
Extracting Moving People and

Categorizing their Activities in Video

Juan Carlos Niebles Duque

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical Engineering

Adviser: Fei-Fei Li

January 2011



c⃝ Copyright by Juan Carlos Niebles Duque, 2010.

All rights reserved.



Abstract

The ability to automatically detect and track human movements, recognize actions

and activities, understand behavior and predict goals and intentions has captured

the attention of many computer vision scientists. One of the main motivations is the

great potential impact that this technology can make on many applications such as

video search and indexing, smart surveillance systems, medical research, video game

interfaces, automatic sport commentary, human-robot interaction, among others.

In this work, we focus on two important questions: given a video sequence, where

are the moving humans in the sequence? what actions or activities are they perform-

ing?

We first discuss the problem of extracting human motion volumes from video

sequences. We present a fully automatic framework to detect and extract arbitrary

human motion volumes from challenging real-world videos. We have explored a purely

top-down methodology that estimates body configurations at every frame to achieve

the extraction. We also present a much more efficient approach that carefully com-

bines bottom-up and top-down cues, which enables fast extraction in near real time.

We are not only interested in finding where the humans are in a given sequence,

but also in understanding what they are doing. We present statistical models for

the task of simple human action recognition based in spatial and spatio-temporal

local features. First, we show that by adapting latent topic models we can achieve

competitive simple action categorization performance in an unsupervised setting. We

also present a hierarchical model for simple actions that can be characterized as a

constellation-of-bags-of-features. This model leverages the spatial structure of the

human body to improve action recognition.

While these models are successful at the task of simple action recognition, their

performance suffers when the actions of interest are more complex. We propose a dis-

criminative model for complex action recognition capable of leveraging the temporal
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structure and composition of simpler motions into complex actions. We show that

the contextual information provided by the temporal structure in our model greatly

improves the complex action classification accuracy over state-of-the art models for

simple action recognition.
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Part I

Introduction

1



One of the Holy Grails in computer vision is creating algorithms for automatic

analysis of human behavior in video sequences. The ability to automatically detect

and track human movements, recognize actions and activities, understand behavior

and predict goals and intentions has being studied by many computer vision scien-

tists [35, 91]. One of the main motivations is the great potential impact that this

technology can make on a large variety of applications such as video search and index-

ing, smart surveillance systems, medical research, video game interfaces, automatic

sport judging and commentary, human-robot interaction, among others.

In this work, we focus on two important questions: given a video sequence, where

are the moving humans in the sequence? what actions or activities are they perform-

ing? These are challenging vision problems, mostly because human bodies are highly

articulated, people tend to wear clothing with complex texture, and each actor has a

different pace and style to perform certain actions. In addition, background clutter,

occlusions, illumination changes and unconstrained camera motions create significant

variations and uncertainties.

We first discuss the problem of extracting human motion volumes from video se-

quences in Part II. We present a fully automatic framework to detect and extract

arbitrary human motion volumes from challenging real-world videos collected from

YouTube. We introduce our framework and review some of the related work in Chap-

ter 1. In Chapter 2, we explore a purely top-down methodology that estimates body

configurations at every frame with a pictorial structure model. The resulting pose es-

timations indicate the spatio-temporal volume that encloses each person. Our method

relies on a technique that effectively reduces the search space, reducing the compu-

tation time of the pictorial structure measurement process. We present experimental

evaluation of this method in Chapter 3. In spite of the large reduction in computation

by pruning the search space, applying the top-down model on every frame remains

computationally intensive for some applications that require real-time or faster pro-
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cessing. In Chapter 4, we present a much more efficient approach that carefully

combines bottom-up and top-down cues, which enables fast extraction in near real

time. The algorithm sparsely applies a top-down driven person segmentation in a few

frames, and efficiently propagates the estimated human regions into other frames in

a bottom-up fashion. Finally, we present promising experimental results in Chapter

5.

Once a computer vision system is able to localize and extract moving people

from video sequences, it is natural to ask the question of what activities are being

performed by these actors. We first approach the problem of simple action recognition

in Part III. We present statistical models for this task that are based in spatial and

spatio-temporal local features. We introduce the topic and review some of the recent

work in Chapter 6. In Chapter 7, we show that by adapting latent topic models we

can achieve competitive simple action categorization performance in an unsupervised

setting. While these models achieve good accuracy, they lack any understanding

of the structure of the human body or the spatio-temporal structure of the human

actions. In Chapter 8, we address this issue by presenting a hierarchical model for

simple actions that can be characterized as a constellation-of-bags-of-features. This

model leverages the spatial structure of the human body which is empirically shown

to improve action recognition accuracy. Finally, experimental results are presented

in Chapter 9.

While these models are successful at the task of simple action recognition, their

performance suffers when the actions of interest are more complex. In Part IV, we

present our approach to the problem of complex action recognition by exploiting

temporal structures. An introduction to the topic is presented in Chapter 10, where

we also discuss the related prior work. In Chapter 11, we present the details of our

discriminative model for complex action recognition, which is capable of leveraging

the temporal structure and composition of simpler motions into complex actions.
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We show that the contextual information provided by the temporal structure in our

model greatly improves the complex action classification accuracy over state-of-the

art models for simple action recognition. Lastly, experimental evaluation is covered

in Chapter 12.
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Part II

Extracting Human Motion

Volumes from Video Sequences
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Chapter 1

Introduction

Human motion analysis is notoriously difficult because human bodies are highly ar-

ticulated and people tend to wear clothing with complex textures that obscure the

important features needed to distinguish poses. Uneven lighting, clutter, occlusions,

and camera motions cause significant variations and uncertainties. Hence it is no sur-

prise that the most reliable person detectors are built for upright walking pedestrians

seen in typically high quality images or videos.

Nevertheless, extracting moving humans from video is a critical in many applica-

tions that require accurate and efficient human motion estimation. For example, a

mobile agent that navigates the world by interacting with humans in real-time needs

to identify and track people in its surroundings. Also, tasks such as video indexing,

search, and intelligent surveillance would benefit greatly by accurate human behavior

understanding. Traditionally, research in this area has been done mostly from a track-

ing perspective [35]; however, tracking humans in natural videos is still a challenging

problem.

Our goal is to be able to automatically and efficiently carve out spatio-temporal

volumes of humans with arbitrary motions and poses from videos taken in unknown

settings. In particular, we focus our attention on videos that are typically present on

6



Internet sites such as YouTube. These videos are representative of the kind of real-

world data that is highly prevalent and important. As the problem is very challenging,

we do not assume that we can find every individual. Rather, our aim is to enlarge the

envelope of upright human detectors by tracking detections from typical to atypical

poses. Sufficient data of this sort will allow us in the future to learn even more

complex models that can reliably detect people in arbitrary poses.

Part II is organized as follows. We review related prior work in Section 1.1. We

first introduce a purely top-down methodology that estimates body configurations

at every frame to achieve the extraction in Chapter 2, with the experimental results

covered in Chapter 3. We also present a much more efficient approach that care-

fully combines bottom-up and top-down cues in Chapter 4, with the experimental

validation in Chapter 5.

Earlier versions of this work appeared in ECCV 2008 [67] and CVPR 2010 [66].

1.1 Related Work

1.1.1 Human body tracking

The most straightforward method to track humans is to consider them as blobs and

use generic object tracking methods. General object tracking has a long history in

computer vision, see [106] for a recent survey. Two approaches with great influence

in the field are the Lucas-Kanade tracker [62], and the mean-shift tracking algorithm

[16]. The Lucas-Kanade is a template based tracker, which tends to be more suitable

for tracking rigid objects in sequences with minor view point change. Mean-shift

tracking, on the other hand, is more robust to view point changes, as long as the

global color distribution of the target remains roughly constant. Other interesting

general object tracking methods are based on discriminative classifiers that aim to

select features on the target object which are most distinctive to the surrounding
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background [15, 36]. However, this type of tracking methods still consider the target

as a rectangular (or elliptical) blob and do not provide a segmentation of the tracked

object.

Alternatively, contour-based representations of deformable shape are also often

used to describe the human body region efficiently. The level-set framework is cer-

tainly one of the most common approaches [18]. Cremers [17] presents a methodology

to incorporate dynamical shape priors to a level-set tracker, which enables tracking

under very noisy or corrupted conditions. In [107], Yilmaz et al. extend a level-set

tracking framework to handle occlusions of the target. Most recently, Bibby and Reid

present a real-time level-set tracker that is formulated probabilistically and allows the

use of pixel-wise posteriors for improved tracking accuracy [5]. While, these methods

tend to be fast, they ignore the structure of the human body and/or impose very

strong priors, which may lead to critical limitations when estimating articulated and

flexible human poses.

Another interesting angle is to cast the estimation of the human body region as a

figure/ground segmentation problem. In [76], Ren tackles this formulation with the

help of multiple low-level cues, though the algorithm seems to rely on objects having

a high contrast with the background.

Model-based methods, or top-down models, encode the articulation and move-

ments of the human body with an a priori structure model [22, 58, 84, 82, 88, 86, 12,

42]. A popular method to encode the structure of the body is the pictorial structure

model [29, 75]. Lan and Huttenlocher [51] present a spatio-temporal pictorial struc-

ture for tracking walking motions. Han et al. [41] present an articulated body tracker

that uses an efficient non parametric belief propagation inference algorithm. Most

of these methods rely on manual initialization, strong priors to encode the expected

motion, a controlled or very simple environment with good foreground/background

separation, and/or seeing the motion from multiple cameras. Learning and inference
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procedures attempt to fit the image evidence to the best configuration of the model,

but typically involve many degrees of freedom, large search space, and complex obser-

vations. They are, in general, prohibitively slow, due to the large amount of complex

computations.

1.1.2 Pedestrian detection and human pose estimation

Several fairly reliable algorithms for pedestrian detection in still images have been

developed recently [53, 59, 19, 92, 104]. Most of these methods do not consider the

intrinsic properties of pedestrians, but are instead general object detection algorithms.

Dalal and Triggs presented a discriminative detector of upright humans based on

the Histogram of Oriented Gradient feature (HOG) [19]. The detection is done in

a sliding-window manner, where each scanned window is classified with a Support

Vector Machine (SVM) classifier. An alternative sliding-window detector is proposed

by Laptev in [53]. This detector uses features that are similar to HOG, but the

classification is done by AdaBoost with Fisher linear discriminats as weak classifiers.

More recently Felzenszwalb et at. [30] have proposed a deformable part based model

which builds upon the HOG detector [19] and the pictorial structure model [29].

Their method has greatly influenced many of the most recent object and pedestrian

detection systems. In spite of their relative success, these methods typically deal

with upright persons only, and the detection accuracy is significantly reduced by even

moderate pose variations. Furthermore, these algorithms offer little segmentation of

the human, providing only a bounding box around the body.

Another body of work deals with pedestrian detection in video sequences [95, 102,

20]. These methods incorporate additional cues from motion patterns available in the

sequence. However, they are still restricted to upright people only.

To model body configurations, tree shaped graphical models have shown promising

results [29, 73]. In [29], Felzenszwalb and Huttenlocher show an algorithm for efficient
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inference in pictorial structure models, and apply it to estimate human poses in still

images. Ramanan [73] extends the method to include template-based body part

detectors and person-specific color models, which improve pose estimation accuracy.

More recently in [1], classifier-based body part detectors show further improvement.

A couple of recent methods have also extended the use of pictorial structures for

pose estimation in video sequences. Ramanan et al. [75] use pictorial structures for

tracking. Ferrari et al. [34] use temporal information to reduce the search space

progressively in applying pictorial structures to videos. In general, these generative

models are often able to find an accurate pose of the body and limbs. However, they

are less adept at making a discriminative decision: is there a person or not? They are

typically also very expensive computationally in both the measurement and inference

steps.

In the following chapters, we present a framework capable of automatically ex-

tracting moving humans from video. We build on several of the techniques mentioned

here, and obtain efficient algorithms with promising results.
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Chapter 2

Extracting People with Top-Down

Pictorial Structures

In this chapter, we present a system for extracting moving people with top-down

pictorial structures. Unlike much of the previous work, our system is capable of fully

automatic extraction. Furthermore, it achieves computational efficiency by exploiting

temporal information and smoothness. Our representation of body part and pose

estimation distributions are based on a efficient semi-parametric Gaussian mixture

representation, which is key for effectively maintaining the accuracy of the system

while reducing the computation complexity.

Our first objective is to find moving humans automatically. In contrast to much of

the previous work in tracking and motion estimation, our framework does not rely on

manual initialization or a strong a priori assumption on the number of people in the

scene, the appearance of the person or the background, the motion of the person or

that of the camera. To achieve this, we improve a number of existing techniques for

person detection and pose estimation, leveraging on temporal consistency to improve

both the accuracy and speed of existing techniques. We initialize our system using

a state-of-the-art upright pedestrian detection algorithm [53]. While this technique
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Figure 2.1: Two example results of our human motion extraction algorithm with top-
down pictorial structures. Our input videos are clips downloaded from YouTube and
thus are often low resolution, captured by hand-held moving cameras, and contain a
wide range of human actions. In the top sequence, notice that although the boundary
extraction is somewhat less accurate in the middle of the jump, the system quickly
recovers once more limbs become visible

works well on average, it produces many false positive windows and very often fails

to detect. We improve this situation by building an appearance model and applying

a two-pass constrained clustering algorithm [50] to verify and extend the detections.

Once we have these basic detections, we build articulated models following [29, 73,

75] to carve out arbitrary motions of moving humans into continuous spatio-temporal

volumes. The result can be viewed as a segmentation of the moving person, but we

are not aiming to achieve pixel-level accuracy for the extraction. Instead, we offer a

relatively efficient and accurate algorithm based on the prior knowledge of the human

body configuration. Specifically, we enhance the speed and potential accuracy of

[73, 75] by leveraging temporal continuity to constrain the search space and applying

semi-parametric density propagation to speed up evaluation. Two example sequences

and the system output are shown in Figure 2.1.

2.1 System Architecture

Our system consists of two main components. The first component generates object-

level hypotheses by coupling a human detector with a clustering algorithm. In this
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Figure 2.2: Overview of our human motion volume extraction system

part, the state of each person, including location, scale and trajectory, is obtained

and used to initialize the body configuration and appearance models for limb-level

analysis. Note that in this step two separate problems – detection and data association

– are handled simultaneously, based on the spatio-temporal coherence and appearance

similarity.

The second component extracts detailed human motion volumes from the video.

In this stage, we further analyze each person’s appearance and spatio-temporal body

configuration, resulting in a probability map for each body part. We have found that

we can improve both the robustness and efficiency of the algorithm by limiting the

search space of the measurement and inference around the modes of the distribution.

To do this, we model the density function as a mixture of Gaussians in a sequential

Bayesian filtering framework [2, 24, 40].

The entire system architecture is illustrated in Figure 2.2. More details about

each step are described in the following two sections.

The focus of our work is to extract arbitrarily complex human motions from

YouTube videos that involve a large degree of variability. We face several difficult

challenges, including:

1. Compression artifacts and low quality of videos
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2. Multiple shots in a video

3. Unknown number of people in each shot or sequence

4. Unknown human motion and poses

5. Unknown camera parameters and motion

6. Background clutter, motion and occlusions

We will refer back to these points in the rest of the discussion as we describe how the

components try to overcome them.

2.2 People Detection and Clustering

As Figure 2.2 shows, our system starts by estimating the location, scale, and trajec-

tories of the moving persons in the video. This step is composed of the following two

parts.

2.2.1 Initial hypotheses by detection

We first employ an human detection algorithm [53] to generate a large number of

hypotheses for persons in a video. This method, which trains a classifier cascade

using boosting of HOG features to detect upright standing or walking people, has se-

rious limitations. It only detects upright persons and cannot handle arbitrary poses

(challenge 4). The performance is degraded in the presence of compression artifacts

(challenge 1). Moreover, since it does not use any temporal information, the detec-

tion is often inconsistent and noisy, especially in scale. It is, therefore, difficult to

reject false positives and recover miss-detections effectively. The complexity increases

dramatically when multiple people are involved (challenge 3). This step, therefore,

serves only as an initial hypotheses proposal stage. Additional efforts are required to

handle various exceptions.
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2.2.2 People clustering

The output of the person detector is a set of independent bounding boxes; there are no

links for the same individual between detections. The detections also have significant

noise, false alarms and miss-detections especially due to the low quality of the video

(challenge 1). In order to recover from these problems, we incorporate a clustering

algorithm based on the temporal and appearance coherence of each person. The goal

of clustering in our system is to organize all correct detections into groups, where

each corresponds to a single person in the sequence (challenge 3), while throwing

away false alarms. To achieve this, we apply a constrained clustering paradigm [50]

in two hierarchical stages, adding both positive (should link) edges and negative (can

not link) constraints between the detections. See Figure 2.3 for an example.

Stage 1

In the first stage, we focus on exploiting the temporal-coherence cue by associating

detections from multiple frames with the help of a low-level tracking algorithm [16].

When the first detection is observed, a low-level tracker is initialized with the detected

bounding box. A new detection in a consequent frame is assigned to an existing track

if it coherently overlaps with the tracker predictions. In this case, we reinitialize

the tracker with the associated detection bounding box. When no existing track can

explain the new detection, a new track is created. Due to the complexity of the

articulated human body, a low-level tracker is susceptible to drift from the person.

We thus limit the temporal life of the tracker by counting the number of frames after

the last detection and terminating the track at the last detection if the maximum gap

(e.g. 100 frames) is surpassed. Very small clusters with few detections are discarded.

The clusters produced in this first stage are almost always correct but over-segmented

tracks (see Figure 2.3 (b)). This is because the person detector often fails to detect a
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Figure 2.3: Example results of the human detection and clustering stage. From
noisy detections, three tracks of people are identified successfully by filling gaps and
removing outliers. (In this figure, the horizontal and vertical axis are the x locations
and frame numbers, respectively.) (a) Original detection (b) Initial clusters after
step 1 (c) Final clusters (d) Example images of three similar people that correctly
clustered into different groups

person in the video for many frames in a row – especially when the person performs

some action that deviates from an upright pose.

Stage 2

The stage 2 agglomerative constrained clustering views the stage 1 clusters as atomic

elements, and produces constraints between them with positive weights determined

by appearance similarity and negative constraints determined by temporal/positional

incompatibility.

For the appearance similarity term, we select multiple high-scoring detection win-

dows for each stage 1 cluster, and generate probability maps for the head and torso

locations using a simple two-part pictorial structure [73]. We use these results to (1)

remove false detections by rejecting clusters that have unreliable head/torso estima-

tion results (e.g., high uncertainty in the estimated head and torso locations), and

(2) generate a weighted mask for computing color histogram descriptors for both the
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head and the torso. The appearance of the person in each cluster is then modeled

with the color distributions of head and torso.

After the second pass of our hierarchical clustering, we obtain one cluster per

person in the sequence. Figure 2.3 (c) illustrates the final clustering result, which

shows that three different persons and their trajectories are detected correctly, despite

the fact that the appearance of these individuals are very similar (Figure 2.3 (d)).

2.3 Extracting Spatio-Temporal Human Motion

Volumes

We now have a cluster for each person, with a detection bounding box giving the

location, scale, and appearance in some subset of the frames. Our goal is to find the

body configuration for all the frames of the cluster (challenge 4), both where we have

detections and where we do not. In this section, we discuss how to extract human

body pose efficiently in every frame.

The existing algorithms for human motion analysis based on belief propagation

such as [29, 75] typically require exhaustive search of the input image because minimal

(or no) temporal information is employed for the inference. Our idea is to propagate

the current posterior to the next frame for the future measurement.

2.3.1 Overview

We summarize here the basic theory for the inference algorithm based on belief prop-

agation [29, 73]. Suppose that each body part pi is represented with a 4 dimensional

vector of (xi, yi, si, θi) – location, scale and orientation. The configuration of the

entire human body B is composed of the location of each of m body parts, i.e.

B = {p1, p2, . . . , pm}. Then, the log-likelihood of a configuration B given the mea-
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surement from the current image I is:

L(B|I) ∝
∑

(i,j)∈E

Ψ(pi − pj) +
∑

i

Φ(pi), (2.1)

where Ψ(pi − pj) is the relationship between two body parts i and j, and Φ(pi) is the

observation for body part i. E is a set of edges that relate directly connected body

parts, which we restrict to form a tree. In particular, Φ(pi) is the measurement, or

response map, for the i-th body part. It indicates the agreement between the appear-

ance model of the i-th part and the location pi. On the other hand, the geometric

constraints are encoded by Ψ(pi − pj), which indicates the agreement between parts

i and j when placed at locations pi and pj. This term acts as a prior over body poses

and encodes the plausible body configurations.

Inference in this tree model can be done exactly with a message passing algorithm.

The messages are given by:

Mi(pj) ∝
∑
pj

Ψ(pi − pj)O(pi) (2.2)

O(pi) ∝ Φ(pi)
∏
k∈Ci

Mk(pi), (2.3)

where Mi(pj) is the bottom-up message from part pi to pj, O(pi) is the measurement

of part pi, and Ci is a set of children of part pi. The top-down message from part pj

to pi is defined by:

P (pi|I) ∝ Φ(pi)
∑
pj

Ψ(pi − pj)P (pj|I), (2.4)

which generates the probability map of each body part in the 4 dimensional state.
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Based on this framework, we propose a method to propagate the density function

in the temporal domain in order to reduce search space and produce temporally

consistent results. The rest of the section describes the details of our algorithm.

2.3.2 Initialization

The first step for human body extraction is to estimate an initial body configuration

and create a reliable appearance model. The initial location of the human is given by

the method presented in Section 2.2. Note that the bounding box produced by the

detection algorithm does not need to be very accurate since most of the background

area will be removed by further processing. Once a potential human region is found,

we apply a pose estimation technique [73] based on the same pictorial structure model.

After inference, we then obtain a probability map for the configuration of each body

part. In other words, the output of this algorithm is the probability map Pp(u, v, s, θ)

for each body part p, where (u, v) is location, s is scale and θ is orientation. A

sample probability map is presented in Figure 2.4 (b)-(d). Although this method

creates accurate probability maps for each human body part, it is too computationally

expensive to be used in every frame of a video sequence. Instead, we use this algorithm

only for initialization and rely on temporal propagation of the estimation to reduce

the computational load.

2.3.3 Representation of probability map

The original probability map Pp is represented by a non-parametric discrete distri-

bution in the 4 dimensional space for each body part. There are several drawbacks

with the use of such representation. First of all, it requires a significant amount of

memory space, which is proportional to the image size and granularity of the orienta-

tions and scales. The memory requirements do not change even if most of the pixels

in the image have negligible probabilities. Second, it is more desirable to propagate
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(a) (b) torso (c) upper-left arm (d) upper-left leg

Figure 2.4: Approximation of pose estimation probability maps with Gaussian mix-
tures. Comparison between the true probability map for the pose estimation (left in
each sub-figure) and its Gaussian mixture approximation (right) for each body part.
The approximated density functions are propagated for the measurement in the next
time step. Note that our approximation results look much wider since different scales
in the color palette are applied for better visualization

a smooth distribution to the next time step instead of a discrete spiky density. For

example, a distribution with many spikes could tend to ignore a significant number of

potentially good candidate pose configurations due to their relatively low probability

compared to nearby spikes.

Instead of using the non-parametric probability map, we employ a representation

based on a parametric density function. However, finding a good parametric density

function is not straightforward, especially when the density function is highly multi-

modal as it is the case in human body pose estimates. In our problem, we observe

that the probability map for the orientation of each body part is mostly uni-modal

and close to a Gaussian distribution. 1 We employ a mixture of N Gaussians for

the initialization of human body configuration, where N is the number of different

orientations.

Denote by x
(k)
i and ω

(k)
i (i = 1, . . . , n) the location and weight of each point in

the k-th orientation probability map. Let θ(k) be the orientation corresponding the

k-th orientation map. The mean (m(k)), covariance (P(k)) and weight (κ(k)) of the

1Arms occasionally have significant outliers due to their flexibility. A uni-modal Gaussian fitting
may result in more error here.
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Gaussian distribution for the k-th orientation map is then given by:

m(k) =

 x(k)

θ(k)

 =

 ∑
i ω

(k)
i x

(k)
i

θ(k)

 (2.5)

P(k) =

 Vx 0

0⊤ Vθ

 =

 ∑
i ω

(k)
i (x

(k)
i − m(k))(x

(k)
i − m(k))⊤ 0

0⊤ Vθ

 (2.6)

κ(k) =
∑

i

x
(k)
i /

∑
k

∑
i

x
(k)
i (2.7)

where Vx and Vθ are (co)variance matrices in spatial and angular domain, respec-

tively. The representation of the combined density function based on all the orienta-

tion maps is given by:

f̂(x) =
1

(2π)d/2

N∑
i=1

κ(k)

| P(k) |1/2
exp

(
−1

2
D2

(
x,x(k),P(k)

))
(2.8)

where D2
(
x,x(k),P(k)

)
is the Mahalanobis distance from x to x(k) with covariance

P(k).

Even after simplifying the density functions for each orientation as Gaussians, it

is still difficult to manage them in an efficient way. When the density is propagated

temporally, the number of Gaussian components will increase exponentially if the

densities are treated naively. We therefore adopt Kernel Density Approximation

(KDA) [39] to further simplify the density function with little sacrifice in accuracy.

KDA is a technique to approximate a multimodal density function with a mixture

of Gaussians. The algorithm finds the mode locations of the underlying density

function by an iterative procedure. Each mode is then approximated by a Gaussian

distribution centered around that mode. Finally, the algorithm produces a compact

mixture of Gaussians which is used to represent the original distribution.
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Figure 2.4 presents the original pose estimation probability map and our approxi-

mation using a mixture of Gaussians for each body part. Note that the approximated

density function is similar to the original and the multi-modality of the original den-

sity function is well preserved.

2.3.4 Measurement, inference and density propagation

Fast and accurate measurement and inference are critical in our algorithm. As shown

in Equation (2.2) and (2.3), the bottom-up message depends on the relative config-

uration of the current part with its parent, the propagated measurements from the

children parts and the observation for the current part. Exhaustive search is good

for generating the measurement information at all possible locations, scales and ori-

entations. However, computing measurements in the entire search space is slow, and

more importantly, the accuracy in the inference process may be affected by spurious

observations. Consider for instance that noisy measurements might be incurred due

to other objects in the scene, and these may corrupt the inference process. A desirable

reduction of search space not only decreases computation time, but also improves the

accuracy. Therefore, instead of computing measurements at the entire search space,

we restrict the measurements by a probability density function that characterizes the

potential pose configuration of the human body. This probability function is repre-

sented by a mixture of Gaussians obtained from the KDA process and is propagated

temporally in a sequential Bayesian filtering framework [2, 24, 40].

In our method, we perform local search based on propagated spatio-temporal

information. We first diffuse the pose estimation posterior density function from the

previous frame. The propagation can be done analytically since we represent the

density as a Gaussian mixture. The diffused density indicates the restricted search

space, so that measurements are done densely in local neighborhoods. Finally, a non-

parametric density function for the measurement is constructed. Note that inference is
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performed using the latter non-parametric density function; however, the diffusion to

the next frame is done with the parametric representation. Given the non-parametric

representation of the measurement, we can do inference with the message passing

algorithm outlined in Section 2.3.1, which produces the pose estimate posteriors in

non-parametric form. After inference, the non-parametric pose estimation density

function is converted to a mixture of Gaussians using KDA, as described in Section

2.3.3. The posterior is given by the product of the diffused density and the pose

estimation density function in the current frame. This step is conceptually similar

to the integration of the measurement and inference history (temporal smoothing).

We denote by X and Z the state and observation variables in the sequential Bayesian

filtering framework, respectively. The posterior at the time step t of the state is given

by the product of two Gaussian mixtures as follows:

p(Xt|Z1:t) ∝ p(Zt|Xt)p(Xt|Z1:t−1) (2.9)

=

(
N1∑
i=1

κi · N (xi,Pi)

)
︸ ︷︷ ︸

diffused pose

(
N2∑
j=1

τj · N (yj,Qj)

)
︸ ︷︷ ︸

current pose

, (2.10)

where N (·) represents a Gaussian distribution parametrized by its mean, and covari-

ance. The first and second terms in the right hand side represent diffusion and pose

estimation density function, respectively. Note that the product of two Gaussian

mixtures is still a Gaussian mixture. This would cause an exponential increase of the

number of components if at each time step we naively compute the product of the

diffused and current pose densities. Instead, we apply KDA to the posterior density

after each time step in order to maintain a compact representation of the density

function.

The density propagation algorithm for inference is summarized in Algorithm 2.1,

and illustrated in Figure 2.5.
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Figure 2.5: Density functions in one time step of the human motion extraction pro-
cess. (a) Original frame (cropped for visualization) (b) Diffused density function (c)
Measurement and inference results (d) Posterior (Note that the probability maps for
all orientations are shown in a single image by projection)

Algorithm 2.1 Extraction of human motion volumes with pictorial structures

1: Apply pedestrian detection to the input sequence
2: Apply clustering algorithm on the detections to obtain the number of people in

the sequence.
3: for each person found do
4: Estimate the initial body pose and appearance at the first detection.
5: Construct a parametric representation of the pose estimation density function

for each body part using KDA. The resulting mixture of Gaussians is also used
as the posterior for this first frame.

6: while not at end of sequence do
7: Go to the next frame
8: if there exists a detection of the same person then
9: Optionally reinitialize the appearance and pose estimation.

10: end if
11: Diffuse the posterior from the previous frame
12: Perform measurement and pose estimation inference with the restricted

search space as indicated by the diffused density.
13: Construct a parametric representation of the resulting pose estimation dis-

tribution using KDA.
14: Compute the pose estimation posterior by multiplying the diffusion and pose

estimation densities.
15: end while
16: end for
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Chapter 3

Experimental Results

In order to evaluate our extraction algorithm with top-down pictorial structures, we

have collected a dataset of 50 sequences containing moving humans downloaded from

YouTube. The sequences contain natural and complex human motions and various

challenges mentioned in Section 2.1. Many videos have multiple shots (challenge 2), so

we divide the original videos into several pieces based on the shot boundary detection,

which is performed by global color histogram comparison with threshold [61]. We deal

with each shot as a separate video. We have made this dataset public and it can be

found at http://vision.cs.princeton.edu/projects/extractingPeople.html.

Instead of a 4 dimensional state space for human body configuration, we use a

3 dimensional state space for x and y location and orientation, and fix the scale

depending on the pedestrian detection size. Although the estimated scale from the

person detector is not very accurate, the extraction algorithm is robust enough to

handle some variations in the scale. Also, the gaps between detections are generally

not very long, and it is not often the case that we observe significant change in scale

between two detections.

The measurement process is based on edge templates and color histogram for each

body part, as in [73]. However, the search space for the measurement is significantly

25



Table 3.1: Performance evaluation of our algorithm for human motion volume extrac-
tion

Detection Detection & Full
only Clustering model

Prec Rec F Prec Rec F Prec Rec F

Rate

0.89 0.31 0.46 0.89 0.30 0.45 0.83 0.73 0.78
0.90 0.25 0.39 0.91 0.24 0.38 0.87 0.62 0.72
0.92 0.19 0.32 0.92 0.19 0.32 0.86 0.51 0.64
0.93 0.16 0.27 0.94 0.15 0.27 0.92 0.43 0.58
0.94 0.13 0.24 0.94 0.13 0.23 0.88 0.32 0.46

reduced as presented in the previous chapter. Figure 2.5 (b) illustrates the search

space reduction, where low density areas are not sampled for the observations.

We first evaluate our system in terms of its capability to find the moving people in

the video sequences. For each sequence, we have generated ground-truth by manually

labeling every human present in each frame with a bounding box. Under this setting,

we evaluate the retrieval performance of our system in terms of the precision-recall

measures. We compare the precision-recall rates at three stages of our system: pedes-

trian detection only [53], people detection and clustering, and the full model. For a

fixed threshold/operating point of the pedestrian detection algorithm, we obtain the

three precision-recall pairs in each row of Table 3.1. Our full system provides the

highest performance in terms of the F-measure. Recall that the F-measure is defined

[93] as 2 · (precision · recall)/(precision + recall). This reflects the fact that our

system achieves much higher recall rates by extracting non-upright people beyond

the pedestrian detections.

We also evaluate the performance of our system in terms of the segmentation

of the moving people. In this setting, we are interesting in finding the pixels that

belong to the moving humans, while ignoring the pixels associated to the background

scene. We create ground-truth for the spatial support of the moving people in the

form of binary masks. We have labeled a random sample of 122 people from our 50

sequences. The evaluation of the pose estimation is performed at frames td, td +5 and
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Figure 3.1: Example extraction results for various sequences. Each row corre-
sponds to a separate sequence. More example sequences are available at the website:
http://vision.cs.princeton.edu/projects/extractingPeople.html

td + 10, where td is a frame containing a pedestrian detection, and no detections are

available in [td+1, td+10]. The average accuracies are 0.68, 0.68 and 0.63 respectively.

Note that the accuracy decrease in the extracted person mask is moderate, and the

temporal error propagation is small.

The results for several YouTube videos are presented in Figure 3.1, with some

failure examples in Figure 3.2. Various general and complex human motions are

extracted with reasonable accuracy, but there are some failures that are typically
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Figure 3.2: Examples of failed extraction results

caused by inaccurate measurements. In a PC with a 2.33 GHz CPU, our algorithm

requires around 10-20 seconds for the measurement and inference per person per

frame, one order of magnitude faster than the full search method of [73].

3.1 Discussion

We presented a method to automatically extract human motion volumes from natural

videos. The proposed method first identifies the location, trajectory and appearance

of each person in the scene during the person detection and clustering stage. It then

finds the configuration of the human body using a top-down pictorial structure model.

Our method dramatically reduces the search space for the measurement and inference

processes, by means of effective temporal propagation using a semi-parametric density

function. Our system achieves promising results although many improvements can

still be made.

A possible future direction is related to improving the body part appearance

models to more robust body part detectors [1]. Also worth exploring is a closer

integration between the top-down estimation and the people clustering stage, to create

a closed-loop interaction that can potentially improve the accuracy of both stages.
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The measurement process in the current algorithm is based solely on the top-down

pictorial structure, however, the integration of bottom-up cues can potentially enable

more robust and efficient processing, as we will show in Chapters 4 and 5.
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Chapter 4

Efficient Extraction of Human

Motion Volumes By Combining

Top-Down and Bottom-up Cues

In this chapter, we present a method that achieves a balance between efficiency and

accuracy for extracting human motion volumes from uncontrolled videos. We observe

that a combination of top-down and bottom-up modeling can extract accurate mo-

tion volumes with only a relatively small computational load. Our idea is simple:

given a video sequence, we apply top-down human models in a very sparse set of

key frames. The bottom-up algorithm then bootstraps this detailed human infor-

mation to complete the rest of the extraction through a temporal propagation and

a global optimization procedure. Our experiments show that the proposed method

achieves a near real-time human tracking in natural videos. Our contributions can

be summarized as follows:

• A system is designed to automatically extract human motion volume from chal-

lenging videos by combining the top-down and the bottom-up method.

30



Sparse Top-Down

human body parsing

Upright Pedestrian

Detection

fram
es

Temporally Coherent 

Bottom-Up 

Boundary extraction

starting points 

for propagation

Figure 4.1: Overview of our efficient algorithm for extraction of human motion vol-
umes. For each identified human obtained from pedestrian detection, a probabilistic
human body shape on a sparse set of frames is computed by integrating top-down seg-
mentations of detected pedestrian windows, which are driven by upright human pose
templates (Section 4.2.1). A bottom-up boundary extraction based on the level-set
formulation is employed to automatically refine and propagate the extracted contours
to all frames (Section 4.2.2). The final human contours are obtained at all frames si-
multaneously, by jointly optimizing the level-set functions at all frames (Section 4.2.3)

• We propose a novel top-down modeling technique to obtain a probabilistic hu-

man body contour.

• A global optimization procedure based on belief propagation is proposed to

improve the quality of results.

4.1 Algorithm Overview

Given an input video sequence, the goal of our algorithm is to carve out a spatio-

temporal volume for each person in the video. The key strategy of our approach is

the sparse introduction of top-down constraints, which are propagated in time in a

bottom-up fashion. In this section, we describe the overall architecture of our method,

which is also depicted in Figure 4.1.

Person Detection and Clustering We first use an upright human detector [53] to

generate potential human regions. The appearance similarity and the spatio-temporal
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coherence of the detections are employed to cluster detections in a similar fashion to

the method presented in Section 2.2. Each resulting cluster is then associated to

a unique individual, for which the spatio-temporal volume will be carved out. In

practice, each cluster contains the bounding boxes for a person but there are many

missing frames due to detection errors and pose variations.

Top-down Pose Estimation For each identified person, our algorithm performs

a top-down extraction of the human region for a small subset of the sequence frames.

At each of these frames, a level-set function that captures the contour of the detected

person is initialized based on a probabilistic integration of upright human pose tem-

plates [97]. Such top-down driven extraction is utilized as an important constraint for

the later bottom-up process. In this setting, the top-down information is delivered

by the use of a set of fixed templates instead of more expensive part-based articu-

lated models such as pictorial structures [29, 34, 73, 67]. However, we can only apply

this top-down process to frames where pedestrian detections are available. At those

frames, we have relatively high certainty that the person is in an upright pose, and

thus we are more likely to succeed in estimating the contour of the person based on

the pedestrian template database. Unfortunately, obtaining an accurate estimation

of the initial level-set function is still challenging due to the limited variety in the

upright human body template database and the lack of discriminative features.

Bottom-up Contour Extraction and Propagation In the previous step, we

obtained the level-set functions for a small subset of the detected pedestrians. The

level-set functions for the rest of the frames are initialized by propagating existing

ones to adjacent frames bidirectionally using low-level feature observations, with a

procedure based on an extension of [5]. The bottom-up level-set approach can handle

the arbitrary shape of an object efficiently, but is inherently susceptible to fall in lo-

cal optima. The combination of the top-down and the bottom-up approaches reduces
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the drawbacks of both methods significantly. In addition, our algorithm jointly op-

timizes the level-set functions at all frames simultaneously, which provides accurate

and temporally coherent boundaries of the human body.

4.2 Efficient Extraction of Human Motion Vol-

umes

In this section, we describe three main components of our algorithm in detail, which

include a top-down model-based probabilistic level-set initialization, a bottom-up

feature-based propagation of level-set functions, and a global optimization process

for contour extraction.

4.2.1 Top-down estimation of human body segmentation

For each identified person in the detection and clustering stage, a number of frames

with pedestrian detections are available. At the detection windows, we are relatively

certain that the humans are in an upright pose. It is therefore natural to consider

top-down shape priors in the form of pedestrian silhouettes, which we apply only to

a subset of those detection windows.

Suppose that B = {t1, t2, . . . , tn} is the set of upright human body templates in

the database from [97]. At the j-th pedestrian detection window selected for top-

down processing, we generate a set of multiple segmentations, each of which is driven

by a different template in the database. In practice, we obtain each segmentation hi

within a level-set framework [18, 71], where the level-set function is initialized by the

template ti. Each segmentation corresponds to an estimate of the human region. We

integrate resulting segmentations probabilistically to obtain the probabilistic template
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pj as

pj =
n∑

i=1

ωihi, (4.1)

where the weight ωi is estimated by the matching quality of the original template

and the resulting segmentation. We measure the matching quality using multiple

features—shape, color and edge—as follows:

Shape We measure the shape distance rs between the original contour of a template

in the database and the level-set segmentation induced in the detection window by

rs = Dχ2(S(ti), S(hi)), (4.2)

where S(·) are shape descriptors and Dχ2 is the χ2 distance operator. In practice, we

describe shapes using a histogram computed from the shape of the estimated region,

which is a simplified version of the descriptor in [90].

Color We favor contours that induce the most distinct foreground and background

color distributions. We estimate both distributions using the pixel assignments based

on the estimated region hi. The distance between the foreground and the background

color model—M color
f and M color

b , respectively—is defined by

rc = Dχ2(M color
f ,M color

b ). (4.3)

In practice, each color model is a multinomial distribution over the quantized color

space.
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Edges The dissimilarity between the edge map in the pedestrian window and the

estimated region is measured by

re =
1

N

∑
ci∈C

min
ej∈E

D(ci, ej), (4.4)

where C is the set of N points in the contour of hi and E is the set of edge pixels

in the edge map. D measures the Euclidean distance between two pixels. This is

equivalent to the average distance from the points in the contour to the edge points

in the image. The computation is done via Distance Transform [10].

We combine the multiple cues to obtain the weight for each template by

ωi =
exp

(
κ0 +

∑
j∈{s,c,e} κjrj

)
1 + exp

(
κ0 +

∑
j∈{s,c,e} κjrj

) , (4.5)

where parameters κj (j = 0, s, c, e) are mixing weights that indicate the relative

importance of each cue. We learn this parameters from a small set of segmentation

and template pairs using logistic regression. Finally, note that we normalize the

template weights to ensure that
∑

i ωi = 1.

In our algorithm, the top-down constraints are applied to a small number of

frames since top-down processing is more computationally expensive than bottom-up

processing. Because, we would not gain much benefit from top-down processing many

consecutive frames, it is applied to some frames that are temporally far apart. We

first select a frame with a pedestrian detection randomly and add more frames with

detections that are most distant from the current set of selected frames. A trade-

off is observed here; the more frames selected for top-down processing, the more

accurate the constraints for bottom-up processing will be, but at the same time the

computational cost is increased.
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Figure 4.2: Top-down estimation of human segmentation using upright pedestrian
templates. (Top) Example templates in the pedestrian database from [97]. (Bottom)
Template-driven segmentation results

The resulting estimated set of human body contours from this top-down processing

step are used as constraints for the following bottom-up propagation. Some examples

of the templates and the extracted contours by the top-down process are presented

in Figure 4.2.

4.2.2 Bottom-up propagation of the human motion volume

After obtaining a sparse set of contours with the top-down process, we propagate

the contours efficiently to other frames. The problem is formulated within a level-

set contour tracking framework that is based on bottom-up cues. It is known that

level-set based segmentation methods frequently converge to local optima. In our

algorithm, we alleviate the problem by accurate initialization of the level-set functions

at multiple frames using the top-down constraints.

In the level-set framework [18, 71], a region of interest R in image I is implicitly

represented by a non-parametric level-set function Φ:

R = {x ∈ I|Φ(x) > 0}, (4.6)
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at frame t − 1 at frame t at frame t
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Figure 4.3: Bottom-up extraction of human motion volume boundaries. An efficient
level-set method is proposed to extract the human region boundary. Initial bound-
aries from the top-down procedure (a) are propagated across time (b) and refined
by evolving the implicit level-set function (c). The final boundary is generally more
accurate after a few iterations. This figure is best viewed in color

where x is a pixel in the image, and the boundary is defined by the set of points such

that Φ(x) = 0. A foreground segment R is obtained by an iterative procedure based

on low-level features from an initial level-set function.

In our formulation, we propagate the level-set functions induced by the top-down

templates in both time directions, forward and backward. Let Φt−1 be the initialized

level-set function at frame t − 1, and T the length of the sequence of interest. We

propagate Φt−1 to the temporally adjacent frames, by employing an image registration

technique [3] that finds a rigid warping of Φt−1 to the new frame, e.g., frame t.

We then apply a fixed small number of level-set iterations (typically, 5) to partially

optimize the level-set function based on the observation in the new frame. The same

process is done to propagate the contour to frame t−2. Such bidirectional propagation

terminates when the level-set functions in all frames are initialized.

Let us present how the level-set function Φt is optimized in each frame iteratively

based on low-level image features. 1 Figure 4.3 shows an illustration of the within-

frame level-set optimization. The goal is to evolve the initial level-set function by

1Our level-set evolution is based on the algorithm in [5], where a more detailed presentation is
available.
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maximizing the conditional probability given by

p(Φt|xt,yt) =
Nt∏
i=1

p(Φt
i|xt

i,y
t
i), (4.7)

where N t is the number of pixels, yt is the observed image feature, and the pixel-wise

level-set likelihood is given by

p(Φt
i|xt

i,y
t
i) ∝ p(xt

i|Φt
i,y

t
i)p(Φt

i) (4.8)

= p(Φt
i)

∑
M

p(xt
i|Φt

i,M)p(M |yt
i),

where M is the model parameter for foreground (Mf ) or background (Mb).

In [5], only color distribution is utilized to model the foreground and background

regions. Here, we also introduce motion information based on optical flow. Both

cues, motion and color, are used to compute foreground and background probabilities

at each pixel, p(M |yt
i). In order to use the motion information, we compute the

foreground probability of a pixel in the new frame by transforming the foreground

probability map in the previous frame using the motion vector given by optical flow.

When more than one location in the old frame is transformed to the same location in

the new frame, the average probability is assigned to the corresponding position in

the new frame. If no pixel is transformed to a location in the new frame, we assign

the median of its spatial neighborhood. We combine color and motion likelihoods for

a final measurement map as the product of the two factors, which is given by

p(M |yt
i) = p(M color|yt

i) · p(Mmotion|yt
i). (4.9)

The integration of motion for the measurement process is particularly helpful to avoid

distractions toward background objects visually similar to the target. In practice we

use a simple optical flow estimation algorithm based on the Lucas-Kanade method [3].
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We also introduce a new geometric prior p(Φt
i). The new prior favors level-set

functions which are close to a signed distance function. In addition to the standard

constraint in the size of the gradient [5, 60], we also constrain its direction. The

geometric prior p(Φi) is defined as

p(Φi) ≡ pm(Φi)pd(Φi), (4.10)

where pm and pd are the magnitude and direction term, respectively. Each of these

terms is given by

pm(Φi) =
1

σm,i

√
2π

exp

(
−(|∇Φi| − 1)2

2σ2
m,i

)
(4.11)

pd(Φi) =
1

σd,i

√
2π

exp

−

(
α⊤

i ∇Φ̃i − 1
)2

2σ2
d,i

 , (4.12)

where αi is the direction of local center of mass around xi, ∇Φ̃i is the normalized

gradient of Φi and σm,i and σd,i describe uncertainty of each pixel. We favor gradient

directions of the level-set function that coincide with the inward direction to the

human body. Such prior tends to yield smoother level-set functions and human

boundaries.

We can now proceed to optimize the objective function with respect to the level-set

function Φ. The optimization problem is equivalent to maximizing the log-likelihood:

log (p(Φ|x,y)) ∝
N∑

i=1

log (p(xi|Φi,yi)) − log p(Φi). (4.13)
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Figure 4.4: Temporally coherent contour extraction. Our formulation globally op-
timizes the level-set functions at all frames simultaneously. The level-set function
that represents the human boundary is propagated in both directions, forward and
backward, which yields a temporally coherent and accurate boundary

The optimization is performed iteratively using a gradient ascent algorithm with the

following update equation:

∂ log (p(Φi|xi,yi))

∂Φi

=
δϵ(Pf − Pb)

p(xi|Φi,yi)
−

(
∂ log pm(Φi)

∂Φi

+
∂ log pd(Φi)

∂Φi

)
. (4.14)

4.2.3 Temporally coherent global optimization

We have described the process of obtaining top-down human region estimates and

its efficient propagation using bottom-up cues. However, the estimated human vol-

umes in the previous step may not be reliable due to abrupt changes of the target

object, falling in local optima or weak image features. To overcome these issues,

we employ a global optimization that integrates temporal information more tightly.

This is achieved by introducing explicit dependencies between temporally adjacent

frames and jointly optimizing the level-set functions at all frames simultaneously.

Such dependencies favor the extraction of contours that are more accurate and tem-
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Figure 4.5: Graphical model for the temporally coherent global optimization. Circles
indicate random variables, arrows indicate conditional dependencies and undirected
links express mutual dependencies. Image locations are represented by x, image
observations by y and appearance models by M . The level-set function that implicitly
defines the human contour is represented by Φ. The motion information that registers
the level-set function across frames is indicated by m. Superscripts indicate time step.
By introducing dependencies between the level-set functions from adjacent frames, we
can jointly estimate the optimal Φ1:T that exhibits temporal consistency and better
extracts the the human boundary

porally coherent. As illustrated in Figure 4.4, the additional dependencies lead to a

bidirectional propagation of the extracted contours among adjacent frames.

The set of Φ1:T resulting from the process described in previous sections provides

initial level set estimates for the following optimization procedure. We introduce a

graphical model to encode the dependencies between Φt and (Φt+1, Φt−1), which

is shown in Figure 4.5. We obtain the globally optimal Φ1:T by temporal belief

propagation in an iterative message passing procedure.

The optimization problem is thus defined by a new objective function, which is

given by

p(Φ1:T
i |x1:T ,y1:T ) =

[
T∏

t=1

1
p(xt)

∑
Mt

p(xt
i|Φ

t
i,M

t)p(M t|yt
i)

]
p(Φ1:T

i )

=

[
T∏

t=1

1
p(xt)

∑
Mt

p(xt
i|Φ

t
i,M

t)p(M t|yt
i)

]
︸ ︷︷ ︸

Pixel-wise likelihood

[
T−1∏
t=1

Ψ(Φt
i,Φ

t+1
i )

]
︸ ︷︷ ︸
Temporal consistency

[
T∏

t=1

p(Φt
i)

]
︸ ︷︷ ︸
Geometric prior

.

(4.15)
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The first factor in Equation (4.15) specifies the estimations from individual frames,

and the second factor defines the relationship between adjacent frames. This rela-

tionship is key to the temporal coherence of the extracted volume.

The message for temporal propagation between the frame t and t+1 is defined as

Ψ(Φt
i,Φ

t+1
i ) = exp

(
−(Φt

i − Φt+1
i )2

σ2
m

)
, (4.16)

and the update message is

∂ log
(
Ψ(Φt

i,Φ
t+1
i )

)
∂Φt

i

= −
2
(
Φt

i − Φt+1
i

)
σ2

m

, (4.17)

which favors the temporal consistency of the human motion boundaries. Note that

messages are received at frame t from both directions, from frame t−1 and t+1. The

gradient ascent update including the messages for temporal consistency is obtained by

the sum of the terms in Equation (4.14) and the messages for forward and backward

update related to Equation (4.17). After the iterative procedure described in Section

4.2.2 converges for each frame, we update the messages in Equation (4.16) and syn-

chronously pass it to neighboring frames, which is repeated until global convergence.

Note that, in the above formulation, the two neighboring level-set functions propa-

gated to the current frame are properly registered by a rigid transformation. Such

registration accounts for global rigid motion across frames, gives a better prior to

the new frame, and reduces the number of level-set iterations. When all the level-set

functions Φ1:T converge, the human volume is finally given by the set of points such

that Φt
i > 0.
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Chapter 5

Experimental Results

We evaluate our method in terms of its segmentation accuracy on annotated frames.

We compare our algorithm to the method presented in Chapter 2 using the YouTube

dataset from [67]. It is a very challenging dataset that has 50 sequences containing un-

known and arbitrary camera motion, cluttered background, motion blur, compression

artifacts, etc.

Precision and recall are computed based on this dataset for three different

algorithms—our full system, our method without global optimization and the

method in Section 2 [67]. Table 5.1 summarizes the experimental results of the three

systems, and shows that our methods even without global optimization improve both

precision and recall significantly. We attribute this improvement to the ability of our

tracker to leverage salient bottom-up cues for human/background separation that

are constrained by effective top-down template-driven segmentation. Our temporally

coherent optimization process further improves the precision of the system by inte-

grating information across time. Some comparative results are provided in Figure

5.2.
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We also collected a larger video dataset, also composed of sequences downloaded

from YouTube. Several examples of human body extraction in this dataset are pre-

sented in Figure 5.3.

Table 5.1: Experimental results for our efficient extraction of human motion volumes.
This evaluation is performed on the YouTube dataset from [67]. The segmentation
of humans in videos is evaluated as a retrieval problem. Ground truth consists of a
set of over 180 masks that correspond to the human regions in selected frames from
the dataset. For each retrieved mask, a precision is computed as the area of the
intersection of the retrieved and ground-truth mask over the area of the retrieved
mask; whereas recall is the area of the intersection over the area of the ground-truth
mask

Method Prec Rec F-score

Full model 0.74 0.75 0.74
Full model without global opt. 0.62 0.76 0.68

Niebles et al. [67] 0.57 0.44 0.50

1 2 3 4

0.6

0.7

0.8

iterations

F-score

Figure 5.1: Segmentation accuracy vs. number of global iterations. Iteratively prop-
agating the contours across multiple frames helps reduce sporadic artifacts and pro-
duces a more temporally smooth human motion boundary

Our model is not only more accurate in moving human extraction, but also com-

putationally much more efficient. In our implementation with Matlab, one boundary

is obtained in less than 50 ms per bottom-up propagation. Similarly, a top-down step

with template-driven segmentation takes about the same time. In practice, we apply

the top-down process to 20% of the pedestrian detections per person in the video.
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(a) (b)

(c) (d)

Figure 5.2: Example extraction results on YouTube sequences. For each video, we
randomly sample three frames, and compare the extraction results of our method
(row 1), with a simplified version of our method (without global optimization and
top-down component, in rows 2) and our replication of the method in [67] (rows 3).
The outlines of the humans are drawn in color curves. We observe that, in general,
our full algorithm performs better than the other two methods

We use a set of 100 templates in the pedestrian silhouette database. When running 4

global iterations and with the top-down process applied to 10% of the total number of

frames in the sequence, our algorithm runs in less than a half a second per frame per

person on average. Most of the time is spent on those few frames where the top-down

process is applied, which takes about 5 seconds per frame per person. The method

in [67] runs in more than 20 seconds per frame per person on similar hardware.
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Figure 5.3: Example extraction results on eight gymnastics sequences from an assort-
ment of about 500 YouTube videos. The players in the video exhibit a rich variety of
challenging motions. Nevertheless, our algorithm is able to retrieve the contour of the
person. The colored number at the corner of each image indicates the frame number
in the original sequence. The outlines of the humans are drawn in color curves
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5.1 Discussion

We have demonstrated a technique to efficiently extract moving humans from

challenging sequences, where top-down modeling provides important constraints to

a bottom-up propagation scheme, and the global optimization refines the contour

around each moving person in the sequence. As shown empirically, our method

outperforms state-of-the-art techniques at a fraction of the computational cost. This

speed allows us to collect a larger set of annotated natural videos containing human

motions from YouTube. The set contains about 500 sequences with over 70k frames.

While the results are promising, there are still many research oportunities within

the algorithm proposed here. For instance, our algorithm does not have any explicit

occlusion handling, which is critical especially in videos with crowded scenes. It might

be also interesting to incorporate other cues in the appearance model of each target

person such as clothing texture or skin color.
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Part III

Categorizing Simple Human

Actions With Local Features and

Statistical Models
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Chapter 6

Introduction

Imagine a video taken on a sunny beach, where some people are playing beach volley-

ball, some are surfing, and others are taking a walk along the beach. Can a computer

automatically tell what is happening in the scene? Can it identify different human

actions? We explore the problem of human action categorization in video sequences.

Our interest is to design an algorithm that permits the computer to learn models for

human actions. Then, given a novel video, the algorithm should be able to decide

which human action is present in the sequence. Furthermore, we look for means to

provide a rough indication of where (in space and time) the action is being performed.

The task of automatic categorization and localization of human actions in video

sequences is highly interesting for a variety of applications: detecting relevant ac-

tivities in surveillance video, summarizing and indexing video sequences, organizing

a digital video library according to relevant actions, etc. It remains, however, a

challenging problem for computers to achieve robust action recognition due to clut-

tered background, camera motion, occlusion, view point changes, and geometric and

photometric variances of objects.

These challenges are common to a broad range of computer vision tasks. A clut-

tered background introduces information that is not relevant to the signal of interest,
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making the latter harder to isolate. Camera motion creates ambiguities in the motion

patterns that are observed in the image plane: it could make an object appear static

when it is moving with the same speed and direction as the camera. In addition,

human actions can also be observed only partially due to occlusions; thus, the actual

signal of interest can be dramatically reduced. Finally, viewpoint changes as well as

geometric and photometric variance produce very different appearances and shapes

for the same category examples, resulting in high intra-class variances.

Consider for example, a live video of a figure skating competition, the skater

moves rapidly across the rink and the camera also moves to follow the skater. With

moving cameras, cluttered background, and moving target, few vision algorithms

could identify, categorize and localize such motions well. In addition, the challenge is

even greater when there are multiple activities in a complex video sequence. In this

work, we will present an algorithm that aims to account for these scenarios.

We explore two approaches to action recognition using statistical models and a

representation based on local features. At the feature level, our first approach will

focus on the use of spatiotemporal patches, extracted from detected interest points.

At the model level, we propose the use of latent topic models as the learning and

classification tool. These models need to incorporate the “bag of words” assumption,

and thus ignore the spatial and temporal arrangement of the local features. On the

other hand, our second approach proposes the hybrid usage of static shape features as

well as spatiotemporal features. At the model level, we propose a novel hierarchical

framework which can be characterized as a constellation of bag of features. This

model allows us to incorporate information about the spatial arrangement of the

local features. Thus it permits us to model the mutual geometric relationship among

parts. This is specially important for structured objects such as the human body.

The rest of Part III is organized in the following way. We review previous related

work in Chapter 6.1. In Chapter 7, we describe our approach to action recognition us-
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ing latent topic models, including the spatio-temporal feature representation, a brief

overview of the probabilistic latent semantic analysis (pLSA) and latent Dirichlet allo-

cation (LDA) models in our context, and the specifics of the learning and recognition

procedures. In Chapter 8, we present a novel hierarchical model for action recogni-

tion. In Chapter 9, we present the experimental results on human action recognition

using real datasets, and also compare our performance with other methods.

6.1 Related Work

A large set of previous work has addressed the question of human action categorization

and motion analysis. One line of work is based on the computation of correlation

between volumes of video data. Efros et al. [25] perform action recognition by

correlating optical flow measurements from low resolution videos. Their method

requires first segmenting and stabilizing each human figure in the sequence, as well as

further human intervention to annotate the actions in each resulting spatio-temporal

volume. Shechtman and Irani [81] propose a behavior-based correlation to compute

the similarity between space-time volumes in order to find similiar dynamic behaviors

and actions. Their method requires to specify a query action template, which will

be correlated to videos in database. At each pixel, the space-time gradients of the

corresponding video patch must be computed and summarized in a matrix. The

eigenvalues of the resulting matrices are used to compute similarity between two

spatio-temporal patches. Therefore, this method requires significant computation

due to the correlation procedure between every patch of the testing sequence and the

video database.

Another popular approach is to first track body parts and then use the obtained

motion trajectories to perform action recognition. This is done with much human

supervision and the robustness of the algorithm is highly dependent on the tracking
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system. Ramanan and Forsyth [74] approach action recognition by first tracking

the humans in the sequences using a pictorial structure procedure. Then 3D body

configurations are estimated and compared to a highly annotated 3D motion library.

The algorithm permits assigning composed labels to the testing sequences; however,

it relies heavily on the result of the tracker, and the estimation of the 3D pose may

introduce significant errors due to hard-to-solve ambiguities. In Yilmaz and Shah

[108], human labeling of landmark points in the human body is first done at each

frame in sequences from multiple moving cameras. Then actions are compared using

their corresponding 4D (x, y, z, t) trajectories. Thus, their approach can be applied

to action recognition and retrieval, with the cost of a significant amount of human

annotation. In the work by Song et al. [89] and Fanti et al. [26], feature points are

first detected and tracked in a frame-by-frame manner. Multiple cues such as position,

velocities and appearance are obtained from these tracks. Then human actions are

modeled utilizing graphical models based on triangulated graphs. These models can

be learnt in an unsupervised fashion, but cannot deal with dynamic backgrounds or

moving cameras.

Alternatively, researchers have considered the analysis of human actions by looking

at video sequences as space-time intensity volumes. Bobick and Davis [8] use motion

history images that capture motion and shape to represent actions. They introduced

the global descriptors motion energy image and motion history image, which were

used as templates that could be matched to stored models of known actions. Their

method depends on background subtraction and thus cannot tolerate moving cameras

and dynamic backgrounds. Blank et al. [6] represent actions as space-time shapes and

extract space-time features for action recognition, such as local space-time saliency,

action dynamics, shape structures and orientation. Similarly, this approach relies on

the restriction of static backgrounds which allows them to segment the foreground

using background subtraction.
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Other lines of work have been proposed for video analysis. Boiman and Irani

[9] recently proposed composing the new observations as an ensemble of local video

patches from previous examples in order to localize irregular action behavior in videos.

Dense sampling of the patches is necessary in their approach, and therefore, the

algorithm is very time-consuming. It is not suitable for action recognition purpose

due to the large amount of video data commonly presented in these settings. Another

work regarded as video epitomes is proposed by Cheung et al. [14]. They model the

space-time cubes from a specific video by a generative model. The learnt model is a

compact representation of the original video, therefore this approach is suitable for

video super-resolution and video interpolation, but not for recognition.

Another approach uses a video representation based on spatio-temporal interest

points. In spite of the existence of a fairly large variety of methods to extract interest

points from static images [79], less work has been done on space-time interest point

detection in videos. Laptev [52] presents a space-time interest point detector based

on the idea of the Harris and Förstner interest point operators [43]. They detect

local structures in space-time where the image values have significant local varia-

tions in both dimensions. However, this method produces a small number of stable

interest-points and which are often non sufficient to characterize complex sequences.

In addition, Dollár et al. [23] proposes a detector based on a set of separable linear

filters, which generally produces a high number of detections. This method responds

to local regions which exhibit complex motion patterns, including space-time corners.

Also, a number of descriptors are proposed for the resulting video patches around

each interest point. Ke et al. [47] apply spatio-temporal volumetric features that effi-

ciently scan video sequences in space and time. Their method builds on the rectangle

features used by Viola and Jones [94]. Their approach detects interest points over

the motion vectors, and requires dense estimation of the optical flow. Additionally,

the method requires the calculation of a significant number of features, in the order
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of a million, even after discretizing and sampling the feature space. The features are

then employed to perform human action categorization with a discriminative cascade

classifier, which requires annotated positive and negative examples. Finally, a recent

approach by Oikonomopoulos et al. [70] extends the idea of saliency regions in spatial

images to the spatiotemporal case. The work is based on the spatial interest points

of Kadir and Brady [46], which is extended to the space-time case.

Interest points extracted with such methods have been used as features for human

action classification. In [23, 47, 70, 80], the space-time interest points were combined

with discriminative classifiers to learn and recognize human actions. Therefore, local

space-time patches have been proven useful to provide semantic meaning of video

events by providing a compact and abstract representation of patterns. While these

representations show good potential, the modeling and learning frameworks based on

discriminative classifiers [23, 80] do not have clear applicability in more challenging

situations such as multiple action recognition.

Finally, we note the success of generative approaches based on latent topics models

for object and scene recognition. In Sivic et al. [85], unsupervised learning and

recognition of object classes is performed by applying a pLSA model with the “bag

of visual words” representation. The approach permits learning object classes from

images with no label and background clutter. Also, Fei-Fei and Perona [27] studied

the application of latent topic models to the task of scene categorization. The models

are inspired by the LDA model [7], and can learn intermediate topic distributions in

an unsupervised manner.

All the previous work suggest that improvement can be made by relaxing assump-

tions of annotated data, stationary cameras and backgrounds and discriminative ap-

proaches. Thus, we are interested in exploring the use of a generative approach where

unsupervised learning methods can be applied, in conjunction with a representation
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based on local features. We will present our proposed algorithms in the following

chapter.
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Chapter 7

Latent Topic Models For Human

Action Categorization

We propose a generative graphical model approach to learn and recognize human ac-

tions in video, taking advantage of the robust representation of sparse spatio-temporal

interest points and an unsupervised learning approach. In the context of our prob-

lem, unsupervised learning is achieved by obtaining action model parameters from

unsegmented and unlabeled video sequences, which contain a known number of hu-

man action classes. Thus, we claim that an unsupervised learning setting is desirable

because the amount of unlabeled video data is increasing daily and human annotation

is expensive. We would like to take advantage of these digital resources without the

cost of human supervision. Second, as opposed to discriminative models, a generative

approach provides a mean to learn models in an unsupervised fashion.

Our method is motivated by the recent success of object detection/classification or

scene categorization from unlabeled static images, using latent topic models [85, 27].

One key consideration in these works is regarded as the “bag of keypoints” represen-

tation [21], where the geometric arrangement between visual features is ignored. This

is commonly implemented as a histogram of the number of occurrences of particular
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visual patterns in a given image. Here, we refer to this assumption as the “bag of

words” representation, similar to other approaches utilizing latent topic models. It

is worth noting that latent topic models were initially applied to text analysis tasks,

a domain from where the “bag of words” assumption has been inherited. In spite of

their simplicity, the latent topic models have been successfully applied to challenging

computer vision tasks, which motivates us to explore their applicability in the human

action categorization domain.

Two related latent topic models are generally used: probabilistic latent semantic

analysis (pLSA) by Hofmann [44] and latent Dirichlet allocation (LDA) by Blei et

al. [7]. Here, we investigate the suitability of both models for video analysis by

exploring the advantages of the powerful representation and the great flexibility of

these generative graphical models.

The contributions of this work are twofold. First, we propose an unsupervised

learning approach for human actions using a bag of keypoints representation. We

apply two latent topic models, pLSA and LDA, to the problem of learning and rec-

ognizing human action categories, while adopting a “bag of spatio-temporal words”

representation for video sequences.

Second, our method is also able to localize and categorize multiple actions in a

single video. In addition to the categorization task, our approach can also localize

different actions simultaneously in a novel and complex video sequence. This includes

the cases where multiple people are performing distinct actions at the same time, and

also situations where a single person is performing distinct actions through time.

In order to gather experimental evidence that supports our proposed approach,

we train and recognize action models on three different datasets [6, 80, 99]. Also, we

used those models to perform recognition in videos from a different dataset [89], as

well as test sequences taken by ourselves. Such results are presented on Chapter 9.
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A preliminary version of this work appeared in BMVC 2006 [68] and IJCV 2008

[69].

7.1 Approach Overview

Given a collection of unlabeled videos, our goal is to automatically learn different

classes of actions present in the data and to apply the learned model to perform

action categorization and localization in the new video sequences. Our approach is

illustrated in Figure 7.1. We assume that the videos can contain some camera motion,

for instance, the one observed in videos taken with a hand held camera. Also, we

expect the videos to contain a dynamic background that might generate some motion

clutter. In the training stage, we assume that there is a single person performing only

one action per video. However, we relax this assumption at the testing stage, where

our method can handle observations containing more than one person performing

different actions.

We are given a set of unlabeled video sequences, and we would like to discover a

set of classes from them. Each of these classes would correspond to an action category,

such that we can build models for each class. Additionally, we would like to be able

to understand videos that are composed by a mixture of action categories, in order to

handle the case of multiple motions. This resembles the problem of automatic topic

discovery in text analysis [7, 44]. Thus, we find a similar interpretation as that initially

proposed by the use of latent topic models for object and scene classification [85, 27].

In our case, we would like to analyze video sequences instead of text documents; video

sequences are summarized as a set of spatio-temporal words instead of text words;

we seek to discover action categories instead of text topics; and we expect to explain

videos as a mixture of actions instead of text documents as a mixture of topics. In this

work, we investigate two models that were proposed in the text analysis literature to
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Figure 7.1: Flowchart of our approach to simple action recognition with latent topic
models. To represent motion patterns we first extract local space-time regions using
the space-time interest points detector [23]. These local regions are then clustered
into a set of spatio-temporal words, called codebook. Probability distributions and
intermediate topics are learned automatically using one of the two models: pLSA or
LDA. The learned models can then be used to recognize and localize human action
classes in novel video sequences

address the latent topic discovery problem. First, we employ the simpler pLSA model

proposed by Hoffman [44]. Second, we consider the LDA model proposed by Blei et

al. [7], which provides a rigorous generative setting, permits the inclusion of priors in

a bayesian manner, and addresses the overfitting issues presented in the pLSA model.

Both models learn their parameters in an unsupervised fashion.

An important characteristic of the pLSA and LDA models is that they are based

on the “bag-of-words” assumption, that is, the order of words in a text document can

be neglected. This is equivalent to regarding the words in a document as exchangeable.

In addition, the particular ordering of the documents in the document collection can

also be neglected, yielding a further exchangeability assumption at the document

level. In the context of human action classification, the “bag-of-words” assumption
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translates into a video representation that ignores the positional arrangement, in

space and time, of the spatio-temporal interest points.

7.2 Feature Representation from Space-Time In-

terest Points

There are several choices in the selection of good features to describe pose and motion.

In general, there are three popular types of features: static features based on edges and

limb shapes [20, 31], dynamic features based on optical flow measurements [20, 83],

and spatio-temporal features obtained from local video patches [6, 14, 52, 23, 47, 70].

In particular, features from spatio-temporal interest points have shown to be useful

in the human action categorization task, providing a rich description and powerful

representation [23, 47, 70, 80].

As Figure 7.1 illustrates, we represent each video sequence as a collection of spatio-

temporal words by extracting space-time interest points. Among the available interest

point detectors for video data, the interest points obtained using the generalized

space-time corner detector [52] are too sparse to characterize many complex videos.

This was noted first in [23] and confirmed in our experience with complex sequences

such as the figure skating videos (Figure 9.3, p. 85). We choose to use the separable

linear filter method in [23], since it generally produces a high number of detections.

Note, however, that our method does not rely on a specific interest point detector

algorithm, as long as the detector produces a sufficiently large number of interest

points. In the following, we provide a brief review of the detector proposed in [23].

Assuming a stationary camera or a process that can account for camera motion,

separable linear filters are applied to the video to obtain the response function as

follows:

R = (I ∗ g ∗ hev)
2 + (I ∗ g ∗ hod)

2 (7.1)
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where g(x, y; σ) is a 2D Gaussian smoothing kernel, applied only along the spatial

dimensions (x, y), and hev and hod are a quadrature pair of 1D Gabor filters applied

temporally, which are defined as hev(t; τ, ω) = − cos(2πtω)e−t2/τ2
and hod(t; τ, ω) =

− sin(2πtω)e−t2/τ2
. The two parameters σ and τ correspond to the spatial and tem-

poral scales of the detector, respectively. In all cases we use ω = 4/τ , thus reducing to

two the number of parameters in the response function R. To handle multiple scales,

one must run the detector over a set of spatial and temporal scales. For simplicity,

we run the detector using only one scale and rely on the codebook to encode the few

changes in scale that are observed in the dataset.

It was noted in [23] that any region with spatially distinguishing characteristics

undergoing a complex motion can induce a strong response. However, regions under-

going pure translational motion, or without spatially distinguishing features will not

induce a strong response. The space-time interest points are extracted around the

local maxima of the response function. Each patch contains the volume that con-

tributed to the response function, i.e., its size is approximately six times the scales

along each dimension.

Figure 7.2 shows an example of interest point detection in a hand waving video

sequence. Each colored box corresponds to a detected interest point, that is associated

with a video patch. The neighborhood size is determined by the scale parameters σ

and τ of the detector. Interest points are correctly localized where significant motion

occurs.

To obtain a descriptor for each spatio-temporal cube, we calculate its brightness

gradients on x, y, and t directions. The spatio-temporal cube is then smoothed

at different scales before computing the image gradients. The computed gradients

are concatenated to form a vector. The size of the vector is equal to the number

of pixels in the cube times the number of smoothing scales times the number of

gradients directions. This descriptor is then projected to a lower dimensional space
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Figure 7.2: Spatio-temporal interest point detection in an action video sequence using
the method of separable linear filters by Dollár et al. [23]. Each red box corresponds
to a video patch that is associated with a detected interest point. The neighborhood
size is determined by the scale parameters σ and τ of the detector. The interest
points are localized where significant motion occurs and can be used to generate a
sparse representation of the video sequence. For a visualization of all the frames in
particular spatio-temporal patches, please refer to Figure 9.5 (p. 88)

using the principal component analysis (PCA) dimensionality reduction technique. In

[23], different descriptors have been used, such as normalized pixel values, brightness

gradient and windowed optical flow. We find that both the gradient descriptor and

the optical flow descriptor are equally effective in describing the motion information.

In the following, we will describe results obtained with gradient descriptors.

7.3 Codebook Formation

The latent topic models pLSA and LDA rely on the existence of a finite vocabulary of

(spatio-temporal) words of size V . In order to learn the vocabulary of spatio-temporal

words, we consider the set of descriptors corresponding to all detected spatio-temporal

interest points in the training data. This vocabulary (or codebook) is constructed

by clustering using the k-means algorithm and Euclidean distance as the clustering

metric. The center of each resulting cluster is defined to be a spatio-temporal word

(or codeword). Thus, each detected interest point can be assigned a unique cluster

membership, i.e., a spatio-temporal word, such that a video can be represented as a

collection of spatio-temporal words from the codebook. The effect of the codebook
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size was explored in our experiments, and is shown in Figures 9.4 (p. 87) and 9.8 (p.

91).

7.4 Learning the Action Models: Latent Topic

Discovery

In the following, we will describe the pLSA and LDA models in the context of human

action categories analysis, adapting the notation and terminology as needed from the

ones introduced by [85, 7].

7.4.1 Learning and recognizing the action models by pLSA

Suppose we have a set of M(j = 1, . . . ,M) video sequences containing spatio-temporal

words from a vocabulary of size V (i = 1, . . . , V ). The corpus of videos is summarized

in an V ×M co-occurrence table M̄ , where m(wi, dj) stores the number of occurrences

of a spatio-temporal word wi in video dj. In addition, there is a latent topic variable

zk associated with each occurrence of a spatio-temporal word wi in a video dj. Each

topic corresponds to an action category, such as walking, running, etc.

The joint probability P (wi, dj, zk) is assumed to have the form of the graphical

model shown in Figure 7.3:

P (dj, wi) = P (dj)P (wi|dj) (7.2)

Given that the observation pairs (dj, wi) are assumed to be generated independently,

we can marginalize over topics zk to obtain the conditional probability P (wi|dj):

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk) (7.3)
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Figure 7.3: The pLSA graphical model. Nodes are random variables. Shaded ones
are observed and unshaded ones are unobserved. The plates indicate repetitions. In
the context of human action categorization, d represents video sequences, z are action
categories, and w are spatio-temporal words. The parameters of this model are learnt
in an unsupervised manner using an EM procedure. This figure is reproduced from
[7]

where P (zk|dj) is the probability of topic zk occurring in video dj, and P (wi|zk) is

the probability of spatio-temporal word wi occurring in a particular action category

zk. K is the total number of latent topics, hence the number of action categories in

our case.

Intuitively, this model expresses each video sequence as a convex combination

of K action category vectors. In other words, the video-specific word distributions

P (wi|dj) are obtained by a convex combination of the aspects or action category vec-

tors P (wi|zk). Videos are characterized by a specific mixture of factors with weights

P (zk|dj). This amounts to a matrix decomposition with the constraint that both

the vectors and mixture coefficients are normalized to make them probability distri-

butions. Essentially, each video is modeled as a mixture of action categories: the

histogram for a particular video being composed from a mixture of the histograms

corresponding to each action category.

We then fit the model by determining the action category histograms P (wi|zk)

(which are common to all videos) and the mixture coefficients P (zk|dj) (which are

specific to each video). In order to determine the model that gives the high probability

to the spatio-temporal words that appear in the corpus, a maximum likelihood esti-

mation of the parameters is obtained by maximizing the following objective function
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using the expectation-maximization (EM) algorithm:

V∏
i=1

M∏
j=1

P (wi|dj)
m(wi,dj) (7.4)

where P (wi|dj) is given by Equation (7.3).

Given that our algorithm has learnt the action category models, our goal is to

categorize new video sequences. We have obtained the action category specific video

word distributions P (w|z) from a different set of training sequences. When given

a new video, the unseen video is ‘projected’ on the simplex spanned by the learnt

P (w|z). We need to find the mixing coefficients P (zk|dtest) such that the KL di-

vergence between the measured empirical distribution P̃ (w|dtest) and P (w|dtest) =∑K
k=1 P (zk|dtest)P (w|zk) is minimized [85, 44]. Similarly to the learning scenario, we

apply the EM algorithm to find the solution. Thus, a categorization decision is made

by selecting the action category that best explains the observation, that is:

Action Category = arg max
k

P (zk|dtest) (7.5)

Furthermore, we are also interested in localizing multiple actions in a single video

sequence. Though our “bag of spatio-temporal words” model itself does not explicitly

represent the spatial relationship of local video regions, it is sufficiently discriminative

to localize different motions within each video. This is similar to the approximate

object segmentation case in [85]. The pLSA model models the posteriors by:

P (zk|wi, dj) =
P (wi|zk)P (zk|dj)∑K
l=1 P (wi|zl)P (zl|dj)

(7.6)

For the spatio-temporal word corresponding to each interest point, we can label the

topics for each word by finding the maximum posteriors P (zk|wi, dj). Then we can

localize multiple actions corresponding to different action categories.
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7.4.2 Learning and recognizing the action models by LDA

As noted in [7], pLSA is not a well-defined generative model of documents, since

there is no natural way to use it to assign probability to a new testing observation. In

addition, the number of parameters to be estimated in pLSA grows linearly with the

number of training examples, which suggest that this model is prone to overfitting.

LDA [7] is presented to remedy for these weaknesses.

Suppose we have a set of M(j = 1, . . . ,M) video sequences containing spatio-

temporal words from a vocabulary of size V (i = 1, . . . , V ). Each video dj is repre-

sented as a sequence of Nj spatio-temporal words w = (w1, w2, . . . , wNj
). Then the

process that generates each video dj in the corpus is:

1. Choose the number of spatio-temporal words: Nj ∼ Poisson(ξ)

2. Choose the mixing proportions of the action categories: θ ∼ Dir(α)

3. For each of the Nj words wn:

• Choose an action category (topic): zn ∼ Mult(θ)

• Choose a spatiotemporal word wn from the multinomial distribution

p(wn|zn, β)

Here we fixed the number of latent topics K to be equal to the number of action

categories to be learned. Also, α is the parameter of a K-dimensional Dirichlet

distribution, which generates the multinomial distribution θ that determines how the

action categories (latent topics) are mixed in the current video. In addition, a matrix

β of size K × V parameterizes the distribution of spatio-temporal words conditioned

on each action category; each element of β corresponds to the probability p(wi|zk).
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Figure 7.4: (a) LDA graphical model [7]. Nodes are random variables. Shaded ones
are observed and unshaded ones are unobserved. The plates indicate repetitions.
In the context of human action categorization, θ represents video sequences, z are
action categories and w are spatio-temporal words. α is the hyperparameter of a
Dirichlet distribution. (b) Graphical model that represents the variational distribu-
tions proposed in [7] to approximate the posterior probability in LDA. This figure is
reproduced from [7]

The joint distribution of a topic mixture θ, the set of words w observed in the

current video, and their corresponding topic (action category) z can be written as:

p(θ, z,w|α,β) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn,β) (7.7)

The probabilistic graphical model in Figure 7.4 represents the LDA model.

In order to perform video classification with LDA, one must compute the posterior

distribution of the hidden variables given a new input:

p(θ, z|w, α, β) =
p(θ, z,w|α,β)

p(w|α, β)
(7.8)

where θ is specific to each input and represents its latent topics distribution. Once θ

is inferred, a classification decision can be made by selecting the most likely topic in

the current testing video.

Although it is computationally intractable to perform inference and parameter

estimation for the LDA model in general, several approximation algorithms have been

investigated. A variational inference approach has been proposed in [7]. The family
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of variational distributions that are considered can be represented by the model in

Figure 7.4(b), and is characterized by:

q(θ, z|γ, ϕ) = q(θ|γ)
N∏

n=1

q(zn|ϕn) (7.9)

where γ and θ are the free variational parameters. The corresponding optimization

procedure produces the parameters (γ∗, ϕ∗) which are a function of w.

Analogously to the pLSA case, the posterior Dirichlet parameters γ∗(w) represent

the projection of the new observed video into the simplex spanned by the latent topics.

Thus, classification is performed by selecting the action category that corresponds to

the maximum element in γ∗(w).

Furthermore, the localization procedure can also be implemented using LDA. In

this case, we can label each interest point with an action category, by selecting the

topic that generates its corresponding spatio-temporal word with highest probability.

That means, for a fixed i, we select k such that p(wi|zk) in β is maximum.

7.5 Motivations and Limitations of the Proposed

Approach

In the following section, we discuss the suitability of our approach as well as its

limitations at three different levels: the representation using local information only,

the “bag of words” assumption and the use of latent topic models as the underlying

statistical structure of the data.

7.5.1 Local features

Our approach relies on the detection of spatio-temporal interest points, which pro-

duce a sparse representation of the video sequences. Small video patches are extracted
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from each interest point and constitute the local information that is used to learn and

recognize human action categories. By employing local features, we intend to empha-

size the importance and distinctiveness of the short-range spatio-temporal patterns.

We argue that the observed local patterns are sufficiently discriminative across hu-

man action classes (refer to Figure 9.5, p. 88), and provide a reasonable feature space

that allows building good human action models. Additionally, this approach relaxes

the need for previously common preprocessing steps in global approaches such as

background substraction in [8, 6], or figure tracking and stabilization in [25].

In terms of the local descriptor, a number of video patch descriptors have been

proposed previously [23, 55]. In our implementation, we have chosen a very simple

descriptor based on image gradients [23], noting that such descriptor does not provide

scale invariance in the space and time domains. It does not capture relative camera

motion. However, more complex descriptors that include small invariances to spatial

scale and speed, as well as invariances to small camera motions, are available with

the cost of more computational complexity (for instance, local position dependent

histograms in [55]). In our implementation, we rely on the codebook to handle scale

changes and camera motions. As long as the newly observed local features do not

contain patterns of scale change and camera motion that are extremely different from

those observed in the data used to form the codebook, we expect that similar local

features will be assigned to consistent memberships on the codebook.

7.5.2 Bag of words

We have adopted the “bag of words” assumption in our data representation. This

implies ignoring the spatial and temporal arrangement of the detected local interest

points. The lack of spatial information provides little cues about the human body

configurations, while the lack of longer-term temporal information does not permit to

model more complex actions that are not constituted by simple repetitive patterns.
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Alternative approaches might include structural information by encoding information

of the human body using a pictorial structure model [29], by observing co-ocurrances

of local patterns such as those in [78], or by modeling the geometrical arrangement

of local features [65].

7.5.3 Latent topic models

We propose the use of latent topic models for human action recognition motivated

by the sucess of these approaches in other computer vision tasks [85, 27]. First, these

models provide an unsupervised learning framework that permits automatically dis-

covering semantic clusters in the training data. Second, as opposed to discriminative

methods such as support vector machines (SVM), pLSA and LDA permit performing

meaningful reasoning on the data beyond classification, for example, topic localiza-

tion. Furthermore, such localization can be realized without the need of scanning

thousands or millions of windows per image. These models, however, do not provide

spatial nor temporal scale invariances. Thus, they can only work within a small mar-

gin of the scales that have been observed in training. Alternative approaches that

include such invariances might be based upon models such as those in [32].
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Chapter 8

A Hierarchical Model For Human

Action Classification

Based on the recent work in human motion categorization [74, 26, 6, 68], we make

two key observations that will in turn influence the design of our model. The first

observation is based on the usage of different feature descriptors to represent human

body and/or human motion. The second observation deals with the choice of the

category model that uses such features for corresponding classification.

Using good features to describe pose and motion has been widely researched in

the past few years. Generally speaking, there are three popular types of features:

static features based on edges and limb shapes [20, 31, 73]; dynamic features based on

optical flows [25, 20, 83], and spatio-temporal features that characterizes a space-time

volume of the data [6, 14, 23, 54]. Spatial-temporal features have shown particular

promise in motion understanding due to its rich descriptive power [9, 80, 68]. On

the other hand, to rely on only such features means that one could only characterize

motions in videos. Our daily life experiences tell us, however, humans are very good

at recognizing motion based on a single gesture. Fanti et al. [26] proposed that it

is fruitful to utilize a mixture of both static and dynamic features. In their work,
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the dynamic features are limited to simple velocity description. We therefore propose

the hybrid usage of static shape features as well as spatio-temporal features in our

framework.

Model representation and learning are critical for the ultimate success of any

recognition framework. In human motion recognition, most models are divided into

either discriminative models or generative models. For example, based on the spatio-

temporal cuboids, Dollar et al. [23] applied an SVM classifier to learn the differences

among videos containing different human motions. Ramanan et al. [73] recently

proposed a conditional random field (CRF) model to estimate human poses. While

discriminative frameworks are often very successful in the classification results, they

suffer from either the laborious training problem or a lack of higher level semantic

interpretation of the images beyond the classification task. In the CRF framework,

one needs to train the model by labeling by hand each part of the human body. And

in the SVM framework, the model is not able to “describe” the actual motion of

the person. Some researchers, therefore, have proposed several algorithms based on

probabilistic graphical model frameworks in action categorization/recognition. Song

et al. [89] and Fanti et al. [26] represent the human action model as a triangulated

graph. Boiman and Irani [9] recently propose to extract an ensemble of local video

patches to localize irregular action behavior in videos. Dense sampling of the patches

is necessary in their approach and therefore the algorithm is very time-consuming. It

is not suitable for action recognition purpose due to the large amount of video data

commonly presented in these settings.

For structured objects such as human bodies, it is important to model the mu-

tual geometric relationship among different parts. Constellation models offer such a

solution [26, 101]. Unfortunately due to the computational complexity of the model,

previous work only used a very small number of features (typically 4 to 6) or approx-

imated the connections by triangulation [89, 26]. Another approach is to lose all the
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geometric information and consider “bag of words” models. They have proven highly

efficient and effective in classifying objects [85, 37] and human motion [23, 68]. We

propose here a method to exploit both the geometric power of the constellation model

as well as the richness of the “bag of words” model. We recognize the computational

limit of having a very small number of fully connected parts in the constellation

model. But instead of applying it directly onto the image level features, we attach

a “bag of words” model to each part of the constellation model. The overall repre-

sentation embodies a hierarchical model that combines a constellation model of few

parts with bag of words models of a large and flexible number of features (see Figure

8.1). Our model is partly inspired by a hierarchical model proposed by Bouchard and

Triggs [11]. In their framework, they also use the idea of attaching a large number

of features at the image level to a handful of intermediate level parts. The key dif-

ference between our model and theirs is that our intermediate level parts are fully

connected, whereas theirs are not, offering a much richer constraint. In addition, we

use a mixture of models for our motion classes whereas it is not immediately clear

whether their framework could be easily extended to a mixture model.

In summary, we show in this chapter a hierarchical model that learns different

categories of human motion using a hybrid of spatio-temporal and static features.

Our model can be characterized as a constellation of bag of words. Our results show

that compared to previous work, our model offers superior classification performance

on a number of large human motion datasets. In addition, it can do so either on a

video sequence or in individual frames.

A preliminary version of this work has been published in CVPR 2007 [65].
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Feature Layer

Part Layer

Mixture Components

Figure 8.1: Hierarchical model for human actions: The proposed model combines, in
a hierarchical way, the geometric strength of the constellation model with the larger
number of features utilized in the bag of keypoints models. The higher layer is a
constellation of P parts, each associated with a bag of features in the lower layer.
The parts are interrelated by a distribution of their relative positions. Additionally,
each part defines a distribution of appearance and position of features assigned to it

8.1 Theoretical Framework

In the simplest version, our model is a two layered hierarchical model. The higher

layer is close in spirit to the shape term of the constellation model. It is composed

of a set of P parts. Our model selects one part as the reference part and represents

the relative location of all other parts with respect to the reference by a Gaussian

distribution. Each of the Pp parts (p = 1 . . . P ) is connected to Np image features in

the lower level, and is associated to distributions of appearance and relative location

of the features assigned to it. In other words, the higher layer is a constellation of

parts, and each of these parts is associated to a “bag of features” in the lower layer.

Due to its geometric constraints, this model is suitable for capturing similar body

configurations or poses.

Following the observation that human actions are results of sequences of poses,

which arise from a few sets of similar body configurations, we believe that a single
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action is better represented as a multimodal distribution of shape and appearance.

To account for this multimodality, we use a mixture of hierarchical models, where

each component corresponds to a set of poses clustered together according to their

similarity.

8.1.1 The hierarchical model

Given a video frame I, we find a set of N observed features w = {x, a}, where

wi = {xi, ai} denotes position xi and appearance ai information. We also suppose

that there is a known finite set Y of possible positions for the P parts in the image.

One can think of Y as pixel locations or any arbitrary choice. We can compute the

likelihood of the observed data given an action model θ as the following:

p(w,Y|θ) =
Ω∑

ω=1

∑
h∈H

p(w,Y,h, ω|θ) (8.1)

=
Ω∑

ω=1

∑
h∈H

p(w,Y,h|ω, θ)p(ω|θ) (8.2)

=
Ω∑

ω=1

[
πω

∑
h∈H

p(w,Y,h|ω, θ)

]
(8.3)

where ω indicates the mixture component, we define πω = p(ω|θ) such that
∑

ω πω = 1

and h is an indexing variable which we call a hypothesis (similar to the constellation

model). If |Y| is the number of possible locations for the P parts, then h is a vector

of length P , where each element is between 1 and |Y|. Additionally, we introduce the

variable m, which indicates an assignment of features to parts. In particular, each m

is a vector of N elements which can take integer values in the interval [0, P ]. That

means each feature can be assigned to the background (0) or to one of the P parts

75



(1 . . . P ). Marginalizing over m, we rewrite the observed data likelihood as

p(w,Y|θ) =
Ω∑

ω=1

[
πω

∑
h∈H

∑
m∈M

p(w,Y,h,m|θω)

]
(8.4)

p(w,Y|θ) =
Ω∑

ω=1

[
πω

∑
h∈H

(
p(h|θω)p(Y|h, θω)

∑
m∈M

p(w|Y,m,h, θω)p(m|Y,h, θω)

)]
(8.5)

Calculating the likelihood in Equation (8.5) requires computing O((P + 1)N) dif-

ferent assignments for each h. Considering that |H| = |Y|P , we need to compute the

probabilities of O
(
(P + 1)N |Y|P

)
different combinations of hypothesis-assignment.

In order to make the model more computationally tractable, we propose the follow-

ing approximation:

∑
m∈M

p(w|Y,m,h, θω)p(m|Y,h, θω) ≈ p(w|Y,h,m∗, θω)

That is, we compute only one assignment per hypothesis. If we assume that

p(m|Y,h, θ) is uniform, then m∗ is selected such that:

m∗ = arg max
m

p(w|Y,h,m, θ) (8.6)

Applying this to (8.5), the approximated observed data likelihood is:

p(w,Y|θ) ≈
Ω∑

ω=1

πω

∑
h∈H

p(h|θω)p(Y|h, θω)︸ ︷︷ ︸
Part layer

p(w|Y,m∗,h, θω)︸ ︷︷ ︸
Local feature layer

 (8.7)

Part layer term We represent the joint probability of the position of the P parts

in the model as a multivariate Gaussian distribution:

p(Y|h, θ) = N (YT(h)|µL,ΣL)
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In order to obtain translation invariance, we map Y into a translation invariance

space, by constructing YT(h), a 2(P−1) dimensional vector that contains the relative

positions of (P − 1) parts with respect to the topmost part.

Local feature layer term Given a part-to-feature assignment, each part P is in-

stantiated as a set of image features that carry appearance and location information.

Thus, each part is associated with an appearance distribution as well as a relative po-

sition distribution of image features. We adopt the bag-of-features assumption, where

the observations wn ∈ I are conditionally independent given their parent assignments

in m. This assumption allows us to write the likelihood of a set of observations w,

given the possible part locations Y, a hypothesis h, an assignment m, and the model

parameters θ, as

p(w|Y,h,m, θ) =
∏
wn∈I

p(wn|Y,h,mn, θ)

=
∏

wj∈bg

p(wj|θ0)
P∏

p=1

∏
wi∈Pp

p(wi|Y, hp, θp)

=
∏

wj∈bg

p(xr
j |θX

0 )p(aj|θA
0 )

P∏
p=1

∏
wi∈Pp

p(xr
i |Y, hp, θ

X
p )p(ai|θA

p ) (8.8)

where we define θX
p =

{
µX

p = 0,ΣX
p

}
to be the parameters of a Gaussian distribution

that determines the relative position of the features that belong to the pth parent.

Note that given a particular m, the position information xi of the ith image feature

can be transformed to the relative location xr
i of the feature to its assigned parent.

Similarly, θA
p are the parameters of a multinomial distribution that describe the ap-

pearance of the features assigned to the pth parent. In the same manner, we define

θX
0 and θA

0 as parameters for the appearance and position distribution of features

assigned to the background. Note that the notations wi ∈ Pp and wj ∈ bg indicate

assignments that depend on both h and m.

77



w
1 …

P1 …P2 PP Bg

w
2

w
3

w
N

Figure 8.2: Matching features (children) to parts (parents): The weight of each link
between a parent node Pp and a child node wn is the probability of generating wn

from the appearance and position distributions assigned to Pp: p(wi|Y, hp, θp) =
p(xi|Y, hp, θ

X
p )p(ai|θA

p ). We also include a background node at the parent level, to
allow features to be assigned to the background

Additionally, the assumption of conditional independence allows us to maximize

the probability p(wn|Y,h,mn, θω) with respect to m for each wn independently. In

other words, our task reduces to find the best parent for each child node wn in the

graph of Figure 8.2.

Note that from this procedure, it is possible for m∗ to be a feature to part

assignment such that a part has no features assigned to it. This allows the model to

handle naturally missing or occluded parts. An alternative to be explored is to assign

features to parts softly, instead of using the single best parent for each child.

Approximated data likelihood Assuming that the prior probability of selecting

a particular hypothesis h is uniform, i.e., p(h|θ) = |H|−1, we can finally rewrite our

likelihood equation as:

p(w,Y|θ) ≈ 1

|H|

Ω∑
ω=1

[
πω

∑
h∈H

N (YT(h)|µL,ΣL)p(w|Y,m∗,h, θω)

]
(8.9)
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8.1.2 Learning

Learning consists of estimating the model parameters for each action category. In the

case of the mixture of models, each action class is parametrized by

θω =
{
µL,ω,ΣL,ω,ΣX

p,ω, θA
p,ω, θX

0 , θA
0

}
for p = 1 . . . P and ω = 1 . . . Ω. To accomplish this purpose, we adopt an EM

algorithm.

Initialization The convergence of the EM algorithm to a sensible minimum de-

pends greatly on the starting point. In order to select a good initial point, we cluster

video frames from the training data into a number of clusters equal to the number

of mixture components. The clustering procedure is done by representing each video

frame with a histogram of features. Then we select a small number of frames from

each resulting cluster and fit a 1-component model to them. The output of this

procedure is a set of initial parameters θold.

E-step Evaluate the responsibilities using the current parameter values θold:

p(h, ω|w,Y, θold) ≈ πωp(Y|h, θold
ω )p(h|θold

ω )p(w|Y,h,m∗, θold
ω )

p(w,Y|θold)
(8.10)

M-step Calculate updated parameters θnew using the current responsibilities:

θnew = arg max
θ

∑
h

p(h, ω|w,Y, θold) ln p(w,Y,h, ω|θ) (8.11)

8.1.3 Recognition

Given a new video frame and the learnt models for each action class, the task is to

classify the new image as belonging to one of the action models. Suppose that we

have learned models for C action classes. We calculate the likelihood of observing
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the image data given that it has been generated from each of the C action models.

This produces a C-dimensional feature vector of the input in the model space. We

calculate these feature vectors for each example in a validation set, and use them to

train a discriminative classifier. Therefore, a classification decision is made by first

calculating the likelihood of the input according to each of the C action models, and

then categorizing this C-dimensional feature vector using the discriminative classifier.

Additionally, decisions can be made over a range of video frames by adopting a

bag-of-frames strategy. First, each frame is categorized independently, and votes in

favor of the detected action class. The complete video sequence is classified to be

from the category with the majority of the votes.

8.2 The System

8.2.1 Image features

We represent each video frame as a set of detected patches w = {x, a}, where wi =

{xi, ai}, i = 1 . . . N . The appearance information a is obtained by assigning each

patch a membership to a large dictionary of codewords. We show now how these

patches are obtained and memberships assigned.

We adopt a rich representation by detecting static and motion features. This

allows the model to characterize a larger number of human actions than when using

motion alone. Specifically, certain actions, such as hand waving in [6], produce a

small number of motion features since most body parts remain static.

Static features are obtained by first computing an edge map using a Canny edge

detector. A set of edge points is sampled from the edge map, and a descriptor is

obtained for an image patch around each selected point by calculating its shape

context [4].
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Motion features are obtained using the separable linear filter method in [23]. Small

video patches are extracted and described by concatenating their gradients on space

and time directions.

An example of the extracted static and dynamic features in frames of a particular

video sequence is presented in Figure 8.3.

Figure 8.3: Detection of spatio-temporal local features. The first row contains ex-
ample frames from a training sequence. The edge maps shown in the second row are
obtained using the Canny edge detector. The third row illustrates the spatio-temporal
interest point detection. The motion features are obtained using the method in [23].
The figure is best viewed in color

Given the collection of detected static features from the training images of all cat-

egories, we learn a codebook by the employment of a k-means algorithm. Codewords

are then defined as the centers of the learnt clusters, and each static patch is assigned

to the closest codeword. A similar procedure is performed to obtain a codebook of

motion features, and the corresponding memberships.

The employment of two different types of features requires adopting two different

distributions of feature appearance for each part. In particular, p(ai|θa
p) is actually

modeled as two multinomial distributions, one for static features and other for mo-

tion features. Thus, given a particular feature, we use the appropriate appearance
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distribution when calculating Equation (8.8). Note that the proper distribution to

use can be determined unambiguously since the type of the feature is always known.

8.2.2 Implementation details

In our implementation, we detect spatial features at each frame by sampling edge

points from the output of the Canny edge detector. The number of samples is fixed

at 100. Each sampled edge point is described using shape context with 3 spatial and

8 angular bins. The dimensionality of both descriptor types (static and dynamic)

is reduced using PCA. Consequently, we cluster static and motion descriptors into

codebooks of size 100. The discriminative classifier described in Section 8.1.3 is

instantiated by an SVM. For this purpose, we use a linear SVM trained with the

software package LIBSVM [13].
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Chapter 9

Experimental Results

In this section, we present the human action datasets used in our experiments. We also

present the experimental results obtained using the models discussed in the previous

sections.

9.1 Datasets

In order to evaluate experimentally our algorithms, we use three different datasets.

Here we include a small description for each of them.

9.1.1 KTH human action dataset

The human motion dataset from The Royal Institute of Technology (KTH) is the

largest available video sequence dataset of human actions [80]. Each video has only

one action. The dataset contains six types of human actions (walking, jogging, run-

ning, boxing, hand waving, and hand clapping) performed several times by 25 sub-

jects in different scenarios of outdoor and indoor environment with scale change. It

contains 598 short sequences. Some sample images are shown in Figure 9.1.
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walking jogging running boxing hand waving hand clapping

Figure 9.1: Example images from video sequences in the KTH dataset [80]. The
dataset contains six types of human actions: walking, jogging, running, boxing, hand
waving and hand clapping. These are performed several times by 25 subjects in
different scenarios of outdoor and indoor environment. The camera is not static and
the videos contain scale changes. This figure is reproduced from http://www.nada.

kth.se/cvap/actions/

9.1.2 Weizmann Institute human action dataset

We employ the human action dataset from [6]. It contains 10 action categories per-

formed by 9 people, to provide a total of 90 videos. Example frames of the action

categories are shown in Figure 9.2. This dataset contains videos with static camera

and simple background, however, it provides a good testing bed to investigate the

performance of the algorithm when the number of categories is increased.

9.1.3 SFU figure skating dataset

We use the SFU (Simon Fraser University) figure skating dataset from [99]. 1 We

adapt 32 video sequences which contain seven people executing three actions: stand-

spin, camel-spin, and sit-spin, as shown in Figure 9.3. The dataset contains sequences

with camera motion, background clutter, and aggressive view point changes.

1The work in [99] addresses the problem of motion recognition from still images. There is much
other work to model motion in still images, which is out of the scope of this manuscript.
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Bend

SideSkipWalk Wave1Jacks

JumpRunWave2P -Jump

Figure 9.2: Example images from video sequences in the Weizmann Institute human
action dataset [6]. The dataset contains 10 action categories, performed by 9 subjects.
The videos are taken with static camera and static background

Figure 9.3: Example frames from video sequences in the figure skating dataset [99].
We adapt 32 video sequences from the original dataset, to produce a subset which
contains seven people executing three actions: camel-spin (first row), sit-spin (second
row) and stand-spin (third row). The videos are taken with a moving camera and
dynamic background

9.2 Experiments Using the Latent Topic Models

We test our algorithm using three datasets: the KTH human motion dataset [80], a

figure skating dataset [99], and the human action dataset from [6]. These datasets

contain videos of cluttered background, moving cameras, and multiple actions; as

well as videos exhibiting a single action, with static camera and simple background.

We can handle the noisy feature points arisen from dynamic background and moving
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cameras by utilizing the latent topic models pLSA and LDA, as long as the background

does not amount to an overwhelming number of feature points. In addition, we

demonstrate multiple actions categorization and localization in a set of new videos

collected by the authors. We present the datasets and experimental results below.

9.2.1 Recognition and localization of single actions

Human action recognition and localization using KTH data

We extract interest points and describe the corresponding spatio-temporal patches

with the procedure described in Section 7.2. The detector parameters are set to σ = 2

and τ = 2.5. Each spatio-temporal patch is described with the concatenated vector of

its space-time gradients. Then, the descriptors are projected to a lower dimensional

space of 100 dimensions. Examples of the detections for sequences in each category

are shown in Figure 9.6 (on p. 90).

In order to build the codebook, we need to cluster the feature descriptors of all

training video sequences. However, since the total number of features from all training

examples is very large, we use only a subset of sequences to learn the codebook, in

order to accommodate the requirements of memory. Thus, we build spatio-temporal

codewords using only two videos of each action from three subjects. We keep these

sequences out of the training and testing sets, to avoid contamination in the data.

In order to test the efficiency of our approach for the recognition task, we adopt

the leave-one-out testing paradigm (LOO). Each video is labeled with the index of the

subject performing the action but not with the action class label, so that the algorithm

does not have information about the action class contained in the sequences. Thus,

for each LOO run, we learn a model from the videos of 24 subjects (except those

videos used to build codewords) in an unsupervised fashion, test the videos of the

remaining subject, and compute a confusion table for evaluation. The results are

reported as the average confusion table of the 25 runs.
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Figure 9.4: Experimental evaluation of action classification with the latent topic
models in the KTH dataset. (a) Confusion matrix for pLSA using 1500 codewords
(performance average = 83.33%); rows are ground truth, and columns are model
predictions; (b) Classification accuracy vs. codebook size for the KTH dataset. Ex-
periments show that the results for the recognition task are consistently better when
the pLSA model is adopted. The figure is best viewed in color

Under these settings, we learn and recognize human action categories using the

pLSA and LDA models. The confusion matrix for a six-class pLSA model for the

KTH dataset is given in Figure 9.4(a) using 1500 codewords. It shows the largest

confusion between “jogging” and “running,” “walking” and “jogging,” and between

“hand clapping” and “boxing.” This is consistent with our intuition that similar

actions are more easily confused with each other, such as those involving hand motions

or leg motions. Additionally, at the feature level, we note that the similarity across

local patterns from different classes is highest between those categories where our

method finds the largest confusion (please refer to Figure 9.5).

We test the effect of the number of video codewords on recognition accuracy

on both models, as illustrated in Figure 9.4(b). It shows some dependency of the

recognition accuracy on the size of the codebook. Additionally, we can see that pLSA

is slightly better than LDA in recognition performance with the same number of

codewords. This is an interesting result. Our hypothesis for this outcome is that it is

due to large variations and relatively small number of training samples in each action

class, which may alleviate the advantages of LDA.
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Figure 9.5: The latent topic models provide means to rank the spatio-temporal words
given an action class. Here, we illustrate the top word from each category, in the
KTH dataset, using a spatio-temporal patch. Each row contains the frames from
the neighborhood of a single spatio-temporal interest point, which was assigned to
a top word within the category on the right. The spatio-temporal patches clearly
characterize each action class; for instance, the top interest point for hand-waving
shows its signature of up-down arm motion

We also compare our results with the best results from [23] (performance average

= 81.17%), which were obtained using an SVM with the same experimental settings.

Our results by unsupervised learning are on par with the current state-of-the-art

results obtained by fully supervised training. Furthermore, our generative method

provides better interpretability of the learned action models. For example, we can

assign individual spatio-temporal features to their most likely action class, as shown

in Equation (7.6) (p. 65) and in Figure 9.6 (p. 90). We can also recognize multiple

actions that occur simultaneously within the video, see Figure 9.12 (p. 96). Such

analysis is not possible in the SVM discriminative approach. Additional comparison

of recognition rates from different methods in the KTH dataset is given in Table 9.1.

Table 9.1: Action recognition accuracy with pLSA compared to other methods in the
KTH dataset

methods recognition accuracy (%) learning multiple actions

Our method 83.33 unlabeled Yes
Dollár et al. [23] 81.17 labeled No
Schuldt et al. [80] 71.72 labeled No

Ke et al. [47] 62.96 labeled No

In order to obtain further insight into the model provided by the latent topic ap-

proach, we use the distribution of spatio-temporal words given a latent topic. In the
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pLSA case these distributions correspond to p(w|z), and in the LDA case the distri-

butions are given in β. These parameters provide means to rank the spatio-temporal

words according to their probability of occurrence within each action category. As a

first exercise, it is interesting to observe which words are assigned the highest likeli-

hood given an action category. Figure 9.5 shows example spatio-temporal patches that

represent the top ranked word within each action category. These spatio-temporal

patches clearly correspond to the correct human action class. Second, given a test-

ing sequence, we can assign each of the observed interest points to a corresponding

spatio-temporal word. This word in turn, can be assigned to the action class that gen-

erate it with highest probability, for example using Equation (7.6) in the pLSA case.

We show the result of this procedure in Figure 9.6, using the distributions obtained

with the pLSA model. Each interest point has been colored with the corresponding

human action category. It is also clear how the model permits the mixture of action

classes within a single sequence. Also, note that the dominant color corresponds to

the correct action category color.

Finally, we would like to use the models we have learned using the KTH dataset, to

detect human actions in sequences from the Caltech human motion dataset [89]. We

provide some examples frames from two of these video sequences in Figure 9.7. There,

the models learnt with a pLSA approach are used to detect the correct human action

class. Most of the action sequences from this dataset can be correctly recognized.

To provide further illustration, we have colored each spatio-temporal interest point

according to its most likely action category. In the figure, we only draw the space-time

features that were assigned to the action class that was detected by our model.

Action recognition and localization using the human action dataset

from [6]

In our second experiment, we detect and describe spatio-temporal interest points

using the procedure detailed in previous sections. The detector parameters are man-
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Figure 9.6: Example frames from testing sequences in the KTH dataset. The spatio-
temporal patches in each sequence are automatically colored according to action class
that most likely generated its corresponding spatio-temporal word. Although some
of the words are assigned to the wrong topic, most interest points are assigned to the
correct action for each video. Consistently, the predicted action class corresponds to
the actual ground truth. In addition, we usually observe that the second best ranked
action class corresponds to a similar action: in the “jogging” example of the figure,
the second best label is “running.” The figure is best viewed in color

ually set to σ = 1.2 and τ = 1.2, and the dimensionality of the corresponding de-

scriptors is reduced to 100. The codebook is learnt using all the feature descriptors

obtained from all the training video sequences.

We again perform leave-one-out cross-validation to test the efficacy of our ap-

proach in recognition; i.e., for each run we learn a model from the videos of eight

subjects and test those of the remaining subject. The result is reported as the aver-

age of nine runs. The confusion matrix for a ten-class model is presented in Figure

9.8(a) for a pLSA model learned using a codebook of size 1200. The average perfor-

mance of the pLSA model with this codebook size is 90%. Note that the confusion

matrix shows how our model is mostly confused by similar action classes, such as

“skip” with “jump” and “run,” or “run” with “walk.”
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walking running jogging boxing hand clapping hand waving

Figure 9.7: Examples frames from sequences in the Caltech dataset. Action category
models were learnt using the KTH dataset, and tested again sequences in Caltech
dataset. Each interest point is assigned to an action class, and only spatio-temporal
interest points from the detected action category are shown. The figure is best viewed
in color
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Figure 9.8: Experimental evaluation of action classification with the latent topic
models in the Weizmann Institute action dataset. (a) Confusion matrix for the pLSA
model; rows are ground truth, and columns are model results. The action models
learnt with pLSA and using 1200 codewords show an average performance of 90%. (b)
Classification accuracy obtained using pLSA and LDA models vs. codebook size. Our
results show that pLSA performs slightly better than LDA in the video categorization
task

We test the effect of the number of video codewords on recognition accuracy on

the pLSA and LDA models, as illustrated in Figure 9.8(b). It shows some dependency

of the recognition accuracy on the size of the codebook.

Similar to the previous experiment, we look for insight on what the latent topic

model provides. Figure 9.9 illustrates sample frames from test sequences in each
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Figure 9.9: Example frames from testing sequences in the Weizmann Institute human
action dataset [6]. The spatio-temporal patches in each sequence are automatically
colored according to action class that most likely generated its corresponding spatio-
temporal word. Although some of the words are assigned to the wrong topic, most
interest points are assigned to the correct action for each video. Consistently, the
predicted action class corresponds to the actual ground truth. The figure is best
viewed in color

action class. We have colored each detected interest-point with its most likely action

category. We observe how the model permits the mixture of action classes in each

video; however, the actual action category dominates the coloring in all these cases.

Additionally, it is also interesting to observe that those interest points that are not

colored with the right action, are however assigned to a similar action. For instance,

in the frames corresponding to the “jacks” category, there are some interest points

assigned to “wave,” and it is clear that both actions contain similar arm motion.
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Finally we note that in [6], experimental results were reported using 9 of the

10 action categories available in the dataset. Their classification task consisted on

determining the action category of a set of space-time cubes, instead of classify-

ing entire video sequences. Also, results on a clustering experiment were presented.

These experiments differ from our task, which consists of categorizing complete video

sequences. In addition, unlike our video sequence representation using local spatio-

temporal words, their approach using space-time shape is sensitive to camera motion

and dynamic background.

Recognition and localization of figure skating actions

In our third experiment, we detect and describe interest points using the procedure

detailed in previous sections. The detector parameters are manually set to σ = 2 and

τ = 1.2, and the dimensionality of the corresponding descriptors is reduced to 100.

We use all the videos available in training to build the codebook, using k-means.

.83 .00 .17

.33 .67 .00

.00 .08 .92

stand-spin

sit-spin

camel-spin

Figure 9.10: Confusion matrix for the figure skating dataset using 1200 codewords
(performance average = 80.67%). Our algorithm can successfully categorize the figure
skating actions in the presence of camera motion and cluttered background

We use the LOO procedure to test the efficacy of our approach in recognition; i.e.,

for each run we learn a model from the videos of six subjects and test those of the

remaining subject. The result is reported as the average of seven runs. The confusion

matrix for a three-class pLSA model for the figure skating dataset is shown in Figure

9.10 using 1200 codewords. The average performance of our algorithm is 80.67%.

Note that in spite of the simple representation, our method can perform well in a

very challenging dataset with camera motion, scale changes and severe occlusions.
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Additionally, the learned three-class pLSA model can be used for action localiza-

tion as shown in Figure 9.11.

camel-spinstand-spin sit-spin

Figure 9.11: Example frames from testing sequences in the figure skating dataset. The
interest points in each sequence are automatically colored according to the action class
that most likely generated its corresponding spatio-temporal word. Note that only
spatio-temporal interest points from the detected action category are shown. The
figure is best viewed in color

9.2.2 Recognition and localization of multiple actions in a
long video sequence

One of the main goals of our work is to test how well our algorithm could identify

multiple actions within a video sequence. For this purpose, we test several long figure

skating sequences as well as our own complex video sequences.

When the testing sequence is significantly long, we divide it into subsequences

using a sliding temporal window. We process such subsequences independently and

obtain classification decisions for each of them. This is necesary due to the nature

of our representation: the lack of relative temporal ordering of features in our “bag
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of words” representation does not provide means to assign labels at different time

instances within a video; instead, the analysis is made for the complete sequence.

Thus, by dividing the original long video into subsequences, our method can assign

labels to each subsequence within the long sequence.

First, suppose we encounter a testing video that contains multiple simultaneous

human action categories. For multiple actions in a single sequence, and assuming we

have learnt models employing the pLSA framework, we first identify how many action

categories are significantly induced by P (zk|wi, dj). This is possible since P (zk|wi, dj)

provides a measurement of the content of each action in the testing sequence. Thus,

we allow the algorithm to select more than one action class if P (zk|wi, dj) is bigger

than some threshold for more than one k. However, we need to assume that the

number of actions present in the sequence is much less than the number of learnt

actions categories K; in the extreme case that all action classes are present in the

sequence, the distribution P (zk|wi, dj) should be very close to the uniform distribution

and we cannot find salient action classes. Once the action categories of interest have

been identified, the algorithm can select only the spatio-temporal interest points that

are assigned to those classes, and apply k-means to the spatial position of these space-

time patches. The number of clusters is set equal to the number of significant action

categories. In order to label the resulting clusters with an action class, each word

votes for its assigned action within its cluster. Finally a bounding box is plotted

according to the principal axis and eigen-values induced by the spatial distribution of

video words in each cluster. A further assumption that has to be made in order to use

this procedure is that the actions must be performed in spatially distinct positions.

Figure 9.12 illustrates examples of multiple actions recognition and localization in one
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Figure 9.12: Multiple action recognition and localization in long and complex video
sequences. The algorithm automatically detects the number of significant actions in
a windowed subsequence around each frame. Then a clustering technique is used
to group the interest points according to their spatial position. A bounding box is
placed around each cluster with the automatically detected action label. The figure
is best viewed in color

video sequence using a six-class pLSA model learnt from the KTH dataset (Section

9.2.1).

The second scenario we want to explore consists of a long testing video sequence

that contains one subject performing different actions through time. Consider for
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example the long skating video sequences in Figure 9.13. Assuming we have learnt

models with pLSA, we perform recognition by extracting a windowed sequence

around each frame, and identifying which actions receive a high weight according

to P (zk|wi, dj). Thus the middle frame in the windowed sequence is labeled with

the identified action category. Figure 9.13 shows examples of action recognition in

a long figure skating sequence. Here we employed the three-class model learnt from

figure skating sequences containing a single action (Section 9.2.1). The three actions

(stand-spin, camel-spin and sit-spin), were correctly recognized and labeled using

different colors.

Figure 9.13: Multiple action recognition and localization in long and complex figure
skating sequences. The algorithm automatically detects the number of significant
actions in a windowed subsequence around each frame. Then a clustering technique
is used to group the interest points according to their spatial position. A bounding
box is placed around each cluster with the automatically detected action label. The
figure is best viewed in color
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9.3 Experiments Using the Hierarchical Model

We test our model using the Weizmann Institute human action dataset from [6].

Please note that this is a subset of the dataset presented in Figure 9.2, and it corre-

sponds to the sequences used for the experiments in [6]. The subset contains 9 action

classes performed by 9 different subjects, some example frames are shown in figure

9.14. There are 83 sequences in total, since each class contains 9 or 10 videos.

We adopt a LOO scheme for evaluation, by taking videos of one subject as testing

data, and randomly splitting the sequences from the remaining subjects into training

and validation sets. The training set is always composed by sequences of 5 subjects,

while the sequences of the remaining 3 subjects are used for validation.

We train a four-part model with three mixture components for each action class.

In order to illustrate the learnt models, Figure 9.15 shows an example frame from a

jack sequence with the corresponding action model component over imposed. Parts

(a) bend (b) jack (c) jump

(d) pjump (e) run (f ) side

(g) walk (h) wave1 (i) wave2

Figure 9.14: Weizmann Institute human actions dataset. Example frames from video
sequences in the dataset from [6]. The dataset contains 83 videos from 9 different
human action classes. Please note that this is a subset of the dataset presented in
Figure 9.2, and it corresponds to the sequences used in [6]
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are colored in blue, red, green and cyan, and represented as ellipses which illustrate the

Gaussian distribution of the feature relative positions. Static features are represented

by crosses and motion features by diamonds. Each feature has been colored with the

color of its corresponding parent. Features in yellow and magenta were assigned to

the background. Further examples from all classes are shown in Figure 9.16.

Video Frame

Feature Layer

Part Layer

Figure 9.15: Hierarchical human action model overlaid on a testing frame. Parts
are represented as ellipses, which illustrate the distribution of the relative position of
their children features. Static features are drawn as crosses, while motion features as
diamonds. The color of the feature indicates the feature parent. Features in magenta
and yellow belong to the background. The figure is best viewed in color

We investigated the performance of our method in frame-by-frame classification,

as well as video classification using the voting scheme presented above. The confusion

tables are shown in Figures 9.17(a) and 9.17(b). When classifying entire sequences,

our system can correctly categorize 72.8% of the testing videos. Note that the con-

fusions are reasonable in the sense that most of the time missclassification occurs

between very similar motions, for instance there is confusion between wave1, wave2,

and jacks, as well as confusion between run, walk, side, and jump (please refer to

Figure 9.14).
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(a) (b) (c) (d)

Figure 9.16: Learned hierarchical models for human actions. Each row illustrate a
different action category: bend, jack, jump, p-jump, run, side, walk, wave1, wave2.
Column (a) shows example frames from the original sequence. (b)-(d) show the three
mixture components for each action model. Static features are represented by crosses
and motion features by diamonds. Each image feature is colored according to its part
membership. Ellipses illustrate the variance of the position distributions for each
part. The figure is best viewed in color
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Figure 9.17: Experimental results with our hierarchical model for human actions.
(a) Video Classification: Rows are ground truth and columns are predicted labels.
The table summarizes the result of 9 runs in a leave-one-out procedure. The system
correctly classifies 72.8% of the testing sequences. (b) Frame-by-frame classification:
rows are ground truth and columns are predicted labels. The tables are the average
over nine runs in a leave-one-out procedure. In average, the algorithm assigns the
correct label to 55.0% of the testing frames

In order to evaluate the contribution of the hierarchical model, as well as the

use of dynamic and static features, we perform several control experiments. For this

purpose, we randomly select one subject and use the corresponding sequences as the

testing set. The videos from the remaining subjects are randomly split into training

and validation sets.

We evaluate the contribution of the mixture of hierarchical models by comparing

it to a one component hierarchical model and a bag of keypoints model. We believe

that a class of human action (for example, walking) can be represented by a small

number of distinctive (static or dynamic) poses. We have therefore chosen a mixture

of models to represent each action. In order to show that this representation is more

powerful than a single component, we have trained 1-component models for each

action class. Additionally, to demonstrate that including geometric information is

useful, we train bag of keypoints models for each action class. For this purpose, each
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Figure 9.18: Effect of model structure and video features on the action classification
accuracy: The plot shows a performance comparison of recognition accuracy under
different settings. Mixture indicates the use of a three-component mixture model;
NoMixture indicates the use of a 1-component model; and Bag denotes a pure bag
of keypoints model. On the left, the plot shows that the employment of our new
hierarchical model improves the performance over the use of pure bag-of-features
model. Also, using a mixture of models helps to account for the multimodality nature
of the action models, therefore better recognition is obtained when compared to the
1-component model. On the right plot, the results show that using a combination of
static and motion features provides the best description of the human actions, which
translates into the best recognition accuracy

sequence is represented as a histogram of static and dynamic features. The training

examples are kept in a database and new video frames are classified using a nearest

neighbor procedure. The bar plot on the left in Figure 9.18 shows the comparison

of the performance of each model under the described settings. The outcome of this

experiment supports the intuition that human actions contain certain multimodality

which can be better represented by a mixture of hierarchical models. The inclusion

of the constellation layer and the geometric constraints that it encodes is also useful,

since ignoring the geometric arrangement of features and adopting a bag of keypoints

model produces poorer classification results.

Finally, we also explore the contribution of each feature type into the classification

performance. We trained our mixture of hierarchical models using static features

only, dynamic features only and also using both types of features. The bar plot on

the right in Figure 9.18 shows the comparison of the performance of the model when
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using different types of features. These results empirically support the intuition that

a combination of both static and motion features provide the best representation

for human actions. Additionally, the experiment shows that if one is to choose a

single feature type, motion features are preferable; which is also intuitive in the sense

that motion features provides a richer representation of dynamic events than static

features.

The first reported classification results on this dataset appeared on [6]. Their

method achieved a classification error rate of 0.39%. It is however, difficult to make a

fair comparison. Their method requires a background subtraction procedure, global

motion compensation, and it cannot take classification decisions frame by frame.

Please also note, that our model is general in the sense that it aims to offer a generic

framework for human motion and pose categorization.

9.4 Discussion

In this part, we have explored the use of statistical models and local features in the

domain of human action categorization.

First, we have presented an unsupervised learning approach, i.e., a “bag of spatio-

temporal words” model combined with a space-time interest points detector, for hu-

man action categorization and localization. Using three challenging datasets, our

experiments show that the classification performance using our unsupervised learn-

ing approach is on par with the current state-of-the-art results obtained by fully

supervised training. Our algorithm can also localize multiple actions in complex mo-

tion sequences containing multiple actions. The results are promising, though we

acknowledge the lack of large and challenging video datasets to thoroughly test our

algorithm, which poses an interesting topic for future investigation.
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Second, we presented a hierarchical model of shape and appearance for human

action categorization. The model combines the strong shape representation of the

constellation model with the large number of features that utilizes the bag-of-words

model. Our constellation-of-bags-of-features model is able to combine static and

motion image features in a principled way, as well as perform categorization in a

frame-by-frame basis. Future directions include adopting robust features that help

to account for more general camera motion and unconstrained environments. We

believe this model has the potential to be able to characterize more complex motions

and configurations of the highly articulated human body.

Other interesting future endeavours involve the possibilities of using a unified

framework by combining generative and discriminative models for human action

recognition. For similar actions (e.g., “running” and “walking”), the classification

may benefit from a discriminative model. It would also be interesting to explore

other models that can incorporate more detailed geometric information, for example,

by using explicit models for the human body.
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Part IV

Recognizing Complex Actions by

Modeling Temporal Structure of

Simple Motion Segments
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Chapter 10

Introduction

Much recent research in human activity recognition has focused on the problem of

recognizing simple repetitive (walking, running, waving) and punctual actions (sitting

up, opening a door, hugging). However, many interesting human activities are charac-

terized by a complex temporal composition of simple actions. Automatic recognition

of such complex actions can benefit from a good understanding of temporal structures

as a contextual cue. We propose a framework for modeling motion by exploiting the

temporal structure of human activities. In our framework, we represent activities as

temporal compositions of motion segments. We train a discriminative model that en-

codes a temporal decomposition of video sequences, and appearance models for each

motion segment. In recognition, a query video is matched to the model according to

the learned appearances and motion segment decomposition. Classification is made

based on the quality of matching between the motion segment classifiers and the tem-

poral segments in the query sequence. To validate our approach, we introduce a new

dataset of complex Olympic Sports activities. We show that our algorithm performs

better than other state of the art methods.

We argue that to understand motion, it is critical to incorporate temporal con-

text information, particularly the temporal ordering of the movements. We propose
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a simple discriminative framework for classifying human activities by aggregating in-

formation from motion segments that are considered both for their visual features

as well as their temporal composition. An input video is automatically decomposed

temporally into motion segments of variable lengths. The classifier selects a discrimi-

native decomposition and combination of the segments for matching. Though simple

in its form, we highlight a couple of advantages of our framework compared to the

previous work.

First, depending on the time scale of the movement, actions have been tradition-

ally grouped into: short but punctual actions (e.g. drink, hug), simple but periodic

actions (e.g. walking, boxing), and more complex activities that are considered as a

composition of shorter or simpler actions (e.g. a long jump, cooking). Very different

algorithms have been proposed for these different types of motion, most of them take

advantage of the special properties within its domain, hence perform rather poorly on

other types. Our framework is a general one. No matter how simple or complex the

motion is, our classifier relies on a temporal composition of various motion segments.

Our basic philosophy is clear: temporal information helps action recognition at all

time scales.

On the other hand, we note that some work has taken the approach of decom-

posing actions into “hidden states” that correspond to meaningful motion segments

(i.e. HMM’s, HCRF’s, etc.). In contrast, we let the model automatically discover a

robust combination of motion segments that improve the discriminative power of the

classifier. The result is a much simpler model that does not unnecessarily suffer from

the difficult intermediate recognition step.

In order to test the efficacy of our method, we introduce a new dataset that focuses

on complex motions in Olympic Sports, which can be difficult to discriminate without

modeling the temporal structures. Our algorithm shows very promising results.
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The rest of Part IV is organized as follows. Section 10.1 overviews some of the

related work. Chapter 11 presents our framework by first introducing the video

representations that can be employed in conjunction with our model (Section 11.1)

and then describing the details of the model (Section 11.2). We present experimental

validation in Chapter 12.

10.1 Related Work

A considerable amount of work has studied the recognition of human actions in video.

Here we overview related work but refer the reader to [91, 35] for a more complete

survey.

A number of approaches have adopted the bag of spatio-temporal interest points

[52] representation for human action recognition. This representation can be com-

bined with either discriminative [63, 56] classifiers, semi-latent topic models [100]

or unsupervised generative [69, 103] models. Such holistic representation of video

sequences ignores temporal ordering and arrangement of features in the sequence.

Some researchers have studied the use of temporal structures for recognizing hu-

man activities. Methods based on dynamical Bayesian networks and Markov models

have shown promise but either require manual design by experts [57] or detailed

training data that can be expensive to collect [45]. Other work has aimed at con-

structing plausible temporal structures [38] in the actions of different agents but does

not consider the temporal composition within the movements of a single subject, in

part due to their holistic representation. On the other hand, discriminative models of

temporal context have also being applied for classification of simple motions in rather

simplified environments [87, 98, 72, 77].

In addition to temporal structures, other contextual information can benefit ac-

tivity recognition, such as background scene context [63] and object interactions [38,
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105]. Our proposed framework focuses on incorporating temporal context, but does

not exclude future work for combining more contextual information.

Our approach to capturing temporal structures is related to part-based models

for object recognition. Both generative [11, 29, 33, 65] and discriminative [28, 48]

models have shown promise in leveraging the spatial structures among parts for object

recognition.

In the following chapters, we present a new representation for human activities in

video. The key observation is that many activities can be described as a temporal

composition of simple motion segments. At the global temporal level, we model the

distinctive overall statistics of the activity. At shorter temporal ranges, we model

the patterns in motion segments of shorter duration that are arranged temporally to

compose the overall activity. Moreover, such temporal arrangement considered by

our model is not rigid, instead it accounts for the uncertainty in the exact temporal

location of each motion segment.

A preliminary version of this work appeared in ECCV 2010 [64].
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Chapter 11

A Discriminative Model of

Temporal Structure of Simple

Motion Segments for Complex

Action Classification

11.1 Video Representation

Our model of human actions can be applied over a variety of video descriptors.

The key requirement is that a descriptor can be computed over multiple temporal

scales. The requirement arises because our motion segment classifiers can operate

on video segments of varying length. Frame-based representations and representa-

tions based on histograms are particular examples of descriptors that fit well to our

framework. Here, we adopt a representation based on histograms of spatio-temporal

interest points.

Interest point based descriptors are attractive specially when tracking the sub-

ject performing the activity is difficult or not available. Several methods have been
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Figure 11.1: Video representation in our discriminative model for complex actions.
Our framework can be applied over a variety of video data representations. Here we
adopt a representation based on spatio-temporal interest points. This figure shows
example spatio-temporal interest points detected with the 3D Harris corner method
from [52]. Video patches are extracted around each point, and described by their
local shape and motion patterns

proposed for detecting spatio-temporal interest points in sequences [52, 23]. In our

approach, we use the 3-D Harris corner detector [52]. Each interest point is described

by HoG (Histogram of Gradients) and HoF (Histogram of Flow) descriptors [56]. Fur-

thermore, we vector quantize the descriptors by computing memberships with respect

to a descriptor codebook, which is obtained by k-means clustering of the descriptors

in the training set. During model learning and matching, we compute histograms of

codebook memberships over particular temporal ranges of a given video, which are

denoted by ψi in the following.

11.2 Our Discriminative Model

In this section we present our framework for recognizing complex human activities in

video. We propose a temporal model for recognizing human actions that incorporates

simple motion segment classifiers of multiple temporal scales. Figure 11.2 shows a

schematic illustration of our human action model. The basic philosophy is very sim-

ple: a video sequence is first decomposed into many temporal segments of variable

length (including the degenerate case of the full sequence itself). Each video segment

is matched against one of the motion segment classifiers by measuring image-based

similarities as well as the temporal location of the segment with respect to the full
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Figure 11.2: Structure of our discriminative model for complex action recognition.
The input video V is described by histograms of vector quantized interest points,
which are computed over multiple temporal ranges. Each motion segment classi-
fier Ai has a particular temporal scale, and it is matched to the features ψi(V, hi)
from temporal segments of the input sequence of that temporal extent. The optimal
location of each motion segment classifier is determined by the appearance similar-
ity (Ai · ψi(V, hi)) and penalty of temporal displacement from the anchor point ti
(τi ·ψ(hi− ti)). The overall matching score combines scores of individual components.
A classification decision is made by thresholding the resulting matching score. See
Section 11.2 for more details

sequence. The best matching scores from each motion segment classifier are accumu-

lated to obtain a measure of the matching quality between the full action model and

the query video. As Figure 11.2 illustrates, an action model encodes motion infor-

mation at multiple temporal scales. It also encodes the ordering in which the motion

segments typically appear in the sequence. In the following, we discuss the details of

the model, the recognition process and learning algorithm.

112



11.2.1 Model description

Here we introduce the model of human actions, which is illustrated in Figure 11.2.

Our full action model is composed by a set of K motion segment classifiers A1, ..., AK ,

each of them operating at a particular temporal scale. Each motion segment classifier

Ai operates over a histogram of quantized interest points extracted from a temporal

segment whose length is defined by the temporal scale of the classifier si. In addition

to the temporal scale, each motion segment classifier also specifies a temporal location

centered at its preferred anchor point ti. Lastly, the motion segment classifier is

enriched with a flexible displacement model τi that captures the variability in the

exact placement of the motion segment Ai within the sequence.

We summarize the parameters of our model with the parameter vector w as the

concatenation of the motion segment classifiers and the temporal displacement pa-

rameters,

w = (A1, ..., AK , τ1, ..., τK). (11.1)

11.2.2 Model properties

Our model addresses the need to consider temporal structure in the task of human

activity classification. In the following, we discuss some important properties of our

framework.

Coarse-to-fine motion segment classifiers Our model contains multiple classi-

fiers at different time scales, enabling it to capture characteristic motions of various

temporal granularity. On one end, holistic bag-of-features operate at the coarsest

scale, while frame-based methods operate at the finest scale. Our framework has the

flexibility to operate between these two ends of the temporal spectrum, and it closes

the gap by allowing multiple classifiers to reside in a continuum of temporal scales.
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Temporal Context While discriminative appearance is captured by our multiple

classifiers at different time scales, the location and order in which the motion segments

occur in the overall activity also offer rich information about the activity itself. Our

framework is able to capture such temporal context: the anchor points of the motion

segment classifiers encode the temporal structure of the activity. In particular, these

canonical positions prohibit the classifiers from matching time segments that are

distant from them. This implicitly carries ordering constraints that are useful for

discriminating human activities.

Flexible Model Equipped with classifiers of multiple time scales and the temporal

structure embedded in their anchor points, our model is capable of searching for a

best match in a query sequence and score it accordingly. However, the temporal

structure in videos of the same class might not be perfectly aligned. To handle intra-

class variance, our model incorporates a temporal displacement penalty that allows

the optimal placement of the each motion segment to deviate from its anchor point.

11.3 Recognition

Given a trained model, the task in recognition is to find the best matching of the

model to an input sequence. This requires finding the best scoring placement for

each of the K motion segment classifiers. We denote a particular placement of the

motion segment classifiers within a sequence V by a hypothesis H = (h1, ..., hk). Each

hi defines the temporal position for the i-th motion segment classifier. We measure

the matching quality of motion segment classifier Ai at location hi by favoring good

appearance similarity between the motion segment classifier and the video features,

and penalizing for the temporal misplacement of the motion segment classifier when

hi is far from the anchor point ti. That is, the matching score for the i-th motion
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segment classifier is

Ai · ψi(V, hi) − τi · ψdi(hi − ti). (11.2)

In the first term of Equation (11.2), which captures the appearance similarity,

ψi(V, hi) is the appearance feature vector (i.e. histogram of quantized interest points)

extracted at location hi with scale si. In our experiments, we implement the classifier

Ai with a χ2 support vector machine. The kernel function for Ai is given by

K(xk, xj) = exp

(
− 1

2S

D∑
r=1

(xkr − xjr)
2

xkr + xjr

)
, (11.3)

where S denotes the mean distance among training examples, {xki}i=1...D are the

elements of the histogram xk and D is the histogram dimensionality. In practice, D

is equal to the size of the codebook. In the second term of Equation (11.2), which

captures the temporal misplacement penalty, ψdi(hi − ti) denotes the displacement

feature. The penalty, parametrized by τi = {αi, βi}, is a quadratic function of the

motion segment displacement and given by

τi · ψdi(hi − ti) = αi · (hi − ti)
2 + βi · (hi − ti). (11.4)

We obtain an overall matching score for hypothesis H by accumulating the scores

from all motion segment classifiers in the model:

K∑
i=1

Ai · ψi(V, hi) − τi · ψdi(hi − ti). (11.5)
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Let fw(V ) be a scoring function that evaluates sequence V . In recognition, we

consider all possible hypotheses and choose the one with the best matching score:

fw(V ) = max
H

K∑
i=1

Ai · ψi(V, hi) − τi · ψdi(hi − ti). (11.6)

A binary classification decision for input video V is done by thresholding the matching

score fw(V ).

There is a large number of hypotheses for a given input video sequence. How-

ever, note that once the appearance similarities between the video sequence and each

motion segment classifier are computed, selecting the hypothesis with the best match-

ing score can be done efficiently using dynamic programming and distance transform

techniques [29] in a similar fashion to [28, 30].

11.4 Learning

Suppose we are given a set of example sequences {V 1, . . . , V N} and their correspond-

ing class labels y1:N , with yi ∈ {1,−1}. Our goal is to use the training examples

to learn the model parameters w. This can be formulated as the minimization of a

discriminative cost function. In particular, we consider the following minimization

problem:

min
w

1

2
∥w∥2 + C

N∑
i=1

max(0, 1 − yifw(V i)), (11.7)

where C controls the relative weight of the hinge loss term. This is the formulation of

a Latent Support Vector Machine (LSVM) [28]. In the LSVM framework, the scoring

function maximizes over the hidden variables. In our method, the hidden variables

correspond to the best locations of the motion segment classifiers on each training

video. Note that it is not necessary to supervise the locations of the motion segment
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classifiers during training, instead this is a weakly supervised setting, where only a

class label is provided for each example.

The optimization problem described above is, in general, non-convex. However, it

has been shown in [28] that the objective function is convex for the negative examples,

and also convex for the positive examples when the hidden variables are fixed.

This leads to an iterative learning algorithm that alternates between estimating

model parameters and estimating the hidden variables for the positive training exam-

ples. In summary, the procedure is as follows. In the first step, the model parameters

w are fixed. The best scoring locations H⋆
p of the motion segment classifiers are se-

lected for each positive example p. This is achieved by running the matching process

described in Section 11.3 on the positive videos. In the second step, by fixing the hid-

den variables of the positive examples to the locations given by H⋆
p , the optimization

problem in Equation (11.7) becomes convex. We select negative examples by running

the matching process in all negative training videos and retrieving all hypotheses with

large matching score. We train the parameters w using LIBSVM [13] on the resulting

positive and negative examples. This process is repeated for a fixed small number of

iterations.

In most cases, the iterative algorithm described above requires careful initializa-

tion. We choose a simple initialization heuristic. First, we train a classifier with a

single motion segment classifier that covers the entire sequence. This is equivalent to

training a χ2-SVM on a holistic bag of features representation. We then augment the

model with the remaining K−1 motion segment classifiers. The location and scale of

each additional motion segment classifier is selected so that it covers a temporal range

that correlates well with the global motion segment classifier. This favors temporal

segments that exhibit features important for overall discrimination.
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Chapter 12

Experimental results

In order to test our framework, we consider three experimental scenarios. First,

we test the ability of our approach to discriminate simple actions on a benchmark

dataset. Second, we test the effectiveness of our model at leveraging the temporal

structure in human actions on a set of synthesized complex actions. Last, we present

a new challenging Olympic Sports Dataset and show promising classification results

with our method.

12.1 Simple Actions

We use the KTH Human actions dataset [80] to test the ability of our method to

classify simple motions. The dataset contains 6 actions performed by 25 actors, for

a total of 2396 sequences. We follow the experimental settings described in [80]. In

all experiments, we adopt a representation based on spatio-temporal interest points

described by concatenated HoG/HoF descriptors. We construct a codebook of local

spatio-temporal patches from feature descriptors in the training set. We set the

number of codewords to be 1000. Experimental results are shown in Table 12.1.

A direct comparison is possible to the methods that follow the same experimental
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Figure 12.1: Example of our learned discriminative model. In this illustration, the
horizontal axis represents time. Each row corresponds to a motion segment classifier
learned by our model whose temporal extent is indicated by its vertical location. The
appearance of the motion segment is illustrated by a few example frames. The asso-
ciated dot indicates the anchor position ti of the motion segment relative to the full
sequence. The parameters of the temporal misplacement penalty τi are represented
by the parabola centered at the anchor point. Notice that the vertical arrangement
of the motion segments shows the distinct temporal scales at which each classifier
operates

Table 12.1: Left: Action classification accuracy in the KTH dataset. Right: Com-
parison of our model to current state of the art methods

Action Class Our Model
walking 94.4%
running 79.5%
jogging 78.2%

hand-waving 99.9%
hand-clapping 96.5%

boxing 99.2%

Algorithm Perf.
Ours 91.3%

Wang et al. [96] 92.1%
Laptev et al. [56] 91.8%
Wong et al. [103] 86.7%
Schuldt et al. [80] 71.5%

Kim et al. [49] 95%

setup [56, 103, 80, 96]. We note that our method shows competitive results, but its

classification accuracy is slightly lower than the best result reported in [96].
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Figure 12.2: A learned model for the synthesized complex action ‘wave’-‘jump’-‘jack’.
See Figure 12.1 for a description of the illustration

12.2 Synthesized Complex Actions

In this experiment, we aim to test the ability of our model to leverage the temporal

structure of human actions. In order to test this property in a controlled setting,

we construct a synthesized set of complex actions by concatenating 3 simple motions

from the Weizmann action database: ‘jump’, ‘wave’ and ’jack’. In total, we synthesize

6 complex actions classes by concatenating one video of each simple motion into a

long sequence.

In this test, a baseline model that uses a single motion segment classifier covering

the entire video sequence performs at random chance or ≈ 17%. The simple holistic

bag-of-features has trouble differentiating actions in this set since the overall statistics

are nearly identical. On the other hand, our model which takes advantage of temporal

structure and orderings, can easily discriminate the 6 classes and achieve perfect

classification performance at 100%. In Figure 12.2 we show a learned model for

the complex action composed by ‘wave’-‘jump’-‘jack’. Notice that our model nicely

captures discriminative motion segments such as the transitions between ‘jump’ and

‘jack’.
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Table 12.2: Average Precision (AP) values for the complex action classification task
in our Olympic Sports Dataset

Sport Our Laptev et al.
class Method [56]

high-jump 68.9% 52.4%
long-jump 74.8% 66.8%
triple-jump 52.3% 36.1%
pole-vault 82.0% 47.8%

gymnastics-vault 86.1% 88.6%
shot-put 62.1% 56.2%
snatch 69.2% 41.8%

clean-jerk 84.1% 83.2%
javelin-throw 74.6% 61.1%

hammer-throw 77.5% 65.1%
discus-throw 58.5% 37.4%

diving-platform 87.2% 91.5%
diving-springboard 77.2% 80.7%
basketball-layup 77.9% 75.8%

bowling 72.7% 66.7%
tennis-serve 49.1% 39.6%

Average (AAP) 72.1% 62.0%

12.3 Complex Actions: Olympic Sports Dataset

We have collected a dataset of Olympic Sports activities from YouTube sequences.

Our dataset contains 16 sport classes, with 50 sequences per class. See Figure 12.3

for example frames from the dataset. The sport activities depicted in the dataset

contain complex motions that go beyond simple punctual or repetitive actions 1. For

instance, sequences from the long-jump action class, show an athlete first standing

still, in preparation for his/her jump, followed by running, jumping, landing and

finally standing up.

We split the videos from each class in the dataset into 40 sequences for training

and 10 for testing. We illustrate two of the learned models in Figure 12.4. Table 12.2

shows the classification results of our algorithm. We compare the performance of our

1In contrast to other sport datasets such as [77], which contains simple periodic or punctual
actions such as walking, running, golf-swing, ball-kicking.
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Figure 12.3: Olympic Sports Dataset. Our dataset contains 50 videos from each of 16
classes: high jump, long jump, triple jump, pole vault, discus throw, hammer throw,
javelin throw, shot put, basketball layup, bowling, tennis serve, platform (diving),
springboard (diving), snatch (weightlifting), clean and jerk (weightlifting) and vault
(gymnastics). The sequences, obtained from YouTube, contain severe occlusions,
camera movements, compression artifacts, etc.

model to the multi-channel method of [56], which incorporates rigid spatio-temporal

binnings and captures a rough temporal ordering of features.

Finally, Figure 12.5 shows three learned models of actions in the Olympic Sports

dataset, along with matchings to some testing sequences. In the long jump example,

the first motion segment classifier covers the running motion at the beginning of the

sequence. This motion segment has a low displacement penalty over a large temporal

range as indicated by its wide parabola. It suggests that the model has learned to

tolerate large displacements in the running stage of this activity. On the other hand,

in the vault example, the middle motion segment classifier has a low matching score

122



High Jump Model

Time

S
e

g
m

e
n

t 
T

im
e

 S
ca

le

Time

S
e

g
m

e
n

t 
T

im
e

 S
ca

le

Clean and Jerk Model

Figure 12.4: Learned model for two complex actions in the Olympic Sports Dataset:
high-jump and clean-and-jerk. See Figure 12.1 for a description of the illustration

to the top testing sequence. However, the matching scores in other temporal segments

are high, which provides enough evidence to the full action model for classifying this

sequence correctly. Similarly, the bottom clean and jerk sequence in the snatch model

obtains a high matching score for the last motion segment, but the evidence from the

motion segments is rather low. We also observe that our learned motion segment

classifiers display a wide range of temporal scales, indicating that our model is able

to capture characteristic motion patterns at multiple scales. For example, the longer
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Figure 12.5: Illustration of matching between learned action models for long jump,
vault and snatch and some testing sequences. Each group depicts two testing se-
quences (top and bottom), as well as an illustration of the temporal displacement
penalty parameters (middle). Green boxes surround matched temporal segments that
are most compatible with the corresponding motion segment classifiers. Red boxes
indicate temporal segments that are matched to the motion segment model with a
low matching score. The arrows indicate the automatically selected best placement
for each motion segment

segments that contain the athlete holding the weights in the snatch model, and the

shorter segments that enclose a jumping person in the long jump model.

12.4 Discussion

We have empirically shown that incorporating temporal structures is beneficial for

recognizing both complex human activities as well as simple actions. Our video

representation is based on vector-quantized spatio-temporal features, but instead of
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adopting a global bag-of-words representation, we aim to maintain some of the tem-

poral ordering among features. This enables our model to use temporal structures to

discriminate among activities. We presented a discriminative model that decomposes

complex actions into a set of simple motion segments and is able to capture the tem-

poral structure among such motion segments. We show promising results in a new

dataset of Olympic Sports.

We think there are many potential research directions that can build upon this

work. First, our motion segments are represented by the histogram of local features

within the segment, so no information about the spatial arrangement of features is

encoded. It would be interesting to incorporate a spatial component to this model.

Second, while our model does not require tracking of the actor, it might be useful

to add tracking of the subject specially in applications with crowded scenarios. This

could be achieved by the spatial model or by using tracking as a pre-processing step.

Also, while we focus on exploiting the temporal context cue, other types of contextual

information are very useful. As shown by others, surrounding objects and the scene

in which the activity is performed, can significantly improve recognition rates.
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Part V

Future Directions
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Computer vision research in automatic understanding of human behavior contin-

ues to be a very active topic. There are numerous applications that could benefit

tremendously from robust human motion understanding. This is a broad field of

research and there are still many unexplored areas.

In this work, we approached the problems of segmenting moving humans from

video sequences and categorizing simple and complex actions. While our results are

very promising, these problems remain challenging in their most general settings.

In the area of automatic extraction and segmentation of moving people from

video, we envision algorithms that are extremely fast and highly accurate at this

task. Consider the current state of face detection technology, which has reached mass

consumption through point and shoot cameras and webcam software. Robustness,

speed and accuracy are key in the success of this technology. It is not difficult to imag-

ine many useful tools that could be built if the technology for segmenting full moving

human bodies reaches a similar state. Particular future directions for our work in

this topic include formulating our framework to allow processing in an online fash-

ion. As presented here, our algorithms require observing the entire sequence before

processing starts. Applications where the extraction is needed as soon as the video

is taken will benefit from an online formulation. Other interesting directions include

incorporating the ability to track multiple people simultaneously, which can help im-

proving occlusion handling. Additional bottom-up cues such as spatio-temporal video

segmentation can also help to improve the segmentation accuracy.

In this work we also explored methods for recognizing simple and complex actions

from local spatio-temporal interest points. In general, state of the art algorithms

in action categorization are considered less mature than algorithms for object detec-

tion and recognition. We see future research in this area taking into account higher

level motion semantics and ultimately achieving understanding of the intentions and

goals of the actor. As future extensions to the work presented here, further research
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will investigate combining spatial structures and temporal structures simultaneously.

This will be important especially when the number of actions increases, since sub-

tle variations in space and time structure could be critical for discrimination. A

particular approach in this direction would integrate spatial cues from human body

configurations given by a pose estimation algorithm. These fine grain spatial cues

would also allow to incorporate temporal structure cues at the level of limb and torso

movements. On the other hand, future directions might also incorporate cues re-

garding the objects involved the actions of interest. These cues will provide crucial

information for disambiguating goals and intentions between motions that would be

identical otherwise. Further contextual cues related to the surrounding scene, cam-

era motion, object trajectories have the potential to provide valuable information.

From a broader perspective, it will be interesting to push the activity understanding

research to be able to handle motions at a larger range of temporal scales. In our

work, we have focused on simple repetitive actions (e.g. , walking, hand waving) and

complex sport-related actions (e.g. , long jump, weight lifting). An important future

task is to develop activity recognition systems that are capable of analyzing simple

atomic movements (e.g. , raising one’s hand, standing up) as well as very complex

activities (e.g. , cooking a meal, shopping for groceries). We have provided some

initial foundations on leveraging the temporal and spatial structures for recognizing

actions at the middle of this spectrum. Further research is necessary to broaden its

applicability to a larger range of temporal scales.

Finally, it is natural to extend our work in the areas of automatic segmentation of

moving people from video and human action classification by integrating both tasks.

One direction would consider using the two stages as independent components in

the processing pipeline. In this scenario, one would first automatically extract the

spatio-temporal volume that encloses each actor in the video sequences of interest.

A second stage would then focus on learning action models and recognizing actions
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from the extracted video sub-volumes. A drawback of such approach is that there is

little interaction between the action learning/recognition and extraction task. Our

current research is exploring a tighter integration between a human tracking module

and an action recognition modules. We believe that closely performing simultaneous

action recognition and tracking will create positive feedback, potentially improving

the performance of both tasks. In particular, we are investigating a new discrim-

inative formulation for simultaneous tracking and recognition of human actions in

video. Our current formulation aims at learning to track and recognize actions from

weakly labeled data. This formulation is able to perform tracking and recognition

simultaneously, which enables accurate spatio-temporal localization of the actions of

interest and provides positive feedback between both tasks.
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