectives are extremely

difficult to detect visually (e.g., a flag is defined as “rectangular” but usually doesn’t look rectangular

in the image). However, since ImageNet is a very large-scale dataset, mining for attributes in this

very simple way can help restrict attention to just a subset of the ImageNet data which is likely to

contain a sufficient amount of positive examples for each attribute. To construct the dataset of 384

synsets that we use for our experiments, for every attribute we searched for all synsets (from among

those with available bounding box annotations) which contained this attribute in either the synset

name or the synset definition, and included that synset along with all of its siblings in the training

set. The motivation for including the siblings was to provide a rich enough set of negative examples

that are likely to differ from the positive synsets in only a few characteristics, and specifically in the

characteristic corresponding to the mined attribute. For example, if a zebra is characterized as a

“striped” equine, it’s reasonable to infer that other equines, such as horses, are not striped.

In order to obtain the ground truth data we use workers on Amazon Mechanical Turk (AMT)

to label 25 images randomly chosen from each synset. We present each worker with 106 images (25

each from 4 different synsets plus 6 randomly injected quality control images) and one attribute,

and ask to make a binary decision of whether or not this attribute applies to the image. For color

attributes (black, blue, brown, gray, green, orange, pink, red, violet, white and yellow), we ask

whether a significant part of the object (at least 25%) is that color. For all other attributes (furry,
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Attribute WordNet Both AMT
Green salad, sukiyaki, absinthe green lizard, grass sunflower, bonsai

Rectang. flag, sheet, towel box bench, blackboard, cabinet
Round feline, pita, shortcake ball, button, pot basketball, drum, Ferris wheel
Spotted cheetah, giraffe, pinto jaguar garden spider, strawberry, echidna
Striped aardwolf, zebra garden spider, skunk, basketball
Wooden cross, popsicle marimba cabinet, pool table, ski
Yellow grizzly, yolk, honey sunflower margarine

Table 3.1: Examples of synsets labeled positive by mining WordNet definitions, by both WordNet
and AMT labelers, and just by AMT labelers.

long, metallic, rectangular, rough, round, shiny, smooth, spotted, square, striped, vegetation, wet,

wooden), we ask if they would describe the object as a whole using that attribute.

Each image is labeled by 3 workers, and we consider an image to be positive (negative) if all

workers agree that it’s positive (negative); otherwise, we consider it ambiguous and don’t include it in

our training sets. Unfortunately, for 5 of our attributes (blue, violet, pink, square and vegetation) we

did not get sufficient positive training data (at least 75 images) to include them in our experiments.

We analyze the overlap between the mined synsets and the human labeling in Table 3.1. We

consider a synset to be labeled positive for an attribute by AMT workers if more than half of its

labeled images are unanimously labeled as positive. Interestingly, some obvious annotations such

as “green salad” or “striped zebra” were not present in the human labels. This shows that data

obtained from AMT can be extremely noisy, and that better quality control and/or more annotators

are needed. Currently we are only considering an image to be a positive or negative example if it

is labeled unambiguously; while this gives us good precision in our training set, the recall is much

lower than we would like, and thus the number of training examples for each attribute is low despite

the large dataset size. Overall, we have 384 synsets × 25 images per synset = 9600 images labeled

with 20 attributes, with 4% of all labels being positive, 68% negative, and 28% ambiguous.

Figure 3.3 shows some example positive examples for the attribute “striped.” This demonstrates

the some of the challenges faced by computer vision classifiers that aim to detect the “striped”

objects.

3.5 Experiments

We have described the procedure for obtaining 384 imageNet synsets, all of which have bounding

box annotations released, with 25 images within each labeled as positive, negative or ambiguous for

each of 20 attributes. In this section we show classification and retrieval performance of attribute

classifiers trained using this data, as well as apply these classifiers to a simple transfer learning

task following the framework of Lampert et al. [108]. Finally, we show the visual links that were
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Figure 3.3: Some example images labeled by the human subjects as “striped.” There is large intra-
class variation, making this a challenging computer vision dataset.

discovered between distant ImageNet synsets.

3.5.1 Implementation

We represent each image using three types of normalized histogram features: (1) color histogram

of of quantized RGB pixels using a codebook of size 50, (2) texture histogram of quantized SIFT

descriptors at multiple levels using a codebook of size 1000 [123, 152], and (3) shape histogram

of quantized shape-context features [8] with edges computed using the Pb edge detector [126, 21]

using a codebook of size 500. Each of the three feature histograms was normalized independently

to have L1 unit length. We use an SVM with a histogram intersection kernel [23, 176], which in

our experiments significantly outperforms both the linear and RBF kernels. We use a holdout set

to determine the regularization.

3.5.2 Learning image attributes

First, we train the classifiers to recognize each attribute individually and evaluate the generalization

performance. All images in our training set are labeled by 3 AMT workers, and we consider an

image to be a positive (negative) example of an attribute if all subjects agree that this is a positive

(negative) example. We use 5-fold cross-validation, making sure that no synset appears in multiple

folds. Results are shown in Table 3.2 and Figure 3.4.

Some classifiers, such as those corresponding to the color attributes, generalize quite well in

this setting. We point out the two main challenges we face when training the attribute classifiers.

First, the “pattern” classifiers corresponding to “striped” and “spotted” attributes perform poorly

as a result of the great variety of the exemplars (see Figure 3.3 for examples of “striped” images).

There is a lack of training data especially in light of this variety (only 99 images were labeled as
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Attr. black brown gray green orange red white yellow furry metal rough
ROC 0.843 0.811 0.851 0.907 0.907 0.951 0.797 0.929 0.851 0.867 0.646

Attr. shiny smooth wet wooden spotted striped long rectangular round
ROC 0.804 0.614 0.787 0.854 0.663 0.606 0.817 0.766 0.895

Table 3.2: Performance of attribute classifiers as measured by the area under the ROC curve.

Figure 3.4: Performance of attribute classifiers sorted by attribute type. The average performance
of each type is reported in parentheses. Performance is measured by the area under the ROC curve.

“striped” and 146 as “spotted”). As the number of object categories increases, so does the variety of

appearances of certain attributes, and thus the amount of training data collected should be sufficient

to account for this.

Second, the two texture attributes “rough” and “smooth” suffer from ambiguity as evidenced

by the lack of labeling consensus. The labelers unanimously agreed on only 66% of the images in

the dataset when labeling with the “smooth” attribute, and 72% when labeling with the “rough”

attribute. In contrast, for every other attribute the annotators unanimously agreed on more than

79% of the images. As a result, whether an image was labeled as a positive or negative training

example for “rough” or “smooth” was largely dependent on the specific set of labelers assigned to

it. Such attributes require further refinement and/or better definitions during the labeling process.

In Figures 3.5-3.7 we show qualitative retrieval results using the trained classifiers. Note that

many of the top correctly retrieved images were not used in the quantitative evaluation because they

were not unanimously labeled by the labelers. This further reinforces the need for more rigorous

labeling procedures.
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furry rectangular

metallic orange

Figure 3.5: Visualization of four of the learned attributes (for the other attributes, see Figures 3.6
and 3.7). For each attribute, the 5 rows represent the 5 training folds, and each row shows the top
8 images retrieved from among all synsets that didn’t appear in that fold’s training set. The border
around each image corresponds to the human labeler annotation (green is positive, red is negative,
yellow is ambiguous).

3.5.3 Transfer learning using attributes

We use the learned classifiers in a small-scale transfer learning experiment following the Direct

attribute prediction (DAP) model of Lampert et al. [108]. Briefly, we are given L test classes z1,...,L

not seen during training, and M attributes, where the test classes are annotated with binary labels

alm for each class l and attribute m. In our experiments we consider L = 5 test classes: chestnut,

green lizard, honey badger, zebra, and spitz, and M = 20 attributes described above. The synset-

level annotations come from AMT human labelers.2 We use 25 images per object class as above,

Given an image x, the DAP model defines the probability of this image belonging to class z as

p(z|x) =
∑

a∈{0,1}M
p(z|a)p(a|x) =

p(z)

p(az)

M∏
m=1

p(azm|x)

2Out of 100 class-attribute labels, 18 were ambiguous, meaning that less than half the images within that class were
unanimously annotated as either positive or negative for that attribute by all 3 workers. We manually disambiguated
the annotations.
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black brown

gray green

long red

rough round

Figure 3.6: Continuation of Figure 3.5 visualizing the learned attributes.



CHAPTER 3. ATTRIBUTE LEARNING IN LARGE-SCALE DATASETS 28

shiny smooth

spotted striped

wet white

wooden yellow

Figure 3.7: Continuation of Figures 3.5 and 3.6 visualizing the learned attributes.



CHAPTER 3. ATTRIBUTE LEARNING IN LARGE-SCALE DATASETS 29

chestnut: brown,smooth 0.52 0.16 0.12 0.12 0.08

green lizard: green, long 0 0.84 0 0.12 0.04

honey badger: black, gray, rough, furry 0.32 0 0.60 0.04 0.04

zebra: black, white, striped, smooth 0.36 0.08 0.40 0.08 0.08

spitz: white, furry 0.08 0 0.36 0.08 0.48

Table 3.3: On the left are the animal classes and the corresponding human attribute annotations,
and on the right is the confusion table from the transfer learning experiments. The rows of the
confusion table are the ground truth labels and the columns are the classifier outputs.

where p(azm|x) is given by the learned attribute model, p(z) is assumed to be a uniform class prior,

and p(az) is the prior on seeing an example with the same set of attributes as the ground truth for

the target class z, computed from training data assuming a factorial distribution over attributes.

Image x is assigned to class c(x) using:

c(x) = arg max
l=1,...,L

M∏
m=1

p(azlm|x)

p(azlm)

We apply this model to our learned classifiers and report our result in Table 3.3. The main

source of errors is the zebra class, which relies on the poorly generalizing “striped” attribute (see

results in Table 3.2 and Figure 3.4).

3.5.4 Synset-level connections

Given the attribute classifiers we can now consider making synset-level connections within ImageNet,

which was the main objective of our work. For each attribute, we have 5 learned classifiers, one

for each of the 5 folds. We fit a sigmoid to the output of each classifier to obtain normalized

probabilities [23, 146]. We run each classifier on all images that were not part of its training set

synsets. For each test synset, we compute the median confidence score of the classifier on images

within that synset. Figure 3.8 shows the top returned synsets.

There are various interesting observations that could be made about the retrieved synsets.

“Green” and “round” classifiers discover connections between synsets which are very far apart in the

WordNet hierarchy – for example, salad, which is a node 6 levels deep under the “food, nutrient”

subtree of ImageNet, green lizard, which is 13 levels deep under the “animal” subtree, and bonsai,

which is 9 levels deep under the “tree” subtree. of dogs as well as Persian cats, sails, and sheets.

The round classifier connects, e.g., basketball, ramekin, which is “a cheese dish made with egg and

bread crumbs that is baked and served in individual fireproof dishes” [128], and egg yolk.
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green
salad (.84), green lizard (.73), bonsai (.52), pesto (.43), saute (.37), daisy (.30),
pot-au-feu (.12), salsa (.12), roughage (.11), cow (.11)

round
egg yolk (.75), basketball (.68), button (.63), goulash (.56), basket (.49), ramekin (.47),
ball (.42), pot (.42), veloute (.39), miso (.37)

striped
barn spider (.36), daisy (.17), zebra (.17), echidna (.16), backboard (.13), drum (.12),
coloring (.12), roller coaster (.12), bridge (.11), colobus (.11)

wet
rorqual (.59), sidecar (.55), orangeade (.53), flan (.52), screwdriver (.47), killer
whale (.44), bowhead (.43), maraschino (.41), dugong (.40), porpoise (.40)

Figure 3.8: This figure shows the top 10 synsets that were returned by the algorithm as the most
representative for a subset of the attributes (see Figures 3.9 and 3.10 for the remainder). The
number in parenthesis represents the median probability assigned to images within that synset by
the attribute classifier.

“Striped” and “wet” discovered some interesting connections – even though it is extremely diffi-

cult to learn the high variability of stripes in natural scenes, zebras and echidnas were retrieved, as

well as “garden spiders,” which actually often do look striped upon inspection even though it is not

a common example that humans would think of as a striped insect. The “wet” classifier especially

was able to pick up on some very promising connections: besides just learning that the ocean tends

to be wet and thus marine animals are likely wet, it also made the connection to cocktail drinks

such as sidecar and screwdriver.

Figures 3.9 and 3.10 show the results on the rest of the synsets. It is interesting to look at

attributes such as “long,” which are more contextual and relative, and see the kinds of synsets

that were learned. It is not immediately clear that the classifier is picking up on the synsets that

human would classify as “long,” although bottles and forks definitely are. It would be interesting to

investigate these types of classifiers further, both through the use of a much richer training set as

well as by directly visualizing the learned features.
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3.6 Conclusions

In this work we began building a set of visual connections between object categories on a large scale

dataset. Our ultimate goal is to automatically discover a large variety of visual connections between

thousands of object categories. Discovering semantic attributes can aid in more intelligent image

retrieval: for example, the user can specify exactly what he’s looking for using a known dictionary

of attributes instead of visual training examples. More interestingly, clustering the attributes into

categories, such as shape, texture, color, and so on, and working with non-semantic attributes, can

potentially lead to at least two major advantages. First, this can allow for new ways of object

classification training: instead of showing the algorithm a large variety of cars during training, one

can simply inject a bit of prior knowledge that cars can come in all colors but shape is the important

characteristic. Second, in retrieval, instead of asking to find an image closest to the query, the user

can instead specify that he’s looking for something that’s close in color to the query image, but

round.
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black

colobus (.78), siamang (.75), guereza (.73), groenendael (.71), binturong (.69),
chimpanzee (.66), schipperke (.66), silverback (.63), aye-aye (.54), gorilla (.54),
skunk (.53), bowhead (.50)

brown
puku (.82), lechwe (.73), kob (.73), steenbok (.66), sassaby (.65), redbone (.62),
bushbuck (.60), ragout (.59), dhole (.57), chestnut (.56), bovid (.54), sambar (.54)

furry

keeshond (.94), chacma (.93), macaque (.90), grivet (.90), grizzly (.88),
gorilla (.88), baboon (.88), mandrill (.88), koala (.86), simian (.86), guenon (.85),
kit fox (.85)

gray

koala (.42), abrocome (.39), gorilla (.38), grivet (.33), keeshond (.29), manul (.29),
schnauzer (.29), chacma (.29), viscacha (.28), vervet (.28), hominid (.27),
otter (.26)

long
kirsch (.83), sail (.77), rorqual (.74), police van (.72), fork (.69), rack (.67), killer
whale (.58), window (.54), transporter (.50), pool table (.49)

metallic

fork (.72), transporter (.56), roller coaster (.49), stick (.41), wheel (.38),
police van (.37), keyboard (.34), sail (.31), bridge (.31), building (.28), ski (.25),
bowhead (.25)

orange

orangeade (.73), egg yolk (.58), sunflower (.44), strawberry (.43), fork (.42),
maraschino (.42), casserole (.39), screwdriver (.37), pizza (.35), croquette (.30),
vermouth (.30), moussaka (.29)

rectangle

police van (.90), transporter (.84), cabinet (.61), marimba (.50), window (.44),
varietal (.42), flag (.38), bridge (.38), kummel (.31), pot (.29), generic (.28),
pool table (.26)

Figure 3.9: Continuation of Figure 3.8 showing the visual connections made between synsets.
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red
shortcake (.70), basketball (.67), catsup (.55), teriyaki (.43), salad (.42), pizza (.37),
chili (.30), flan (.26), ragout (.23), slumgullion (.22), bordelaise (.20), police van (.18)

rough

fork (.11), ski (.11), transporter (.11), sail (.11), rorqual (.11), bowhead (.11),
keyboard (.11), cross (.11), killer whale (.11), roller coaster (.11), narwhal (.11),
stick (.11)

shiny

rorqual (.95), bowhead (.82), killer whale (.61), dugong (.54), narwhal (.52),
manatee (.44), porpoise (.31), police van (.27), kirsch (.27), flag (.21), stick (.21),
ski (.20)

smooth
sail (.65), kirsch (.64), varietal (.63), champagne (.62), generic (.61), green lizard (.58),
bottle (.56), egg yolk (.55), window (.55), mallet (.54), pool table (.53), tower (.53)

spotted

barn spider (.37), zebra (.26), Ferris wheel (.24), cheetah (.19), insectivore (.16),
badger (.15), carnivore (.15), grass (.15), kudu (.14), groundhog (.13), pesto (.12),
dik-dik (.12)

white
kuvasz (.70), Saint Bernard (.67), clumber (.65), wirehair (.62), foxhound (.60),
sheet (.49), gerbil (.48), Persian cat (.48), sail (.45), bullterrier (.43)

wooden

fork (.75), rack (.66), bridge (.54), police van (.52), pool table (.46), table (.43),
kirsch (.42), marimba (.40), squash racket (.36), transporter (.35), cue (.35),
slivovitz (.27)

yellow
egg yolk (1.00), sunflower (.86), omelet (.70), kedgeree (.64), flan (.61), tostada (.48),
succotash (.42), pizza (.35), zabaglione (.26), ravigote (.25), curry (.23), casserole (.21)

Figure 3.10: Continuation of Figures 3.8 and 3.9 showing the visual connections made between
synsets.



Chapter 4

Simultaneous image classification

and object localization

4.1 Introduction

Image object recognition has been a major research direction in computer vision. Its goal is two-

fold: deciding what objects are in an image (classification) and where these objects are in the image

(localization). Intuitively, if we know which objects are present, determining their location should be

easier; alternatively, if we know where to look, recognizing the objects should be easier. Therefore,

it is natural to think of these two tasks jointly [129, 13, 22, 102, 30, 224, 57, 78, 172].

However, in practice, classification and localization are often treated separately. Object lo-

calization is generally deemed as a harder problem than image classification even when precise

object location annotations are available during training. In the purely image classification set-

ting, it may be seen as a detour to attempt to localize objects. As a result, current state-of-the-

art image classification systems don’t go through the trouble of inferring object location informa-

tion [203, 227, 215, 152, 48]. Most classification systems (at the time of publication of this work) are

based on spatial pyramid matching (SPM) [112] which pools low-level image features over pre-defined

coarse spatial bins, with little effort to localize the objects [203, 227, 215].1

This chapter proposes a novel object-centric spatial pooling (OCP) approach for image classi-

fication. In contrast to SPM pooling, OCP first infers the location of the object of interest and

then pools low level features separately in the foreground and background to form the image-level

representation. As shown in Figure 4.1, if the location of the object of interest (a car in this case)

is available, OCP tends to produce more consistent feature vectors than SPM pooling. Therefore,

1The state of the art in image classification has improved significantly since the publication of this work. Instead
of pooling low-level image features over coarse spatial bins, a unified neural network classifier is now commonly
used [104, 170, 177]. There is still no explicit effort to localize the object in most modern image classification systems.

34
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Figure 4.1: We present object-centric spatial pooling (OCP), a method which first localizes the
object of interest and then pools foreground object features separately from background features.
In contrast, Spatial Pyramid Matching (SPM) based pooling [112] (top), the most common spatial
pooling method for object classification, results in inconsistent image features when the object of
interest (here, a car) appears in different locations within images, making is more difficult to learn an
appearance model of the object. For the purpose of easy illustration, circles (yellow) denote object-
related local features, triangles (green) denote background-related local features, and the numbers
indicate the fraction of the respective local features in each pooling region.

object location information can be very useful for further pushing the state-of-the-art performance

of image classification.

Of course, the challenge for OCP is deriving accurate enough location information for improving

classification performance. If the derived location information is not sufficiently accurate, it can end

up hurting classification accuracy. There is interesting previous work on learning object detectors

using only image-level class labels (or weak labels) [40, 136]. Although these methods yield impressive

localization results, they are formulated as detection tasks and have not been shown to be helpful for

improving image classification performance. Methods such as [129, 13, 22, 102, 30, 224, 57] attempt

to localize objects to improve image classification accuracy but only demonstrate results on simple

datasets such as subsets of Caltech101 classes. In contrast, we evaluate our proposed OCP method

on the highly cluttered PASCAL07 data [48], where we are able to localize objects with accuracy

comparable to state-of-the-art weakly supervised object localization methods [40, 136] as well as to

significantly improve image classification performance. To the best of our knowledge, this work is

the first to use weakly supervised object detection to improve image classification on PASCAL07,

which is considered a challenging object detection dataset even when bounding box annotations are

provided for training.
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Figure 4.2: A popular image classification pipeline of state-of-the-art methods (at the time of pub-
lication of this work) [203, 227, 215]. In this chapter we focus on the pooling step and propose an
object-centric spatial pooling approach which achieves superior classification accuracy compared to
the SPM pooling.

4.2 Related work

Classification. Many state-of-the-art image classification systems (at time of publication of this

work) follow the popular image feature extraction procedure [203, 227, 215] shown in Figure 4.2.

First, for each image, low-level descriptors like DHOG [34] or LBP [2] are sampled on a dense grid.

They are then coded into higher dimensions through vector quantization, local coordinate coding

(LCC) [203] or sparse coding [215]. Finally the coded vectors are pooled together, typically using

SPM [112] pooling, to form the image-level representation. Much research in image classification has

been focused on the former two steps, namely on different types of low-level descriptors [34, 2, 123]

and coding methods [203, 215, 86, 63, 144]. In this chapter we focus on the spatial pooling step,

replacing the popular SPM with our object-centric pooling.

Methods such as [129, 13, 22, 102, 30, 224, 57] use localization information learned in a weakly

supervised way to help boost classification accuracy by focusing on pooling low-level object features

without background features. However, most of them only validate their approach on less cluttered

and mostly centered datasets such as subsets of Caltech101 categories, Oxford Flowers 17 dataset,

etc. For example, recently Feng et al. [57] presented a geometric pooling approach which resizes

each image to the same size and learns a class-specific weighting factor for each grid position in

an image. On the Caltech101 dataset, where most images are roughly aligned and centered, this

method greatly improves over the previous state-of-the-art [203]. However, it has difficulty handling

cluttered images like the ones of PASCAL07 [48]. Further, Nguyen et al. [129] and Bilen et al. [13]

explicitly mention that some degree of context information (like road for cars) needs to be included

into the detected object bounding box in order to be useful for image classification. This leads to very

rough object localization even on simple datasets. In contrast, our work deals with high intra-class

variability in object location and our proposed generic object-centric spatial pooling approach yields

both classification improvements as well as competitive object localization results on the challenging

PASCAL07 data.

If object location information is available during training, methods such as [55, 191] have been

used to detect the object of interest, and [78, 172] showed how to use the output of object detectors



CHAPTER 4. SIMULTANEOUS IMAGE CLASSIFICATION AND OBJECT LOCALIZATION37

to boost classification performance. There are two main differences compared our approach. First,

we focus on the purely classification setting where no annotations beyond image-level class labels

are available during training. Second, we learn a joint model for both localization and classification

instead of combining the scores of the two tasks as post-processing.

Weakly supervised localization. There is a large body of work on weakly supervised object

localization [40, 136, 157, 101, 27]. Most of these methods use HOG-type low-level features [34]

which are faster for detection but have been shown to be inferior than bag-of-words models for

classification [203, 191]. The current state of the art is the work of Pandey and Lazebnik [136] which

uses deformable parts-based models [55] trained discriminatively in a weakly supervised fashion

for object localization. In contrast, our goal here is image classification (not object localization)

although we do utilize localization as an intermediate step.

The state-of-the-art in weakly supervised localization has improved further since the publication

of this work [81, 171, 202, 178].

4.3 Object-centric spatial pooling (OCP) for image classifi-

cation

Let’s first use an empirical experiment to quantitatively see how object location information can

dramatically improve image classification performance. On the PASCAL07 classification dataset [48],

we trained two classifiers for each object class: one classifier using features extracted from the full

image, and the other classifier using features extracted only from the provided tight bounding boxes

around the objects. We followed [203] in extracting image features and training linear classifiers.

Both classifiers were trained on the training set and tested on the validation set. The former classifier

(trained on full images) yielded 52.0% mean average precision (mAP), whereas the latter classifier

(trained and tested on tight bounding boxes) achieved an astonishing 69.7% mAP. In comparison

the current state-of-the-art classification result with a single type of low-level descriptor (which used

a more involved coding method as well as significant post-processing) [227] is just 59.2% mAP.

Therefore, it is evident that learning to properly localize the object in the image holds great promise

for improving classification accuracy.

Now, the challenge is deriving accurate enough location information to help classification. Ob-

viously, if the location information is not reliable enough, it can easily end up hurting classification

performance instead. Reliable localization becomes very challenging on generic dataset like PAS-

CAL07 [48] where objects vary greatly in appearance and viewpoint, are often occluded, and appear

in highly cluttered and unstructured scenes. In fact, most work on weakly supervised localization

uses simpler datasets [129, 13, 157, 101, 27]. Recently, Deselaers et al. [40] were the first to tackle
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PASCAL07. To simplify the problem, however, they trained object class models separately for dif-

ferent viewpoints of objects. We are interested in learning generic object detectors without any

additional annotations and evaluating classification performance on the original 20 object classes.

To the best of our knowledge we are the first to do so.

To this end, we introduce a novel framework of object-centric spatial pooling (OCP) for image

classification. OCP consists of two steps: (1) inferring the location of the objects of interested; and

(2) pooling low-level features from the foreground and the background separately to form the image-

level representation. In order to infer the object locations, we propose an iterative procedure for

learning object detectors from only image class labels (or weak labels). Very different from existing

methods for learning weakly supervised object detectors [40, 136], our approach directly optimizes

the classification objective function and uses object detection as an intermediate step. This is

described in Section 4.3.1. More importantly, OCP enables feature sharing between classification

and detection: the resulting feature representation of OCP can be seen as both a bounding box

representation (for detection) and an image representation (for classification). This is described in

detail in Section 4.3.2. As we show in Section 4.4, such feature sharing plays an essential role in

improving classification performance.

4.3.1 Classification formulation

We assume we are dealing with the binary image classification problem since multi-class classification

is often solved in practice by training one-versus-all binary classifiers. Given N data pairs, {Ii, yi}Ni=1,

where Ii is the ith image and yi ∈ {+1,−1} is a binary label of the image, the SVM formulation for

binary image classification with OCP becomes

min
w,b

1

2
||w||2 + C

N∑
i

ξi (4.1)

s.t. yi max
B∈BB(i)

[
wTPB(Ii) + b

]
≥ 1− ξi (4.2)

ξi ≥ 0 ∀i (4.3)

where w is SVM weight vector, b is bias term, PB(Ii) is the image feature representation of image

Ii using OCP with given bounding box B, and BB(i) is the collection of all bounding box windows

within image Ii. BB(i) can be obtained by either densely sampling sliding windows or by using salient

regions [191]. We do not require any ground truth localization information in this optimization.

Interestingly, the above formulation can also be viewed as multi-instance learning (MIL) for object

detection [129]. However, as in [129], the traditional MIL formation often only uses the foreground

for constructing the bounding box features and discards the background information. This has its

drawbacks in both detection and classification. As a result, the method of [129] was not able to

accurately localize objects even on simpler datasets such as Caltech101; it tended to choose regions
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which were larger than the object of interest to encompass contextual information for classification.

We fix these drawbacks by using a foreground-background representation, as described below. As

a result, we are able to localize objects on the significantly more challenging PASCAL07 [48] with

accuracy comparable to state-of-the-art weakly supervised object localization methods [40, 136].

4.3.2 Foreground-background feature representation

In the classification formulation in Eq. 4.3, the foreground-background feature representation of

OCP provides a natural mechanism for feature sharing between classification and detection. In fact,

even for standalone detection and classification, the foreground-background feature representation

is advantageous compared to traditional foreground-only feature representation.

Foreground-background for classification. The foreground-background feature representation

provides stronger classification performance than its foreground-only counterpart. This is not sur-

prising since the background provides strong scene context for classification [102, 132]. For example,

for the class boat, the surrounding water in the image may provide a strong clue that this image

contains a boat; similarly, seeing road at the bottom of an image can strongly indicate that this

image is likely about cars. Going back to the classifiers trained on the tight bounding boxes as de-

scribed at the beginning of Section 3, if we replace the foreground-only feature representation with

the foreground-background representation, we further improve the classification mAP from 69.7%

to 71.1%. This highlights the fact that the foreground-background feature representation carries im-

portant information for classification which may be missing in the foreground-only representation.

This is illustrated in Figure 4.3.

Foreground-background for detection. Object detectors trained with the foreground-background

features also tend to yield more accurate bounding boxes during detection. Since the foreground and

background models are learned jointly, they will prevent the object appearance features from leaking

into the background, and context features from leaking into the foreground. This is illustrated in

Figure 4.4. To validate the effectiveness of the foreground-background feature representation for

detection, we also experimented on PASCAL07, training fully supervised object detectors using the

aeroplane boat chair diningtable horse sofa

Figure 4.3: Example images which were misclassified using just the foreground representation but
correctly classified when using the foreground-background representation.
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Figure 4.4: Bounding boxes bb1 and bb2 have a similar foreground-only feature representation, but
they are very different under the foreground-background representation. Here, the numbers denote
the count of object-related descriptors. For bb1, parts of object that leaked into the background will
be greatly discounted by the background model.

foreground-only and the foreground-background feature representation respectively. It was no sur-

prise that the foreground-background feature representation yielded significantly better detection

performance. Here we skip the details of the experiments for simplicity since supervised detection is

not the major focus of this chapter. In Figure 4.6 in the experimental results section, however, we

show the differences in detections made with the foreground-only and the foreground-background

model in our OCP framework.

With the foreground-background representation of OCP, optimizing the formulation in Eq. 4.3

can be seen as a simultaneous detection and classification procedure. This is because the foreground-

background representation can be seen as both a bounding box representation (for detection) and

an image-level representation (for classification).

4.3.3 Optimization

Now that we have defined our objective and our foreground-background feature representation, we

discuss how to optimize this formulation. The optimization in Eq. 4.1 is non-convex because of the

maximization operation in the constraints, thus we need to be careful during optimization to avoid

local minima. In particular, since we are not given any localization information during training, our

optimization algorithm consists of an outer loop that bootstraps the background region from the

foreground and an inner loop that trains the apperance model.

Outer loop: bootstrapping background regions. In a purely classification setting, no fore-

ground and background annotations are provided initially. We initialize the background region by

cropping out a 16-pixel border of each image. Then the outer loops bootstraps the background

by gradually shrinking the smallest bounding box considered in the bounding box search (BB(i) in

Eq. 4.1). Thus we begin localizing using large windows and iteratively allow smaller and smaller

windows as we learn more and more accurate models. As the background region is allowed to grow,

the algorithm learns more and more accurate background models. If the algorithm goes too aggres-

sively, it will end up in bad local minima. For example, if the localization is so inaccurate that many

features from the object of interest appear in the background region, the model would learn that

objects features actually belong to the background. This would lead to bad classification models
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which are hard to correct in later iterations. However, as long as such bad local minima are avoided,

the specific rate of shrinking the foreground region does not affect performance in our experiments.

Inner loop: learning the appearance model for detection. Given the current constraint

on the background size, we need to learn the best object appearance model. This is done in two

steps: (1) detection, where given the current appearance model we find the best possible object

location from positive images (images that are known to contain the object of interest); and (2)

classification, where given the proposed bounding boxes from positive images as positive examples

and a large sample of bounding boxes from negative images as negative examples, we construct the

bounding box representation using OCP and then train a binary SVM classifier for discriminating the

positive bounding boxes from the negative bounding boxes. In contrast to more common treatments

which would need another loop to bootstrap the difficult negative bounding boxes and iteratively

improve the SVM model, here we get rid of this loop by solving an SVM optimization directly with

all (often millions) negative bounding boxes.

We make use of the candidate image regions proposed in an unsupervised fashion by [191] to avoid

both sampling too many negative windows for classification and running sliding windows search for

detection. Since the candidate bounding boxes aim to achieve high recall rate (> 96%), we ended

up with 1000∼3000 candidate bounding boxes per image. For PASCAL07, we have 5011 images

in the training and validation sets. Therefore, for each inner loop, we need to solve for 20 binary

SVMs with about 10 million data examples. Furthermore, our feature representation for OCP is

very high-dimensional: we used a codebook of 8192 for LLC coding [203], pool the low-level features

on the foreground region using 1 × 1 and 3 × 3 SPM pooling regions [112], and separately pool

all low-level features features in the background, thus resulting in a feature vector of dimension

8192 × 11 = 90112. Indeed, if we save all the feature vectors from the 5011 images, this would

require more than 700G of space. Most off-the-shelf SVM solvers would not be able to handle such a

large-scale problem. So, we developed a stochastic gradient descent algorithm with averaging using

a similar idea to [119]. We were able to run an inner loop in 7∼8 hours and to finish the training

(inner look and outer loop) in about 3 days on a single machine.

4.4 Experiments

We validate our approach on the challenging PASCAL07 dataset [48], containing 5011 images for

training and validation, and 4952 images for testing. This dataset consists of 20 object categories,

with object instances ocurring in a variety of scales, locations and viewpoints.

Image representation. For low-level features, we extract DHOG [34] features with patch sizes

16× 16, 25× 25, 31× 31 and 46× 46. We then run Linear Locality-Constrained (LLC) coding [203]

using a codebook of size 8192 and 5 nearest neighbors. For the baseline representation, we pool the



CHAPTER 4. SIMULTANEOUS IMAGE CLASSIFICATION AND OBJECT LOCALIZATION42

DHOG features using 1×1 and 3×3 SPM pooling regions [112] over the full image. Thus each image

is represented using a feature vector of dimension 8192×10 = 81920. For our object-centric pooling,

we use the same SPM representation but on the foreground region and also pool over all low-level

features in the background separately, thus giving us a feature dimension of 8192× 11 = 90112.

4.4.1 Joint classification and localization

The main insight behind our approach is that object classification and detection can be mutually

beneficial. In particular, as the classification accuracy improves we expect detection accuracy to

improve as well, and vice versa. We begin by verifying that this is indeed the case. Figure 4.5

shows the steady improvement in mean average precision on both classification and detection over

the iterations (outer loop) of our algorithms. As a baseline (iteration 0), we use a classifier trained

on full images with the SPM spatial pooling representation, which is equivalent to assuming an

empty background region in foreground-background representation. Interestingly, even after just

one iteration, our classification mAP is already 54.8%, which is 0.5% greater than the 54.3% SPM

classification result.2 In the end our OCP method achieves 57.2% classification mAP, significantly

outperforming the SPM representation. In fact, it significantly outperforms even a much richer

4-level SPM representation of size 8192× 30 which achieves only 54.8% classification mAP. On the

detection side, our approach was able to improve the baseline of 6.10% detection mAP to the final

15.0%.

Figure 4.5: Classification and detection mAP on the PASCAL07 test set over the iterations of our
joint detection and classification approach. The red solid line is classification mAP, and the blue
dotted line is detection mAP. We see a steady joint improvement of classification and detection
accuracy.

It is important to note that jointly optimizing detection and classification using OCP as in Eq. 4.3

plays an essential role in achieving the joint improvements for classification and detection. As we

2We make use of only one type of low-level image descriptor in contrast to [172, 74], and don’t do any additional
post-processing of the features in contrast to [203, 227]. The work of [203] gives 59.3% classification mAP on this
dataset when using LLC coding, but this relied on significant post-processing of the resulting image features. To
simplify the comparison, we do not involve the post-processing.
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Object class SPM method OCP method

Aeroplane 72.5 74.2
Bicycle 56.3 63.1

Bird 49.5 45.1
Boat 63.5 65.9

Bottle 22.4 29.5
Bus 60.1 64.7
Car 76.4 79.2
Cat 57.5 61.4

Chair 51.9 51.0
Cow 42.2 45.0

Dining table 48.9 54.8
Dog 38.1 45.4

Horse 75.1 76.3
Motorbike 62.8 67.1

Person 82.9 84.4
Potted plant 20.5 21.8

Sheep 38.1 44.3
Sofa 46.0 48.8
Train 71.7 70.7

TV/monitor 50.5 51.7

Mean 54.3 57.2

Table 4.1: Classification AP of object-centric spatial pooling compared to the standard SPM spatial
pooling on the PASCAL07 test set.

show below, when detection and classification are optimized separately, higher detection accuracy

may not always means higher classification accuracy.

4.4.2 Image classification

OCP significantly boost of classification accuracy on most of the 20 object classes, as shown in

Table 4.1. In particular, OCP achieves significant improvement on the following categories: dog

(7.3% improvement), bottle (7.1%), bicycle (6.8%), sheep (6.2%), diningtable (5.9%), bus (4.6%),

motorbike (4.3%) and even 1.3% on the notoriously difficult potted plant category. Noticeably, many

of these categories are relatively small objects (like bottles) embedded in cluttered environments.

OCP greatly improves classification accuracy on these categories by making an effort to localize the

objects.

There are three categories that proved difficult for OCP to improve: chairs (−0.9%), trains

(−1.0%) and birds (−4.4%). For the bird and chair categories, the objects are often occluded (e.g.,

birds are often occluded by trees, and chairs are often occluded by people sitting on them), which

make them very challenging for detection even when bounding box annotations are available (see

[55, 48]). For the slight drop in the train category, since trains are already relatively well-centered
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aeroplane bicycle bird boat car cow

Figure 4.6: Images where object-centric pooling with the foreground-background model (yellow)
localizes objects more accurately than the foreground-only model (green).

in images, SPM pooling alone yields very satisfactory classification accuracy (71.7%) and is difficult

to further improve.

We also investigate using the foreground-only (instead of the foreground-background) feature

representation when optimizing Eq. 4.3.3 This foreground-only representation leads to an improve-

ment from the baseline SPM model – the mAP increases from 54.3% to 55.7%. This is a 1.4%

improvement as compared to the 2.9% improvement as in the case of our foreground-background

representation. Figure 4.6 illustrates some location results, showing that foreground-background

representation often yields better localization.

4.4.3 Weakly supervised object localization

Even though our primary goal is image classification, the proposed object-centric spatial pooling

also accurately localizes the objects of interest. PASCAL07 is a very challenging dataset for weakly

supervised localization (where bounding box information is not available during training). Only

a few recent works have tackled this data (Deselaers et al. [40] and Pandey and Lazebnik [136]).

They focused on localizing only a handful of the object classes and use the available viewpoint

annotations during training to assist learning. In contrast, we work on the full dataset without

using these additional annotations to mimic the purely classification setting.

Weakly supervised localization can be evaluated directly on the training set (in our case the

PASCAL07 trainval set) since only image-level class labels are available during training. Follow-

ing [40, 136] we compute localization accuracy as the percentage of training image in which an

instance was correctly localized by the highest-scoring detection according to the PASCAL crite-

rion (window intersection over the union ≥ 50%). On the 14 classes of PASCAL07-all4 introduced

by [40], our localization accuracy is 27.4%, which is comparable to 26% of [40] using additional

viewpoint annotations and 30.0% of [136].

As we’re most interested in inferring object location on unseen images, we evaluate the detec-

tion accuracy on the test set as well. Table 4.2 compares our detection average precision on six

PASCAL07-6x2 classes [40] evaluated on all test images with the current state-of-the-art in weakly

3This experiment is a more assertive version of the technique described in Nguyen et al. [129]: the optimization
framework is similar to [129] but with significantly stronger low-level descriptors (HOG descriptors [34] with LLC
coding [203] compared to vector-quantized SIFT [123]) and with much more negative training data.

4PASCAL07-all includes all classes of PASCAL07 except bird, car, cat, cow, dog and sheep. [40]
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Object class Deselaers [40] Pandey [136] OCP method

Aeroplane
Left 9.1 7.5

30.8
Right 23.6 21.1

Bicycle
Left 33.4 38.5

25.0
Right 49.4 44.8

Boat
Left 0.0 0.3

3.6
Right 0.0 0.5

Bus
Left 0.0 0.0

26.0
Right 16.4 0.3

Horse
Left 9.6 45.9

21.3
Right 9.1 17.3

Motorbike
Left 20.9 43.8

29.9
Right 16.1 27.2

Average 16.0 20.8 22.8

Table 4.2: Comparison of detection AP on the PASCAL07-6x2 test set for our method versus [40,
136]. Both [40, 136] split up the objects by left and right viewpoint to make the models easier to
learn. We do not make use of these additional labels and learn a single model for each object.

supervised localization. We obtain 22.8%, outperforming the previous best 20.8% of [136] which used

additional viewpoint annotations. On all 20 classes, we obtained 15.0% detection mAP compared

to 29.1% mAP of the state-of-the-art deformable part-based model that used bounding box labels

for detector training [55].

Figure 4.7 shows some examples of our detection results on PASCAL07 test set. Localization

is often quite reasonable, which is amazing considering the difficulty of the dataset and the lack of

any bounding box annotations during training. Even on images with multiple object instances our

method is sometimes able to separate out the different instances.

Interestingly, when we used the location information derived from the deformable part-based

model mentioned above [55] learned with the help of bounding box annotations, images features

constructed using our image representation with the foreground-background pooling yielded a clas-

sification mAP of 56.9%. This is inferior to the aforementioned 57.2% classification mAP obtained

using OCP, where our proposed approach in Eq. 4.3 did not use any bounding box annotations and

only achieved 15.0% detection mAP. This strongly highlights the importance of the formulation in

Eq. 4.3, which uses classification as the major optimization objective and jointly optimizes detection

and classification when solving the optimization.

4.5 Conclusions

We presented an object-centric spatial pooling (OCP) approach for improving classification perfor-

mance. The challenge of OCP is training reliable object detectors with no available bounding box
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Figure 4.7: Foreground regions detected by the object-centric pooling framework on PASCAL07 test
images. The models are learned without any ground truth localization information. Yellow boxes
correspond to correct detections and red boxes are failed detections. On images where multiple
instances of a object class are presented, we show the top few detections after running non-maximal
suppression.

annotations as in a typical classification setting. We propose a framework that directly optimizes

classification objective with detection being treated as an intermediate step. The key to this frame-

work is the foreground-background feature representation by OCP that naturally enables feature

sharing between detection and classification. Our results on the challenging PASCAL07 dataset

show that not only is the proposed OCP approach able to improve the classification accuracy com-

pared to using SPM pooling, but it also yields very reasonable object detection results. We believe

this is an important step toward better image understanding – not only deciding what objects are

in an image but also figuring out where these objects are.

Our future work includes incorporating bounding box annotations during training (from all or

just a subset of images) to further improve the classification performance. We are also very interested

in exploiting even more powerful visual features than the simple LLC feature as used in this chapter.

As demonstrates by the motivation experiment described in the beginning of Section 3, there is much

room for improving classification performance by utilizing location information. This chapter is just

an initial step toward that direction.



Chapter 5

ImageNet Large Scale Visual

Recognition Challenge

5.1 Introduction

Overview. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been running

annually for five years (since 2010) and has become the standard benchmark for large-scale object

recognition.1 ILSVRC follows in the footsteps of the PASCAL VOC challenge [47], established in

2005, which set the precedent for standardized evaluation of recognition algorithms in the form of

yearly competitions. As in PASCAL VOC, ILSVRC consists of two components: (1) a publically

available dataset, and (2) an annual competition and corresponding workshop. The dataset allows for

the development and comparison of categorical object recognition algorithms, and the competition

and workshop provide a way to track the progress and discuss the lessons learned from the most

successful and innovative entries each year.

The publically released dataset contains a set of manually annotated training images. A set of

test images is also released, with the manual annotations withheld.2 Participants train their algo-

rithms using the training images and then automatically annotate the test images. These predicted

annotations are submitted to the evaluation server. Results of the evaluation are revealed at the

end of the competition period and authors are invited to share insights at the workshop held at the

International Conference on Computer Vision (ICCV) or European Conference on Computer Vision

(ECCV) in alternate years.

ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label

1In this chapter, we will be using the term object recognition broadly to encompass both image classification (a
task requiring an algorithm to determine what object classes are present in the image) as well as object detection (a
task requiring an algorithm to localize all objects present in the image).

2In 2010, the test annotations were later released publicly; since then the test annotation have been kept hidden.

47
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for the presence or absence of an object class in the image, e.g., “there are cars in this image” but

“there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around

an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width

of 50 pixels and height of 30 pixels”.

Large-scale challenges and innovations. In creating the dataset, several challenges had to be

addressed. Scaling up from 19,737 images in PASCAL VOC 2010 to 1,461,406 in ILSVRC 2010

and from 20 object classes to 1000 object classes brings with it several challenges. It is no longer

feasible for a small group of annotators to annotate the data as is done for other datasets [51, 31,

47, 213]. Instead we turn to designing novel crowdsourcing approaches for collecting large-scale

annotations [175, 36, 38].

Some of the 1000 object classes may not be as easy to annotate as the 20 categories of PASCAL

VOC: e.g., bananas which appear in bunches may not be as easy to delineate as the basic-level

categories of aeroplanes or cars. Having more than a million images makes it infeasible to annotate

the locations of all objects (much less with object segmentations, human body parts, and other

detailed annotations that subsets of PASCAL VOC contain). New evaluation criteria have to be

defined to take into account the facts that obtaining perfect manual annotations in this setting may

be infeasible.

Once the challenge dataset was collected, its scale allowed for unprecedented opportunities both

in evaluation of object recognition algorithms and in developing new techniques. Novel algorithmic

innovations emerge with the availability of large-scale training data. The broad spectrum of object

categories motivated the need for algorithms that are even able to distinguish classes which are

visually very similar. We highlight the most successful of these algorithms in this chapter.

Finally, the large variety of object classes in ILSVRC allows us to perform an analysis of statistical

properties of objects and their impact on recognition algorithms. This type of analysis allows for a

deeper understanding of object recognition, and for designing the next generation of general object

recognition algorithms.

My contributions. ILSVRC is a team effort over six years from 2010-2015. My contributions

are:

1. I was the lead organizer of the ILSVRC competition and workshop in years 2013 and 2014.

2. I took the lead in writing a retrospective report about the first five years of ILSVRC including

the challenges we addressed when scaling up object recogniton, an analysis of the dataset and

lessons we learned along the way [152]. This contribution is documented in this chapter.

3. I led the effort to create the large-scale object detection dataset of ILSVRC. This work is

described in Chapter 6.
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4. I led the effort to provide a detailed analysis of the state of the field of object recognition over

multiple years. This work is described in Chapter 7.

This chapter will focus specifically on these two contributions. The collected dataset and addi-

tional information about ILSVRC can be found in [152] and at:

http://image-net.org/challenges/LSVRC/

5.2 Related work

We briefly discuss some prior work in constructing benchmark image datasets.

Image classification datasets. Caltech 101 [51] was among the first standardized datasets for

multi-category image classification, with 101 object classes and commonly 15-30 training images

per class. Caltech 256 [72] increased the number of object classes to 256 and added images with

greater scale and background variability. The TinyImages dataset [183] contains 80 million 32x32

low resolution images collected from the internet using synsets in WordNet [128] as queries. However,

since this data has not been manually verified, there are many errors, making it less suitable for

algorithm evaluation. Datasets such as 15 Scenes [131, 52, 112] or recent Places [225] provide a

single scene category label (as opposed to an object category).

The ImageNet dataset [36] is the backbone of ILSVRC. ImageNet is an image dataset organized

according to the WordNet hierarchy [128]. Each concept in WordNet, possibly described by multiple

words or word phrases, is called a “synonym set” or “synset”. ImageNet populates 21,841 synsets of

WordNet with an average of 650 manually verified and full resolution images. As a result, ImageNet

contains 14,197,122 annotated images organized by the semantic hierarchy of WordNet (as of August

2014). ImageNet is larger in scale and diversity than the other image classification datasets. ILSVRC

uses a subset of ImageNet images for training the algorithms and some of ImageNet’s image collection

protocols for annotating additional images for testing the algorithms.

Image parsing datasets. Many datasets aim to provide richer image annotations beyond image-

category labels. LabelMe [158] contains general photographs with multiple objects per image. It has

bounding polygon annotations around objects, but the object names are not standardized: annota-

tors are free to choose which objects to label and what to name each object. The SUN2012 [213]

dataset contains 16,873 manually cleaned up and fully annotated images more suitable for stan-

dard object detection training and evaluation. SIFT Flow [122] contains 2,688 images labeled using

the LabelMe system. The LotusHill dataset [216] contains very detailed annotations of objects in

636,748 images and video frames, but it is not available for free. Several datasets provide pixel-level

segmentations: for example, MSRC dataset [31] with 591 images and 23 object classes, Stanford

Background Dataset [68] with 715 images and 8 classes, and the Berkeley Segmentation dataset [5]
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with 500 images annotated with object boundaries. OpenSurfaces segments surfaces from consumer

photographs and annotates them with surface properties, including material, texture, and contextual

information [7] .

The closest to ILSVRC is the PASCAL VOC dataset [48, 46], which provides a standardized

test bed for object detection, image classification, object segmentation, person layout, and action

classification. Much of the design choices in ILSVRC have been inspired by PASCAL VOC and

the similarities and differences between the datasets are discussed at length throughout the paper.

ILSVRC scales up PASCAL VOC’s goal of standardized training and evaluation of recognition

algorithms by more than an order of magnitude in number of object classes and images: PASCAL

VOC 2012 has 20 object classes and 21,738 images compared to ILSVRC2012 with 1000 object

classes and 1,431,167 annotated images.

The recently released COCO dataset [118] contains more than 328,000 images with 2.5 million

object instances manually segmented. It has fewer object categories than ILSVRC (91 in COCO

versus 200 in ILSVRC object detection) but more instances per category (27K on average compared

to about 1K in ILSVRC object detection). Further, it contains object segmentation annotations

which are not currently available in ILSVRC. COCO is likely to become another important large-

scale benchmark.

Large-scale annotation. ILSVRC makes extensive use of Amazon Mechanical Turk to obtain

accurate annotations [173]. Works such as [207, 167, 196] describe quality control mechanisms for

this marketplace. [198] provides a detailed overview of crowdsourcing video annotation. A related

line of work is to obtain annotations through well-designed games, e.g. [197]. Some of our novel

approaches to crowdsourcing accurate image annotations are in Chapter 6 and [152, 38].

Standardized challenges. There are several datasets with standardized online evaluation similar

to ILSVRC: the aforementioned PASCAL VOC [47], Labeled Faces in the Wild [85] for unconstrained

face recognition, Reconstruction meets Recognition [187] for 3D reconstruction and KITTI [65] for

computer vision in autonomous driving. These datasets along with ILSVRC help benchmark progress

in different areas of computer vision. Works such as [182] emphasize the importance of examining

the bias inherent in any standardized dataset.

5.3 Challenge tasks

The goal of ILSVRC is to estimate the content of photographs for the purpose of retrieval and

automatic annotation. Test images are presented with no initial annotation, and algorithms have to

produce labelings specifying what objects are present in the images. New test images are collected

and labeled especially for this competition and are not part of the previously published ImageNet

dataset [36].
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Task Image
classification

Single-object
localization

Object
detection

Manual labeling
on training set

Number of object classes
annotated per image

1 1 1 or more

Locations of
annotated
classes

—
all instances

on some images
all instances
on all images

Manual labeling
on validation
and test sets

Number of object classes
annotated per image

1 1
all target

classes
Locations of
annotated
classes

—
all instances
on all images

all instances
on all images

Table 5.1: Overview of the provided annotations for each of the tasks in ILSVRC.

ILSVRC over the years has consisted of one or more of the following tasks (years in parentheses):3

1. Image classification (2010-2014): Algorithms produce a list of object categories present in

the image.

2. Single-object localization (2011-2014): Algorithms produce a list of object categories present

in the image, along with an axis-aligned bounding box indicating the position and scale of one

instance of each object category.

3. Object detection (2013-2014): Algorithms produce a list of object categories present in

the image along with an axis-aligned bounding box indicating the position and scale of every

instance of each object category.

This section provides an overview and history of each of the three tasks. Table 5.1 shows summary

statistics.

5.3.1 Image classification task

Data for the image classification task consists of photographs collected from Flickr4 and other search

engines, manually labeled with the presence of one of 1000 object categories. Each image contains

one ground truth label.

For each image, algorithms produce a list of object categories present in the image. The quality

of a labeling is evaluated based on the label that best matches the ground truth label for the image

(see Section 5.5.1).

Constructing ImageNet was an effort to scale up an image classification dataset to cover most

nouns in English using tens of millions of manually verified photographs [36]. The image classification

3In addition, ILSVRC in 2012 also included a taster fine-grained classification task, where algorithms would classify
dog photographs into one of 120 dog breeds [100]. Fine-grained classification has evolved into its own Fine-Grained
classification challenge in 2013 [9], which is outside the scope of this paper.

4www.flickr.com
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task of ILSVRC came as a direct extension of this effort. A subset of categories and images was

chosen and fixed to provide a standardized benchmark while the rest of ImageNet continued to grow.

5.3.2 Single-object localization task

The single-object localization task, introduced in 2011, built off of the image classification task to

evaluate the ability of algorithms to learn the appearance of the target object itself rather than its

image context.

Data for the single-object localization task consists of the same photographs collected for the

image classification task, hand labeled with the presence of one of 1000 object categories. Each

image contains one ground truth label. Additionally, every instance of this category is annotated

with an axis-aligned bounding box.

For each image, algorithms produce a list of object categories present in the image, along with a

bounding box indicating the position and scale of one instance of each object category. The quality

of a labeling is evaluated based on the object category label that best matches the ground truth

label, with the additional requirement that the location of the predicted instance is also accurate

(see Section 5.5.2).

5.3.3 Object detection task

The object detection task went a step beyond single-object localization and tackled the problem of

localizing multiple object categories in the image. This task has been a part of the PASCAL VOC

for many years on the scale of 20 object categories and tens of thousands of images, but scaling it

up by an order of magnitude in object categories and in images proved to be very challenging from

a dataset collection and annotation point of view (see Chapter 6).

Data for the detection tasks consists of new photographs collected from Flickr using scene-level

queries. The images are annotated with axis-aligned bounding boxes indicating the position and

scale of every instance of each target object category. The training set is additionally supplemented

with (a) data from the single-object localization task, which contains annotations for all instances of

just one object category, and (b) negative images known not to contain any instance of some object

categories.

For each image, algorithms produce bounding boxes indicating the position and scale of all

instances of all target object categories. The quality of labeling is evaluated by recall, or number of

target object instances detected, and precision, or the number of spurious detections produced by

the algorithm (see Section 5.5.3).
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Image classification annotations (1000 object classes)

Year Train images
(per class)

Val images
(per class)

Test images
(per class)

ILSVRC2010 1,261,406 (668-3047) 50,000 (50) 150,000 (150)
ILSVRC2011 1,229,413 (384-1300) 50,000 (50) 100,000 (100)
ILSVRC2012-14 1,281,167 (732-1300) 50,000 (50) 100,000 (100)

Additional annotations for single-object localization (1000 object classes)

Year Train images
with
bbox

annotations
(per class)

Train bboxes
annotated
(per class)

Val images
with
bbox

annotations
(per class)

Val bboxes
annotated
(per class)

Test images
with
bbox

annotations

ILSVRC 2011
315,525 344,233 50,000 55,388

100,000
(104-1256) (114-1502) (50) (50-118)

ILSVRC2012-14
523,966 593,173 50,000 64,058

100,000
(91-1268) (92-1418) (50) (50-189)

Table 5.2: Scale of ILSVRC image classification task (top) and single-object localization task (bot-
tom). The numbers in parentheses correspond to (minimum per class - maximum per class). The
1000 classes change from year to year but are consistent between image classification and single-
object localization tasks in the same year. All images from the image classification task may be used
for single-object localization.

5.4 Dataset statistics

Details of the construction of the large-scale image classification and single-object localization

datasets are largely outside the scope of this thesis. Please refer to [36, 175, 152] for details. The

details of the object detection dataset construction are in Chapter 6. In this section we present

statistics of the collected datasets.

5.4.1 Image classification and single-object localization

The image classification and single-object localization tasks are closely related and thus analyzed

together in this section. There are 1000 object classes and approximately 1.2 million training images,

50 thousand validation images and 100 thousand test images. As described in Section 5.3.2, each

image corresponds to one target object class. Table 5.2 documents the size of the image classification

datasets over the years of the challenge. Figure 5.1 demonstrates that the dataset provides an

unprecedented challenge for algorithms by having many similar-looking fine-grained object classes.

For single-object localization, a subset of the image classification images are additionally an-

notated with bounding box labels using the annotation procedure described in [175, 152]. All 50

thousand images in the validation set and 100 thousand images in the test set are annotated with
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Figure 5.1: The ILSVRC classification and single-object localization dataset contains many more
fine-grained classes compared to the standard PASCAL VOC benchmark; for example, instead of
the PASCAL ”dog” category there are 120 different breeds of dogs in ILSVRC.

bounding boxes around all instances of the ground truth object class (one object class per image).

In addition, in ILSVRC2011 25% of training images are annotated with bounding boxes the same

way, yielding more than 310 thousand annotated images with more than 340 thousand annotated

object instances. In ILSVRC2012 40% of training images are annotated, yielding more than 520

thousand annotated images with more than 590 thousand annotated object instances. Table 5.2

(bottom) documents the size of this dataset.

Appendix A contains additional analysis of the difficulty of these datasets compared to the

standard PASCAL benchmark [48].

5.4.2 Object detection

Using the procedure described above, we collect a large-scale dataset for ILSVRC object detection

task. There are 200 object classes and approximately 450K training images, 20K validation images

and 40K test images. Table 5.3 documents the size of the dataset over the years of the challenge. The

major change between ILSVRC2013 and ILSVRC2014 was the addition of 60,658 fully annotated

training images.

Prior to ILSVRC, the object detection benchmark was the PASCAL VOC challenge [48]. ILSVRC

has 10 times more object classes than PASCAL VOC (200 vs 20), 10.6 times more fully annotated
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Object detection annotations (200 object classes)

Year Train images
(per class)

Train bboxes
annotated
(per class)

Val images
(per class)

Val bboxes
annotated
(per class )

Test
images

ILSVRC2013 395909
(417-561-66911 pos,
185-4130-10073 neg)

345854
(438-660-

73799)

21121
(23-58-5791 pos,

rest neg)

55501
(31-111-
12824)

40152

ILSVRC2014 456567
(461-823-67513 pos,
42945-64614-70626

neg)

478807
(502-1008-

74517)

21121
(23-58-5791 pos,

rest neg)

55501
(31-111-
12824)

40152

Table 5.3: Scale of ILSVRC object detection task. Numbers in parentheses correspond to (minimum
per class - median per class - maximum per class).

training images (60,658 vs 5,717), 35.2 times more training objects (478,807 vs 13,609), 3.5 times

more validation images (20,121 vs 5823) and 3.5 times more validation objects (55,501 vs 15,787).

ILSVRC has 2.8 annotated objects per image on the validation set, compared to 2.7 in PASCAL

VOC. The average object in ILSVRC takes up 17.0% of the image area and in PASCAL VOC takes

up 20.7%; Chapter 6 has more details. Additionally, ILSVRC contains a wide variety of objects,

including tiny objects such as sunglasses (1.3% of image area on average), ping-pong balls (1.5% of

image area on average) and basketballs (2.0% of image area on average).

5.5 Evaluation at large scale

Once the dataset has been collected, we need to define a standardized evaluation procedure for

algorithms. Some measures have already been established by datasets such as the Caltech 101 [51]

for image classification and PASCAL VOC [47] for both image classification and object detection.

To adapt these procedures to the large-scale setting we had to address three key challenges. First, for

the image classification and single-object localization tasks only one object category could be labeled

in each image due to the scale of the dataset. This created potential ambiguity during evaluation

(addressed in Section 5.5.1). Second, evaluating localization of object instances is inherently difficult

in some images which contain a cluster of objects (addressed in Section 5.5.2). Third, evaluating

localization of object instances which occupy few pixels in the image is challenging (addressed in

Section 5.5.3).

In this section we describe the standardized evaluation criteria for each of the three ILSVRC

tasks. We elaborate further on these and other more minor challenges with large-scale evaluation.



CHAPTER 5. IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE 56

5.5.1 Image classification

The scale of ILSVRC classification task (1000 categories and more than a million of images) makes it

very expensive to label every instance of every object in every image. Therefore, on this dataset only

one object category is labeled in each image. This creates ambiguity in evaluation. For example,

an image might be labeled as a “strawberry” but contain both a strawberry and an apple. Then an

algorithm would not know which one of the two objects to name. For the image classification task

we allowed an algorithm to identify multiple (up to 5) objects in an image and not be penalized as

long as one of the objects indeed corresponded to the ground truth label. Figure 5.2(top row) shows

some examples.

Concretely, each image i has a single class label Ci. An algorithm is allowed to return 5 labels

ci1, . . . ci5, and is considered correct if cij = Ci for some j.

Let the error of a prediction dij = d(cij , Ci) be 1 if cij 6= Ci and 0 otherwise. The error of an

algorithm is the fraction of test images on which the algorithm makes a mistake:

error =
1

N

N∑
i=1

min
j
dij (5.1)

We used two additional measures of error. First, we evaluated top-1 error. In this case algorithms

were penalized if their highest-confidence output label ci1 did not match ground truth class Ci.

Second, we evaluated hierarchical error. The intuition is that confusing two nearby classes (such

as two different breeds of dogs) is not as harmful as confusing a dog for a container ship. For the

hierarchical criteria, the cost of one misclassification, d(cij , Ci), is defined as the height of the lowest

common ancestor of cij and Ci in the ImageNet hierarchy. The height of a node is the length of the

longest path to a leaf node (leaf nodes have height zero).

However, in practice we found that all three measures of error (top-5, top-1, and hierarchi-

cal) produced the same ordering of results. Appendix B provides some more details. Thus, since

ILSVRC2012 we have been exclusively using the top-5 metric which is the simplest and most suitable

to the dataset.

5.5.2 Single-object localization

The evaluation for single-object localization is similar to object classification, again using a top-

5 criteria to allow the algorithm to return unannotated object classes without penalty. However,

now the algorithm is considered correct only if it both correctly identifies the target class Ci and

accurately localizes one of its instances. Figure 5.2(middle row) shows some examples.

Concretely, an image is associated with object class Ci, with all instances of this object class

annotated with bounding boxes Bik. An algorithm returns {(cij , bij)}5j=1 of class labels cij and
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Figure 5.2: Tasks in ILSVRC. The first column shows the ground truth labeling on an example
image, and the next three show three sample outputs with the corresponding evaluation score.

associated locations bij . The error of a prediction j is:

dij = max(d(cij , Ci),min
k
d(bij , Bik)) (5.2)

Here d(bij , Bik) is the error of localization, defined as 0 if the area of intersection of boxes bij and

Bik divided by the areas of their union is greater than 0.5, and 1 otherwise. [48] The error of an

algorithm is computed as in Eq. 5.1.

Evaluating localization is inherently difficult in some images. Consider a picture of a bunch of

bananas or a carton of apples. It is easy to classify these images as containing bananas or apples,

and even possible to localize a few instances of each fruit. However, in order for evaluation to be

accurate every instance of banana or apple needs to be annotated, and that may be impossible. To

handle the images where localizing individual object instances is inherently ambiguous we manually

discarded 3.5% of images since ILSVRC2012. Some examples of discarded images are shown in

Figure 5.3.
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Figure 5.3: Images marked as “difficult” in the ILSVRC2012 single-object localization validation
set. Please refer to Section 5.5.2 for details.

5.5.3 Object detection

The criteria for object detection was adopted from PASCAL VOC [48]. It is designed to penalize

the algorithm for missing object instances, for duplicate detections of one instance, and for false

positive detections. Figure 5.2(bottom row) shows examples.

For each object class and each image Ii, an algorithm returns predicted detections (bij , sij) of

predicted locations bij with confidence scores sij . These detections are greedily matched to the

ground truth boxes {Bik} using Algorithm 1. For every detection j on image i the algorithm returns

zij = 1 if the detection is matched to a ground truth box according to the threshold criteria, and

0 otherwise. For a given object class, let N be the total number of ground truth instances across

all images. Given a threshold t, define recall as the fraction of the N objects detected by the

algorithm, and precision as the fraction of correct detections out of the total detections returned by

the algorithm. Concretely,

Recall(t) =

∑
ij 1[sij ≥ t]zij

N
(5.3)

Precision(t) =

∑
ij 1[sij ≥ t]zij∑
ij 1[sij ≥ t]

(5.4)

The final metric for evaluating an algorithm on a given object class is average precision over the

different levels of recall achieved by varying the threshold t. The winner of each object class is then

the team with the highest average precision, and then winner of the challenge is the team that wins

on the most object classes.5

Difference with PASCAL VOC. Evaluating localization of object instances which occupy very

few pixels in the image is challenging. The PASCAL VOC approach was to label such instances as

“difficult” and ignore them during evaluation. However, since ILSVRC contains a more diverse set

of object classes including, for example, “nail” and “ping pong ball” which have many very small

instances, it is important to include even very small object instances in evaluation.

5In this paper we focus on the mean average precision across all categories as the measure of a team’s performance.
This is done for simplicity and is justified since the ordering of teams by mean average precision was always the same
as the ordering by object categories won.
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Input: Bounding box predictions with confidence scores {(bj , sj)}Mj=1 and ground truth boxes
B on image I for a given object class.

Output: Binary results {zj}Mj=1 of whether or not prediction j is a true positive detection

Let U = B be the set of unmatched objects;

Order {(bj , sj)}Mj=1 in descending order of sj ;

for j=1 . . . M do
Let C = {Bk ∈ U : IOU(Bk, bj) ≥ thr(Bk)};
if C 6= ∅ then

Let k∗ = arg max{k : Bk∈C} IOU(Bk, bj);

Set U = U\Bk∗;
Set zj = 1 since true positive detection;

else
Set zj = 0 since false positive detection;

end

end
Algorithm 1: The algorithm for greedily matching object detection outputs to ground truth
labels. The standard thr(Bk) = 0.5 [48]. ILSVRC computes thr(Bk) using Eq. 5.5 to better
handle low-resolution objects.

In Algorithm 1, a predicted bounding box b is considered to have properly localized by a ground

truth bounding box B if IOU(b, B) ≥ thr(B). The PASCAL VOC metric uses the threshold

thr(B) = 0.5. However, for small objects even deviations of a few pixels would be unacceptable

according to this threshold. For example, consider an object B of size 10 × 10 pixels, with a

detection window of 20 × 20 pixels which fully contains that object. This would be an error of

approximately 5 pixels on each dimension, which is average human annotation error. However, the

IOU in this case would be 100/400 = 0.25, far below the threshold of 0.5. Thus for smaller objects

we loosen the threshold in ILSVRC to allow for the annotation to extend up to 5 pixels on average

in each direction around the object. Concretely, if the ground truth box B is of dimensions w × h
then

thr(B) = min

(
0.5,

wh

(w + 10)(h+ 10)

)
(5.5)

In practice, this changes the threshold only on objects which are smaller than approximately 25×25

pixels, and affects 5.5% of objects in the detection validation set.

Practical consideration. One additional practical consideration for ILSVRC detection evalua-

tion is subtle and comes directly as a result of the scale of ILSVRC. In PASCAL, algorithms would

often return many detections per class on the test set, including ones with low confidence scores.

This allowed the algorithms to reach the level of high recall at least in the realm of very low precision.

On ILSVRC detection test set if an algorithm returns 10 bounding boxes per object per image this

would result in 10× 200× 40K = 80M detections. Each detection contains an image index, a class

index, 4 bounding box coordinates, and the confidence score, so it takes on the order of 28 bytes.
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The full set of detections would then require 2.24Gb to store and submit to the evaluation server,

which is impractical. This means that algorithms are implicitly required to limit their predictions

to only the most confident locations.

5.6 Methods

The ILSVRC dataset and the competition has allowed significant algorithmic advances in large-scale

image recognition and retrieval.

5.6.1 Challenge entries

This section is organized chronologically, highlighting the particularly innovative and successful

methods which participated in the ILSVRC each year. We see a turning point in 2012 with the

development of large-scale convolutional neural networks.

ILSVRC2010. The first year the challenge consisted of just the classification task. The win-

ning entry from NEC team [119] used SIFT [123] and LBP [2] features with two non-linear coding

representations [227, 203] and a stochastic SVM. The honorable mention XRCE team [144] used

an improved Fisher vector representation [143] along with PCA dimensionality reduction and data

compression followed by a linear SVM. Fisher vector-based methods have evolved over five years of

the challenge and continued performing strongly in every ILSVRC from 2010 to 2014.

ILSVRC2011. The winning classification entry in 2011 was the 2010 runner-up team XRCE, ap-

plying high-dimensional image signatures [144] with compression using product quantization [161]

and one-vs-all linear SVMs. The single-object localization competition was held for the first time,

with two brave entries. The winner was the UvA team using a selective search approach to generate

class-independent object hypothesis regions [191], followed by dense sampling and vector quantiza-

tion of several color SIFT features [188], pooling with spatial pyramid matching [112], and classifying

with a histogram intersection kernel SVM [124] trained on a GPU [189].

ILSVRC2012. This was a turning point for large-scale object recognition, when large-scale deep

neural networks entered the scene. The undisputed winner of both the classification and localization

tasks in 2012 was the SuperVision team. They trained a large, deep convolutional neural network on

RGB values, with 60 million parameters using an efficient GPU implementation and a novel hidden-

unit dropout trick [104, 80]. The second place in image classification went to the ISI team, which

used Fisher vectors [161] and a streamlined version of Graphical Gaussian Vectors [75], along with

linear classifiers using Passive-Aggressive (PA) algorithm [29]. The second place in single-object

localization went to the VGG, with an image classification system including dense SIFT features
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and color statistics [123], a Fisher vector representation [161], and a linear SVM classifier, plus

additional insights from [4, 162]. Both ISI and VGG used [54] for object localization; SuperVision

used a regression model trained to predict bounding box locations. Despite the weaker detection

model, SuperVision handily won the object localization task. A detailed analysis and comparison of

the SuperVision and VGG submissions on the single-object localization task can be found in [151].

The influence of the success of the SuperVision model can be clearly seen in ILSVRC2013 and

ILSVRC2014.

ILSVRC2013. There were 24 teams participating in the ILSVRC2013 competition, compared to

21 in the previous three years combined. Following the success of the deep learning-based method in

2012, the vast majority of entries in 2013 used deep convolutional neural networks in their submission.

The winner of the classification task was Clarifai, with several large deep convolutional networks

averaged together. The network architectures were chosen using the visualization technique of [219],

and they were trained on the GPU following [220] using the dropout technique [104].

The winning single-object localization OverFeat submission was based on an integrated frame-

work for using convolutional networks for classification, localization and detection with a multiscale

sliding window approach [165]. They were the only team tackling all three tasks.

The winner of object detection task was UvA team, which utilized a new way of efficient en-

coding [190] densely sampled color descriptors [188] pooled using a multi-level spatial pyramid in a

selective search framework [186]. The detection results were rescored using a full-image convolutional

network classifier.

ILSVRC2014. 2014 attracted the most submissions, with 36 teams submitting 123 entries com-

pared to just 24 teams in 2013 – a 1.5x increase in participation. As in 2013 almost all teams used

convolutional neural networks as the basis for their submission. Significant progress has been made

in just one year: image classification error was almost halved since ILSVRC2013 and object detec-

tion mean average precision almost doubled compared to ILSVRC2013. Please refer to Section 5.7.1

for details.

In 2014 teams were allowed to use outside data for training their models in the competition, so

there were six tracks: provided and outside data tracks in each of image classification, single-object

localization, and object detection tasks.

The winning image classification with provided data team was GoogLeNet, which explored an

improved convolutional neural network architecture combining the multi-scale idea with intuitions

gained from the Hebbian principle. Additional dimension reduction layers allowed them to increase

both the depth and the width of the network significantly without incurring significant computational

overhead. In the image classification with external data track, CASIAWS won by using weakly

supervised object localization from only classification labels to improve image classification. MCG

region proposals [6] pretrained on PASCAL VOC 2012 data are used to extract region proposals,
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regions are represented using convolutional networks, and a multiple instance learning strategy is

used to learn weakly supervised object detectors to represent the image.

In the single-object localization with provided data track, the winning team was VGG, which

explored the effect of convolutional neural network depth on its accuracy by using three different

architectures with up to 19 weight layers with rectified linear unit non-linearity, building off of the

implementation of Caffe [92]. For localization they used per-class bounding box regression similar

to OverFeat [165]. In the single-object localization with external data track, Adobe used 2000

additional ImageNet classes to train the classifiers in an integrated convolutional neural network

framework for both classification and localization, with bounding box regression. At test time they

used k-means to find bounding box clusters and rank the clusters according to the classification

scores.

In the object detection with provided data track, the winning team NUS used the RCNN frame-

work [66] with the network-in-network method [117] and improvements of [84]. Global context

information was incorporated following [25]. In the object detection with external data track, the

winning team was GoogLeNet (which also won image classification with provided data). It is truly

remarkable that the same team was able to win at both image classification and object detection,

indicating that their methods are able to not only classify the image based on scene information but

also accurately localize multiple object instances. Just like most teams participating in this track,

GoogLeNet used the image classification dataset as extra training data.

5.6.2 Large scale algorithmic innovations

ILSVRC over the past five years has paved the way for several breakthroughs in computer vision.

The field of categorical object recognition has dramatically evolved in the large-scale setting.

Section 5.6.1 documents the progress, starting from coded SIFT features and evolving to large-scale

convolutional neural networks dominating at all three tasks of image classification, single-object

localization, and object detection. With the availability of so much training data (along with an

efficient algorithmic implementation and GPU computing resources) it became possible to learn

neural networks directly from the image data, without needing to create multi-stage hand-tuned

pipelines of extracted features and discriminative classifiers. The major breakthrough came in

2012 with the win of the SuperVision team on image classification and single-object localization

tasks [104], and by 2014 all of the top contestants were relying heavily on convolutional neural

networks.

Further, over the past few years there has been a lot of focus on large-scale recognition in the

computer vision community . Best paper awards at top vision conferences in 2013 were awarded

to large-scale recognition methods: at CVPR 2013 to “Fast, Accurate Detection of 100,000 Object

Classes on a Single Machine” [35] and at ICCV 2013 to “From Large Scale Image Categorization to

Entry-Level Categories” [133]. Additionally, several influential lines of research have emerged, such
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Figure 5.4: Performance of winning entries in the ILSVRC2010-2014 competitions in each of the
three tasks (details about the entries and numerical results are in Section 5.6.1). There is a steady
reduction of error every year in object classification and single-object localization tasks, and a 1.9x
improvement in mean average precision in object detection. There are two considerations in making
these comparisons. (1) The object categories used in ISLVRC changed between years 2010 and
2011, and between 2011 and 2012. However, the large scale of the data (1000 object categories,
1.2 million training images) has remained the same, making it possible to compare results. Image
classification and single-object localization entries shown here use only provided training data. (2)
The size of the object detection training data has increased significantly between years 2013 and
2014 (Section 5.4.2). Section 5.7.1 discusses the relative effects of training data increase versus
algorithmic improvements.

as large-scale weakly supervised localization work of [105] which was awarded the best paper award

in ECCV 2012 and large-scale zero-shot learning, e.g., [59].

5.7 Results and analysis

We summarize the trends over the years of ILSVRC. Chapter 7 goes into much more detailed per-

class analysis of the performance of leading algorithms.

5.7.1 Improvements over the years

State-of-the-art accuracy has improved significantly from ILSVRC2010 to ILSVRC2014, showcasing

the massive progress that has been made in large-scale object recognition over the past five years. The

performance of the winning ILSVRC entries for each task and each year are shown in Figure 5.4.

The improvement over the years is clearly visible. In this section we quantify and analyze this

improvement.

Image classification and single-object localization. There has been a 4.2x reduction in image

classification error (from 28.2% to 6.7%) and a 1.7x reduction in single-object localization error (from

42.5% to 25.3%) since the beginning of the challenge.6 Even though the exact object categories have

6For consistency, here we consider only teams that use the provided training data.
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changed [152], the scale of the dataset has remained the same (Table 5.2), making the results

comparable across the years. The dataset has not changed since 2012, and there has been a 2.4x

reduction in image classification error (from 16.4% to 6.7%) and a 1.3x in single-object localization

error (from 33.5% to 25.3%) in the past three years.

Object detection. Object detection accuracy as measured by the mean average precision (mAP)

has increased 1.9x since the introduction of this task, from 22.6% mAP in ILSVRC2013 to 43.9%

mAP in ILSVRC2014. However, these results are not directly comparable for two reasons. First, the

size of the object detection training data has increased significantly from 2013 to 2014 (Table 5.3).

Second, the 43.9% mAP result was obtained with extra training data (from the image classification

and single-object localization tasks). Here we attempt to understand the relative effects of the

training set size increase versus algorithmic improvements. All models are evaluated on the same

ILSVRC2013-2014 object detection test set.

First, we quantify the effects of increasing detection training data between the two challenges by

comparing the same model trained on ILSVRC2013 detection data versus ILSVRC2014 detection

data. The UvA team’s framework [190] from 2013 achieved 22.6% with ILSVRC2013 data and 26.3%

with ILSVRC2014 data and no other modifications.7 The absolute increase in mAP was 3.7%. The

RCNN model achieved 31.4% mAP with ILSVRC2013 detection plus image classification data [66]

and 34.5% mAP with ILSVRC2014 detection plus image classification data (Berkeley team [152]).

The absolute increase in mAP by expanding ILSVRC2013 detection data to ILSVRC2014 was 3.1%.

Second, we quantify the effects of adding in the external data for training object detection models.

The NEC model in 2013 achieved 19.6% mAP trained on ILSVRC2013 detection data alone and

20.9% mAP trained on ILSVRC2013 detection plus classification data [205, 152]. The absolute

increase in mAP was 1.3%. The UvA team’s best entry in 2014 achieved 32.0% mAP trained on

ILSVRC2014 detection data and 35.4% mAP trained on ILSVRC2014 detection plus classification

data [190, 152]. The absolute increase in mAP was 3.4%.

Thus, we conclude based on the evidence so far that expanding the ILSVRC2013 detection set

to the ILSVRC2014 set, as well as adding in additional training data from the classification task, all

account for approximately 1−4% in absolute mAP improvement for the models. For comparison, we

can also attempt to quantify the effect of algorithmic innovation. The UvA team’s 2013 framework

achieved 26.3% mAP on ILSVRC2014 data as mentioned above, and their improved method in 2014

obtained 32.0% mAP [190, 152]. This is 5.8% absolute increase in mAP over just one year from

algorithmic innovation alone.

In summary, we conclude that the absolute 21.3% increase in mAP between winning entries

of ILSVRC2013 (22.6% mAP) and of ILSVRC2014 (43.9% mAP) is the result of impressive algo-

rithmic innovation and not just a consequence of increased training data. However, increasing the

7Personal communication with members of the UvA team.
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ISLVRC2014 object detection training dataset further is likely to produce additional improvements

in detection accuracy for current algorithms.

5.7.2 Statistical significance

One important question to ask is whether results of different submissions to ILSVRC are statistically

significantly different from each other. Given the large scale, it is no surprise that even minor differ-

ences in accuracy are statistically significant; we seek to quantify exactly how much of a difference

is enough.

Following the strategy employed by PASCAL VOC [46], for each method we obtain a confidence

interval of its score using bootstrap sampling. During each bootstrap round, we sample N images

with replacement from all the available N test images and evaluate the performance of the algorithm

on those sampled images. This can be done very efficiently by precomputing the accuracy on each

image. Given the results of all the bootstrapping rounds we discard the lower and the upper α

fraction. The range of the remaining results represents the 1 − 2α confidence interval. We run a

large number of bootstrapping rounds (from 20,000 until convergence). Table 5.4 shows the results of

the top entries to each task of ILSVRC2012-2014. The winning methods are statistically significantly

better than the runner-up methods, even at the 99.9% level.

5.8 Conclusions

In this paper we described the large-scale data collection process of ILSVRC, provided a summary

of the most successful algorithms on this data, and analyzed the success and failure modes of these

algorithms. In this section we discuss some of the key lessons we learned over the years of ILSVRC,

strive to address the key criticisms of the datasets and the challenges we encountered over the years,

and conclude by looking forward into the future.

5.8.1 Lessons learned

The key lesson of collecting the datasets and running the challenges for five years is this: All human

intelligence tasks need to be exceptionally well-designed. We learned this lesson both when

annotating the dataset using Amazon Mechanical Turk workers (Section 5.4) and even when trying

to evaluate human-level image classification accuracy using expert labelers [152]. The first iteration

of the labeling interface was always bad – generally meaning completely unusable. If there was

any inherent ambiguity in the questions posed (and there almost always was), workers found it and

accuracy suffered. If there is one piece of advice we can offer to future research, it is to very carefully

design, continuously monitor, and extensively sanity-check all crowdsourcing tasks.

The other lesson, already well-known to large-scale researchers, is this: Scaling up the dataset
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Image classification
Year Codename Error (percent) 99.9% Conf Int
2014 GoogLeNet [177] 6.66 6.40 - 6.92
2014 VGG [170] 7.32 7.05 - 7.60
2014 MSRA [77] 8.06 7.78 - 8.34
2014 AHoward [84] 8.11 7.83 - 8.39
2014 DeeperVision 9.51 9.21 - 9.82
2013 Clarifai† [219, 220] 11.20 10.87 - 11.53
2013 Clarifai [219, 220] 11.74 11.41 - 12.08
2013 NUS [104] 12.95 12.60 - 13.30
2013 ZF [219, 220] 13.51 13.14 - 13.87
2013 AHoward 13.55 13.20 - 13.91
2012 SuperVision† [104] 15.32 14.94 - 15.69
2012 SuperVision [104] 16.42 16.04 - 16.80
2012 ISI [75] 26.17 25.71 - 26.65
2012 VGG [4, 162] 26.98 26.53 - 27.43
2012 XRCE [142] 27.06 26.60 - 27.52

Single-object localization
Year Codename Error (percent) 99.9% Conf Int
2014 VGG [170] 25.32 24.87 - 25.78
2014 GoogLeNet [177] 26.44 25.98 - 26.92
2013 OverFeat [165] 29.88 29.38 - 30.35
2014 Adobe† 30.10 29.61 - 30.58
2014 SYSU 31.90 31.40 - 32.40
2012 SuperVision† [104] 33.55 33.05 - 34.04
2014 MIL [96, 66] 33.74 33.24 - 34.25
2012 SuperVision [104] 34.19 33.67 - 34.69
2013 VGG [169] 46.42 45.90 - 46.95
2012 VGG [4, 162] 50.03 49.50 - 50.57
2012 ISI [75] 53.65 53.10 - 54.17

Object detection
Year Codename AP (percent) 99.9% Conf Int
2014 GoogLeNet† [177] 43.93 42.92 - 45.65
2014 CUHK† [134, 135] 40.67 39.68 - 42.30
2014 DeepInsight† 40.45 39.49 - 42.06
2014 NUS [117, 25] 37.21 36.29 - 38.80
2014 UvA† [190] 35.42 34.63 - 36.92
2013 UvA [190] 22.58 22.00 - 23.82
2013 NEC† [205] 20.90 20.40 - 22.15
2013 NEC [205] 19.62 19.14 - 20.85
2013 OverFeat† [165] 19.40 18.82 - 20.61
2013 Toronto 11.46 10.98 - 12.34

Table 5.4: We use bootstrapping to construct 99.9% confidence intervals around the result of up
to top 5 submissions to each ILSVRC task in 2012-2014. †means the entry used external training
data. The winners using the provided data for each track and each year are bolded. The difference
between the winning method and the runner-up each year is significant even at the 99.9% level.
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always reveals unexpected challenges. From designing complicated multi-step annotation

strategies (described later in Chapter 6) to having to modify the evaluation procedure (Section 5.5),

we had to continuously adjust to the large-scale setting. On the plus side, of course, the major break-

throughs in object recognition accuracy (Section 5.6) and the analysis of the strength and weaknesses

of current algorithms as a function of object class properties (described later in Chapter 7) would

never have been possible on a smaller scale.

5.8.2 Criticism

In the past five years, we encountered three major criticisms of the ILSVRC dataset and the corre-

sponding challenge: (1) the ILSVRC dataset is insufficiently challenging, (2) the ILSVRC dataset

contains annotation errors, and (3) the rules of ILSVRC competition are too restrictive. We discuss

these in order.

The first criticism is that the objects in the dataset tend to be large and centered in the im-

ages, making the dataset insufficiently challenging. In Sections 5.4.1 and 5.4.2 we tried to put those

concerns to rest by analyzing the statistics of the ILSVRC dataset and concluding that it is com-

parable with, and in many cases much more challenging than, the long-standing PASCAL VOC

benchmark [48].

The second is regarding the errors in ground truth labeling. We went through several rounds

of in-house post-processing of the annotations obtained using crowdsourcing, and corrected many

common sources of errors. The major remaining source of annotation errors stem from fine-grained

object classes, e.g., labelers failing to distinguish different species of birds. This is a tradeoff that

had to be made: in order to annotate data at this scale on a reasonable budget, we had to rely on

non-expert crowd labelers. However, overall the dataset is encouragingly clean. By our estimates,

99.7% precision is achieved in the image classification dataset [152] and 97.9% of images that went

through the bounding box annotation system have all instances of the target object class labeled

with bounding boxes [175, 152].

The third criticism we encountered is over the rules of the competition regarding using external

training data. In ILSVRC2010-2013, algorithms had to only use the provided training and validation

set images and annotations for training their models. With the growth of the field of large-scale

unsupervised feature learning, however, questions began to arise about what exactly constitutes

“outside” data: for example, are image features trained on a large pool of “outside” images in an

unsupervised fashion allowed in the competition? After much discussion, in ILSVRC2014 we took

the first step towards addressing this problem. We followed the PASCAL VOC strategy and created

two tracks in the competition: entries using only “provided” data and entries using “outside” data,

meaning any images or annotations not provided as part of ILSVRC training or validation sets.

However, in the future this strategy will likely need to be further revised as the computer vision

field evolves. For example, competitions can consider allowing the use of any image features which
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are publically available, even if these features were learned on an external source of data.

5.8.3 The future

Given the massive algorithmic breakthroughs over the past five years, we are very eager to see what

will happen in the next five years. There are many potential directions of improvement and growth

for ILSVRC and other large-scale image datasets.

First, continuing the trend of moving towards richer image understanding (from image clas-

sification to single-object localization to object detection), the next challenge would be to tackle

pixel-level object segmentation. The recently released large-scale COCO dataset [118] is already

taking a step in that direction.

Second, as datasets grow even larger in scale, it may become impossible to fully annotate them

manually. The scale of ILSVRC is already imposing limits on the manual annotations that are

feasible to obtain: for example, we had to restrict the number of objects labeled per image in the

image classification and single-object localization datasets. In the future, with billions of images, it

will become impossible to obtain even one clean label for every image. Datasets such as Yahoo’s

Flickr Creative Commons 100M,8 released with weak human tags but no centralized annotation,

will become more common.

The growth of unlabeled or only partially labeled large-scale datasets implies two things. First,

algorithms will have to rely more on weakly supervised training data. Second, even evaluation

might have to be done after the algorithms make predictions, not before. This means that rather

than evaluating accuracy (how many of the test images or objects did the algorithm get right) or

recall (how many of the desired images or objects did the algorithm manage to find), both of which

require a fully annotated test set, we will be focusing more on precision: of the predictions that the

algorithm made, how many were deemed correct by humans.

We are eagerly awaiting the future development of object recognition datasets and algorithms,

and are grateful that ILSVRC served as a stepping stone along this path.

8http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67



Chapter 6

Large-scale object detection

dataset construction

6.1 Introduction

Chapter 5 introduced the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) and dis-

cussed the tasks, the evaluation criteria and the leading algorithms. Here we focus specifically on the

object detection task, which evaluates the ability of an algorithm to name and localize all instances

of all target objects present in an image. It is much more challenging than the single-object local-

ization task because some object instances may be small/occluded/difficult to accurately localize,

and the algorithm is expected to locate them all, not just the one it finds easiest.

A critical component for scaling up object detection is collecting a large-scale detection dataset.

The PASCAL VOC dataset [48, 46] provides a standardized test bed for object detection with 20

object classes and 21,738 images.1 We set out to collect an object detection benchmark dataset for

ILSVRC that is more than an order of magnitude greater in size.

There are three key challenges in collecting the object detection dataset. The first challenge is

selecting the set of common objects which tend to appear in cluttered photographs and are well-

suited for benchmarking object detection performance. Our approach relies on statistics of the

object localization dataset and the tradition of the PASCAL VOC challenge (Section 6.2).

The second challenge is obtaining a much more varied set of scene images than those used for

the image classification and single-object localization datasets. Section 6.3 describes the procedure

for utilizing as much data from the single-object localization dataset as possible and supplementing

it with Flickr images queried using hundreds of manually designed high-level queries.

The third, and biggest, challenge is completely annotating this dataset with all the objects. This

1Other related work is summarized in Chapter 5.

69



CHAPTER 6. LARGE-SCALE OBJECT DETECTION DATASET CONSTRUCTION 70

is done in two parts. Section 6.4 describes the first part: our hierarchical strategy for obtaining

the list of all target objects which occur within every image. This is necessary since annotating in

a straight-forward way by creating a task for every (image, object class) pair is no longer feasible

at this scale. Section 6.5 describes the second part: annotating the bounding boxes around these

objects, using the single-object localization bounding box annotation pipeline of Section 6.5.1 along

with extra verification of Section 6.5.2 to ensure that every instance of the object is annotated with

exactly one bounding box.

6.2 Defining object categories

The first step is defining the set of target object categories. To do this, we select from among the

existing ImageNet [36] categories. By using WordNet as a backbone [128], ImageNet already takes

care of disambiguating word meanings and of combining together synonyms into the same object

category. Since the selection of object categories needs to be done only once per challenge task, we

use a combination of automatic heuristics and manual post-processing to create the list of target

categories appropriate for each task.

There are 200 object classes hand-selected for the detection task. These were chosen to be mostly

basic-level object categories that would be easy for people to identify and label. The rationale is

that the object detection system developed for this task can later be combined with a fine-grained

classification model to further classify the objects if a finer subdivision is desired.2 The synsets are

selected such that there is no overlap as to avoid confusion: for any synsets i and j, i is not an

ancestor of j in the ImageNet hierarchy.

The selection of the 200 object detection classes in 2013 was guided by the ILSVRC 2012 classifi-

cation and localization dataset. Starting with 1000 object classes and their bounding box annotations

we first eliminated all object classes which tended to be too “big” in the image (on average the object

area was greater than 50% of the image area). These were classes such as T-shirt, spiderweb, or

manhole cover. We then manually eliminated all classes which we did not feel were well-suited for

detection, such as hay, barbershop, or poncho. This left 494 object classes which were merged into

basic-level categories: for example, different species of birds were merged into just the “bird” class.

The classes remained the same in ILSVRC2014. Appendix D contains the complete list of object

categories used in ILSVRC2013-2014 (in the context of the hierarchy described in Section 6.4).

Staying mindful of the tradition of the PASCAL VOC dataset we also tried to ensure that the

set of 200 classes contains as many of the 20 PASCAL VOC classes as possible. Table 6.1 shows

the correspondences. The few changes were done ensure more accurate and consistent crowdsourced

annotations. The object class with the weakest correspondence is “potted plant” in PASCAL VOC,

corresponding to “flower pot” in ILSVRC. “Potted plant” was one of the most challenging object

2Some of the training objects are actually annotated with more detailed classes: for example, one of the 200 object
classes is the category “dog,” and some training instances are annotated with the specific dog breed.
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Class name in PASCAL VOC Closest class in ILSVRC-DET Average object scale (%)
(20 classes) (200 classes) PASCAL VOC ILSVRC-DET

aeroplane airplane 29.7 22.4
bicycle bicycle 29.3 14.3

bird bird 15.9 20.1
boat watercraft 15.2 16.5

bottle wine bottle 7.3 10.4
bus bus 29.9 22.1
car car 14.0 13.4
cat domestic cat 46.8 29.8

chair chair 12.8 10.1
cow cattle 19.3 13.5

dining table table 29.1 30.3
dog dog 37.0 28.9

horse horse 29.5 18.5
motorbike motorcyle 32.0 20.7

person person 17.5 19.3
potted plant flower pot 12.3 8.1

sheep sheep 12.2 17.3
sofa sofa 41.7 44.4
train train 35.4 35.1

tv/monitor tv or monitor 14.6 11.2

Table 6.1: Correspondences between the object classes in the PASCAL VOC [48] and the ILSVRC
detection task. Object scale is the fraction of image area (reported in percent) occupied by an
object instance. It is computed on the validation sets of PASCAL VOC 2012 and of ILSVRC-DET.
The average object scale is 24.1% across the 20 PASCAL VOC categories and 20.3% across the 20
corresponding ILSVRC-DET categories.

classes to annotate consistently among the PASCAL VOC classes, and in order to obtain accurate

annotations using crowdsourcing we had to restrict the definition to a more concrete object.

6.3 Collecting scene images

The second step is collecting a diverse set of candidate images to represent the selected categories.

We use both automatic and manual strategies on multiple search engines to do the image collection.

Many images for the detection task were collected differently than the images in ImageNet [36]

and the classification and single-object localization tasks [152]. We focus our efforts specifically on

collecting scene-like images.

Figure 6.1 summarizes the types of images that were collected. Ideally all of these images would

be scene images fully annotated with all target categories. However, given budget constraints our

goal was to provide as much suitable detection data as possible, even if the images were drawn from

a few different sources and distributions.
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Figure 6.1: Summary of images collected for the detection task. Images in green (bold) boxes have
all instances of all 200 detection object classes fully annotated.

Validation and test. The validation and test detection set images come from two sources (percent

of images from each source in parentheses). The first source (77%) is images from ILSVRC2012

single-object localization validation and test sets corresponding to the 200 detection classes (or their

children in the ImageNet hierarchy). Images where the target object occupied more than 50% of

the image area were discarded, since they were unlikely to contain other objects of interest. The

second source (23%) is images from Flickr collected specifically for detection task. We queried Flickr

using a large set of manually defined queries, such as “kitchenette” or “Australian zoo” to retrieve

images of scenes likely to contain several objects of interest. Appendix C contains the full list. We

also added pairwise queries, or queries with two target object names such as “tiger lion,” which also

often returned cluttered scenes.

Figure 6.2 shows a random set of both types of validation images. Images were randomly split,

with 33% going into the validation set and 67% into the test set.3 In total there are 20, 121 validation

and 40, 152 test images.

Training. The training set for the detection task comes from three sources of images (percent

of images from each source in parentheses). The first source (63%) is all training images from

ILSVRC2012 single-object localization task corresponding to the 200 detection classes (or their chil-

dren in the ImageNet hierarchy). We did not filter by object size, allowing teams to take advantage

3The validation/test split is consistent with ILSVRC2012: validation images of ILSVRC2012 remained in the
validation set of ILSVRC2013, and ILSVRC2012 test images remained in ILSVRC2013 test set.
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Figure 6.2: Random selection of images in ILSVRC detection validation set. The images in the top
4 rows were taken from ILSVRC2012 single-object localization validation set, and the images in the
bottom 4 rows were collected from Flickr using scene-level queries.
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of all the positive examples available. The second source (24%) is negative images which were part

of the original ImageNet collection process but voted as negative: for example, some of the images

were collected from Flickr and search engines for the ImageNet synset “animals” but during the

manual verification step did not collect enough votes to be considered as containing an “animal.”

These images were manually re-verified for the detection task to ensure that they did not in fact

contain the target objects. The third source (13%) is images collected from Flickr specifically for

the detection task. These images were added for ILSVRC2014 following the same protocol as the

second type of images in the validation and test set. This was done to bring the training and testing

distributions closer together.

In total there are 288,661 training images from the ILSVRC2012 single-object localization task

(between 417 and 66,991 per class), 109,364 additional annotated negative training images (185-

10,073 per class) and 60,658 Flickr scene images added in ILSVRC2014.

6.4 Scalable multi-label annotation

The third (and most challenging) step of constructing the object detection dataset is annotating

the collected images. For building the object detection dataset, we tackle this step in two parts.

First, we annotate all images with the presence or absence of target categories (i.e., we determine

which objects are contained in each image). This requires developing a novel hierarchical labeling

system which we describe in this section. Section 6.5 then describes the second part of annotating

the object location.

The key challenge in annotating images for the object detection task is that all objects in all

images need to be labeled. Suppose there are N inputs (images) which need to be annotated with

the presence or absence of K labels (objects). A näıve approach would query humans for each

combination of input and label, requiring NK queries. However, N and K can be very large and

the cost of this exhaustive approach quickly becomes prohibitive. For example, annotating 60, 000

validation and test ILSVRC detection images with the presence or absence of 200 object classes

for the detection task näıvely would take 80 times more effort than annotating 150, 000 validation

and test images with 1 object each for the classification task – and this is not even counting the

additional cost of collecting bounding box annotations around each object instance. This quickly

becomes infeasible.

In this section we study general strategies for scaling up multi-label annotation, i.e. obtaining

labels with a cost substantially smaller than that of the exhaustive näıve approach. This technique

is important in multiple domains, such as labeling actions in videos [110], news article topics [163],

functional classes of genes [45], musical attributes or emotions in songs [116], semantic classes of

scenes [16], product categories customers are likely to buy [223], and categories of web pages [185].

While the problem of acquiring one label has been well studied [208, 89, 226, 207, 167, 32], to our
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Figure 6.3: Multi-label annotation becomes much more efficient when considering real-world struc-
ture of data: correlation between labels, hierarchical organization of concepts, and sparsity of labels.

knowledge the challenge of large-scale multi-label annotation has not been addressed before.

6.4.1 Overview

We exploit three key observations for labels in real world applications (illustrated in Figure 6.3).

1. Correlation. Subsets of labels are often highly correlated. Objects such as a computer

keyboard, mouse and monitor frequently co-occur with each other in images. Topics such as

economy and finance often co-occur in news articles. Similarly, some labels tend to all be

absent at the same time. For example, all objects that require electricity are usually absent in

pictures taken outdoors. This suggests that we could potentially “fill in” the values of multiple

labels by grouping them into only one query for humans. Instead of checking if dog, cat, rabbit

etc. are present in the photo, we check them as a group animal. If the answer is no, then this

implies a no for all categories in the group.

2. Hierarchy. The above example of grouping dog, cat, rabbit etc. into animal has implicitly

assumed that labels can be grouped together and humans can efficiently answer queries about

the group as a whole. This brings up our second key observation: humans organize semantic

concepts into hierarchies and are able to efficiently categorize at higher semantic levels [180],
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e.g. humans can determine the presence of an animal in an image as fast as every type of

animal individually. This leads to substantial cost savings.

3. Sparsity. The values of labels for each item tend to sparse, i.e. an image is unlikely to

contain more than a dozen types of objects, a small fraction of the tens of thousands of object

categories. This enables a rapid elimination of many objects, filling no for many labels very

quickly. With a high degree of sparsity, an efficient algorithm can have a cost which grows

logarithmically with the number of objects instead of linearly.

We propose algorithmic strategies that exploit the above intuitions. The key is to select a

sequence of queries for humans such that we achieve the same labeling results with only a fraction

of the cost of the näıve approach. The main challenges include how to measure cost and utility, how

to construct good queries, and how to order them. We present a theoretical analysis and a practical

algorithm. We then demonstrate how this algorithm was used in practice to obtain the ILSVRC

object detection annotations.

6.4.2 Related Work

Acquiring labels as a crowdsourcing task has been extensively studied. The key challenge is making

efficient use of resources to achieve quality results. A growing body of work has studied how to

estimate worker quality [89], how to combine results from multiple noisy annotators [208, 226,

207], how to model the trade-off between quality and cost [32], how to merge machine and human

intelligence [94], as well as how to select the next best item to label [167]. However, they only focus

on the single-label case. Multi-label annotation has been practiced in many crowd-powered systems.

For example, PlateMate [130] tags all foods in each photo for nutrition estimation. VizWiz [12]

labels the presence of objects in images to help blind users. These systems, however, do not address

the scalability issue of a large number of labels.

Our framework of optimizing the sequence of queries to quickly fill in values relates to general

strategies using iterative steps [121] to limit the search space. Bernstein et al. uses “rapid refinement”

to narrow down the search space with multiple synchronized users [11]. Branson et al. investigate

how to select questions posed to human users to perform multi-class image classification [19]; this

is special case of our setting where only one class can be present in an image.

6.4.3 Approach

We first describe a meta algorithm for multi-label annotation, and then customize to make it more

efficient. For clarity of exposition and without any loss of generality we use the task of labeling

images with the presence of objects as a running example. Here each label represents the presence

or absence of an object and takes a value of yes or no. We assume that all labels are binary since

any multi-valued label can be represented as a set of mutually exclusive binary labels.
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Is there
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Is there
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Figure 6.4: Our algorithm dynamically selects the next query to efficiently determine the presence
or absence of every object in every image. Green denotes a positive annotation and red denotes
a negative annotation. This toy example illustrates a sample progression of the algorithm for one
label (cat) on a set of images.

Algorithm. Our meta algorithm (Algorithm 2) poses a sequence of queries to humans. Each

query allows us to fill in values for some labels. We stop when all values are filled. A few sample

iterations of the algorithm are shown in Figure 6.4.

Input: An item to be labeled
Output: K labels, each label +1 or −1
Set values of all K labels to 0 (i.e. missing);
while any values are 0 do

Select a query Q from possible queries Q;
Obtain an answer A to query Q from humans;
Set values of some labels to +1 or −1 given answer A;

end
Algorithm 2: The meta algorithm for multi-label annotation

In the näıve instantiation of this meta algorithm, we issue one query for each label (i.e. is there

a dog in the image). This is clearly not scalable as the cost is O(NK) for N items and K labels.

The key to scalability is using additional queries that may fill in multiple values (e.g. if there is no

animal with four legs, we know there is no dog and no cat and no rabbit in the image). Moreover,

we can exploit the fact that the meta algorithm allows dynamic selection of the next query based

on the current available information.

A good query should fill in as many values as possible and is easy for humans to answer. In other

words, we would like to pick a question with the most utility in filling in the values per unit of cost.

We now make the two notions precise.

Utility. We measure the utility of a query as the expected number of new values filled in over a

distribution of items to be labeled. Consider an image with k missing labels. Let y ∈ {−1, 0,+1}k

represent the values of those k labels after using query Q, where −1 means “no,” 0 means “unknown”

and 1 means “yes.” Thus the l1 norm ‖y‖1 is the number of newly acquired labels. The utility of Q

is U(Q) = E‖y‖1.

In practice the utility can be estimated using a “training” set, i.e. an i.i.d. sample of items with

ground truth annotations.4 Suppose we have a set of n training images labeled with the presence or
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absence of cats, dogs, and other objects of interest. The utility of the query “is there a cat present”

would be 1, since on every image we would gain one new label. On the other hand, consider the

utility of the query “is there an animal present.” Suppose there are n− images which do not have

an animal, and suppose there are s subcategories of animal in our set of labels. Then on each of

the n− negative images we gain s new “no” labels since we now know all subcategories of animals

must be absent. On the other images we don’t gain anything since we do not know which animal is

present. Thus, the estimated utility is Û(Q) = sn−/n.

Seeking high utility queries exploits the correlation and sparsity of a large label set. High

correlation of labels implies high utility of certain queries. For example, when annotating a diverse

set of internet images for the presences of couches, desks, sofas, and chairs, designing queries with

good utility (e.g., is furniture present?) is easy because the labels are correlated: most internet

images that do not have couches also will not have desks. High sparsity means potentially more

high utility queries because for most inputs most queries will have a no answer (e.g., most images

will not have most of the objects being annotated).

Cost. We measure the cost C(Q) of a query Q as the expected human time it takes to obtain

a reliable answer for one item. First, we can empirically measure the average amount of time a

human takes to answer a query on a small training set. Next, we might need to consult multiple

humans to be confident in the answer. Here we take the majority voting approach and assume a

Bernoulli process for querying multiple workers. Again on a small training set we can estimate that

the average worker gives a correct answer with probability p > 0.5. Then the accuracy of a majority

of 2n + 1 votes is [167]: P̂2n+1 =
∑2n+1
i=n+1

(
2n+1
i

)
pi(1 − p)2n+1−i. Given an acceptable accuracy

threshold 1− ε, we can find the number of votes needed to reach the threshold, which allows us to

calculate C(Q) as a product of the number of workers needed and the average time a worker takes

to give an answer.

To be more scalable than the naive method, it is crucial to find high-utility queries that are

also low cost. This is where the hierarchical structure of the label space helps. Hierarchy means

many high-level or attribute-like queries (e.g. “is it red?”) have low time cost because they are not

arbitrary groupings but useful shortcuts in human cognition, i.e. humans can answer is there an

animal as fast as is there a dog.

Selection. In Algorithm 2, the query is selected by maximizing utility per unit cost, i.e., Q∗ =

arg maxQ Û(Q)/C(Q).

4We could in principle estimate the utility conditioned on values of existing labels. This is beyond the scope of
this paper.
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Figure 6.5: The Amazon Mechanical Turk interface for obtaining human annotations. Here workers
are asked to select images which contain a rabbit, and are shown good and bad example images.

6.4.4 Experiments

Task and Implementation. We apply this algorithm to the task of labeling images with the

presence or absence of many object categories. Here we evaluate the labeling on a subset of 20, 000

images from the ILSVRC object detection validation set (Section 6.3). We annotate them with 200

object classes (Section 6.2). We manually create a hierarchy of these objects which contains 56

internal queries, using high-level categories such as “animals with hooves,” “electronics that play

sound” or “liquid containers.” The full hierarchy is in Appendix D.

We created a user interface shown in Figure 6.5 for efficient binary labeling of images. A user

is given an object category (either one of the target categories or a high-level category) along with

positive and negative example images, and is then asked to click on all images from a large candidate

pool which contain an instance of this category. We used this interface to query humans using

Amazon Mechanical Turk.

We used an early pilot of this algorithm to obtain ground truth annotations on this data, with

stringent quality control but potentially suboptimal cost. This allows us to evaluate our algorithm in

a controlled setting through simulation. We estimate key simulation parameters (worker confusion

matrix, worker response time per image for each query) through real AMT experiments with a

sample of 100 images per category, each image labeled 3 workers. Query utility is estimated by the

algorithm on the fly using the training set (we use a 10%-90% training-test split). In simulation we

enforce a minimum worker accuracy of 75% after filtering of spammers.

Query construction. Before our algorithm can automatically perform query selection, we need to

provide a pool of candidate queries. We can leverage general knowledge bases such as WordNet [53]),
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Query: Is there a...5 Utility (num labels) Cost (secs)
mammals that have claws or fingers 12.0 3.0
living organisms 24.8 7.9
mammals 17.6 7.4
creatures without legs 5.9 2.6
land and avian creatures 20.8 9.5

Table 6.2: The most useful queries at the first iteration of our algorithm. Utility is the expected
number of new values for object labels as a result of this query. Cost is the human time needed (in
seconds) to obtain the correct answer with a minimum of 95% accuracy on expectation.

or specialized ones such as the product taxonomy from eBay. These databases can provide high-level

concepts or attributes as candidate queries.

If manual query construction is necessary (e.g. to augment an existing pool), we provide simple

heuristics. As discussed above, there are two key components of good queries: high utility and low

cost. For high utility the query should be broad in scope (e.g., “is there an animal?”, “is there

furniture?”, ”is it sharp?”). To be low cost, the query should be easy for the average human to

answer using just salient information in the input. For example, queries such as “are there school

supplies?”, “motorized vehicles?”, “things used to open cans/bottles?” took up to 3 times longer

on average than simple queries such as “is there a bug?”, “ a canine?”, “a ball?”. Generally, queries

should avoid requiring the user to do additional inference beyond the provided input.

Query construction may involve significant effort, but it is a one-time, fixed investment: the label

set for a particular application is relatively static, whereas the items to label can be dynamic and

infinitely many. The cost saved in labeling many items can easily outweigh the fixed, upfront cost of

query construction. Moreover, our method is designed to minimize the effort of query construction

as it automatically selects the most effective queries.

Some examples of highest-utility queries at the first iteration of our algorithm are shown in

Table 6.2.

Large-scale evaluation. We compare our algorithm to the baseline approach that queries a

human for every object in every image. We use 3 metrics: (1) accuracy, or the total percentage of

correct labels, (2) F1-score, or the harmonic mean of precision and recall on labels from all categories,

and (3) reduction of human annotation time of our algorithm compared to the baseline.

Results are in Table 6.3. The error bars are the result of 5 simulations. Threshold is the

acceptable label accuracy that determines the number of workers to recruit for each query. Our

algorithm obtains cost savings of up to 6 times compared to the näıve approach while maintaining

superior label accuracy.

5Actual queries are longer and include detailed definitions. The full list is in Appendix D.
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Thresh
Accuracy F1 score

Cost saving
Näıve Ours Näıve Ours

95.0 99.64 99.75±0.00 75.67 76.97±0.16 3.93±0.00
90.0 99.29 99.62±0.00 60.17 60.69±0.39 6.18±0.01
85.0 99.25 99.62±0.00 59.09 60.46±0.39 6.11±0.01

Table 6.3: Our algorithm versus the näıve brute force approach. Thresh is a parameter of the
algorithm (please refer to text for detail).

6.4.5 Discussion and Conclusion

Our algorithm works well in cases where the natural distribution of labels satisfies our assumptions,

i.e. when the labels are correlated, sparse, and naturally form a hierarchy. If, on the other hand, the

distribution of labels is dense and independent, there is little for our algorithm to exploit. In real

world scenarios, though, and as validated by our experiments, exploiting the label distribution can

yield significant savings.

Coming back to the object detection image annotation task, we conclude that it is always better

to stick with more general but less ambiguous questions, such as “is there a mammal in the image?”

as opposed to asking overly specific but potentially ambiguous questions, such as “is there an an-

imal that can climb trees?” False positive ansers only add extra cost whereas false negatives can

significantly affect the quality of labeling.

6.5 Bounding box system for object detection

Once all images are labeled with the presence or absence of all object categories (using the algorithm

of Section 6.4 above), we now annotate the location of all the objects. We use the bounding box

system of [175] summarized below in Section 6.5.1 along with novel modifications of Section 6.5.2 to

annotate the location of every instance of every present object category.

6.5.1 ILSVRC bounding box object annotation system

We use the crowdsourced bounding box annotation system of [175] which was developed for the

single-object localization task of ILSVRC and is work done prior to this thesis. We briefly summarize

it here for completeness.

The goal is to build a system that is fully automated, highly accurate, and cost-effective. Given a

collection of images where the object of interest has been verified to exist, for each image the system

collects a tight bounding box for every instance of the object.

There are two requirements:

• Quality Each bounding box needs to be tight, i.e. the smallest among all bounding boxes that

contains all visible parts of the object. This facilitates the object detection learning algorithms
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by providing the precise location of each object instance;

• Coverage Every object instance needs to have a bounding box. This is important for training

localization algorithms because it tells the learning algorithms with certainty what is not the

object.

The core challenge of building such a system is effectively controlling the data quality with

minimal cost. Our key observation is that drawing a bounding box is significantly more difficult

and time consuming than giving answers to multiple choice questions. Thus quality control through

additional verification tasks is more cost-effective than consensus-based algorithms. This leads to

the following workflow with simple basic subtasks:

1. Drawing A worker draws one bounding box around one instance of an object on the given

image.

2. Quality verification A second worker checks if the bounding box is correctly drawn.

3. Coverage verification A third worker checks if all object instances have bounding boxes.

The sub-tasks are designed following two principles. First, the tasks are made as simple as

possible. For example, instead of asking the worker to draw all bounding boxes on the same image,

we ask the worker to draw only one. This reduces the complexity of the task. Second, each task

has a fixed and predictable amount of work. For example, assuming that the input images are clean

(object presence is correctly verified) and the coverage verification tasks give correct results, the

amount of work of the drawing task is always that of providing exactly one bounding box.

Quality control on Tasks 2 and 3 is implemented by embedding “gold standard” images where

the correct answer is known. Worker training for each of these subtasks is described in detail in [175].

Empirical evaluation. The system is evaluated on 10 categories with ImageNet [36]: balloon,

bear, bed, bench, beach, bird, bookshelf, basketball hoop, bottle, and people. A subset of 200 images

are randomly sampled from each category. On the image level, our evaluation shows that 97.9%

images are completely covered with bounding boxes. For the remaining 2.1%, some bounding boxes

are missing. However, these are all difficult cases: the size is too small, the boundary is blurry, or

there is strong shadow.

On the bounding box level, 99.2% of all bounding boxes are accurate (the bounding boxes are

visibly tight). The remaining 0.8% are somewhat off. No bounding boxes are found to have less

than 50% intersection over union overlap with ground truth.

Additional evaluation of the overall cost and an analysis of quality control can be found in [175].
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Level of annotation. One final note is that every bounding box is required to be as small as

possible while including all visible parts of the object instance. An alternate annotation procedure

could be to annotate the full (estimated) extent of the object: e.g., if a person’s legs are occluded and

only the torso is visible, the bounding box could be drawn to include the likely location of the legs.

However, this alternative procedure is inherently ambiguous and ill-defined, leading to disagreement

among annotators and among researchers (what is the true “most likely” extent of this object?).

We follow the standard protocol of only annotating visible object parts [158, 48].6

6.5.2 Object detection modifications

The bounding box annotation system described in Section 6.5.1 is used for annotating images for

both the single-object localization dataset and the object detection dataset. However, two additional

manual post-processing are needed to ensure accuracy in the object detection scenario:

Ambiguous objects. The first common source of error was that workers were not able to ac-

curately differentiate some object classes during annotation. Some commonly confused labels were

seal and sea otter, backpack and purse, banjo and guitar, violin and cello, brass instruments (trum-

pet, trombone, french horn and brass), flute and oboe, ladle and spatula. Despite our best efforts

(providing positive and negative example images in the annotation task, adding text explanations

to alert the user to the distinction between these categories) these errors persisted.

In the single-object localization setting, this problem was not as prominent for two reasons.

First, the way the data was collected imposed a strong prior on the object class which was present.

Second, since only one object category needed to be annotated per image, ambiguous images could

be discarded: for example, if workers couldn’t agree on whether or not a trumpet was in fact present,

this image could simply be removed. In contrast, for the object detection setting consensus had to

be reached for all target categories on all images.

To fix this problem, once bounding box annotations were collected we manually looked through

all cases where the bounding boxes for two different object classes had significant overlap with each

other (about 3% of the collected boxes). About a quarter of these boxes were found to correspond to

incorrect objects and were removed. Crowdsourcing this post-processing step (with very stringent

accuracy constraints) would be possible but it occurred in few enough cases that it was faster (and

more accurate) to do this in-house.

Duplicate annotations. The second common source of error were duplicate bounding boxes

drawn on the same object instance. Despite instructions not to draw more than one bounding box

around the same object instance and constraints in the annotation UI enforcing at least a 5 pixel

6Some datasets such as PASCAL VOC [48] and LabelMe [158] are able to provide more detailed annotations: for
example, marking individual object instances as being truncated. We chose not to provide this level of detail in favor
of annotating more images and more object instances.
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difference between different bounding boxes, these errors persisted. One reason was that sometimes

the initial bounding box was not perfect and subsequent labelers drew a slightly improved alternative.

This type of error was also present in the single-object localization scenario but was not a major

cause for concern. A duplicate bounding box is a slightly perturbed but still correct positive example,

and single-object localization is only concerned with correctly localizing one object instance. For

the detection task algorithms are evaluated on the ability to localize every object instance, and

penalized for duplicate detections, so it is imperative that these labeling errors are corrected (even

if they only appear in about 0.6% of cases).

Approximately 1% of bounding boxes were found to have significant overlap of more than 50%

with another bounding box of the same object class.We again manually verified all of these cases

in-house. In approximately 40% of the cases the two bounding boxes correctly corresponded to

different people in a crowd, to stacked plates, or to musical instruments nearby in an orchestra. In

the other 60% of cases one of the boxes was randomly removed.

These verification steps complete the annotation procedure of bounding boxes around every

instance of every object class in the validation, test and a subset of training images.

Training set annotation. With the optimized algorithm of Section 6.4 we fully annotated the

validation and test sets. However, annotating all training images with all target object classes was

still a budget challenge. Positive training images taken from the single-object localization dataset

already had bounding box annotations of all instances of one object class on each image. We

extended the existing annotations to the detection dataset by making two modification. First, we

corrected any bounding box omissions resulting from merging fine-grained categories: i.e., if an

image belonged to the ”dalmatian” category and all instances of ”dalmatian” were annotated with

bounding boxes for single-object localization, we ensured that all remaining ”dog” instances are also

annotated for the object detection task. Second, we collected significantly more training data for the

person class because the existing annotation set was not diverse enough to be representative (the

only people categories in the single-object localization task are scuba diver, groom, and ballplayer).

To compensate, we additionally annotated people in a large fraction of the existing training set

images.

6.6 Conclusions

We described the intricate and time-consuming process of collecting a large-scale object detection

dataset for ILSVRC. The selection of object classes (Section 6.2) and images (Section 6.3) was done

with a lot of our manual intervention, whereas data annotation (Sections 6.4 and 6.5) requires less

manual intervention but necessitates the development of novel crowd engineering techniques. The

collected dataset is now used as a standard large-scale object detection benchmark by the community,



CHAPTER 6. LARGE-SCALE OBJECT DETECTION DATASET CONSTRUCTION 85

as was described in detail in Chapter 5.



Chapter 7

Analysis of large-scale object

recognition accuracy

7.1 Introduction

The growth of detection datasets and the multiple directions of object detection research provide

both an unprecedented need and a great opportunity for a thorough evaluation of the current state of

the field of categorical object detection. In this chapter we strive to answer two key questions. Where

are we now as a field: what challenges of large-scale object detection have we successfully addressed,

and which ones still remain? And where should we be going in building the next generation of object

detectors?

The ILSVRC dataset introduced earlier in Chapter 5 provides an excellent testbed for under-

standing the performance of detectors for two reasons. First, it is a commonly accepted benchmark

for large-scale detection and serves as the standard testbed for novel algorithms [177, 66, 165, 205,

170, 104, 152]. Second, its scale of hundreds of object classes allows us to measure the performance

of algorithms as a function of several key properties of images and object classes (illustrated Fig-

ure 7.1). Besides looking at just the average accuracy across hundreds of object categories and

tens of thousands of images as in Chapter 5, we delve deeper to understand where state-of-the-art

algorithms make mistakes and where researchers’ efforts should be focused to expedite progress. We

conduct a series of analyses looking at how different detection methods perform on a number of

image-level and object-class-level properties such as texture, color, deformation, and clutter. We

learn important lessons of the current object detection methods and propose a number of insights

for designing the next generation object detectors.

86
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Figure 7.1: The diversity of ILSVRC along eight dimensions. Please refer to Section 7.3 forthe
definitions. For each dimension, we show example object categories along the range of that property.
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Outline. We discuss related work in Section 7.2 and set up some preliminaries for our analysis in

Section 7.3. Then we conduct analysis of detection algorithms during two time periods. Earlier in

Section 5.6.1 we discussed how a deep learning approach revolutionized large-scale visual recognition

in year 2012. As the first part of our analysis, we compare the performance of the first successful

deep learning algorithm with the best leading method at the time back in year 2012 (Section 7.4).

This is important for understanding both the importance of this algorithmic revolution as well as

for the incredible rate of progress in object detection methods since then. For the second part of

our analysis, we analyze the performance of the latest (deep learning-based) algorithms of ILSVRC

2014 (Section 7.5). This gives us insight into the current state of object detection.

Notation. Throughout this chapter, we use the abbreviation ILSVRC to refer specifically to

the latest 2014 dataset of ILSVRC.1 We use PASCAL to refer to the latest 2012 dataset of the

PASCAL Visual Object Classes challenge [48, 46]. For consistency with the object detection metric

(higher is better), in this section we will be using image classification and single-object localization

accuracy instead of error, where accuracy = 1− error.

7.2 Related work

Several works have analyzed the effects of factors such as occlusion, variations in aspect ratios and

changes of viewpoints, for both specific category detection and general object detection on a small set

of categories [210, 204, 83, 43, 42]. Others have provided insight into dataset design [145, 182, 48].

[228] analyzed the relative impact of adding more training data versus building better detection

models.

Hoiem et al. [82] designed and performed a thorough evaluation of several state-of-the-art object

detectors on the PASCAL dataset, providing much more detail than single average precision score for

each category. This study highlighted some insights into where detection algorithms make mistake

– e.g., false positive detections surprisingly rarely occur on the background clutter and much more

often appear on objects of similar categories. This kind of analysis offers a way to examine the

current state of the field of object detection, but more importantly sheds light on what should be

done for designing the next generation of object detectors. While other insights can be obtained

from further analyzing the PASCAL dataset, one limitation is that it contains only 20 basic object

categories. Therefore, it is harder to do meta-analysis or measure the impact of object properties

such as color, texture, real-world size, on the performance of object detectors. Such analysis is

important in understanding when detection approaches can be expected to work or to fail, and

where more research is needed.

1Note that for image classification and object localization tasks the data in ILSVRC 2012-2014 has stayed the
same (cf Chapter 5).
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7.3 Factors for analysis

We will analyze the performance of algorithms as a function of two types of factors: image-level

properties and intrinsic object class properties. We discuss these in detail below; please refer to

Figure 7.1 for example illustrations of the properties.

Image-level properties

We introduce four metrics of localization difficulty using image-level properties and use them for

our analysis in this chapter. Appendix A additionally uses these metrics to demonstrate that the

ILSVRC dataset has many of the same challenges as the previously established PASCAL VOC

benchmark [48]. The metrics are:

1. Number of instances. The number of instances of the target object per image is an impor-

tant metric to differentiate between product shots and more challenging unstructured images.

Real-world scenes are likely to contain multiple instances of objects. The nearby object in-

stances are particularly difficult to delineate, making these images more challenging for object

detectors.

2. Object scale. As described in [82], smaller objects tend to be significantly more difficult

to localize. We compute the fraction of image area occupied by the bounding boxes around

annotated object instances.

3. Chance performance of localization. Chance performance on a dataset is a common metric

to consider. We introduce the chance performance of localization (CPL) metric for evaluating

the difficulty of the single-object localization task (Section 5.3.2). We define the CPL measure

as the expected accuracy of a detector which first randomly samples an object instance of that

class and then uses its bounding box directly as the proposed localization window on all other

images (after rescaling the images to the same size). Concretely, let B1, B2, . . . , BN be all the

bounding boxes of the object instances within a class, then

CPL =

∑
i

∑
j 6=i IOU(Bi, Bj) ≥ 0.5

N(N − 1)
(7.1)

This measure correlates strongly (ρ = 0.9 on ILSVRC) with the average object scale. We

use CPL for analyzing accuracy on the single-object localization task and the object scale for

evaluating the accuracy on the object detection task.

4. Clutter. Intuitively, even small objects are easy to localize on a plain background. To

quantify clutter we employ the objectness measure of [3], which is a class-generic object detector

evaluating how likely a window in the image contains a coherent object (of any class) as opposed

to background (sky, water, grass). For every image m containing target object instances
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at positions Bm1 , B
m
2 , . . . , we use the publicly available objectness software to sample 1000

windows Wm
1 ,W

m
2 , . . .W

m
1000, in order of decreasing probability of the window containing any

generic object. Let obj(m) be the number of generic object-looking windows sampled before

localizing an instance of the target category, i.e., obj(m) = min{k : maxi iou(Wm
k , B

m
i ) ≥

0.5}. For a category containing M images, we compute the average number of such windows

per image and define

Clutter = log2

(
1
M

∑
m obj(m)

)
(7.2)

The higher the clutter of a category, the harder the objects are to localize according to generic

cues. Like CPL, this measure is particularly suited for evaluating the difficulty of single-object

localization.

We use number of instances, chance performance of localization and clutter for thoroughly evalu-

ating single-object localization accuracy in Section 7.4.4. When evaluating the accuracy on all tasks

in Section 7.5.4, we use the simpler object scale which is broadly applicable to all tasks.

Instrinsic object class properties.

We also analyze the performance of algorithms as a function of intrinsic object class properties.

We first consider the differences between natural and man-made objects. The classification of

classes into natural and man-made can be derived from the ImageNet hierarchy [36]. Next we define

five additional properties inspired by human vision: real-world size, deformability within instance,

amount of texture, distinctiveness of color and distinctiveness of shape, all visualized in Figure 7.1.

Human subjects annotated each of the 1000 image classification and single-object localization

object classes from ILSVRC2012-2014 with these properties. [151]. By construction (see Section 6.2),

each of the 200 object detection classes is either also one of 1000 object classes or is an ancestor of

one or more of the 1000 classes in the ImageNet hierarchy. To compute the values of the properties

for each object detection class, we simply average the annotated values of the descendant classes.

The domains for these properties are:

1. Real-world size: XS for extra small (e.g. nail), small (e.g. fox), medium (e.g. bookcase),

large (e.g. car) or XL for extra large (e.g. church)

2. Distinctiveness of color: none (e.g. clothes), low (e.g. cleaver), medium (e.g. hay), high

(e.g. tennis ball)

3. Distinctiveness of shape: none (e.g. chocolate sauce), low (e.g. tape player), medium (e.g.

T-shirt), high (e.g. banana)

4. Deformability within instance: Rigid (e.g., mug) or deformable (e.g., water snake)
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5. Amount of texture: none (e.g. punching bag), low (e.g. horse), medium (e.g. sheep) or

high (e.g. honeycomb)

We will analyze the performance of different algorithms as a function of these properties and

draw conclusions about which domains are easy and difficult for current algorithms.

7.4 Analysis of the deep learning breakthrough

We begin by analyzing the state of the field of large-scale object detection following the breakthrough

in large-scale recognition with a deep learning method in year 2012 [104]. Additional information is

available at www.image-net.org/challenges/LSVRC/2012/analysis/.

7.4.1 Setup

Data. First, we need to establish the dataset to use for our analysis. The largest object detection

dataset at the time was the PASCAL VOC with 20 object classes [48, 46]; the ILSVRC object detec-

tion dataset was collected a year later in 2013. To perform a large-scale analysis of the performance

of algorithms we choose the ILSVRC single-object localization dataset described in detail previously

in Chapter 5. It spans 1000 object classes containing both internal nodes and leaf nodes of Ima-

geNet. Figure 7.1 visualizes some of the diversity of the classes along several dimensions. There are

1.2 million images for training, 50K images for validation, and 100K new images for testing. There

are 620K bounding box annotations on the training images (covering about 42% of the data), and

an additional 230K for the validation and test images. Appendix A contains more statistics and

in addition demonstrates that the dataset has many of the localization challenges of the PASCAL

VOC.

Evaluation criteria We use the top-5 metric of localization accuracy presented in Section 5.5.2.

Briefly, each object class C has a set of images associated with it, and each image is human annotated

with bounding boxes B1, B2, . . . indicating the location of all instances of this object class. Since

additional unannotated object classes may be present, the algorithm is allowed to produce up to

5 annotations per image without incurring a cost for false positive detections. The object class is

considered correctly detected if for some proposed annotation (ci, bi) with ci the class label and bi

the bounding box, ci = C and bi correctly localizes one of the objects B1, B2, . . . according to the

standard IOU measure.

1Please see Appendix B for an analysis of the top-5 evaluation criteria.
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7.4.2 Algorithms

Several object detection systems participated in the ImageNet single-object localization challenge

of 2012; the winners are good candidates for our analysis (Section 5.6.1). Using two very distinct

leading algorithms, we analyze the successes and weaknesses in large-scale detection. The analysis

in this chapter requires only per-class accuracies and class confusion matrices of these methods.

SV system. The winning system of the challenge, named SuperVision and abbreviated as SV, uses

neural networks to learn the full image representation automatically from data. It is based upon

a supervised convolutional neural network with 7 hidden layers, trained using stochastic gradient

descent on the GPU [104]. This system was targeted to image classification so its strong performance

on object localization is particularly impressive.

VGG system. The other algorithm, OXFORD VGG, is based on the more conventional image

classification and detection pipeline. It uses an image classification system with dense SIFT features

and color statistics [123], a Fisher vector representation [161], and a linear SVM classifier, plus

additional insights from [4, 162], combined with the deformable parts-based model (DPM) [54]

which has been the dominant model for generic object detection for many years.

Upper bound. We also consider an optimistic upper bound which combines the outputs of the

VGG and SV on every image. Here the output on the image is considered correct if any of the 10

predicted (class, location) pairs are correct. Evaluating this joint algorithm helps to summarize the

common trends of SV and VGG as well as to illustrate the key scenarios where SV and VGG provide

complementary sources of information.

7.4.3 Recognition accuracy as a function of object hierarchy

Object localization involves both correctly predicting the class label and localizing the object; in

seeking to understand the limitations of current algorithms we initially decouple these two measures.

As a first step of our analysis, we look at whether the algorithms are looking for the right objects.

We visualize the 1000-way confusion matrix of classification errors in Figure 7.2(a) and confirm

the intuition that classes that are semantically close together get confused with each other more

often [82]. Going further, the hierarchical structure of ILSVRC allows us to analyze the accuracy

of the algorithm as a function of semantic depth; in other words, we can relax the requirement that

a Dalmatian be classified as a Dalmatian and instead evaluate the accuracy of the algorithm when

allowing any dog breed to be an acceptable label. In Figure 7.2(b,c) we plot the classification and

localization accuracies as a function of semantic depth: at level 0 we require the exact label, at level

1 we accept any sister synset, and so forth. For reference, breeds of dogs are on average 4 levels

removed from the ”domestic dog” node and birds are 4.6 levels removed from ”bird” node.
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(a) (b) (c)

Figure 7.2: (a) Confusion matrix of classification scores using the SV algorithm, with categories
ordered semantically. The expected block pattern shows most confusion between similar categories.
(b) Classification and (c) classification with localization accuracy as a function of moving up the
ImageNet hierarchy. [36] At level 0 the algorithm is required to produce the exact class label; at level
1 any sister label is accepted, at level 10 any leaf node of generic concepts such as ”living thing” is
accepted.

Three things are apparent from this analysis: (1) basic-level classification is surprisingly accurate:

SV distinguishes dogs from other objects with > 0.99 accuracy, and birds with 0.98 accuracy; (2)

despite this, the gap between classification and localization accuracies remains large (> 0.180 at all

semantic levels); (3) SV and VGG provide complementary sources of information on localization:

the upper bound is 0.083 higher than either SV or VGG alone.2 The last two observations prompt

more detailed investigation.

7.4.4 Effect of image-level statistics on localization accuracy

Despite high levels of classification accuracy on basic-level categories, localization is far from perfect.

To better understand what scenarios are challenging for current detection algorithms, we begin by

evaluating the accuracy as a function of global image statistics. Figure 7.3 visualizes the localiza-

tion accuracy of the detection algorithms described in Section 7.4.2 as a function of image-level

quantitative measures of localization of Section 7.3. We analyze these measures one by one.

Instances per image. SV is more strongly correlated with the number of instances of the object

than VGG (correlation of −0.436 versus −0.052). This suggests that SV would be good at, e.g.,

noticing that there are cars in the image but might have difficulty separating out two nearby cars.

On categories with more than 2 instances per image, the correlation between number of instances

and SV accuracy is significantly weaker (−0.156), implying that multiple objects are challenging

2An interesting side note is that the probability of correctly localizing the object given that it was correctly classified
remains the same for SV at all levels of the semantic hierarchy (at 78%) but increases dramatically for VGG (from
68% to 76%). This confirms the intuition that SV is well suited for fine-grained classification while VGG is best used
for localizing basic object categories.
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Figure 7.3: The impact of several quantitative measures of localization difficulty (Section 7.3) on the
localization accuracy. Each dot corresponds to one of the 1000 object categories of ILSVRC2012 and
to one of the two algorithms (SV in red, VGG in blue). The difficulty measure (x-axis) is computed
on the validation set; the accuracy of the algorithm (y-axis) is evaluated on the test set. The best
fit linear models for each algorithm are also shown to summarize trends. The black line corresponds
to the upper bound combination of SV and VGG; the accuracy on individual class of this method
is not shown to reduce clutter. Please refer to Section 7.4.4 for analysis.

regardless of the exact number. Combining the global model of SV with the strong object boundary

model of VGG is a promising future direction.

Chance Performance of Localization (CPL). The correlation of CPL with SV accuracy is

double that with VGG (0.640 vs 0.315) and the slope of the regression line is two times steeper

(0.781 of SV, 0.356 of VGG) so SV’s accuracy degrades faster and more consistently as CPL get

smaller. In fact, when considering 225 object categories with lowest CPL the localization accuracy

of SV and VGG is the same at 0.404, and on smaller objects VGG outperforms SV. We plot chance

performance of localization (CPL) versus the accuracy of the algorithms in Figure 7.4. CPL is highly

correlated with object scale as noted in Section 7.3. VGG is better suited than SV for localizing small

objects.

Some categories contain a bimodal distribution of images accounting for low CPL: a mixture of

close-ups with one object instance occupying the whole image and images depicting a large cluster of

small objects. SV and VGG algorithms perform well on different subsets of such data and combine

to create a much stronger detector. Some example categories are screw (CPL 0.9%, upper bound

accuracy 0.624, SV accuracy 0.269, VGG accuracy 0.398) or boathouse (CPL 1.1%, upper bound

accuracy 0.691, SV accuracy 0.443, VGG accuracy 0.454).

Clutter. There is a strong correlation between the level of clutter and the accuracy of all the

algorithms (VGG correlation −0.445, SV −0.704). This shows that clutter may be a useful metric

for evaluating the difficulty of detection datasets.3

3Additionally, this implies that the number of objectness windows [3] is logarithmically related to the difficulty of
localization.
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Figure 7.4: Cumulative localization of SV (red) and VGG (blue) as a function of chance performance
of localization (CPL). The height of the curve corresponds to the average accuracy of the object
categories with equal or smaller CPL measures. SV outperforms VGG except when considering a
subset of 225 object categories with lowest CPL.

With this in mind, we consider a subset of 250 ILSVRC categories which has the same average

clutter of 5.90 as the PASCAL dataset. On this subset, SV achieves localization accuracy of 0.439,

still significantly outperforming VGG with accuracy of 0.374.4

7.4.5 Effect of intrinsic object class properties on localization accuracy

So far we have studied how image-level properties affect detection, and now turn to examine the

effects of intrinsic object properties introduced in Section 7.3. Access to results for up to a thousand

categories allows us to perform this analysis. Figures 7.5-7.6 visualizes the effects of these properties

on the performance of object detectors, and here we summarize the key findings.

Natural vs man-made objects. The accuracy of object detectors is strongly correlated with

whether the object is natural or man-made. Figure 7.5(a) shows that SV achieves localization ac-

curacy of 0.768 on the 427 natural ILSVRC classes compared to only 0.570 on the 573 man-made

classes; VGG achieves 0.514 on natural compared on 0.486 on man-made.

Importantly, this observation holds regardless of the image-level statistics of Section 7.4.4. Fig-

ure 7.5(b) shows the cumulative localization accuracy as a function of increasing CPL on natural

and man-made objects separately. Regardless of how difficult of a subset of ILSVRC is chosen, the

accuracy of SV on natural objects is always at least 0.186 higher than its accuracy of man-made

objects. Interestingly, on the more challenging categories (e.g., the 330 categories with CPL ≤ 0.1),

VGG’s localization accuracy on natural objects is also 0.143 higher than on man-made ones even

4A similar conclusion holds true with the CPL metric as well. On the 562 hardest ILSVRC categories with the
same average CPL as the PASCAL categories, SV achieves localization accuracy of 0.554, significantly outperforming
VGG with localization accuracy of 0.461.
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(a) (b)

(c) (d)

Figure 7.5: Localization accuracy of Upper Bound (gray), SV (red) and VGG (blue) as a function
of the intrinsic properties of the ILSVRC2012 object categories. Plots (a), (c), (d) show the average
localization accuracy of algorithms on subsets of ILSVRC. Plot(b) shows the cumulative localization
accuracy as a function of the chance performance of localization (Section 7.3). The height of the curve
corresponds to the average accuracy of the object categories with equal or smaller CPL measures.
Continued in Figures 7.6 and Figure 7.7.

though on average over 1000 categories VGG’s accuracy is not as strongly affected by this property.

Incidentally, similar patterns emerge with clutter measure instead of CPL.

Real-world size. Algorithms tend to perform better on objects which are larger in the real-world,

both on natural objects (Figure 7.5(c)) and on man-made objects (Figure 7.5(d)). One exception

is huge man-made objects which are slightly more difficult to localize than the man-made large

objects: since many huge objects are buildings (e.g., church, shoe shop, prison) they may not be

fully visible in the image or the picture might be taken inside the building, so localizing them may

be particularly challenging. There are only a few huge natural objects so we omit them from the

analysis.



CHAPTER 7. ANALYSIS OF LARGE-SCALE OBJECT RECOGNITION ACCURACY 97

(a) (b)

(c) (d)

Figure 7.6: Continuation of Figure 7.5. Localization accuracy of Upper Bound (gray), SV (red)
and VGG (blue) as a function of the intrinsic properties of the ILSVRC2012 object categories. All
plots show the average localization accuracy of algorithms on subsets of ILSVRC. Plots (c) and (d)
additionally report classification accuracy (white bars). Continued in Figure 7.7.

Tiny objects are very challenging for both SV and VGG; however, combining the algorithms yields

significant improvement. The localization accuracy of the upper bound method is 0.111 higher than

the accuracy of either SV or VGG on tiny objects. This is significantly better than improvements

of 0.071, 0.077, 0.090 and 0.072 on the small, medium, large and huge objects respectively.

Distinctiveness of color. Distinctiveness of color makes it easier to detect objects; however, the

benefits of color distinctiveness are not as pronounced when controlling for whether the object is

natural or man-made. Figure 7.6(a) shows that objects which have distinctive colors tend to be

easier to classify and localize than those that don’t. The upper bound localization accuracy is 0.117

higher on objects with distinctive color than on those without. There was significant variability in

the human annotations for this attribute (color distinctiveness is difficult to precisely define), so we

simplify to two cases: has distinctive color (“medium” or “high”) or does not.
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Since color distinctiveness is strongly correlated with being man-made (84% of natural objects

have distinctive color compared to only 21% of man-made objects), we evaluate on man-made versus

natural objects separately. Restricted to man-made objects, localization accuracy of upper bound

is only 0.044 higher on objects with distinctive color than on those without; restricted to natural

objects, it is only 0.040 higher for objects distinctive in color.

Distinctiveness of shape. Figure 7.6(b) visualizes average classification and localization accura-

cies of the three algorithms across the different levels of shape distinctiveness. There is no observed

correlation between human-annotated distinctiveness of shape and the accuracy of the algorithms

(this holds true when considering subsets of the object classes, such as just man-made objects as

well). This is consistent with the intuition that general object category detection algorithms tend

to avoid rigid modeling of object shape and instead rely on other cues instead, such as texture or

color.

Deformability within instance. One aspect of object shape that is often modeled is deforma-

bility within instance. [54] Whether or not the object is deformable has relatively little bearing on

the performance of the algorithms in the absence of other factors. VGG is largely unaffected by

deformability: localization accuracy of 0.507 on deformable versus 0.489 on non-deformable objects

as shown in Figure 7.6(c). On average SV is significantly more accurate on deformable objects than

non-deformable ones (localization accuracy 0.740 versus 0.566); however, when evaluating separately

just on the 573 man-made classes in Figure 7.6(d) the effect becomes significantly less pronounced

(localization accuracy 0.602 on 116 deformable objects versus 0.566 on 457 non-deformable ones).5

Amount of texture. Both algorithms are much more accurate on textured objects in both classi-

fication and classification with localization as shown in Figure 7.7(a)). A similar pattern appears on

both man-made and natural classes independently. Man-made objects have average texture of 2.2

while natural objects are slightly more textured at 2.8.

We now consider just the images within each class which were correctly classified by VGG

and compute the per-class localization accuracy conditioned on correct classification. Grouping

the classes across the four levels of texture, we observe that VGG correctly localizes the object in

between 65 − 68% of the correctly classified images on average per class for every level. For SV,

however, the pattern is different: on untextured objects SV also accurately localizes 65% of the

correctly classified images on average, but on highly textured it localized 82%!

Level of texture is correlated with chance performance of localization: going from zero to high

texture, the average CPL is 12.7, 19.9, 23.7, and 26.4. In Figure 7.7(b) we show that this pattern

5The set of 427 natural classes contains only 32 non-deformable objects (e.g., strawberry, lemon, rose hip), so we
omit it from the analysis.
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(a) (b)

Figure 7.7: Continuation of Figures 7.5 and 7.6. Localization accuracy of Upper Bound (gray), SV
(red) and VGG (blue) as a function of the intrinsic properties of the ILSVRC2012 object categories.
All plots show the average localization accuracy of algorithms on subsets of ILSVRC. Plot (a)
shows the average localization accuracy (colored bars) and classification accuracy (white bars) of
the algorithms on subsets of ILSVRC. Plot (b) shows the cumulative localization accuracy as a
function of the chance performance of localization (Section 7.3). The y-axis corresponds to the
localization accuracy only on images which were correctly classified.

holds even across different CPL. Once the image has been correctly classified, SV correctly localizes

many more of the textured than untextured objects.

7.4.6 Conclusions from year 2012

We summarize several key observations from the above analysis of the leading algorithms in year

2012 which provided guidance for future research.

Focus on fine-grained recognition. Classification accuracy of basic-level categories was already

quite high; however, distinguishing between more fine-grained classes is much more challenging for

current methods. Consistent with the recent trend in recognition literature, this reinforces the need

to focus on capturing fine-grained distinction between classes in seeking to better understand the

visual world.

Clutter measure for evaluating datasets and targeting algorithms. The measure of clutter

using the latest techniques in unsupervised object discovery [3] defined in Section 7.3 is strongly

correlated with the accuracy of current state-of-the-art algorithms. While the high-level insight that

clutter is detrimental to the performance of detection algorithms is not novel, this suggests that the

introduced metric is useful to consider when collecting new datasets or designing the next generation

of object detectors.
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Decoupling natural and man-made objects. Natural objects are significantly easier to localize

than man-made objects for the current algorithms, even when controlling for factors such as scale of

the object and level of clutter. This implies that (1) better modeling of man-made objects is a key

direction for generic object detection, and (2) it is important to decouple the two when evaluating

the performance of algorithms as a function of other properties.

Combining detection algorithms. The deep learning-based detector SV and the more tradi-

tional detector VGG are found to be complementary to each other on categories with low CPL in

Section 7.4.4 and, similarly, on objects which are “tiny” in the real world in Section 7.4.5. This

may be intuitive given prior knowledge about the design of the SV and VGG systems, but it is still

useful to quantify. This is a key domain to consider when designing the next generation of detectors

combining the benefits of the current leading systems.

7.5 Current state of categorical object recognition

After the breakthrough of year 2012, object recognition accuracy continued to improve. Many of

the shortcomings identified in Section 7.4 were solved but some still remained. In this section we

provide an up-to-date analysis of the latest leading algorithms of the ILSVRC challenge.

7.5.1 Setup

Data. Since the introduction of the large-scale object detection ILSVRC dataset in year 2013, we

are able to analyze the performance of algoriths at scale on the standard object detection task as

well. In this section, we consider all three ILSVRC tasks: image classification, object localization

and object detection documented in Section 5.4. We use the latest ILSVRC2014 version.

Evaluation criteria. We use the standard evaluation metrics for each of the three tasks as de-

scribed in Section 5.5.

Algorithms. As described in Section 5.6.1, the leading algorithms in ILSVRC 2013-2014 have re-

lied on a similar deep learning framework. Thus in this section we will focus analyzing an “optimistic”

measurement of state-of-the-art recognition performance instead of focusing on the differences in in-

dividual algorithms. For each task and each object class, we compute the best performance of any

entry submitted to any ILSVRC2012-2014, including methods using additional training data. Since

the test sets have remained the same, we can directly compare all the entries in the past three years

to obtain the most “optimistic” measurement of state-of-the-art accuracy on each category.
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Figure 7.8: For each object class, we consider the best performance of any entry submitted to
ILSVRC2012-2014, including entries using additional training data. The plots show the distribution
of these “optimistic” per-class results. Performance is measured as accuracy for image classification
(left) and for single-object localization (middle), and as average precision for object detection (right).
While the results are very promising in image classification, the ILSVRC datasets are far from
saturated: many object classes continue to be challenging for current algorithms.

7.5.2 Range of accuracy across object classes

Figure 7.8 shows the distribution of accuracy achieved by the “optimistic” models across the object

categories. The image classification model achieves 94.6% accuracy on average (or 5.4% error), but

there remains a 41.0% absolute difference inaccuracy between the most and least accurate object

class. The single-object localization model achieves 81.5% accuracy on average (or 18.5% error),

with a 77.0% range in accuracy across the object classes. The object detection model achieves

44.7% average precision, with an 84.7% range across the object classes. It is clear that the ILSVRC

dataset is far from saturated: performance on many categories has remained poor despite the strong

overall performance of the models.

7.5.3 Qualitative examples of easy and hard classes

Figures 7.9-7.11 show the easiest and hardest classes for each task, i.e., classes with the best and

worst results obtained with the “optimistic” models.

For image classification, 121 out of 1000 object classes have 100% image classification accuracy

according to the optimistic estimate. Figure 7.9 shows a random set of 10 of them. They contain

a variety of classes, such as mammals like “red fox” and animals with distinctive structures like

“stingray”. The hardest classes in the image classification task, with accuracy as low as 59.0%,

include metallic and see-through man-made objects, such as “hook” and “water bottle,” the material

“velvet” and the highly varied scene class “restaurant.”

Results for single-object localization are shown in Figure 7.10. The 10 easiest classes with

99.0 − 100% accuracy are all mammals and birds. The hardest classes include metallic man-made

objects such as “letter opener” and “ladle”, plus thin structures such as “pole” and “spacebar”
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Image classification
Easiest classes

Hardest classes

Figure 7.9: For each object category, we take the best performance of any entry submitted to
ILSVRC2012-2014 (including entries using additional training data). Given these “optimistic” re-
sults we show the easiest and hardest classes for the classification task. The numbers in parentheses
indicate classification accuracy. The 10 easiest classes are randomly selected from among 121 object
classes with 100% accuracy. Results from other tasks are shown in Figures 7.10 and 7.11.

and highly varied classes such as “wing”. The most challenging class “spacebar” has a only 23.0%

localization accuracy.

Object detection results are shown in Figure 7.11. The easiest classes are living organisms such

as “dog” and “tiger”, plus “basketball” and “volleyball” with distinctive shape and color, and a

somewhat surprising “snowplow.” The easiest class “butterfly” is not yet perfectly detected but is

very close with 92.7% AP. The hardest classes are as expected small thin objects such as “flute” and

“nail”, and the highly varied “lamp” and “backpack” classes, with as low as 8.0% AP.

7.5.4 Effect of image-level statistics on recognition accuracy

We now take a closer look at the image properties to try to understand why current algorithms

perform well on some object classes but not others. In Section 7.4.4 we found chance performance

of localization and image clutter are useful metrics. However, they are both designed specifically for
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Single-object localization
Easiest classes

Hardest classes

Figure 7.10: For each object category, we take the best performance of any entry submitted to
ILSVRC2012-2014 (including entries using additional training data). Given these “optimistic” re-
sults we show the easiest and hardest classes for the localization task. The numbers in parentheses
indicate localization accuracy. Results from other tasks are shown in Figures 7.9 and 7.11.

the image localization task (Section 7.3). In this section, since we want to evaluate the performance

on all tasks, we use the average object scale as the measure of image difficulty. It is highly correlated

with chance performance of localization but is more interpretable for the object detection task.

For every object class, we compute its average scale, or the average fraction of image area occupied

by an instance of the object class on the ILSVRC2012-2014 validation set. Since the images and

object classes in the image classification and single-object localization tasks are the same, we use the

bounding box annotations of the single-object localization dataset for both tasks. In that dataset

the object classes range from “swimming trunks” with scale of 1.5% to “spider web” with scale of

85.6%. In the object detection validation dataset the object classes range from “sunglasses” with

scale of 1.3% to “sofa” with scale of 44.4%.

Figure 7.12 shows the performance of the “optimistic” method as a function of the average

scale of the object in the image. Each dot corresponds to one object class. We observe a very

weak positive correlation between object scale and image classification accuracy: ρ = 0.14. For
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Object detection
Easiest classes

Hardest classes

Figure 7.11: For each object category, we take the best performance of any entry submitted to
ILSVRC2012-2014 (including entries using additional training data). Given these “optimistic” re-
sults we show the easiest and hardest classes for the object detection task. The numbers in paren-
theses indicate average precision. Results from other tasks are shown in Figures 7.9 and 7.10.

single-object localization and object detection the correlation is stronger, at ρ = 0.40 and ρ = 0.41

respectively. We conclude that accuracy is correlated with object scale in the image, not all variation

in accuracy can be accounted for by scale alone. In the next section we will normalize for object

scale to ensure that this factor is not affecting our conclusions.

7.5.5 Effect of intrinsic object class properties on recognition accuracy

Besides considering image-level properties we can also observe how accuracy changes as a function

of intrinsic object properties. introduced in Section 7.3. Here we only analyze real-world size,

deformability within instance and amount of texture since the other two attributes (distinctiveness

of color and distinctiveness of shape) tended to have insuffient inner-annotator agreement and did

not produce statistically significant conclusions.

In this section we draw the following conclusions about state-of-the-art recognition accuracy as

a function of these object properties:
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Figure 7.12: Performance of the “optimistic” method as a function of object scale in the image,
on each task. Each dot corresponds to one object class. Average scale (x-axis) is computed as the
average fraction of the image area occupied by an instance of that object class on the ILSVRC2014
validation set. “Optimistic” performance (y-axis) corresponds to the best performance on the test
set of any entry submitted to ILSVRC2012-2014 (including entries with additional training data).
The test set has remained the same over these three years. We see that accuracy tends to increase
as the objects get bigger in the image. However, it is clear that far from all the variation in accuracy
on these classes can be accounted for by scale alone.

• Real-world size: The image classification and single-object localization “optimistic” models

performs better on large and extra large real-world objects than on smaller ones. The “op-

timistic” object detection model surprisingly performs better on extra small objects than on

small or medium ones.

• Deformability within instance: The “optimistic” model on each of the three tasks performs

statistically significantly better on deformable objects compared to rigid ones. However, this

effect disappears when analyzing natural objects separately from man-made objects.

• Amount of texture: The “optimistic” model on each of the three tasks is significantly better

on objects with at least low level of texture compared to untextured objects.

These and other findings are justified and discussed in detail below.

Experimental setup. We observed in Section 7.5.4 that objects that occupy a larger area in the

image tend to be somewhat easier to recognize. To make sure that differences in object scale are not

influencing results in this section, we normalize each bin by object scale. We discard object classes

with the largest scales from each bin as needed until the average object scale of object classes in

each bin across one property is the same (or as close as possible). For real-world size property for

example, the resulting average object scale in each of the five bins is 31.6% − 31.7% in the image

classification and single-object localization tasks, and 12.9%− 13.4% in the object detection task.6

6For rigid versus deformable objects, the average scale in each bin is 34.1%−34.2% for classification and localization,
and 13.5%−13.7% for detection. For texture, the average scale in each of the four bins is 31.1%−31.3% for classification
and localization, and 12.7% − 12.8% for detection.
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Real-world size

Figure 7.13: Performance of the “optimistic” computer vision model as a function of object proper-
ties. The x-axis corresponds to object properties annotated by human labelers for each object class,
described in Section 7.3 and illustrated in Figure 7.1. The y-axis is the average accuracy of the
“optimistic” model. Note that the range of the y-axis is different for each task to make the trends
more visible. The black circle is the average accuracy of the model on all object classes that fall into
each bin. We control for the effects of object scale by normalizing the object scale within each bin
(details in Section 7.5.5). The color bars show the model accuracy averaged across the remaining
classes. Error bars show the 95% confidence interval obtained with bootstrapping. Some bins are
missing color bars because less than 5 object classes remained in the bin after scale normalization.
For example, the bar for XL real-world object detection classes is missing because that bin has only
3 object classes (airplane, bus, train) and after normalizing by scale no classes remain. Continued
in Figures 7.14 and 7.15.

Figures 7.13-7.15 show the average performance of the “optimistic” model on the object classes

that fall into each bin for each property. We analyze the results in detail below. Unless otherwise

specified, the reported accuracies below are after the scale normalization step.

To evaluate statistical significance, we compute the 95% confidence interval for accuracy using

bootstrapping: we repeatedly sample the object classes within the bin with replacement, discard

some as needed to normalize by scale, and compute the average accuracy of the “optimistic” model

on the remaining classes. We report the 95% confidence intervals (CI) in parentheses.

Real-world size. In Figure 7.13(left) we observe that in the image classification task the “opti-

mistic” model tends to perform significantly better on objects which are larger in the real-world.

The classification accuracy is 93.6%− 93.9% on XS, S and M objects compared to 97.0% on L and

96.4% on XL objects. Since this is after normalizing for scale and thus can’t be explained by the

objects’ size in the image, we conclude that either (1) larger real-world objects are easier for the

model to recognize, or (2) larger real-world objects usually occur in images with very distinctive

backgrounds.
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Deformability within instance

Figure 7.14: Continuation of Figure 7.13. Please see its caption for details.

To distinguish between the two cases we look at Figure 7.13(middle). We see that in the single-

object localization task, the L objects are easy to localize at 82.4% localization accuracy. XL

objects, however, tend to be the hardest to localize with only 73.4% localization accuracy. We

conclude that the appearance of L objects must be easier for the model to learn, while XL objects

tend to appear in distinctive backgrounds. The image background make these XL classes easier

for the image-level classifier, but the individual instances are difficult to accurately localize. Some

examples of L objects are “killer whale,” “schooner,” and “lion,” and some examples of XL objects

are “boathouse,” “mosque,” “toyshop” and “steel arch bridge.”

In Figure 7.13(right) corresponding to the object detection task, the influence of real-world

object size is not as apparent. One of the key reasons is that many of the XL and L object classes

of the image classification and single-object localization datasets were removed in constructing the

detection dataset (Section 6.2) since they were not basic categories well-suited for detection. There

were only 3 XL object classes remaining in the dataset (“train,” “airplane” and “bus”), and none

after scale normalization.We omit them from the analysis. The average precision of XS, S, M objects
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Amount of texture

Figure 7.15: Continuation of Figures 7.13 and 7.14. Please see Figure 7.13 for details.

(44.5%, 39.0%, and 38.5% mAP respectively) is statistically insignificant from average precision on

L objects: 95% confidence interval of L objects is 37.5%− 59.5%. This may be due to the fact that

there are only 6 L object classes remaining after scale normalization; all other real-world size bins

have at least 18 object classes.

Finally, it is interesting that performance on XS objects of 44.5% mAP (CI 40.5% − 47.6%) is

statistically significantly better than performance on S or M objects with 39.0% mAP and 38.5%

mAP respectively. Some examples of XS objects are “strawberry,” “bow tie” and “rugby ball.”

Deformability within instance. In Figure 7.14(top) it is clear that the “optimistic” model

performs statistically significantly worse on rigid objects than on deformable objects. Image clas-

sification accuracy is 93.2% on rigid objects (CI 92.6% − 93.8%), much smaller than 95.7% on

deformable ones. Single-object localization accuracy is 76.2% on rigid objects (CI 74.9%− 77.4%),

much smaller than 84.7% on deformable ones. Object detection mAP is 40.1% on rigid objects (CI

37.2%− 42.9%), much smaller than 44.8% on deformable ones.



CHAPTER 7. ANALYSIS OF LARGE-SCALE OBJECT RECOGNITION ACCURACY 109

We can further analyze the effects of deformability after separating object classes into “natural”

and “man-made” bins based on the ImageNet hierarchy. Deformability is highly correlated with

whether the object is natural or man-made: 0.72 correlation for image classification and single-

object localization classes, and 0.61 for object detection classes. Figure 7.14(bottom) shows the

effect of deformability on performance of the model for man-made and natural objects separately.

Man-made classes are significantly harder than natural classes: classification accuracy 92.8% (CI

92.3% − 93.3%) for man-made versus 97.0% for natural, localization accuracy 75.5% (CI 74.3% −
76.5%) for man-made versus 88.5% for natural, and detection mAP 38.7% (CI 35.6 − 41.3%) for

man-made versus 50.9% for natural. However, whether the classes are rigid or deformable within

this subdivision is no longer significant in most cases. For example, the image classification accuracy

is 92.3% (CI 91.4%−93.1%) on man-made rigid objects and 91.8% on man-made deformable objects

– not statistically significantly different.

There are two cases where the differences in performance are statistically significant. First, for

single-object localization, natural deformable objects are easier than natural rigid objects: local-

ization accuracy of 87.9% (CI 85.9% − 90.1%) on natural deformable objects is higher than 85.8%

on natural rigid objects – falling slightly outside the 95% confidence interval. This difference in

performance is likely because deformable natural animals tend to be easier to localize than rigid

natural fruit.

Second, for object detection, man-made rigid objects are easier than man-made deformable

objects: 38.5% mAP (CI 35.2%− 41.7%) on man-made rigid objects is higher than 33.0% mAP on

man-made deformable objects. This is because man-made rigid objects include classes like “traffic

light” or “car” whereas the man-made deformable objects contain challenging classes like “plastic

bag,” “swimming trunks” or “stethoscope.”

Amount of texture. Finally, we analyze the effect that object texture has on the accuracy of the

“optimistic” model. Figure 7.15(top) demonstrates that the model performs better as the amount

of texture on the object increases. The most significant difference is between the performance on

untextured objects and the performance on objects with low texture. Image classification accuracy is

90.5% on untextured objects (CI 89.3%−91.6%), lower than 94.6% on low-textured objects. Single-

object localization accuracy is 71.4% on untextured objects (CI 69.1%− 73.3%), lower than 80.2%

on low-textured objects. Object detection mAP is 33.2% on untextured objects (CI 29.5%−35.9%),

lower than 42.9% on low-textured objects.

Texture is correlated with whether the object is natural or man-made, at 0.35 correlation for

image classification and single-object localization, and 0.46 correlation for object detection. To

determine if this is a contributing factor, in Figure 7.15(bottom) we break up the object classes into

natural and man-made and show the accuracy on objects with no texture versus objects with low

texture. We observe that the model is still statistically significantly better on low-textured object
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classes than on untextured ones, both on man-made and natural object classes independently.7

7.6 Conclusions

With the growth of object recognition datasets, we are able to analyze the performance of algo-

rithms with an unprecedented level of details. While looking at average accuracy across hundreds

or thousands of object categories is certainly a good way to track improvement in generic object

recognition, analyzing the performance in more detail can also be very englightening.

For example, we conclude that object detectors perform well on natural textured objects. How-

ever, man-made untextured objects remain very challenging for current state-of-the-art algorithms.

On the other hand, a lot of attention has been spent on building models for deformable objects –

the “deformable parts model” has been the state-of-the-art for multiple years prior to 2012 [54]. It

now appears that deformability within instance is no longer a challenge for current algorithms.

These insights can serve multiple purposes. First, we can focus our object recognition research

efforts specifically on the more challenging objects. It might require developing some novel insights

into better object representation or improved modeling specifically for recognizing some specific

classes of objects. Combined with existing models, this can be a significant step forward for object

detection. Second, we can focus our dataset collection efforts. For example, there may not be a

need to annotate more cats in images whereas creating a new large-scale dataset for man-made

tools could greatly benefit the community. Finally, we can be aware that object detection models

are not very accurate on certain types of objects and can build in safeguards (for example, with a

human-in-the-loop verification system) to ensure that detection accuracy remains sufficiently high

when building applications.

7Natural object detection classes are removed from this analysis because there are only 3 and 13 natural untextured
and low-textured classes respectively, and none remain after scale normalization. All other bins contain at least 9
object classes after scale normalization.



Chapter 8

Human-machine collaboration for

object annotation

8.1 Introduction

The field of large-scale object detection has leaped forward in the past few years [66, 152, 35, 165, 205,

81, 190], with significant progress both in techniques [66, 152, 190, 165] as well as scale: hundreds

of thousands of object detectors can now be trained directly from web data [26, 41, 35]. The object

detection models are commonly evaluated on benchmark datasets [152, 48], and achievements such

as 1.9x improvement in accuracy between year 2013 and 2014 on the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [152] are very encouraging. However, taking a step back, we

examine the performance of the state-of-the-art RCNN object detector trained on ILSVRC data [66]

on the image of Figure 8.1: only the 6 green objects out of the 100 annotated objects have been

correctly detected.

The question we set out to address is: what can be done to efficiently and accurately detect

all objects in an image given the current object detectors? One option is by utilizing the existing

models for total scene understanding [115, 209, 114] or for modeling object context [213, 39, 160, 172].

However, this is still currently not enough to go from detecting 6 to detecting 100 objects.

Our answer is to put humans in the loop. The field of crowd engineering has provided lots

of insight into human-machine collaboration for solving difficult problems in computing such as

protein folding [141, 28], disaster relief distribution [62] and galaxy discovery [120]. In computer

vision with human-in-the-loop approaches, human intervention has ranged from binary question-and-

answer [19, 199, 200] to attribute-based feedback [140, 138, 107] to free-form object annotation [198].

For understanding all objects in an image, one important decision is which questions to pose to

humans. Binary questions are not sufficient. Asking humans to draw bounding boxes is expensive:

111
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Figure 8.1: This cluttered image has 100 annotated objects shown with green, yellow and pink
boxes. The green boxes correspond to the 6 objects correctly detected by the state-of-the-art RCNN
model [66] trained on the ILSVRC dataset [152]. (The about 500 false positive detections are not
shown.) Yellow boxes loosely correspond to objects that are annotated in current object detection
datasets such as ILSVRC. The majority of the objects in the scene (shown in pink) are largely
outside the scope of capabilities of current object detectors. We propose a principled human-in-the-
loop framework for efficiently detecting all objects in an image.

obtaining an accurate box around a single object takes between 7 seconds [91] to 42 seconds [175],

and with 23 objects in an average indoor scene [71] the costs quickly add up. Based on insights from

object detection dataset construction [118, 152], it is best to use a variety of human interventions;

however, trading off accuracy and cost of annotation becomes a challenge.

We develop a principled framework integrating state-of-the-art scene understanding models [66,

104, 3, 71] with state-of-the-art crowd engineering techniques [152, 118, 33, 167, 95] for detecting

objects in images. We formulate the optimization as a Markov Decision Process. Our system:

1. Seamlessly integrates computer and human input, accounting for the imperfections in

both. [19, 91] One key component, in contrast to prior work, is the incorporation of feedback

from multiple types of human input and from multiple computer vision models.

2. Automatically trades off density, precision and cost of annotation in a principled

framework.

3. Is open-world, by integrating novel types of scenes and objects instead of relying only on

information available in a limited training set.

4. Is light-weight and easily extensible. The framework is able to continuously incorporate

the latest computer vision and crowd engineering innovations.
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We provide insights into seven types of human interventions tasks using data collected from Amazon

Mechanical Turk, and experimentally verify that our system effectively takes advantage of multiple

sources of input for localizing objects in images while accurately self monitoring.

8.2 Related work

Recognition with humans in the loop. Among the most similar works to ours is the ap-

proaches which combine computer vision with human-in-the-loop collaboration for tasks such as

fine-grained image classification [19, 199, 37, 200], image segmentation [91], attribute-based classi-

fication [103, 140, 15], image clustering [107], image annotation [192, 193, 168], and human inter-

action [99] and object annotation in videos [198]. Methods such as [19, 199, 37, 200] jointly model

human and computer uncertainty and characterize human time versus annotation accuracy, but only

incorporate a single type of human response. Works such as [91, 38, 192] use multiple modalities of

human feedback, with varying costs, and accurately model and predict the success of each modal-

ity. However, they do not incorporate iterative improvement in annotation. We build upon these

approaches to integrate multiple human annotation modalities with state-of-the-art computer vision

models in an iterative framework for the challenging object annotation task.

Better object detection. Methods have been developed for training better object detection

models with weakly supervised data [147, 76, 179, 26, 81, 41]. Active learning approaches has been

developed to improve object detectors with minimal human annotation cost during training [103,

194]. Some object detection frameworks even automatically mine the web for object names and

exemplars [26, 35, 41]. All of these approaches can be plugged into our framework to reduce the

need for human annotation by substituting more accurate automatic detections.

Cheaper manual annotation. Manual annotation is becoming cheaper and more effective through

the development of crowdsourcing techniques such as annotation games [197, 37, 98], tricks to reduce

the annotation search space [38, 17], more effective user interface design [175, 198], making use of

existing annotations [18], making use of weak human supervision [91, 25] and accurately computing

the number of required workers [167]. These innovations are important in our framework for min-

imizing the cost of human annotation when it is needed to augment computer vision. Approaches

such as [33, 167, 95, 206] use iterative improvement to perform a task with accuracy per unit of

human cost. We draw upon these works to provide human feedback in the most effective way.

8.3 Problem formulation

We present a policy for efficiently and accurately detecting objects in a given image. The input

to the system is an image to annotate and a set of annotation constraints. The output is a set
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of bounding box annotations with object names. For the rest of this chapter, we distinguish the

requester (the person who wants the image annotated) from the users (the people doing the human

annotation tasks).

The requester may specify up to two of three constraints:

1. Utility. In the simplest case, utility of a labeling corresponds to the number of objects.

However, since some objects in the image may be more important than others [174, 88, 10],

the requester may optionally specify a function mapping each image region and class label to

a real value indicating importance. The requester then specifies the minimum total utility of

the labels.

2. Precision. When the system returns N bounding box annotations with object names, if NC

of them are correct detections, then precision is NC

N . The requester can specify the minimum

required level of precision.

3. Budget. In our formulation, budget corresponds to cost of human time although methods

such as [198] can be applied to also incorporate CPU cost.

On one end of the spectrum the requester can set the maximum budget to zero, and obtain the

best automatic annotation of the image. On the other end she can set an infinite budget but specify

100% desired precision and 17 annotated objects per image, which will produce a policy for detailed

annotation similar to that of the SUN dataset [213].

8.4 Method

The system uses both computer vision and user input to annotate objects in images subject to

provided constraints (Figure 8.2. It alternates between getting user feedback and updating the

image probabilities. Section 8.4.1 formalizes the requester constraints. Section 8.4.2 presents the

core of our system: the selection of optimal human questions.

The later Section 8.5 describes the probabilistic framework for combining computer vision with

human input.

8.4.1 Annotation evaluation

Let Y = (Bi, Ci, pi)}Ni=1 be the set of N object detections, each with bounding box Bi, class label

ci, and probability of detection being correct pi. We now explain how our human-in-the-loop system

evaluates Y and outputs the final annotation according to requester constraints.

The expected precision of any labeling Y ⊆ Y is

E[Precision(Y )] =
E[NumCorrect(Y )]

|Y |
=

∑
i∈Y pi

|Y |
(8.1)
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Figure 8.2: Overview of our system. Given a request for annotating an image, the system alternates
between updating the image annotation and soliciting user feedback through human tasks. Upon
satisfying the requester constraints, it terminates and returns a image with a set of bounding box
annotations.
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using the linearity of expectation. Similarly, given the requester provided utility function f : B×C →
[0, 1] mapping the set of bounding boxes with class labels to how much the requester cares about

this label, the expected utility is

E[Utility(Y )] =
∑
i∈Y

pif(Bi, Ci) (8.2)

The simplest case (used in this chapter) is valuing all detections equally at f(B,C) = 1 ∀B,C,

making utility equal to the number of correct detections.

Annotation given constraints. Given the available set Y, the system tries to output a label-

ing Y that satisfies the requester constraints. Recall that requester specified at most two of the

three constraints of utility, precision and budget. If both target utility U∗ and precision P ∗ are

requested, the system samples detections from Y into Y in decreasing order of probability while

E[Precision(Y )] ≥ P ∗. We define Precision(∅) = 1 so this is always achievable. Since expected util-

ity increases with every additional detection, this will correspond to the highest utility set Y under

precision constraint P ∗. If E[Utility(Y )] ≥ U∗, the constraints are satisfied. If not, we continue the

labeling system.

If target precision P ∗ (or utility U∗) and budget B∗ are specified, then we run the annotation

system of Section 8.4.2 until budget is depleted, and produce the set Y as above under the precision

constraint P ∗ (or utility constraint U∗).

Approximation of annotation quality. As the annotation system progresses, it needs to eval-

uate the quality of annotation set Y. One option is to directly evaluate how closely Y satisfies

requester constraints: for example, by producing the set Y ⊆ Y which satisfies the requested level of

precision P ∗ and using E[Utility(Y )] as the objective. However, this measure is discontinuous and

difficult to optimize. Since precision and utility are closely related, we directly use E[Utility(Y)] as

the objective.

8.4.2 MDP formulation for human task selection

The main component of our approach is automatically selecting the right human question to best

improve the image annotation state. We quantify the tradeoff between cost and accuracy of anno-

tation by formulating it as a Markov decision process (MDP). [97, 33, 167, 95, 67] An MDP consists

of states S, actions A, conditional transition probabilities P, and expected rewards of actions R.

States. At each time period of the MDP, the environment is in some state S ∈ S. In our case,

a state S is our set of current beliefs about the image I, computed by combining computer vision
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Human tasks (MDP actions)

Verify-box: is box B tight around an instance of class C?
Verify-image: does the image contain an object of class C?
Verify-cover: are there more instance of class C not covered by the set of boxes B?
Draw-box: draw a new instance of class C not already in set of boxes B.
Name-image: Name an object class in the image besides the known classes C.
Verify-object: is box B tight around some object?
Name-box: If box B is tight around an object other than the objects in CB , name the object.

Table 8.1: Human annotations tasks. One important property of our model is that it will automat-
ically find the best question to pose, so there’s no harm in adding extra tasks.

models with user input. For simplicity, in this work we don’t update the computer vision models as

annotation progresses on a single image, so the only dynamic part of S in the user input U .

Actions. In an MDP, the system takes an action a ∈ A from state s, which causes the environment

to transition to state s′ with probability P(s′|s, a). In our setting, the set of actions A correspond

to the set of human questions that the system can ask. The types of human tasks are listed in

Table 8.1. Each question is one of the tasks grounded to the image: for example, “verify-box: is box

at (10, 50, 37, 89) an instance of class cat?” or “draw-box: draw a box around another instance of

table besides (83, 119, 74, 281) and (281, 470, 46, 24)”. Figure 8.3 shows some example UIs.

Transition probabilities. As a result of an action a from state s, the system moves into a new

state s′; in other words, the current beliefs about the image get updated by the addition of a new

user response ut to U . Transition probabilities correspond to our expectations on the outcome (user

response) of the question a (Section 8.5).

Rewards. After transitioning from state s to s′ through action a, the agent in an MDP receives

a reward with expected value Ra(s, s′). In our case, the states contain object detection annotations

Y(s) and Y(s′) respectively (Section 8.5) with detection probabilities computed in Section 8.5. Using

the definition of Section 8.4.1, the reward is

Ra(s, s′) =
E[Utility(Y(s′))]− E[Utility(Y(s))]

cost(a)
(8.3)

We treat budget constraint as rigid, so Ra(s, s′) = − inf if the cost(a) is less than the remaining

budget. The system terminates once Y(s) satisfies the requester constraints.
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Figure 8.3: Three of the user interfaces for our human annotation tasks; others are in Appendix E.

Optimization. Given the transition probabilities and expected rewards, at each step the system

chooses the action a∗(s) that maximizes V (s), computed recursively as

a∗(s) = arg max
a

{∑
s′

Pa(s, s′)(Ra(s, s′) + V (s′))

}
V (s) =

∑
s′

Pa∗(s)(s, s
′)(Ra∗(s)(s, s

′) + V (s′)) (8.4)

We optimize Equations 8.4 with 2 steps of lookahead to choose the next action. [33] This is often

sufficient in practice and dramatically reduces the computational cost.1

8.5 Human-in-the-loop probabilistic framework

Our system is based on combining computer vision with human input into one probabilistic frame-

work. Consider the MDP on image I at time step T , after T − 1 actions a1 . . . aT−1 were taken and

user responses UT−1 = {ut}T−1t=1 obtained. We need to compute two closely related quantities: MDP

transition probabilities and object detection probabilities for the labeling. We begin by describing

the former, and then show how the latter is a special case.

MDP transition probabilities. The MDP is now in state s and we set out to compute the

transition probabilities to new states. The next state is uniquely determined by the action (i.e.,

question) aT that the system chooses to ask and by the user response uT . Thus for each aT we need

to compute the probability of each response uT given the image I and user responses so far UT−1.

Let ET1 . . . E
T
K be the set of possible answers to this question aT . By law of total probability and

1Doing 1 step of lookahead is not sufficient because some tasks in Table 8.1 (e.g., name-image) do not directly
influence the labeling.
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Bayes’ rule:

P (uT |I,UT−1) =

K∑
k=1

P (uT |ETk )P (ETk |I,UT−1) (8.5)

The first term of Eqn. 8.5 is P (uT |ETk ), which corresponds to the probability of user giving an

answer uT if ETk were the correct answer to aT .2 We simplified this term from P (uT |ETk , I,UT−1)

by making two assumptions following [19]: (1) noise in user responses is independent of image

appearance I if correct answer ETk is given, and (2) user responses are independent of each other.

To compute P (uT |ETk ) we will use the empirical error rates of Section 8.6.2 for each question type

in Table 8.1.

The second term of Eqn. 8.5 is P (ETk |I,UT−1), which corresponds to the probability of answer

ETk to aT in fact being correct. Applying Bayes’ rule again:

P (ETk |I,UT−1) ∝ P (ETk |I)

T−1∏
t=1

P (ut|ETk , I,Ut−1) (8.6)

Here, P (ETk |I) is the computer vision model for ETk (described in Section 8.5.1). P (ut|ETk , I,Ut−1)

is very similar to the first term in Eqn. 8.5 with one important exception: it unifies user response

ut to action at at time t with potential answer ETk to action aT at time T . We consider two cases.

Case 1: The correct response to question at at time t can be inferred from ETk at time T . For

example, suppose at is “is there an object of class ci in the image?” and ETk is “box Bi is tight

around an instance of class ci.” Then the correct response “yes” to at can be inferred from ETk .

Section 8.5.2 provides a complete list of these relationships. Let the inferred correct answer be Etm.

In this case, we again apply the model of [19] to simplify P (ut|ETk , I,Ut−1) = P (ut|Etm) as above.

Case 2: The correct response to question at at time t is independent of ETk at time T . For

example, suppose at is as above “is there an object of class ci in the image?” but ETk is “box

Bj is tight around an instance of class cj .” Since ETk does not provide any information regarding

the correct response to at, we know P (ut|E, I,Ut−1) = P (ut|I,Ut−1).3 To compute this we apply

Eqn. 8.5.

This concludes the transition probability computation for every action aT and every possible

user response uT . New actions can seamlessly be added to the MDP framework assuming the set of

possible answers E1, . . . Ek, the computer vision probabilities P (Ek|I) and the user error probabilities

P (u|Ek) can be computed for each new action type.

Object detection probabilities. In addition to transition probabilities, we also need to compute

the object detection probabilities to be used in the image labeling. For a detection with bounding

2There are only a few possible answers to each question which allows us to enumerate them. For example, if the
user is asked to perform the draw-box task at time T , the only possible answers are ET

1 : the user draws a box, or
ET

2 : the user stated that no box can be drawn.
3Alternatively, our model can be extended to include object-object co-occurrence information here.
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box B and class label c, let Ê be “B is a tight box around an instance of class c.” The probability

of the detection being correct given the information available at time T is P (Ê|I,UT−1). This is

computed directly with Eqn. 8.6, with P (Ê|I) from an object detector.

One extra consideration is that (B, c) can be automatically proposed by the object detector or

manually by the users.4 If the box B was manually drawn at some previous time T̂ in response to

the draw-box task, then we omit the computer vision model and modify Eqn. 8.6 slightly to

P (Ê|I,UT−1) ∝ P (Ê|uT̂ )
∏
t

P (ut|Ê, I,Ut−1) (8.7)

with the product ranging over t ∈ {1, . . . , T − 1} − T̂ . P (Ê|uT̂ ) is the empirical user accuracy rate

for the drawn bounding box to actually be correct (Section 8.6.2).

8.5.1 Incorporating computer vision input

We incorporate multiple computer vision models into our system to compute the above transition

probabilities for all actions of Table 8.1:

(1) Detection. Computing transition probabilities corresponding to the verify-box action with

box B and class C requires computing P (det(B,C)|I): the probability that B is tight around an

instance of class C on image I. Standard object detectors can be used here e.g., [66, 54, 81].

(2) Classification. Similarly, the verify-image action for object class C require computing P (cls(C)|I)

that C is present in the image. Models such as [104, 177] can be used.

(3) Another instance. Computing transition probabilities for verify-cover and draw-box actions

for class C and set of boxes B require computing P (more(B, C)|I) that there are other instances

of C in the image beyond those contained in B. We compute this probability using an empirical

distribution on number of object instances in images. It provides the probability P (more|n) of there

being more instances of an object class given the image is known to contain at least n instances of

this class. Let nc(B, C) be the number of boxes B that are correct for class C, then E[nc(B, C)] =∑
B∈B P (det(B,C)|I). Rounding n := E[nc(B, C)] to the nearest integer, we compute

P (more(B, C)|I) =

{
P (cls(C)|I) if n = 0

P (more|n) else
(8.8)

(4) Another class. Similarly, a name-image action requires computing the probability P (morecls(C|I))

that another object class is present in the image beyond the classes C. An empirical distribution on

number of object classes is used as above.

4We use the same reasoning for name-image and name-box tasks.
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(5) Objectness. A verify-object action requires computing P (obj(B) that bounding box B is

tight around some object. Models such as [3] can be used.

(6) New object. Finally, transition probabilities for a name-box action requires P (new(B, C)|I)

for a bounding box B as the probability that there is an object in this box which has not yet been

named in the current set of classes C. Assuming independence:

P (new(B, C)|I) = P (obj(B)|I)
∏
C∈C

(1− P (det(B,C)|I)) (8.9)

Adding new human tasks in Table 8.1 would likely require the addition of new computer vision

models.

8.5.2 Incorporating user input

Our set of user inputs U contains multiple types of information. Our goal is to estimate P (ut|ETk )

where ut is a user response to some question at and ETk is a fact about the image related to some

other question aT (in particular Eqn. 8.5).

Types of events ETk . Based on the tasks described in Table 8.1, we consider 5 types of ETk :

1. det(B,C) for whether box B is correct around an instance of class C (verify-box task)

2. cls(C) for whether class C is present in the image (verify-image task)

3. more(B, C) for whether there are more instances of class C besides those in boxes B (verify-

cover and draw-box tasks)

4. morecls(C) for whether there are more object classes in the image C (for name-image task)

5. obj(B) for whether box B is a tight box around some object (for verify-object and name-

box tasks)

Computing the true answer to a question. In order to make a decision about whether the

user made a mistake or not in ut, we first need to determine the true answer to the question at

given that event ETk happened. This is shown in Table 8.2. An event ETk sometimes determines the

correct answers to more than one question.

For example, consider the event ETk of class C not present in the image (this is event “cls(C)

= 0” in Table 8.2). The true answer is then determined to be “no” to three questions: (1) when

asked if C is contained in the image (verify-image), (2) when asked if C is contained in any box B

(verify-box), and (3) when asked if there are more instances of class C in the image (verify-cover).

For other questions we have no information about the true answer given the event ETk .
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True answer to each question type at given ETk
Event ETk Verify-

box: is box
B for class
C?

Verify-
image: is
class C in
image?

Verify-
cover: are
there more
instances of
class C be-
sides in B′?
(same for
draw-box)

Name-
image:
name an-
other object
in image
besides C′?

Verify-
object: is
there an
object in
box B?
(similarly
for name-
object)

det(B,C) = 1
3 3 3 if B /∈ B′ – 3

det(B,C) = 0
7 – – – –

cls(C) = 1
– 3 – – –

cls(C) = 0
7 7 7 – –

more(B, C) = 1
– 3 3 if B′ ⊆ B – –

more(B, C) = 0
7 if B /∈ B – 7 if B ⊆ B′ – –

morecls(C) = 1
– – – 3 if C′ ⊆ C –

morecls(C) = 0
– 7 if C /∈ C – 7 if C ⊆ C′ –

obj(B) = 1
– – – – 3

obj(B) = 0
7 – – – 7

Table 8.2: For every event E (row) and question (column), the table reports what the true answer
to the question if the event E happened. 3 means “yes” is the true answer, 7 means “no” is the true
answer, and – means that event E provides no information about the true answer. – is the default
when not specified. Here every question is treated as a binary question: for example, for draw-box
question, the answer of drawing a box is simply “yes” and the answer of refusing to draw a box is
“no”.

Judging user input as correct, wrong or undecided Having computed the true answers, we

can now judge the user input ut in response to a question at. An answer is judged as wrong if it

doesn’t match the correct answer in Table 8.2. An answer is judged as correct if it matches the

correct answer in Table 8.2 and the event corresponds precisely to the question, as shown by the

shaded boxes in Table 8.2. All other answers are judged as undecided.

To understand the extra layer of complication with judging correct answers, consider the influence

of the question “does box B contain an instance of class C” (verify-box) on the probability of the

object class C being in the image. If the answer to the question is “yes,” then this can only happen

if class C is in the image and is certain to be the wrong answer otherwise. There is a direct influence.

If the answer is “no,” then it might be correct whether or not class C is in the image. To simplify

the computation, we then judge the answer as undecided.
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User input accuracy probabilities. Finally, after the answers are all judged as correct, wrong

or undecided, we incorporate them back into the probability computation.

Every user input ut is obtained in response to a question. Each input ut is then associated with

a probability βt which depends on the average user accuracy rate for this type of question. Let Et0

correspond to the answer “no” and Et1 correspond to “yes”. Similarly, let ut = 1 if user says “yes”

and ut = 0 if user says “no”. Then βt = P (ut = j|Etj) for j ∈ {0, 1}. The empirically obtained error

rates 1− βt are reported later in Table 8.3.

We can then compute P (ut|Etj) = βt if answer ut is correct, P (ut|Etj) = 1 − βt if answer ut is

wrong , and use the prior from Eqn. 8.5 otherwise.

Special case 1: More instances computation. We briefly note some exceptions to the com-

putation described above. Recall that computing complicated events such as P (more(B, C)|I) in

Eqn. 8.8 relies on additionally on detection probabilities P (det(B,C)|I) as well as image classifica-

tion probabilities P (cls(C)|I). To effectively utilize all user input U in this computation, we break

up the set U into U1, which is the set of user input directly relevant to more(B, C) and U2, which is

all other input. Then have

P (more(B, C)|I,U) ∝ P (more(B, C)|I,U2)P (U1|more(B, C)) (8.10)

U1 consists of all user input obtained from verify-cover or draw-box tasks that we can judge based

on the event more(B, C) (Table 8.2). U2 is all other user input. We use P (det(B,C) = 1|I,U2) and

P (cls(B,C) = 1|I,U2) in this computation, which allows us to successfully incorporate the entire

set of user input U = U1 ∪ U2.

The computation for P (morecls(C)) is similar.

Special case 2: New object computation. The computation for P (new(B)|I,U) also requires

breaking up U into two parts, but in a slightly different way. Generalizing Eqn. 8.9 we have

P (new(B)|I,U) =P (obj(B)|I,U1)
∏
C

(1− P (det(B,C)|I,U2)) (8.11)

with U1 is all input from verify-object or name-object tasks related to box obj(B) (Table 8.2) and

U2 = U − U1. This is to ensure that the independence assumption is not violated.

Special case 3: Open-ended questions For open-ended question such as draw-box we have to

consider both the probability that the user draws a box when there is one and that the drawn box

is indeed a good box around an object instance. The latter is noted in Eqn. 8.7 as P (Ê|uT̂ ), where

uT̂ is the fact that user drew the box at time T̂ and Ê is fact that the box is correct. We stated

that this is computed from user error rates which is true but somewhat subtle: computing this error
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rate directly would be influenced by the distribution of positive and negative images shown to the

user (positive images being the ones that indeed contain an unannotated instance). To avoid this

problem we add an extra variable pos corresponding to the fact that the image is positive, so an

unannotated box indeed existed in the image. Then P (Ê|uT̂ ) = P (Ê, pos|uT̂ ). So

P (Ê|uT̂ ) ∝ P (Ê|uT̂ , pos)P (uT̂ |pos)P (pos) (8.12)

Now P (Ê|uT̂ , pos) can be estimated as the probability that a bounding box that the user drew on

a positive image is indeed correct (reported later in caption of Table 8.3), P (uT̂ |pos) is the true

positive accuracy for the draw-box task (reported later in Table 8.3), and P (pos) is the current

estimate of the image being positive.

8.6 Experiments

We evaluate both the accuracy and cost of our proposed object annotation system that combines

multiple computer vision models with multiple types of human input in a principled framework. We

begin by describing the experimental setup (Section 8.6.1), then discuss the challenges of designing

the variety of human tasks and collecting accurate error rates (Section 8.6.2), showcase the quality

of annotation obtained by our system (Section 8.6.3) and conclude by proving that our system is

capable of self-monitoring (Section 8.6.4).

8.6.1 Setup

We perform experiments on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

detection dataset [152]. The dataset consists of 400K training images, 20K validation images and

40K test images. The validation and test images are fully annotated with all instances of 200

object classes ranging from accordion to zebra. Since test set annotations are kept hidden by the

challenge organizers, we split the validation set into two sets (val1 and val2) and evaluate on val2

following [66]. We use 2216 images of val2 that contain at least 4 ground truth object instances.

The average number of instances per image is 7.0 compared to 7.7 of COCO [118], and the average

object size is 9.8% of image area compared to 10.5% in SUN [213].

Computer vision input. We use publicly available code and models as computer vision input.

The object detectors are pre-trained RCNN models released by [66]. Image classifiers are convolu-

tional neural network (CNN) classifiers trained with Caffe [92] on ILSVRC2013 detection training

set (full images, no bounding box labels) [81].

In order to use computer vision models in our framework, we need to obtain accurate probability

estimates from the models. The output of object detectors and image classifiers x is commonly
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Figure 8.4: Bounding boxes with increasing intersection over union (IOU) with the optimal tight
box. Training human annotators to make binary decision on whether or not a bounding box is a
good detection is quite difficult; this the primary contributor to human error rates. Guidance such
as “the object occupies more than half the bounding box” is confusing since objects like corkscrews
(bottom row) occupy a small area even at perfect IOU.

converted to a probability by fitting a 2-parameter sigmoid

p =
1

1 + exp(a1x+ a2)
(8.13)

to the CNN output on the ILSVRC val1 set [146]. We bin the detections from all classes into 20 bins

in increments of 5% confidence, and compute the error between the expected probability produced

by the model (2.5%, 7.5%, 12.5%, etc.) and the actual fraction of positive examples in that bin. The

average absolute probability error is 8.7% on ILSVRC val2 set due to the model being overconfident

on the high-scoring examples. To compensate, we learn the 3rd parameter a3 ∈ [0, 1] with

p =
a3

1 + exp(a1x+ a2)
(8.14)

to allow the model to automatically estimate its level of confidence. This reduced the error down

to 5.2%. More accurate models such as [164] can also be used. After the conversion, detections and

classifications with probability less than 0.1 are discarded.

We use non-maximum suppression on the output of detectors to (1) avoid multiple detections

around the same instance, and (2) reduce the computational burden. The probability distribution

for P (more|n inst) is computed empirically for all classes jointly on the val1 set. The probability

P (morecls|n classes) is from [71].

Human-computer interaction. Setting up a system that integrates computer vision knowledge

with human input requires finding common ground between the two. One necessary decision is what

bounding box is considered a correct detection. In object detection, a bounding box is commonly

considered correct if its intersection over union (IOU) with a ground truth box is greater than

0.5. [152, 48] However, training humans to visually inspect a bounding box with IOU of 0.3 and



CHAPTER 8. HUMAN-MACHINE COLLABORATION FOR OBJECT ANNOTATION 126

Human task FP FN Cost

Verify-image: class C in image? 0.13 0.02 5.34s
Verify-box: class C in box B? 0.23 0.07 5.89s
Verify-cover: more boxes of C? 0.25 0.26 7.57s
Draw-box: draw new box for C 0.28 0.16 10.21s
Verify-object: B some object? 0.29 0.04 5.71s
Name-object: name object in B. 0.25 0.08 9.67s
Name-image: name object in image. 0.02 0.12 9.46s

Table 8.3: Human annotations tasks with the corresponding accuracy rates and costs. Detailed
explanations of each task are in Table 8.1. FP column is the false positive probability of user
answering “no” (or refusing to draw a box, or write a name) when the answer should in fact be
“yes.” For the open-ended tasks, if the answer was given, we also need to estimate the probabilities
of the given answer being wrong : these probability are draw-box 0.29, name-object 0.06, name-image
0.05. FN column is the true negative probability of the user answering “yes” when the answer should
be “no.” Cost is median human time in seconds.

distinguish it from one with IOU 0.5 is surprisingly difficult (Figure 8.4). In our experiments we

choose 0.7 as the target IOU as the halfway point between the targets of object detection and human

annotation.5

The higher IOU further reduces the accuracy of automated object detection, from 34.1% mAP

with IOU of 0.5 and non-maximum suppression (nms) of 0.3 as in [66] to 18.7% mAP with IOU of

0.7 and nms of 0.5.

8.6.2 Human annotation design and observations

To compute the expected output of an action (Section 8.4.2) we need to collect user accuracy rates

for each human task of Table 8.1. We assume that user error is dependent only on the type of task

(for example, on the clarity of instructions or the effectiveness of filtering spam workers) and not on

the exact question: i.e., a user is equally likely to misclassify a cat as she is to misclassify a hammer.

In these section we describe how to obtain these error rates; we then use them in simulation to

evaluate the human-in-the-loop labeling in Section 8.6.3.

Generating positive and negative sets. In order to estimate human error rates, we perturb

the annotations from ILSVRC detection val1 set to obtain a representative positive and negative

examples. For most tasks, this is straight-forward. For example, for verify-box task (“is B a good

box around an instance of class C?”) we generate the positive set by sampling ground truth boxes

for this class and perturbing them to between 0.7 and 1 IOU. We generate the negative set by

sampling boxes between 0 and 0.5 IOU, as well as boxes corresponding to other object classes.

5When human annotators are used to collect object detection datasets, the average difference in bounding boxes
for the same instance between two annotators is about 5 pixels on each side. [152] For an 200x200 pixel object, this
corresponds to approximately 0.90 intersection over union.
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However, the negative sets of verify-object (“is there an object in box B?”), name-object (“name

the object in boxB”) and name-image (“name another object in this image”) tasks can’t be generated

automatically: there are only 200 classes labeled in ILSVRC, and so any randomly generated region

or image from ILSVRC might accidentally contain some other object class beyond the annotated

200. Thus, we sampled some likely negative candidates from ILSVRC and asked 4 AMT workers to

determine if there is an additional object in there. If 3 or more workers said that the box does not

contain an object, we manually verified it to confirm and then included it in the negative set.

The likely negative candidates for verify-object and name-object were simply random regions on

the image that had overlap less than 0.3 with any annotated box. The likely negative candidates

for name-image were generated by selecting images where the annotated bounding boxes cover more

than 90% of the image area.

Quality control. The questions are presented to users in batches of 20-25 questions. Each batch

contains 4-5 “gold standard” questions. These are questions which were verified by trusted subjects

(previously unfamiliar with our UI) who deemed that the correct answer should be “obvious” to a

careful annotator. When deployed, the annotation UI prevents users from submitting their work if

they incorrectly answer more than 1 gold standard question.

The UI also had additional sanity checks built in. First, it prevents users from drawing a bounding

box around an object instance if it is too close to a known bounding box. Second, it requires that

users spend at least 1 second on each question. In our in-house experiments with trusted workers,

this was the minimum amount of time necessary to answer a question correctly. This control was

implemented since the interface has keyboard shortcuts (1 and 2 to answer “yes” or “no”, and left

and right arrows to move between questions) which makes it possible for spammers to potentially

blindly answer all 20 questions in just a few seconds (if all questions are binary).

Accuracy and time per question. The accuracy rates and costs (in median human time [38])

are reported in Table 8.3. By far the biggest source of error is getting users to make binary decisions

on tasks with a bounding box: the average accuracy is 0.92 for image-level tasks (verify-image

and name-image) and 0.81 for the box-level tasks. For the open-ended tasks (draw-box, name-

object, name-image) we needed to compute both the probability that the user answers the question

affirmatively (i.e., attempts to draw a box) as well as as the probability that the user is correct.

For name-object and name-image we manually verified the responses on 100 images each. Some

common mistakes were misclassifications (calling a sheep “goat” or a cello “violin”) and annotations

that were too general (e.g., “food”) despite instructions.

Data collection cost. On Amazon Mechanical Turk we pay workers 10 cents to answer 20 ques-

tions. Since on average it takes 7.69 seconds (Table 8.3) to answer a question this comes out to

$2.34 per hour.
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Task
Cost (seconds)

Positive response Negative response
Verify-image 5.64 4.88
Verify-box 6.22 5.45

Verify-cover 7.47 7.63
Draw-box 12.34 8.67

Verify-object 6.08 5.21
Name-object 12.19 7.09
Name-image 12.53 7.67

Table 8.4: Cost of each task (in median human time) broken down by positive versus negative
responses. On average, positive responses take longer than negative ones. One interesting potential
extension to our human-machine object annotation framework would be to incorporate this fact.

To simulate the real use case (where different types of questions are automatically generated by

our system out of order) we assigned a random selection of tasks to each batch. This slowed down

the worker responses since it required reading multiple sets of instructions. Some workers even com-

plained to us via email about this.6One interesting extension to our current human-machine object

annotation framework would be to consider the reduced human cost if asking multiple questions of

the same type consecutively.

Finally, we observed that for many types of questions answering positively took longer than

answering negatively (especially for the open-ended questions). Table 8.4 documents this. Another

potential extension in our framework would be to incorporate this fact when making decisions about

the optimal next question to ask the annotators.

8.6.3 Evaluating labeling quality

We evaluate our proposed annotation system in simulation using the human accuracy rates collected

in Section 8.6.2 to simulate the real-world labeling scenario. Figure 8.5 shows the average number

of objects labeled as a function of budget (human labeling time). For the purposes of simulation,

since only the 200 object category names in the image are known, we omit the verify-object and

name-object tasks. We reach several conclusions based on these results:

Computer vision and human input are mutually beneficial. The object detectors (CV only

in Figure 8.5) are able to label on average 0.95 objects per image at zero cost. Human-only annotation

(H only) starts at zero labeled objects but improves over time. After 30 seconds of annotation, our

joint method (CV+H ) labels 1.5x more objects than the computer vision-only method and 2.8x

6Given that the random selection of questions was necessary in our setting, we attempted to at least simplify the
process for the labeler as much as possible by arranging the question types in logical order, roughly from “easiest” to
“hardest”: verify-image, name-image, verify-box, draw-box, verify-cover, verify-object, name-object. This is to help
the annotators to slowly familiarize themselves with the questions; this was proven effective in our in-house annotation
experiments.
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Figure 8.5: Our computer vision+human model (CV+H ) compares favorably with others. The
number of labeled objects (y-axis) is computed by averaging across multiple levels of precision on
each image and then across all test images. Error bars correspond to one standard deviation across
simulation runs. Left. The joint model handily outperforms the human-only (H only) and vision-
only (CV only) baselines at low budget. Right. Our principled MDP is significantly better than
choosing questions at random (rand). Variety of human interventions is critical; using only verify-
image and verify-box human tasks is insufficient (CV+H:vi,vb). Our model also outperforms the
ILSVRC-DET annotation baseline of [152].

more objects than the human-only method (Figure 8.5 left). This means that given 30 seconds of

human time per image, adding in computer vision input can almost triple the accuracy of the human

labeling.7

An MDP is an effective model for selecting human tasks. Figure 8.5 (right) shows that

selecting questions at random is a surprisingly effective strategy that can label 3.9± 0.4 objects on

average after 600 seconds of labeling (CV+H: rand). Our MDP approach significantly outperforms

this baseline, labeling 6.0± 0.3 objects after 600 seconds.

Complex human tasks are necessary for effective annotation. We demonstrate that simple

binary tasks are ineffective in our setting, by considering an MDP with just the verify-image and

verify-box tasks (CV+H: vi,vb in Figure 8.5 (right). It labels 1.5x more objects than the CV-only

baseline after 4.5 minutes of labeling and then plateaus. Our full system with all human tasks

(CV+H: all tasks) achieves this improvement after just 1 minute, and then further improve to label

6.3x more objects than CV-only.

7Given a large labeling budget (Figure 8.5 right), human feedback contributes more than computer vision to the
labeling. In fact, the human-only method even slightly outperforms the joint method in this case, partially due to
the fact that it’s difficult to perfectly calibrate object detectors to estimate their level of uncertainty (this is where
e.g., [222] may be useful).
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Figure 8.6: Some example results from our system integrating computer vision with multiple types
of user feedback to annotate objects.

Our annotation strategy is more effective than the ILSVRC-DET system [152]. The

ILSVRC detection system consists of two steps: (1) determining what object classes are present in

the images, followed by (2) asking users to draw bounding boxes. (1) is described in [38, 152]. Using

their annotation times, hierarchical annotation method and optimistically assuming just 2.5 workers

per label, determining the presence/absence of all 200 object categories with 95% accuracy would

take 446.9 seconds per image. [175] describes Step 2 and reports time per bounding box (including

quality control) as 42.4 seconds. This baseline is shown in green in Figure 8.5 (right), and labels 3.6

objects after 600 seconds, on par with our random baseline (CV+H: rand) and significantly below

our joint model.8

Figure 8.6 shows qualitative results of our labeling system.

Reducing error rates

We also consider how reducing human error rates affects labeling accuracy. Figure 8.7 demonstrates

the labeling quality in simulation as the human error rates on all tasks are reduced. We conclude

that reducing the human errors (through providing more clear labeling instructions, designing better

user interfaces, or formulating simpler labeling questions) can significantly improve the speed and

quality of the human-in-the-loop labeling.

8One important difference to note is that the ILSVRC-DET system was optimized for annotating the desired 200
object classes while our system allows users to freely name new object classes.
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Figure 8.7: The average number of objects labeled as a function of human error rates. Reducing
human error rates can significantly increase the quality of labeling.

8.6.4 Satisfying requester constraints

One of the key aspects of our system is the ability to allow the requester to provide constraints on the

desired annotation (Section 8.3). After the annotation process (600 seconds), we queried the system

for image annotations at 0.5 precision; 0.519 of the returned objects were indeed correct detections.

We repeated the process at 0.1 intervals up to 0.9 precision; the model returned detections with an

average of 0.041 higher precision than queried. Thus, the system is well-calibrated and we can do

requester queries.

Figure 8.8(a) plots requested budget (x-axis) and requested precision (colored lines) versus the

utility of returned labeling. We observe that, given the same budget, requesting a higher level of

precision causes the system to be more cautious about returned detections and thus results in lower-

utility labelings. After incorporating 5 minutes of human input and requesting a labeling at 0.9

precision the system will return on average 4 correctly labeled objects.

Instead of specifying the desired budget and precision, the requester can also specify the desired

budget and utility. However, this may not be feasible in all cases, as shown in Figure 8.8(b). For

example, obtaining a utility of 3 objects labeled after 60 seconds of labeling is feasible in only 50%

of the images. For the images where it is feasible, however, we can refer to Figure 8.8(c) to get the

expected precision of the labeling. In this case, the expected precision is 21.2%.

Providing this detailed analysis of the tradeoff between precision, utility and budget can help

requesters interested in obtaining a dense labeling of objects in an image a-priori estimate the quality

of the labeling given the scope of their problem and their constraints.
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(a) (b) (c)

Figure 8.8: Quality of returned labeling as a function of requester constraints; details in Section 8.6.4.

8.7 Conclusions

We presented a principled approach to unifying multiple inputs from both computer vision and

humans to label objects in images. We conclude with several take-home messages. First, from the

computer vision perspective, current object detectors are far from perfect and can only detect a

couple of objects in an average image. Further, accuracy drops rapidly when a tighter bounding box

(with IOU higher than 0.5) is required. Our work can be used for collecting large-scale datasets with

minimal supervision to improve the current state-of-the-art object detectors; in turn, the improved

models will make our system more effective.

From a crowd engineering perspective, we demonstrated that it is worthwhile to combine

multiple tasks in a principled framework. One interesting observation is that the verify-cover task

(asking if all instances of an object class are already labeled in the image) inspired by ILSVRC data

collection process [152] turned out in practice to have almost no impact on the labeling accuracy as

it was selected by the model less than 0.1% of the time. This confirmed more of the intuitions of

the later COCO [118] dataset that asking slightly more complex human tasks (such as immeditately

asking users to put a dot on the object rather than merely asking if the object appears) may be

more efficient.

Finally, from an application developer perspective, we show that even though computer

vision is not yet ready to detect all objects, we have a principled way of labeling all objects in a

scene, trading off precision, utility and budget.



Chapter 9

Conclusions

This thesis presents my work on scaling up object detection from tens to hundreds of object cate-

gories and from tens to hundreds of thousands of images. The work presented here has focused on

core detection algorithms (Chapters 2 and 4), on new ways of describing objects (Chapter 3), on

constructing and evaluating large-scale datasets (Chapters 5-7), and on human-in-the-loop detection

approaches (Chapter 8).

The running thread of this thesis has been effective utilization of human effort for building

computer vision systems. Works such as learning generic attributes in Chapter 3 or weakly super-

vised localization models in Chapter 4 are motivated by the need to minimizing human annotation

efforts while scaling up the capabilities of object recognition systems. Effective crowd engineering

strategies of Chapters 6 can be used to minimize human effort while collecting large-scale training

annotations as needed. Chapter 8 introduces effective strategies for minimizing the amount of hu-

man effort required for correcting errors made by the imperfect computer vision algorithm at test

time.

Effectively utilizing human effort for improving computer vision systems will become even more

important as the domains of interest grow. Future areas of exploration include analyzing even larger

scale datasets (such as the Yahoo’s Flickr Creative Commons 100M1), focusing on more detailed

image understanding with pixel-level image segmentation [150], or analyzing video rather than image

data [217]. As the domains scale, the human cost associated with designing effective computer vision

systems for these domains cannot scale accordingly. We will need to become more and more effective

at targeting our human efforts of algorithmic design, data annotation and test-time intervention to

attaing the optimal computer vision accuracy.

1http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67
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9.1 Lessons Learned

We learned several lessons about the effective use of human input for scaling up object detection.

Unsupervised region proposals Using unsupervised techniques to effectively focus attention

to the most important visual regions becomes progressively more important as the domains of

interest grow and human input become more sparse. Chapter 2 focused on automatically producing

regions likely to contain the target object as to avoid exhaustive search. This theme has continued

throughout the thesis, with Chapter 4 using a similar region proposal algorithm to regularize the

search space for weakly supervised localization, Chapter 5 describing state-of-the-art large-scale

algorithms most of which rely on unsupervised region proposals, and Chapter 8 using this method

to make the human-in-the-loop computation tractable. This idea was relatively novel five years ago

and has now emerged as the default approach for object detection.

The importance of datasets. Much of the thesis has focused on collecting, analyzing and utiliz-

ing large-scale datasets. In Chapter 4 we studied how object detection can be performed in a weakly

supervised setting without the need for large-scale annotations; however, the detection accuracy was

inferior to that of strongly supervised techniques. In order to scale up object detection from twenty

to hundreds of object categories, diverse annotated large-scale training data is necessary. Multiple

decisions had to be made along the way for collecting such data: from defining the feasible scale

of the data and the appropriate evaluation metrics in Chapter 5 to formulating the most accurate

and cost-efficient crowd sourcing techniques for data collection in Chapters 6 and 8. Progress in

object recognition would have been significantly hindered without the availability of such large-scale

datasets [104, 48, 152].

As we continue to expand the capabilities of our computer vision systems, the need for datasets

will remain. Standardized test sets with detailed ground truth annotations will still be necessary

for tracking progress in the field and for evaluating the relative effectiveness of different algorithms.

The need to scale up and diversify these benchmarks will create new interesting challenges. For

example, finding a sufficient number of photographs of screwdrivers in cluttered images on the web

to test the accuracy of a screwdriver detector is already difficult. Designing benchmarks for testing

our algorithms in rare visual situations may require more creative approaches than simply turning

to crowdsourced annotation of web images.

Formulating data annotation as an optimization problem. Another underlying theme of

this thesis has been formulating the data annotation problem into a coherent optimization frame-

work. As we continue along the path of scaling up computer vision systems while minimizing human

effort this is an important lesson to keep in mind. Both Chapter 6 and Chapter 8 demonstrated that

both the cost and accuracy can be significantly improved by a principled mathematical annotation
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framework compared to an ad hoc data annotation approach. This will become especially critical

as the size of datasets continues to increase in future years.

The importance of designing effective user interfaces. The other critical component besides

carefully formulating data annotation is to design effective user interfaces for both data annotation

and human-in-the-loop approaches. Chapters 3, 6, 8 all discuss the successes and failures of effective

interfaces. Some common threads are that multiple rounds of iterations are often necessary in the

design and that simpler questions are often more cost-efficient than more complex questions even

when considering the fact that a larger number of simpler questions are often necessary. However,

the concept of a simpler question is often not immediately obvious without conducting user studies

with human annotators unfamiliar with the expeiment.

9.2 Future directions

We tackled the problem of scaling up object detection systems in both object classes and number

of images that can be processed. One natural next question is: what would it take to build a

system capable of meaningfully understanding all objects in any scene? Based on this thesis, three

key research directions emerge. First, current algorithms are notoriously bad at detecting certain

types of objects as shown in Chapter 7: thin, man-made, untextured objects tend to be particularly

challenging. Scaling up object detections to hundreds of object categories brought about this insight,

but it may be time to pay close attention to these challenging object categories instead of just focusing

on average accuracy across many generic categories. Second, as we need to revisit the idea of large-

scale generic attribute descriptions of Chapter 3. Simply naming the object categories is not enough

to disambiguate between all objects and to describe everything in the scene. In this case there is

a need to study generic object attributes at large scale instead of focusing our research efforts on

just specific domains. Finally, in attempting to understand all objects in a scene, automatic object

detection systems will inevitably encounter unknown objects. We need to continue exploring effective

human-machine collaboration systems both at training time for efficiently collecting targeted training

data as well as at test time for unexpected circumstances such as previously unseen objects.

More generally, as we explore richer visual domains with visual data and richer output spaces,

I believe that the question of more effective utilization of human effort will come to the forefront.

Efficiently collecting optimal training datasets, obtaining sufficiently diverse test benchmarks, seam-

lessly correcting computer vision errors, effectively soliciting occasional real-time human feedback –

all of these research directions become progressively more important in the near future.



Appendix A

Detailed analysis of the ILSVRC

localization dataset

In addition to the size of the dataset, we also analyze the level of difficulty of object localization in

these images compared to the PASCAL VOC benchmark. This serves three purposes:

1. It illustrates the difficulty of both the image classification and single-object localization tasks

in ILSVRC,

2. It justifies that the novel single-object localization task we introduces is sufficiently challenging

to be of interest to the community, and

3. It provides a set of metrics for quantifying localization difficulty in Chapter 7 to better under-

stand the performance of object recognition algorithms

In Section 7.3 we introduced four metrics of localization difficulty: number of object instances

per image, object scale, chance performance of localization and the level of clutter. We compute

statistics on the ILSVRC2012 single-object localization validation set images compared to PASCAL

VOC 2012 validation images. Table A.1 and Figure A.1 summarize the results.

Number of instances. The average object category in ILSVRC has 1.61 target object instances on

average per positive image, with each instance having on average 0.47 neighbors (adjacent instances

of the same object category). This is comparable to 1.69 instances per positive image and 0.52

neighbors per instance for an average object class in PASCAL.

Object scale. In the average object category in PASCAL the object occupies 24.1% of the image

area, and in ILSVRC 35.8%. However, PASCAL has only 20 object categories while ILSVRC has

1000. The 537 object categories of ILSVRC with the smallest objects on average occupy the same

136
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Property PASCAL (num classes) ILSVRC subset (num classes) ILSVRC (num classes)
Instances 1.69 (20) 1.69 (843) 1.61 (1000)

Scale 24.08% (20) 24.06% (537) 35.83% (1000)
CPL 8.76% (20) 8.74% (562) 20.83% (1000)

Clutter 5.90 (20) 5.90 (250) 3.59 (1000)

Table A.1: Comparison of the PASCAL VOC 2012 object detection dataset and the ILSVRC 2012
single-object localization dataset on several key properties of object localization difficulty (please
see Section 5.4.1 for definitions). For each property, the ILSVRC subset is chosen by selecting the
largest set of ILSVRC classes with the same average difficulty as that of the PASCAL classes. The
number of object classes is indicated in parentheses. Note that according to any of these measures
of difficulty there is a subset of ILSVRC which is as challenging as PASCAL but more than an order
of magnitude greater in size.

fraction of the image as PASCAL objects: 24.1%. Thus even though on average the object instances

tend to be bigger in ILSVRC images, there are more than 25 times more object categories than in

PASCAL VOC with the same average object scale.

Chance performance of localization (CPL). Some of the most difficult ILSVRC categories to

localize according to this metric are basketball, swimming trunks, ping pong ball and rubber eraser,

all with less than 0.2% CPL. The average CPL across the 1000 ILSVRC categories is 20.8%. The

20 PASCAL categories have an average CPL of 8.7%, which is the same as the CPL of the 562 most

difficult categories of ILSVRC.

Clutter. The measure of clutter is defined in Section 7.3 as a logarithm of the number of objectness

windows [3] it takes on average to localize an instance of the target class. If an object can’t be

localized with the first 1000 windows (as is the case for 1% of images on average per category in

ILSVRC and 5% in PASCAL), we set obj(m) = 1001. The fact that more than 95% of objects can

be localized with these windows imply that the objectness cue is already quite strong, so objects

that require many windows on average will be extremely difficult to detect: e.g., ping pong ball

(clutter of 9.57, or 758 windows on average), basketball (clutter of 9.21), puck (clutter of 9.17) in

ILSVRC. The most difficult object in PASCAL is bottle with clutter score of 8.47. On average,

ILSVRC has clutter score of 3.59. The most difficult subset of ILSVRC with 250 object categories

has an order of magnitude more categories and the same average amount of clutter (of 5.90) as the

PASCAL dataset.

Summary. We compared the statistics of PASCAL2012 validation dataset to ILSVRC2012 vali-

dation dataset according to four measures of localization difficulty of Section 7.3: number of object

instances per image, average object scale, chance performance of localization, and level of clut-

ter. According to all the metrics there is a subset of ILSVRC which is as challenging as PASCAL

but more than an order of magnitude greater in size. As a result of its scale, the ILSVRC allows
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1000 classes of ILSVRC2012-2014 single-object localization (dark green)
versus 20 classes of PASCAL 2012 (light blue)

→ more diffiult more diffiult ← more diffiult ← → more diffiult

200 hardest classes of ILSVRC2012-2014 single-object localization (dark green)
versus 20 classes of PASCAL 2012 (light blue)

→ more diffiult more diffiult ← more diffiult ← → more diffiult

Figure A.1: Distribution of various measures of localization difficulty on the ILSVRC2012-2014
single-object localization (dark green) and PASCAL VOC 2012 (light blue) validation sets. The
plots on top contain the full ILSVRC validation set with 1000 classes; the plots on the bottom
contain 200 ILSVRC classes with the lowest chance performance of localization. All plots contain
all 20 classes of PASCAL VOC.

for evaluation of performance of detectors under a variety of image-level statistics, documented in

Chapter 7.



Appendix B

Analysis of the top-5 ILSVRC

evaluation criteria

In Chapter 5 we introduced the ImageNet Large Scale Visual Recognition Challenge and in Sec-

tion 5.5 described the top-5 evaluation criteria used on the ILSVRC classification and localization

tasks: an algorithm is allowed to make up to 5 guesses per image without penalty. We briefly justify

this choice.

Top-5 evaluation of algorithms. Chapter 7 we analyze the performance of leading object de-

tection algorithms as a function of object class properties. In Section 7.4 we specifically focus on

the breakthrough year 2012. Here we consider just the state-of-the-art algorithms from year 2012,

SV and VGG as described in Section 7.4.2.

Figure B.1 plots the accuracy of the methods SV and VGG as a function of the number of guesses

(ignoring the black curves). As the algorithms are allowed to make between 1 and 5 guesses, the

relative performance remains reasonably consistent: the difference in classification accuracy between

the two methods ranges from 0.108 and 0.117, and the difference in localization accuracy ranges from

0.140 to 0.160. Since these patterns are consistent, we follow the intuition of the ImageNet challenge

evaluation (the images are not exhaustively labeled, so unannotated objects may be present and

thus the algorithms should not be penalized for potentially predicting an unlabeled object as the

top scoring detection) and use top-5 evaluation in our analysis. Similar conclusions can be drawn

from the data when using just top-1 evaluation.

Top-10 evaluation of upper bound. Section 7.4.2 presented an upper bound of the two ethods,

which combines the outputs of the VGG and SV on every image and considers the object to be

correctly detected if any of the 10 proposed (class, location) pairs is correct. Here we provide some

analysis and insight.
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Figure B.1: (a) Classification and (b) classification with localization accuracies of the three methods
as a function of the number of guesses allowed during evaluation on ILSVRC2012.

The idea is to put an upper bound on how well a combination of the two systems might work –

for example, given an oracle which would select the “best” box from the 10 boxes proposed by SV

and VGG (in this setting, top-10 evaluation would actually the same as top-1).

Figure B.1 shows the number of guesses versus accuracy for the upper bound (in black) by taking

the top 1, 2, 3, 4, 5 guesses from each method, so 2, 4, 6, 8, 10 guesses. It is important to keep in

mind that the scores between the two algorithms are uncalibrated, so this upper bound is in fact

suboptimal. However, a few interesting trends are still worth noting:

• For classification, SV is an impressively strong algorithm: given a budget of only 5 guesses

it’s better to use the top-5 guesses from SV (accuracy of 0.838) rather than combining it with

VGG (at least in the current setting of uncalibrated scores; upper bound top-6 accuracy is

only 0.827).

• For localization, taking the top 2 detections from SV (accuracy of 0.590) is also slightly better

than taking the top detection from each algorithm (upper bound top-2 accuracy is only 0.586)

• For localization, when considering top-5 detections the combination algorithm is in fact stronger

than SV alone: SV top-5 accuracy is 0.658, and upper bound top-4 accuracy is 0.671 (top-6 is

0.707)

Further investigation is outside the scope of this work but may yield more interesting insights

and stronger combined detection algorithms.



Appendix C

Manually curated queries for

ILSVRC detection images

In Section 6.3 we discussed three types of queries we used for collecting the object detection images:

(1) single object category name or a synonym; (2) a pair of object category names; (3) a manual

query, typically targetting one or more object categories with insufficient data. Here we provide a

list of the 129 manually curated queries:

afternoon tea, ant bridge building, armadillo race, armadillo yard, artist studio, auscultation,

baby room, banjo orchestra, banjo rehersal, banjo show, califone headphones & media player sets,

camel dessert, camel tourist, carpenter drilling, carpentry, centipede wild, coffee shop, continental

breakfast toaster, continental breakfast waffles, crutch walking, desert scorpion, diner, dining room,

dining table, dinner, dragonfly friendly, dragonfly kid, dragonfly pond, dragonfly wild, drying hair,

dumbbell curl, fan blow wind, fast food, fast food restaurant, firewood chopping, flu shot, goldfish

aquarium, goldfish tank, golf cart on golf course, gym dumbbell, hamster drinking water, harmon-

ica orchestra, harmonica rehersal, harmonica show, harp ensemble, harp orchestra, harp rehersal,

harp show, hedgehog cute, hedgehog floor, hedgehog hidden, hippo bird, hippo friendly, home im-

provement diy drill, horseback riding, hotel coffee machine, hotel coffee maker, hotel waffle maker,

jellyfish scuba, jellyfish snorkling, kitchen, kitchen counter coffee maker, kitchen counter toaster,

kitchenette, koala feed, koala tree, ladybug flower, ladybug yard, laundromat, lion zebra friendly,

lunch, mailman, making breakfast, making waffles, mexican food, motorcycle racing, office, office

fan, opossum on tree branch, orchestra, panda play, panda tree, pizzeria, pomegranate tree, por-

cupine climbing trees, power drill carpenter, purse shop, red panda tree, riding competition, riding

motor scooters, school supplies, scuba starfish, sea lion beach, sea otter, sea urchin habitat, shopping

for school supplies, sitting in front of a fan, skunk and cat, skunk park, skunk wild, skunk yard, snail

flower, snorkling starfish, snowplow cleanup, snowplow pile, snowplow winter, soccer game, south
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american zoo, starfish sea world, starts shopping, steamed artichoke, stethoscope doctor, strainer

pasta, strainer tea, syringe doctor, table with food, tape player, tiger circus, tiger pet, using a can

opener, using power drill, waffle iron breakfast, wild lion savana, wildlife preserve animals, wiping

dishes, wombat petting zoo, zebra savana, zoo feeding, zoo in australia



Appendix D

Hierarchy of questions for ILSVRC

detection annotation

The following is a hierarchy of questions manually constructed for crowdsourcing full annotation

of images with the presence or absence of 200 object detection categories in ILSVRC2013 and

ILSVRC2014. All questions are of the form “is there a ... in the image?” Questions marked with

• are asked on every image. If the answer to a question is determined to be “no” then the answer

to all descendant questions is assumed to be “no”. The 200 numbered leaf nodes correspond to the

200 object detection categories.

The goal in the hierarchy construction is to save cost (by asking as few questions as possible on

every image) while avoiding any ambiguity in questions which would lead to false negatives during

annotation. This hierarchy is not tree-structured; some questions have multiple parents.

• first aid/ medical items

◦ (1) stethoscope

◦ (2) syringe

◦ (3) neck brace

◦ (4) crutch

◦ (5) stretcher

◦ (6) band aid: an adhesive bandage to cover small cuts or blisters

• musical instruments

◦ (7) accordion (a portable box-shaped free-reed instrument; the reeds are made to vibrate by air

from the bellows controlled by the player)

◦ (8) piano, pianoforte, forte-piano

◦ percussion instruments: chimes, maraccas, drums, etc

◦ (9) chime: a percussion instrument consisting of a set of tuned bells that are struck with a
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hammer; used as an orchestral instrument

◦ (10) maraca

◦ (11) drum

◦ stringed instrument

◦ (12) banjo, the body of a banjo is round. please do not confuse with guitar

◦ (13) cello: a large stringed instrument; seated player holds it upright while playing

◦ (14) violin: bowed stringed instrument that has four strings, a hollow body, an unfretted

fingerboard and is played with a bow. please do not confuse with cello, which is held upright

while playing

◦ (15) harp

◦ (16) guitar, please do not confuse with banjo. the body of a banjo is round

◦ wind instrument: a musical instrument in which the sound is produced by an enclosed column

of air that is moved by the breath (such as trumpet, french horn, harmonica, flute, etc)

◦ (17) trumpet: a brass musical instrument with a narrow tube and a flared bell, which is played

by means of valves. often has 3 keys on top

◦ (18) french horn: a brass musical instrument consisting of a conical tube that is coiled into a

spiral, with a flared bell at the end

◦ (19) trombone: a brass instrument consisting of a long tube whose length can be varied by a

u-shaped slide

◦ (20) harmonica

◦ (21) flute: a high-pitched musical instrument that looks like a straight tube and is usually

played sideways (please do not confuse with oboes, which have a distinctive straw-like mouth

piece and a slightly flared end)

◦ (22) oboe: a slender musical instrument roughly 65cm long with metal keys, a distinctive

straw-like mouthpiece and often a slightly flared end (please do not confuse with flutes)

◦ (23) saxophone: a musical instrument consisting of a brass conical tube, often with a u-bend

at the end

• food: something you can eat or drink (includes growing fruit, vegetables and mushrooms, but does

not include living animals)

◦ food with bread or crust: pretzel, bagel, pizza, hotdog, hamburgers, etc

◦ (24) pretzel

◦ (25) bagel, beigel

◦ (26) pizza, pizza pie

◦ (27) hotdog, hot dog, red hot

◦ (28) hamburger, beefburger, burger

◦ (29) guacamole

◦ (30) burrito
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◦ (31) popsicle (ice cream or water ice on a small wooden stick)

◦ fruit

◦ (32) fig

◦ (33) pineapple, ananas

◦ (34) banana

◦ (35) pomegranate

◦ (36) apple

◦ (37) strawberry

◦ (38) orange

◦ (39) lemon

◦ vegetables

◦ (40) cucumber, cuke

◦ (41) artichoke, globe artichoke

◦ (42) bell pepper

◦ (43) head cabbage

◦ (44) mushroom

• items that run on electricity (plugged in or using batteries); including clocks, microphones, traffic

lights, computers, etc

◦ (45) remote control, remote

◦ electronics that blow air

◦ (46) hair dryer, blow dryer

◦ (47) electric fan: a device for creating a current of air by movement of a surface or surfaces

(please do not consider hair dryers)

◦ electronics that can play music or amplify sound

◦ (48) tape player

◦ (49) iPod

◦ (50) microphone, mike

◦ computer and computer peripherals: mouse, laptop, printer, keyboard, etc

◦ (51) computer mouse

◦ (52) laptop, laptop computer

◦ (53) printer (please do not consider typewriters to be printers)

◦ (54) computer keyboard

◦ (55) lamp

◦ electric cooking appliance (an appliance which generates heat to cook food or boil water)

◦ (56) microwave, microwave oven

◦ (57) toaster

◦ (58) waffle iron
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◦ (59) coffee maker: a kitchen appliance used for brewing coffee automatically

◦ (60) vacuum, vacuum cleaner

◦ (61) dishwasher, dish washer, dishwashing machine

◦ (62) washer, washing machine: an electric appliance for washing clothes

◦ (63) traffic light, traffic signal, stoplight

◦ (64) tv or monitor: an electronic device that represents information in visual form

◦ (65) digital clock: a clock that displays the time of day digitally

• kitchen items: tools,utensils and appliances usually found in the kitchen

◦ electric cooking appliance (an appliance which generates heat to cook food or boil water)

◦ (56) microwave, microwave oven

◦ (57) toaster

◦ (58) waffle iron

◦ (59) coffee maker: a kitchen appliance used for brewing coffee automatically

◦ (61) dishwasher, dish washer, dishwashing machine

◦ (66) stove

◦ things used to open cans/bottles: can opener or corkscrew

◦ (67) can opener (tin opener)

◦ (68) corkscrew

◦ (69) cocktail shaker

◦ non-electric item commonly found in the kitchen: pot, pan, utensil, bowl, etc

◦ (70) strainer

◦ (71) frying pan (skillet)

◦ (72) bowl: a dish for serving food that is round, open at the top, and has no handles (please

do not confuse with a cup, which usually has a handle and is used for serving drinks)

◦ (73) salt or pepper shaker: a shaker with a perforated top for sprinkling salt or pepper

◦ (74) plate rack

◦ (75) spatula: a turner with a narrow flexible blade

◦ (76) ladle: a spoon-shaped vessel with a long handle; frequently used to transfer liquids from

one container to another

◦ (77) refrigerator, icebox

• furniture (including benches)

◦ (78) bookshelf: a shelf on which to keep books

◦ (79) baby bed: small bed for babies, enclosed by sides to prevent baby from falling

◦ (80) filing cabinet: office furniture consisting of a container for keeping papers in order

◦ (81) bench (a long seat for several people, typically made of wood or stone)

◦ (82) chair: a raised piece of furniture for one person to sit on; please do not confuse with benches

or sofas, which are made for more people
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◦ (83) sofa, couch: upholstered seat for more than one person; please do not confuse with benches

(which are made of wood or stone) or with chairs (which are for just one person)

◦ (84) table

• clothing, article of clothing: a covering designed to be worn on a person’s body

◦ (85) diaper: Garment consisting of a folded cloth drawn up between the legs and fastened at the

waist; worn by infants to catch excrement

◦ swimming attire: clothes used for swimming or bathing (swim suits, swim trunks, bathing caps)

◦ (86) swimming trunks: swimsuit worn by men while swimming

◦ (87) bathing cap, swimming cap: a cap worn to keep hair dry while swimming or showering

◦ (88) maillot: a woman’s one-piece bathing suit

◦ necktie: a man’s formal article of clothing worn around the neck (including bow ties)

◦ (89) bow tie: a man’s tie that ties in a bow

◦ (90) tie: a long piece of cloth worn for decorative purposes around the neck or shoulders, resting

under the shirt collar and knotted at the throat (NOT a bow tie)

◦ headdress, headgear: clothing for the head (hats, helmets, bathing caps, etc)

◦ (87) bathing cap, swimming cap: a cap worn to keep hair dry while swimming or showering

◦ (91) hat with a wide brim

◦ (92) helmet: protective headgear made of hard material to resist blows

◦ (93) miniskirt, mini: a very short skirt

◦ (94) brassiere, bra: an undergarment worn by women to support their breasts

◦ (95) sunglasses

• living organism (other than people): dogs, snakes, fish, insects, sea urchins, starfish, etc.

◦ living organism which can fly

◦ (96) bee

◦ (97) dragonfly

◦ (98) ladybug

◦ (99) butterfly

◦ (100) bird

◦ living organism which cannot fly (please don’t include humans)

◦ living organism with 2 or 4 legs (please don’t include humans):

◦ mammals (but please do not include humans)

◦ feline (cat-like) animal: cat, tiger or lion

◦ (101) domestic cat

◦ (102) tiger

◦ (103) lion

◦ canine (dog-like animal): dog, hyena, fox or wolf

◦ (104) dog, domestic dog, canis familiaris
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◦ (105) fox: wild carnivorous mammal with pointed muzzle and ears and a bushy tail (please

do not confuse with dogs)

◦ animals with hooves: camels, elephants, hippos, pigs, sheep, etc

◦ (106) elephant

◦ (107) hippopotamus, hippo

◦ (108) camel

◦ (109) swine: pig or boar

◦ (110) sheep: woolly animal, males have large spiraling horns (please do not confuse with

antelope which have long legs)

◦ (111) cattle: cows or oxen (domestic bovine animals)

◦ (112) zebra

◦ (113) horse

◦ (114) antelope: a graceful animal with long legs and horns directed upward and backward

◦ (115) squirrel

◦ (116) hamster: short-tailed burrowing rodent with large cheek pouches

◦ (117) otter

◦ (118) monkey

◦ (119) koala bear

◦ (120) bear (other than pandas)

◦ (121) skunk (mammal known for its ability fo spray a liquid with a strong odor; they may

have a single thick stripe across back and tail, two thinner stripes, or a series of white spots

and broken stripes

◦ (122) rabbit

◦ (123) giant panda: an animal characterized by its distinct black and white markings

◦ (124) red panda: Reddish-brown Old World raccoon-like carnivore

◦ (125) frog, toad

◦ (126) lizard: please do not confuse with snake (lizards have legs)

◦ (127) turtle

◦ (128) armadillo

◦ (129) porcupine, hedgehog

◦ living organism with 6 or more legs: lobster, scorpion, insects, etc.

◦ (130) lobster: large marine crustaceans with long bodies and muscular tails; three of their

five pairs of legs have claws

◦ (131) scorpion

◦ (132) centipede: an arthropod having a flattened body of 15 to 173 segments each with a pair

of legs, the foremost pair being modified as prehensors
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◦ (133) tick (a small creature with 4 pairs of legs which lives on the blood of mammals and

birds)

◦ (134) isopod: a small crustacean with seven pairs of legs adapted for crawling

◦ (135) ant

◦ living organism without legs: fish, snake, seal, etc. (please don’t include plants)

◦ living organism that lives in water: seal, whale, fish, sea cucumber, etc.

◦ (136) jellyfish

◦ (137) starfish, sea star

◦ (138) seal

◦ (139) whale

◦ (140) ray: a marine animal with a horizontally flattened body and enlarged winglike pectoral

fins with gills on the underside

◦ (141) goldfish: small golden or orange-red fishes

◦ living organism that slides on land: worm, snail, snake

◦ (142) snail

◦ (143) snake: please do not confuse with lizard (snakes do not have legs)

• vehicle: any object used to move people or objects from place to place

◦ a vehicle with wheels

◦ (144) golfcart, golf cart

◦ (145) snowplow: a vehicle used to push snow from roads

◦ (146) motorcycle (or moped)

◦ (147) car, automobile (not a golf cart or a bus)

◦ (148) bus: a vehicle carrying many passengers; used for public transport

◦ (149) train

◦ (150) cart: a heavy open wagon usually having two wheels and drawn by an animal

◦ (151) bicycle, bike: a two wheeled vehicle moved by foot pedals

◦ (152) unicycle, monocycle

◦ a vehicle without wheels (snowmobile, sleighs)

◦ (153) snowmobile: tracked vehicle for travel on snow

◦ (154) watercraft (such as ship or boat): a craft designed for water transportation

◦ (155) airplane: an aircraft powered by propellers or jets

• cosmetics: toiletry designed to beautify the body

◦ (156) face powder

◦ (157) perfume, essence (usually comes in a smaller bottle than hair spray

◦ (158) hair spray

◦ (159) cream, ointment, lotion

◦ (160) lipstick, lip rouge
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• carpentry items: items used in carpentry, including nails, hammers, axes, screwdrivers, drills,

chain saws, etc

◦ (161) chain saw, chainsaw

◦ (162) nail: pin-shaped with a head on one end and a point on the other

◦ (163) axe: a sharp tool often used to cut trees/ logs

◦ (164) hammer: a blunt hand tool used to drive nails in or break things apart (please do not

confuse with axe, which is sharp)

◦ (165) screwdriver

◦ (166) power drill: a power tool for drilling holes into hard materials

• school supplies: rulers, erasers, pencil sharpeners, pencil boxes, binders

◦ (167) ruler,rule: measuring stick consisting of a strip of wood or metal or plastic with a straight

edge that is used for drawing straight lines and measuring lengths

◦ (168) rubber eraser, rubber, pencil eraser

◦ (169) pencil sharpener

◦ (170) pencil box, pencil case

◦ (171) binder, ring-binder

• sports items: items used to play sports or in the gym (such as skis, raquets, gymnastics bars,

bows, punching bags, balls)

◦ (172) bow: weapon for shooting arrows, composed of a curved piece of resilient wood with a taut

cord to propel the arrow

◦ (173) puck, hockey puck: vulcanized rubber disk 3 inches in diameter that is used instead of a

ball in ice hockey

◦ (174) ski

◦ (175) racket, racquet

◦ gymnastic equipment: parallel bars, high beam, etc

◦ (176) balance beam: a horizontal bar used for gymnastics which is raised from the floor and

wide enough to walk on

◦ (177) horizontal bar, high bar: used for gymnastics; gymnasts grip it with their hands (please

do not confuse with balance beam, which is wide enough to walk on)

◦ ball

◦ (178) golf ball

◦ (179) baseball

◦ (180) basketball

◦ (181) croquet ball

◦ (182) soccer ball

◦ (183) ping-pong ball

◦ (184) rugby ball



APPENDIX D. HIERARCHY OF QUESTIONS FOR ILSVRC DETECTION ANNOTATION151

◦ (185) volleyball

◦ (186) tennis ball

◦ (187) punching bag, punch bag, punching ball, punchball

◦ (188) dumbbell: An exercising weight; two spheres connected by a short bar that serves as a

handle

• liquid container: vessels which commonly contain liquids such as bottles, cans, etc.

◦ (189) pitcher: a vessel with a handle and a spout for pouring

◦ (190) beaker: a flatbottomed jar made of glass or plastic; used for chemistry

◦ (191) milk can

◦ (192) soap dispenser

◦ (193) wine bottle

◦ (194) water bottle

◦ (195) cup or mug (usually with a handle and usually cylindrical)

• bag

◦ (196) backpack: a bag carried by a strap on your back or shoulder

◦ (197) purse: a small bag for carrying money

◦ (198) plastic bag

• (199) person

• (200) flower pot: a container in which plants are cultivated



Appendix E

User interfaces for human-machine

object annotation

In this appendix we present the user interfaces for the human-machine collaboration for object

annotation system described in Chapter 8. Figure E.1 shows a zoomed-out view of the annotation

interface. The general instructions at the bottom of the page (shown in Figure E.2) discuss what is

considered a good bounding box (with examples) and what types of objects should be annotated.

These instructions are shown to workers at beginning of the work and are always available for

reference at the bottom of the page. Each type of task has a separate interface with brief specific

instructions shown in Figures E.3-E.9.
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Figure E.1: Overview of our annotation layout. A close-up of the instructions (bottom) is in
Figure E.2. Only one type of task is shown here (top); closeups of each of the seven types are in
Figures E.3-E.9).
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Figure E.2: General instructions for our human annotation tasks.
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Figure E.3: User interface for verify-image task. The correct answer is “no.”
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Figure E.4: User interface for verify-box task. The correct answer is “yes.”
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Figure E.5: User interface for verify-cover task. The correct answer is “no.”
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Figure E.6: User interface for draw-box task. The correct answer is “no other box can be drawn.”
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Figure E.7: User interface for verify-object task. The correct answer is “yes.”
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Figure E.8: User interface for name-object task. The correct answer is “not a good box.”
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Figure E.9: User interface for name-image task. The correct answer is, for example, “umbrella.”
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