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Abstract

Human can effortlessly perceive rich amount of semantic information from our visual

world including objects within it, the scene environment, and event/activity taking

place etc.. Such information has been critical for us to enjoy our life. In computer

vision, an important, open problem is to endow computers/intelligent agents the

ability to extract semantically meaningful information as human does.

The primary goal of my research is to design and demonstrate visual recogni-

tion algorithms to bridge the gap between visual intelligence and human perception.

Towards this goal, we have developed rigid statistical models to represent the large

scale real-world challenging data especially those from Internet. Visual features are

the starting-point of computer vision algorithms. We propose a novel high-level image

representation to encode the abundant semantic and structural information within

an image.

We first focus on introducing principle generative models for modeling our rich

visual world, from recognizing objects in an image, to a detailed understanding of

scene/activity images, to inferring the relationship among large scale user images

and related textual data. We propose a non-parametric topic model, hierarchical

Dirichlet Process (HDP), in a robust noise rejection system for object recognition,

learning the object model and re-ranking noisy web images containing the objects in

an iterative online fashion. It learns the object model in a fully automatic way, freeing

the researchers from heavy human labor in labeling training examples for recognizing

objects. This framework has been tested on a large scale corpus of over 400 thousand

images and also won the Software Robot first Prize in the 2007 Semantic Visual

Recognition Competition.
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Understanding our visual world is beyond simply recognizing objects. We then

present a generative model for understanding complex scenes that involve objects,

humans and scene backgrounds to interact together. For detailed understanding of

an image, we propose the very first model for event recognition in a static image

by combining the objects appear in the event and the scene environment, where the

event takes place. We are not only interested in the category prediction of an unknown

image, but also in how pixels form coherent objects and the semantic concepts related

to them. We propose the first principled graphical model that tackles three very

challenging vision tasks in one framework: image classification, object annotation,

and object segmentation. Our statistical model encodes the relationships of pixel

visual properties, object identities, textual concepts and the image class. It is a

much larger scale departure from the previous work, using real-world challenging user

photos such as noisy, Flickr images and user tags to learn the model in an automatic

framework. Interpreting single images is an important corner stone for inferring

relationships among large scale images to effectively organize them. We propose a

joint visual-textual model based upon the nested Chinese Restaurant Process (nCRP)

model. Our model combines textual semantics (user tags) with image visual contents,

which learns a semantically and visually meaningful image hierarchy on thousands of

Flickr user images with noisy user tags. The hierarchy performs significantly better

on image classification and annotation performance as a knowledge base comparing

to the state-of-the-art algorithms.

Visual recognition algorithms start from representation of the images, the so-

called image feature. While the goal of visual recognition is to recognize object and

scene contents that are semantically meaningful, all previous work have relied on low-

level feature representations such as filter banks, textures, and colors, creating the

well known semantic gap. We propose a fundamentally new image feature, Object

Bank, which uses hundreds and thousands of object sensing filters (i.e. pre-trained

object detectors) to represent an image. Instead of representing an image based on

its color, texture or likewise, Object Bank depicts an image by objects appearing

in the image and their locations. Encoding rich descriptive semantic and structural

information of an image, Object Bank is extremely robust and powerful for complex
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scene understanding, including classification, retrieval and annotation.
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2.11 Left: Influence of unannotated data (Experiment B). Classification

performance as a function of number of unannotated images. The y ax-

is represents the average classification performance. The x axis represents

the number of unlabeled images. It shows the unannotated images also

contribute to the learning process of our model. Right: Effect of noise

in tags (Experiment C). Performance of different models as a function

of noise percentage in the tags. The y axis is average classification per-

formance. The x axis represents the percentage of noisy tags. While the

performance of corr-LDA decreases with the increase of percentage of noise,

our model performs robustly by selectively learning the related tags. . . . 78

xxi



2.12 Comparison of object segmentation results with or without the top down

scene class influence. Each triplet of images show results of one scene class

(Experiment F). The left image shows object segmentation result with-

out the top down contextual information, i.e. by setting the probability

distribution of object given scene class to a fixed uniform distribution. The

center image shows object segmentation result by using the full model. We

observe objects are more accurately recognized and delineated. The right

image shows the probability of the 5 most likely objects per scene class.

This probability encodes the top down contextual information. . . . . . . 81

3.1 Traditional ways of organizing and browsing digital images include using dates or

filenames, which can be a problem for large sets of images. Images organized by

semantically meaningful hierarchy could be more useful. . . . . . . . . . . . . 84

3.2 Schematic illustration of associating a training image in the semantivi-

sual hierarchical model (left) and assigning a test image to a node on

a given path of the hierarchy (right). The hierarchical model is sum-

marized in variable T , where only one path is explicitly drawn from

C1 to Cn. Left of the model: Two training images and their Flickr

tags are shown. Each image is further decomposed into regions. Each

region is characterized by the features demonstrated in the bounding

box on the left. A region is assigned to a node that best depicts its

semantic meaning. Right of the model: A query image is assigned

to a path based on the distribution of the concepts it contains. To

further visualize the image on a particular node of the path, we choose

the node that corresponds to the dominating region concepts in the

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 The graphical model (Top) and the notations of the variables(Bottom).

88

3.4 Example images from each of the 40 Flickr classes. . . . . . . . . . . 91

xxii
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6.1 (a) Classification performance (and s.t.d.) w.r.t number of training images. Each
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Part I

Introduction

1



2

One of the most exciting revolutions in recent human history is the information

revolution. The largest component of the digital universe is images, captured by more

than 1 billion devices in the world, from digital cameras and camera phones to medical

scanners and security cameras. With this exponential growth of image data, an

important question that faces today’s computer engineers and scientists is how to take

advantage of this resource to further human knowledge and advance human society.

Successful solutions to this question have numerous applications including automatic

multimedia library indexing, retrieval and organization, inferring social interaction

through seamless sharing photos, educational, and clinical assistive technology, and

security systems.

Visual signals are notoriously complex and variable due to both photometric

changes of images (such as varying illuminations and shadows) as well as geomet-

ric changes (such as view point variations, occlusions, etc.). Nevertheless, humans

can readily perceive the semantic meaning of an image: what objects are present,

what the scene environment is, and what kind activities are happening. It brings for-

ward the problem of semantic image understanding, i.e. developing computer vision

algorithms to effectively extract useful human understandable meaning from the vast

amount of visual information.

In this work, we focus on using rigorous machine learning techniques to tackle the

challenging problems of large-scale semantic image understanding, especially focusing

on model learning and image representation. We develop algorithms that greatly ben-

efited from the use of large-scale noisy Internet images. On the model representation

side, we have been working on modeling images at multiple depths: object recogni-

tion, scene understanding and hierarchical image structure learning, which we discuss

in Part II. On the image representation side, we propose a fundamentally novel high

level image representation for high level visual recognition tasks. We elaborate the

discussion of this high level image representation in Part III.

In Chapter 1, we discuss a fundamental task in image understanding, object recog-

nition. Abundant data helps to train a robust recognition system, and a good recog-

nition system can help in collecting a large number of relevant web images which

can be subsequently be used to refine the system. Humans continuously update the
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knowledge of objects when new examples are observed. We propose a novel object

recognition algorithm called OPTIMOL by adapting a non-parametric latent topic

model and an incremental learning framework emulating the human learning process.

This algorithm is capable of automatically collecting much larger object category

datasets while learning robust object category models from noisy Internet images

and performing meaningful image annotation in real world scenarios. OPTIMOL is

one of the pioneering work in harnessing noisy Internet resources towards large-scale

recognition of real-world cluttered images.

While recognizing isolated objects and object classes is a critical component of

visual recognition, a lot more is needed to achieve a complete understanding of a

visual scene. Take a picture of a polo game as an example. Often within a sin-

gle glance, humans are able to classify this image as a polo game (high-level image

classification), recognize different objects such as horse and grass within the scene

(annotation), and localize and delineate where the objects are in the scene (segmen-

tation). Classification, annotation and segmentation are each by itself a challenging

task. However, they are mutually beneficial to each other. Leveraging on this fact,

in Chapter 2, we discuss our unified framework to recognize, annotate and segment

the objects within an image, allowing for improved scene categorization performance.

It is the first principled graphical model that tackles these three very challenging

vision tasks in one framework. Our approach is the pioneering work in event and

complex scene understanding in static images. Learning scalability is a critical issue

when considering practical applications of computer vision algorithms. We design a

framework to tackle the challenging recognition problems on real world Internet im-

ages, which offers, for the first time, a principled method to account for noise related

to either erroneous or missing correspondences between visual concepts and textual

annotations. It performs automatic learning from Internet images and tags, hence

offering a scalable approach with no additional human labor.

Semantic image understanding of individual images is helpful for inferring the

relationship among images based on visual content. A meaningful image hierarchy

can ease the human effort in organizing thousands and millions of pictures (e.g.,

personal albums). Two types of hierarchies have recently been explored in computer
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vision for describing the relationship among images: language-based hierarchy and

low-level visual feature-based hierarchy. Pure language-based lexicon taxonomies,

such as WordNet [103], are useful to guide the meaningful organization of images.

However, they ignore important visual information that connects images together.

On the other hand, purely visual feature-based hierarchies [7, 123] are difficult to

interpret, and arguably not as useful. In Chapter 3, we propose to automatically

construct a semantically and visually meaningful hierarchy of texts and images on the

Internet. We introduce a non-parametric hierarchical model which jointly models the

images and their textual counterparts. The hierarchical model encourages a flexible

data structure imposed by its non-parametric property. The quality of the hierarchy

is quantitatively evaluated by human subjects. Furthermore, we demonstrate that a

good image hierarchy can serve as a knowledge ontology for end tasks such as image

retrieval, annotation and classification.

Besides the model representation which has shown effectiveness in representing

our complex visual world, another important problem we address in this thesis is the

image feature representation. Any visual recognition task using computer vision al-

gorithms starts with feature representation, the process of turning pixels into a vector

of numbers for further computation and inference. A great deal of research has been

conducted in this area, most of which are low level based image representations such

as some variant of image gradients, textures and/or colors. Robust low-level image

features have been proven to be effective representations for a variety of tasks such as

object recognition and scene classification; however, such image representation carry

little semantic meanings, creating what is known as a semantic gap for high-level

visual tasks. In Part III, we propose a high-level image representation, called the Ob-

ject Bank , where an image is represented as a scale-invariant response map of a large

number of pre-trained generic object detectors, universally applicable to any testing

dataset or visual task. Object Bank is a fundamentally new image representation,

which encodes semantic and spatial information of the objects within an image. It

is a sharp departure from all previous image representations and provides essential

information for semantic image understanding. Semantically meaningful information

of images can be effectively inferred based upon their Object Bank representation
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in an unsupervised fashion. Using very simple, of-the-shelf classifiers such as linear

support vector machines and logistic regression, we show that this high-level image

representation can be used effectively for high level visual tasks including object and

scene image classification, image annotation, content based image retrieval and se-

mantic based image retrieval. The results are superior to reported state-of-the-arts

performance on a number of standard benchmark datasets. To achieve more efficient

and scalable representation while discover semantically meaningful feature patterns

of complex scene images, we propose to perform content-based compression on Ob-

ject Bank via a regularized logistic regression method and an unsupervised feature

learning method.



Part II

Probabilistic Models for Semantic

Image Understanding

6
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The proliferation of digital camera allows people to easily capture the exciting mo-

ments in their lives, upload to online photo sharing websites, and share with friends.

With the rapid growth of the Internet and digital camera, large amount of visual

data such as images has emerged as a central player of the information age. It also

confronts vision researchers the problem of finding effective ways to navigate the vast

amount of visual information in the digital world. To solve this problem, semantic

image understanding plays a vital role. We introduce the probabilistic models we

developed to tackle semantic image understanding of challenging real-world images

in this part. Specifically, in Chapter 1, we discuss a novel approach for object recogni-

tion, an important classical problem in semantic image understanding, by harnessing

the vast amount of images on the Internet despite their noisiness. In Chapter 2, we

introduce a more ambitious and less investigated problem: total scene understand-

ing towards a complete understanding of images. Lastly, in Chapter 3, we extend

the probabilistic model in total scene understanding to a non-parametric hierarchi-

cal one to infer image relationships among large scale user photos and automatically

construct meaningful hierarchy encoded with semantic meaning and visual similarity.



Chapter 1

Learning object model from noisy

Internet images

One of the holy grail of computer vision research is object recognition, i.e., describe

the identities of objects and localize them in the images. Over the years, significant

amount of efforts have been paid to develop algorithms for learning and modeling

generic objects [107, 13, 43, 48, 51, 54, 83, 86, 87]. In order to develop effective

object categorization algorithms, researchers rely on a critical resource: an accurate

object class dataset. A good dataset serves as training data as well as an evaluation

benchmark. A handful of large scale datasets currently serve such a purpose, such

as Caltech101/256 [41][64], the UIUC car dataset [2], LotusHill [145], LableMe [119],

[34] etc. Sec. 1.1 will elaborate on the strengths and weaknesses of these datasets.

In short, all of them, however, have a rather limited number of images and offer no

possibility of expansion other than with extremely costly manual labor. Considering

the numerous types of objects exist in our world and how fast the number grows

everyday, how the traditional object recognition algorithms going to be scalable to

recognize them with the existing datasets?

The explosion of the Internet provides us with a tremendous amount of images

shared online, which can serve as abundant training data for training the object

models. However, this data does not come for free. Type the word “airplane” in your

favorite Internet search image engine, say Google Image (or Yahoo!, Bing, flickr.com,

8
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etc.). What do you get? Of the thousands of images these search engines return,

only a small fraction would be considered good airplane images (∼ 15% [51]). It is

fair to say that for most of today’s average users surfing the web for images of generic

objects, the current commercial state-of-the-art results are far from satisfying.

So far the story is a frustrating one. We are facing a chicken and egg problem here:

Users of the Internet search engines would like better search results when looking for

objects; developers of these search engines would like more robust visual models to

improve these results; vision researchers are developing visual object models for this

purpose; but in order to do so, it is critical to have large and diverse object datasets

for training and evaluation; this, however, goes back to the same problem that the

users face.

Lots of progress have been made on this problem in the past decade. Among the

solutions, one of the major trends is to manually collect and annotate a ground truth

dataset (LotusHill [145], LableMe [119] and Pascal Challenge [1]). Due to the vast

number of object classes in our world, however, manually collecting images for all

the classes is currently impossible. Recently, researchers have developed approaches

utilizing images retrieved by image search softwares to learn statistical models to

collect datasets automatically. Yet, learning from these images is still challenging:

• Current commercial image retrieval software is built upon text search techniques using

the keywords embedded in the image link or tag. Thus, retrieved image is highly

contaminated with visually irrelevant images. Extracting the useful information from

this noisy pool of retrieved images is quite critical.

• The intra-class appearance variance among images can be large. For example, the ap-

pearance of wrist watches are different than the pocket watches in the watch category.

The ability of relying on knowledge extracted from one of them (e.g. wrist watch) to

distinguish the other (e.g. pocket watch) from unrelated images is important.

• Polysemy is common in the retrieved images, e.g. a “mouse” can be either a “com-

puter mouse” or an “animal mouse”. An ideal approach can recognize the different

appearances and cluster each of the objects separately.

In this work, we provide a framework to simultaneously learn object class models
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and collect object class datasets. This is achieved by leveraging on the vast amount

of images available on the Internet. The sketch of our idea is the following. Given a

very small number of seed images of an object class (either provided by a human or

automatically), our algorithm learns a model that best describes this class. Serving

as a classifier, the algorithm can extract from the text search result those images

that belong to the object class. The newly collected images are added to the object

dataset, serving as new training data to improve the object model. With this new

model, the algorithm can then go back to the web and extract more relevant images.

Our model uses its previous prediction to teach itself. This is an iterative process

that continuously gathers an accurate image dataset while learning a more and more

robust object model. We will show in our experiments that our automatic, online

algorithm is capable of collecting object class datasets of more images than Caltech

101 [41] or LabelMe [119]. To summarize, we highlight here the main contributions

of our work.

• We propose an iterative framework that collects object category datasets and learn-

s the object category models simultaneously. This framework uses Bayesian non-

parametric model as its theoretical base.

• We have developed an incremental learning scheme that uses only the newly added

images for training a new model. This memory-less learning scheme is capable of

handling an arbitrarily large number of images, which is a vital property for collecting

large image datasets.

• Our experiments show that our algorithm is capable of both learning highly effective

object category models and collecting object category datasets significantly larger

than that of Caltech 101 or LabelMe.

1.1 Related works

Image Retrieval from the Web: Content-based image retrieval (CBIR) [148, 35,

24, 90, 26, 74, 6, 5, 76] has been long an active field of research. One major group

of research [6, 5, 76] in CBIR treats images as a collection of blobs or blocks, each
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corresponding to a word or phrase in the caption (with some considerable variations).

The goal of such algorithms is to assign proper words and/or phrases to a new image,

and hence to retrieve similar ones in a database that contains such annotations.

Another group of approaches focuses on comparing the query image with exemplar

images and retrieving images based on image similarity [24, 26, 35]. However, our

work is significantly different from the conventional frameworks of CBIR. Instead of

learning to annotate images with a list of words or comparing the similarity of images,

our algorithm collects the most suitable images from the web resources given a single

word or phrase. One major difference between our work and the traditional CBIR is

the emphasis on visual model learning. When collecting images of a particular object

category, our algorithm continues to learn a better and better visual model to classify

this object.

A few recent approaches in this domain are closer to our current framework.

Feng and Chua propose a method to refine images returned by search engine using

co-training [50]. They employ two independent segmentation methods as well as

two independent sets of features to co-train two “statistically independent” SVM

classifiers and co-annotate unknown images. Their method, however, does not offer

an incremental training approach to boost the training efficiency in the co-train and

co-annotate process. Moreover, their approach needs user interaction at the beginning

of training and also when both the classifiers are uncertain about the decision.

Berg and Forsyth [11] develop a lightly supervised system to collect animal pictures

from the web. Their system takes advantage of both the text surrounding the web

images and the global feature statistics (patches, colors, textures) of the images to

collect a large number of animal images. Their approach involves a training and a

testing stage. In the training stage, a set of visual exemplars are selected by clustering

the textual information. In the testing stage, textual information as well as visual

cues extracted from these visual exemplars are incorporated in the classifier to find

more visually and semantically related images. This approach requires supervision

to identify the clusters of visual exemplars as relevant or background. In addition

to this, there is an optional step for the user to swap erroneously labeled exemplars

between the relevant and background topics in training.
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Similar to [11], Schroff et al. [120] also employ the web meta data to boost the

performance of image dataset collection. The images are ranked based on a simple

Bayesian posterior estimation, i.e. the probability of the image class given multiple

textual features of each image. A visual classifier, trained on the top ranked images,

is then applied to re-rank the images.

Another method close in spirit to ours is by Yanai and Barnard [143]. They

also utilize the idea of refining web image result with a probabilistic model. Their

approach consists of a collection stage and a selection stage. In the collection stage,

they divide the images into relevant and unrelated groups by analyzing the associated

HTML documents. In the selection stage, a probabilistic generative model is applied

to select the most relevant images among those from the first stage. Unlike ours, their

method focuses on image annotation. Furthermore, their experiments show that their

model is effective for “scene” concepts but not for “object” concepts. Hence, it is not

suitable for generic object category dataset collection.

While the three approaches above rely on both visual and textual features of the

web images returned by search engines, we would like to focus on visual cue only to

demonstrate how much it can improve the retrieval result.

Multiple instance learning (MIL) research [97, 147, 133] has recently been explored

in image retrieval and classification. MIL has shown effectiveness in learning from

noisy Internet images in a weakly supervised category learning setting [133]. Similar

to our framework, it takes advantage of the imperfect textual based image retrieval

result of the traditional image search engines while properly accounting for the antic-

ipated noise and ambiguity in the retrieval result. Our method significantly different

than these MIL based approaches in our selective learning of related images while

discarding the noisy images which constitutes majority of the search engine retrieved

images. Therefore our framework is much more efficient in the scenario of learning

from noisy Internet images and is capable of collecting large scale image dataset.

Finally, our approach is inspired by two papers by Fergus et al. [51, 53]. They

introduce the idea of training a good object class model from web images returned

by search engines, hence obtaining an object filter to refine these results. [53] extends

the constellation model [140, 52] to include heterogeneous parts (e.g. regions of pixels
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and curve segments). The extended model is then used to re-rank the retrieved result

of image search engine. In [51], the authors extend a latent topic model (pLSA) to

incorporate spatial information. The learned model is then applied to classify object

images and to re-rank the images retrieved by Google image search. Although these

two models are accurate, they are not scalable. Without an incremental learning

framework, they need to be re-learned with all available images whenever new images

are added.

All the above techniques achieve better search results by using either a better

visual model or a combination of visual and text models to re-rank the rather noisy

images from the web. We show later that by introducing an iterative framework

of incremental learning, we are able to embed the processes of image collection and

model learning efficiently into a mutually reinforcing system.

Object Classification: The recent explosion of object categorization research makes

it possible to apply such techniques to partially solve many challenging problems such

as improving the image search result and product images organization. Due to the

vast number of object categorization approaches [43, 48, 51, 54, 83, 86, 87, 94], it is

out of the scope of this thesis to discuss all of them. Here we will focus on two major

branches that are closely related to our approach, specifically, latent topic model based

on the “bag of words” representation and incremental learning of statistic models.

A number of systems based on the bag of words model representation have shown

to be effective for object and scene recognition [51, 122, 46, 127, 18, 31, 124]. Sivic et

al. [122] apply probabilistic Latent Semantic Analysis (pLSA), a model introduced in

the statistical text literature, to images. Treating images and categories as documents

and topics respectively, they model an image as a mixture of topics. By discovering the

topics embedded in each image, they can find the class of the image. pLSA, however,

can not perform satisfactorily on unknown testing images since it is not a well defined

generative model. Furthermore, the number of parameters in pLSA grows linearly

with the number of training images, making the model prone to overfitting. Fei-Fei

et al. [46] apply an adapted version of a more flexible model called Latent Dirichlet

Allocation (LDA) model [17] proposed by Blei et al. to natural scene categorization.

LDA overcomes problems of pLSA by modeling the topic mixture proportion as a
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latent variable regularized by its Dirichlet hyper-parameter.

The models mentioned above are all applied in a batch learning scenario. If the

training data grows, as in our framework, they have to be retrained with all previous

data and the new data. This is not an efficient approach, especially when learning

from large datasets. Hence, we would like to apply incremental learning to our model.

A handful of object recognition approaches have applied incremental learning

to object recognition tasks. The most notable ones are [83] and [41]. Krempp et

al. [83] use a set of edge configurations as parts, which are learned from the data.

By presenting the object categories sequentially to the system, it is optimized to

accomondate the new classes by maximally reusing parts. Fei-Fei et al. [41] adopt

a generative probabilistic model called constellation model [140, 52] to describe the

object categories. Following Neal and Hinton’s adaptation of conventional EM [105],

a fully Bayesian incremental learning framework is developed to boost the learning

speed.

Our approach combines the merits of these two branches:

• Bag of words representation enables the model to handle occlusion and rotation,

which are common for web images. It is also computationally efficient, a desired

property for the computation of large image dataset. On the other hand, latent topic

model provides natural clustering of data, which helps solving the polysemy problem

in image retrieval. We choose a nonparametric latent topic model so that the model

can adjust its internal structure, specifically the number of clusters of the data, to

accommodate new data.

• Given large intra-class variety of the online images, it is difficult to prepare good

training examples for every subgroup of each image class. We employ an iteratively

learning and classification approach to find the good training examples automatically.

In each iteration, the object model is taught by its own prediction. In such iterative

process, incremental learning is important to make learning in every iteration more

efficient.

Object Datasets: One main goal of our proposed work is to suggest a framework

that can replace most of the current human effort in object dataset collection. A few
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popular object datasets exist today as the major training and evaluation resources for

the community such as Caltech 101 and LabelMe. Caltech 101 consists of 101 object

classes each of which contains 31 to 800 images [41]. It was collected by a group of

students spending on average three or four hours per 100 images. While it is regarded

as one of the most comprehensive object category datasets, it is limited in terms of the

variation in the images (big, centered objects with few viewpoint changes), numbers

of images per category (at most a few hundred) as well as the number of categories.

For a long time, datasets are collected in this way relying on extensive human labor.

Similar datasets are Caltech-256 [64], PASCAL [1], LotusHill [145] and Fink et. al

[57]).

Recently, LabelMe has offered an alternative way of collecting datasets of objects

by having users upload their images and label them [119]. This dataset is much

more diverse than Caltech 101, potentially serving as a better benchmark for object

detection algorithms. But since it relies on people uploading pictures and making

uncontrolled annotations, it is difficult to use it as a generic object dataset. In

addition, while some classes have many images (such as 20304 images for “car”),

others have too few (such as 7 images for “watch”).

A few other object category datasets such as [34, 2] are also used by researchers.

All of the datasets mentioned above require laborious human effort to collect and

select the images. In addition, while serving as training and test datasets for re-

searchers, they are not suitable for general search engine users. Our proposed work

offers a first step towards a unified way of automatically collecting data useful both

as a research dataset as well as for answering user queries.

1.2 Overview of the OPTIMOL Framework

We would like to tackle simultaneously the problem of model learning for object

categories and automatic dataset collection, taking advantage of the vast but highly

contaminated data from the web. We use Fig. 1.1 and Alg.1 to illustrate the overall

framework of OPTIMOL. For every object category we are interested in, say, “panda”,

we initialize our image dataset with a handful of seed images. This can be done either
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Figure 1.1: Illustration of the framework of the Online Picture collecTion via Incre-
mental MOdel Learning (OPTIMOL) system. This framework works in an incremental way:
Once a model is learned, it can be used to classify images from the web resource. The group of
images classified as being in this object category are regarded as related images. Otherwise, they
are discarded. The model is then updated by a subset of the newly accepted images in the cur-
rent iteration. In this incremental fashion, the category model gets more and more robust. As a
consequence, the collected dataset becomes larger and larger.

manually or automatically1. With this small dataset, we begin the iterative process of

model learning and dataset collection. Learning is done via an incremental learning

process that we introduce in Sec. 1.3.2. Given the current updated model of the

object class, we perform a binary classification on a subset of images downloaded

from the web (e.g. “panda” vs. background). If an image is accepted as a “panda”

image based on some statistical criteria (see Sec. 1.3.2), we augment our existing

“panda” dataset by appending this new image. We then update our “panda” model

1To automatically collect a handful of seed images, we use the images returned by the first page
of Google image search, or any other state-of-the-art commercial search engines given the object
class name as query word.
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Algorithm 1 Incremental learning, classification and data collection

Download from the Web a large reservoir of images obtained by searching with
keyword(s)
Initialize the object category dataset with seed images (manually or automatical-
ly)
repeat
Learn object category model with the latest accepted images to the dataset
Classify a subset of downloaded images using the current object category model
Augment the dataset with accepted images

until user satisfied or images exhausted

with a subset of the newly accepted images (see Sec. 1.3.3 for details of the “cache

set”). Note that the already existing images in the dataset no longer participate

in this iteration of learning. In the meantime, the background model will also be

updated using a constant resource of background images2. We repeat this process till

a sufficient dataset is collected or we have exhausted all downloaded images.

1.3 Theoretical Framework of OPTIMOL

1.3.1 Our Model

In this section, we describe the model used in OPTIMOL in detail. Specifically, we

first review the probabilistic classification approaches especially generative models.

We then introduce briefly the “bag of words” image representation combined with

the latent topic model. Finally, we discuss the nonparametric latent topic model (i.e.

Hierarchical Dirichlet Process (HDP)) in OPTIMOL.

Generative Model

Classification approaches can be grossly divided into generative models, discrimina-

tive models and discriminant functions [14]. For generative models, such as Gaus-

sian mixture models ([140, 52, 40]), Markov random fields [84], latent topic model

2The background class model is learnt by using a published “background” image dataset [52, 42].
The background class model is updated together with the object class model. In this way, it can
accommodate the essential changes of the new training data.
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([122, 46, 139]) etc., both the input distribution and the output distribution are mod-

eled. While for discriminative models, which include boosting ([59, 60])), support

vector machines [19], conditional random field [100] etc., the posterior probabilities

are modeled directly. The simplest approaches are called discriminant functions (e.g.

Fisher’s linear discriminant [8]), which are projections mapping the input data to

class labels. Comparing to the other two approaches, generative models are able

to handle the missing data and noisy data problems better since all variables are

jointly modeled in a relatively equal manner. When such problems are encountered,

the performance will not be affected dramatically. This property is desired for semi-

supervised learning from Internet images where only a small amount of labeled data

is provided. Here, we would like to adopt generative model given this ideal property

for OPTIMOL’s iterative incremental learning framework. Previous success of gener-

ative model in object recognition [40, 122] and content based image retrieval [143, 51]

ensure the potential ability of generative model in our framework.

Object category model

We would like to emphasize that our proposed framework is not limited to the partic-

ular object model used here. Any model that can be cast into an incremental learning

framework is suitable for our protocol. Of the many possibilities, we have chosen to

use a variant of the HDP (Hierarchical Dirichlet Process) [129] model based on the

“bag of words” [122, 46, 31, 124] representation of images. HDP is particular suitable

here because of the natural clustering and computationally efficient properties respec-

tively. “Bag of words” model is frequently used in natural language processing and

information retrieval of text documents. In “bag of words” model, each document is

represented as an unordered collection of words. When applied to image representa-

tion, it describes each image as a bag of visual words (node x in Fig. 1.2). We are

particularly interested in the application of latent topic models to such representa-

tion [69, 17, 129]. Similar to [126, 139], we adapt a nonparametric generative model,

Hierarchical Dirichlet process (HDP) [129], for our object category model. Compared

to parametric latent topic models such as LDA [17] or pLSA [69], HDP offers a way
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Figure 1.2: Graphical model of HDP. Each node denotes a random variable. Bounding boxes
represent repetitions. Arrows indicate conditional dependency. Dark node indicates it is observed.

to sample an unbounded number of latent topics, or clusters, for each object cate-

gory model. This property is especially desirable for OPTIMOL. Since the data for

training keeps growing, we would like to retain the ability to “grow” the object class

model when new clusters of images arise. Before we move on to introduce the HDP

object category model in more detail, we define the notations in Fig. 1.2 here.

• A patch x is the basic unit of an image. Each patch is represented as a codeword of

a visual vocabulary of codewords indexed by {1, . . . , T}.

• An image is represented as N unordered patches denoted by x = (xj1, xj2, . . . , xjN ),

where xji is the ith patch of the jth image.

• A category is a collection of I images denoted by D = (x1,x2, . . . ,xI).

Hierarchical Dirichlet process

We represent an image as a document constituted by a bag of visual words. Each

category consists of a variable number of latent topics corresponding to clusters of

images with similar visual words attributes. We model both object and background

classes with HDP [129]. Fig. 1.2 shows the graphical model of HDP. In the HDP

model, θ corresponds to the distributions of visual words given different latent topics

shared among images. Let xji be the ith patch in jth image. For each patch xji,

there is a hidden variable zji denoting the latent topic index. β is the stick-breaking
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weights [121] and πj represents the mixing proportion of z for the jth image. We now

go through the graphical model (Fig. 1.2) and show how we generate each patch in

an image. For each image class c,

• Sample β ∼ GEM(γ). GEM is the stick-breaking process:

β′
k ∼ Beta(1, γ) βk = β′

k

k−1∏
l=1

(1− β′
l) β = (β1, β2, . . . , β∞) (1.1)

• Sample θk from the Dirichlet prior distribution H.

• Given the stick-breaking weights γ and global cluster θ, we generate each image

in this class.

– We first sample πj, πj|α, β ∼ DP(α, β). DP denotes the Dirichlet Process

introduced by Ferguson in 1973 [55]:

π′
jk ∼ Beta

(
αβk, α(1−

k∏
l=1

βl)

)
πjk = π′

jk

k−1∏
l=1

(1− π′
jl) (1.2)

where πj = (πj1, πj1, . . . , πj∞).

– Given πj, we are ready to generate each image patch xji

∗ Sample the latent topic index zji for patch xji from a multinomial

distribution πj: zji|πj ∼ πj

∗ Sample xji given zji from a class dependent multinomial distribution

F : xji|zji, θk ∼ F (θczji)

1.3.2 Learning

We have described our hierarchical model in details. We now turn to learning its

parameters. In this subsection, we first describe the batch learning algorithm of

our hierarchical model. We then introduce semi-supervised learning of this model.

Finally, the efficient semi-supervised incremental learning is introduced for learning

from large image dataset.
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Markov Chain Monte Carlo sampling

In this section, we describe how we learn the parameters by Gibbs sampling [63] of

the latent variables. We choose the Chinese restaurant franchise [129] metaphor to

describe this procedure. Imagine multiple Chinese restaurants serving the same set of

dishes in the menu. At each table of each restaurant, a dish is shared by the customers

sitting at that table. Metaphorically, we describe each image as one restaurant and

the local cluster for the customer xji as the table tji. Similarly, the global cluster for

the tth table in the jth restaurant is represented as the dish kjt:

tji|tj1, . . . , tji−1, α,G0 ∼
Tj∑
t=1

njtδtji=t + αG0 (1.3)

kjt|k11, k12, . . . , k21, . . . , kjt−1, γ ∼
K∑
k=1

mkδkjt=k + γH (1.4)

where G0 ∼ DP (γ,H). njt denotes the number of customers for table t. Tj is the

current number of tables. mk represents the number of tables ordered dish k. K

denotes the current total number of dishes. All these statistics are calculated without

considering the current data point. A new table and new dish can also be generated

from G0 and H, respectively, if current data does not fit in any of the previous table

or dish. For standard mixture models, the Chinese restaurant franchise can be easily

connected to the stick breaking process by having zji = kjt.

Sampling the table. According to Eq.1.3 and Eq.1.4, the probability of a new

customer xji being assigned to table t is:

P (tji = t|xji, t−ji,k) ∝


αptnew for t = tnew

njtf(xji|θkji) for used t

(1.5)
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We have

ptnew =
K∑
k=1

mk∑K
k=1mk + γ

f(xji|θkji) +
γ∑K

k=1mk + γ
f(xji|θknew)

f(xji|θkji) is the conditional density of patch xji given all data items associated with

k except itself. The probability of assigning a newly generated table tnew to a global

cluster is proportional to: 
mkf(xji|θkji) for used k

γf(xji|θknew) for new k

(1.6)

Sampling the global latent topic. For the existing tables, the dish can change

according to all customers at that table. The global cluster kjt can be obtained from:
mkf(xjt|θkji) for used k

γf(xjt|θknew) for new k

(1.7)

Where xjt represents all patches associated with image level mixture component t

in image j except the current one. f(xjt|θkjt) is the conditional density of xjt given

all patches associated with topic k except themselves. njt and mk will be updated

respectively regarding the table index and global latent topic assigned. Given zji =

kjtji , we in turn update F (θczji) for the category c.

Semi-supervised Learning

Due to the large variation of web images, it requires large number of representative

images to train a robust model. Manually selecting these images is time consuming

and biased. In the framework of OPTIMOL, we employ a semi-supervised learning

approach, specifically self training, to propagate the initial knowledge [150]. As a

wrapper algorithm, self training can be easily applied to existing models. It has
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been used in natural language processing to perform tasks such as parsing strings of

words [101]. In computational biology, self training is employed for gene prediction

[12]. Recently, it is also applied in computer vision by Rosenberg et al. [118] to

help object detection. All of the approaches show that, by employing a self training

framework, one can achieve comparable result to state-of-the-art approach with less

labeled training data. We will demonstrate later in Fig. 1.9 that with semi-supervised

learning framework, OPTIMOL shows superior performance in comparison to the the

fully supervised learning framework using the same number of seed images. The basic

idea of self training is:

• First, an initial model is trained with a limited amount of reliable labeled data.

• This model is applied to estimate the labels of the unlabeled data.

• The estimated labels is used to retrain the model.

• Repeat the training and classification procedure.

With this idea, self training allows the model to teach itself iteratively with new

classification results. In each iteration of the self training, one can incorporate the

new data to retrain the model either via the batch learning mode described at the

beginning of Sec. 1.3.2 or an incremental learning mode introduced in the next

paragraph. In the self training framework, data that are far away from the initial

training set are unlikely to be selected to update the model. However, such data are

very useful for generalization of the model. Thus, we design a “cache set” to solve

this problem in Sec. 1.3.3.

Incremental learning of a latent topic model

Having introduced the object class model and the batched learning approach, we

propose an incremental learning scheme for OPTIMOL. This scheme let OPTIMOL

update the model at every iteration of the dataset collection process more efficiently.

Our goal here is to perform incremental learning by using only new images selected

at current iteration. We will illustrate in Fig. 1.9 (Middle) that this is much more

efficient than performing a batch learning by using all images in the current dataset at
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every iteration. Meanwhile, it still retains the accuracy of the model as shown in Fig.

1.9. Let Θ denote the model parameters, and Ij denote the jth image represented

by a set of patches xj1, · · · , xjn. For each patch xji, there is a hidden variable zji

denoting the latent topic index. The model parameters and hidden variable are

updated iteratively using the current model and the input image Ij in the following

fashion:

zj ∼ p(z|Θj−1, Ij) Θj ∼ p(Θ|zj,Θj−1, Ij) (1.8)

where Θj−1 represents the model parameters learned from the previous j − 1 images.

Neal & Hinton [105] provide a theoretical ground for incrementally learning mixture

models via sufficient statistics updates. We follow this idea by keeping only the

sufficient statistics of the parameters associated with the existing images in an object

dataset. Learning is then achieved by updating these sufficient statistics with those

provided by the new images. One straightforward method is to use all the new

images accepted by the current classification criterion. But this method will favor

those images with similar appearances to the existing ones, hence resulting in an

over-specialized object models. To avoid such a problem, we take full advantage of

the non-parametric HDP model by using a subset of the related images denoted as

“cache set” to update our model. Here, “related images” refer to images classified

as belonging to the object class by the current model. We detail the selection of the

“cache set” in Sec. 1.3.3.

1.3.3 New Image Classification and Annotation

In the OPTIMOL framework, learning and classification are conducted iteratively.

We have described the learning step in Sec. 1.3.2. In this subsection, we introduce

the classification step in our framework. We first describe how our model judges

which images are related images against others. Then we introduce the criterion to

select the “cache set”, a subset of the related images to be used to train our model.

Finally, we detail the annotation method at the end of this section.
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Image Classification

For every iteration of the dataset collection process, we have a binary classification

problem: classify unknown images as a foreground object or a background image. In

the current model, we have p(z|c) parameterized by the distribution of global latent

topics given each class in the Chinese restaurant franchise and p(x|z, c) parameterized

by F (θcz) learned for each category c. A testing image I is represented as a collection

of local patches xi, where i = {1, . . . ,M} and M is the number of patches. The

likelihood p(I|c) for each class is calculated by:

P (I|c) =
∏
i

∑
z

P (xi|z, c)P (z|c) (1.9)

Classification decision is made by choosing the category model that yields the higher

probability. From a dataset collection point of view, incorporating an incorrect image

into the dataset (false positive) is much worse than missing a correct image (false

negative). Hence, a risk function is introduced to penalize false positives more heavily:

Ri(A|I) = λAcfP (cf |I) + λAcbP (cb|I)

Ri(R|I) = λRcfP (cf |I) + λRcbP (cb|I) (1.10)

Here A represents acceptance of an image into our dataset. R denotes rejection. As

long as the risk of accepting an image is lower than rejecting it, it is accepted. Image

classification is finally decided by the likelihood ratio:

P (I|cf )
P (I|cb)

>
λAcb − λRcb

λRcf − λAcf

P (cb)

P (cf )
(1.11)

where the cf is the foreground category while the cb is the background category.
λAcb

−λRcb

λRcf
−λAcf

is automatically adjusted by applying the likelihood ratio measurement to

a reference dataset3 at every iteration. New images satisfying Eq.1.11 are regarded

3To achieve a fully automated system, we use the original seed images as the reference dataset.
As the training dataset grows larger, the direct effect of the original training images diminishes in
terms of the object model. It therefore becomes a good approximation of a validation dataset.
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as related images. They will be either appended to the permanent dataset or used to

train the new model upon further criterion.

The Cache Set

In the self training setting, the model teaches itself by using the predicted related

images. It is critical to distinguish random noisy images from difference caused by

intra-class difference. How to extract the most useful information from the new

classification result automatically? We use a “cache set” of images to incrementally

update our model. The “cache set” is a less “permanent” set of good images compared

to the actual image dataset. At each iteration, if all “good” images are used for

model learning, it is highly likely that many of these images will look very similar

to the previously collected images, hence reinforcing the model to be even more

specialized in selecting such images for the next iteration. Furthermore, it will also

be computationally expensive to train with all “good” images. So the usage of the

“cache set” is to retain a group of images that tend to be more diverse than the

existing images in the dataset. For each new image passing the classification criterion

(Eq.1.11), it is further evaluated by Eq.1.12 to determine whether it should belong

to the “cache set” or the permanent set.

H(I) = −
∑
z

p(z|I) ln p(z|I) (1.12)

In Fig. 1.14, we demonstrate how to select the “cache set”. According to Shannon’s

definition of entropy, Eq.1.12 relates to the amount of uncertainty of an event as-

sociated with a given probability distribution. Images with high entropy are more

uncertain and more likely to have new topics. Thus, these high likelihood and high

entropy images are ideal for model learning. In the meantime, images with high

likelihood but low entropy are regarded as confident foreground images and will be

incorporated into the permanent dataset.
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Image Annotation

The goal of OPTIMOL is not only to collect a good image dataset but also to provide

further information about the location and size of the objects contained in the dataset

images. Object annotation is carried out by first calculating the likelihood of each

patch given the object class cf :

p(x|cf ) =
∑
z

p(x|z, cf )p(z|cf ) (1.13)

The region with the most concentrated high likelihood patches is then selected as the

object region. A bounding box is drawn to enclose the selected patches according

Eq.1.13. Sample results are shown in Fig. 1.20.

1.3.4 Discussion of the Model

We discuss here several important properties of OPTIMOL in this section.

Dataset Diversity Our goal is to collect a diverse image dataset which has am-

ple intra class variation. Furthermore, the ideal model should be capable of collecting

all possible object classes associated with different semantic meanings of a polysemous

word. OPTIMOL is able to achieve both goals given its facility of accommodating

new training data different from the previous ones. This is largely attributed to the

property of object model (i.e. HDP) that is capable of generating unbounded number

of topics to describe data with different aspects. Later, we show in Fig. 1.10 that our

framework can collect a large and more diverse image dataset compared to Caltech

101. Moreover, Fig. 1.11 demonstrates that OPTIMOL collects image in a semantic

way by assigning visually different images to different clusters.

Concept Drift Self training helps OPTIMOL to accumulate knowledge without

human interaction. However, it is prone to concept drift when the model is updated

by unrelated images. The term “Concept Drift” refers to the phenomenon of a target

variable changing over time. In the OPTIMOL framework, we are mostly concerned
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with the object model drifting from one category to another (e.g. from accordions to

grand pianos). To avoid model drift, our system needs to decide whether an image

should be discarded, appended to the permanent dataset or kept in the “cache set”

to retrain the model. Using a constant number threshold for Eq.1.11 to make this

decision is not feasible since the model is updated in every iteration. The rank of

the images is not a good choice either since there might not be any related images

in current iteration. In the OPTIMOL framework, we use a threshold calculated dy-

namically by measuring the likelihood ratio of the updated model on a validation set.

Those with likelihood ratio lower than the threshold are assumed to be “unrelated”

and hence discarded. Among those “related” images, a proportion of images with

high entropies are selected to be held in the “cache set” according to Eq.1.12. Fig.

1.3 shows the influence of the threshold on the number of images to be accepted,

discarded or used for training. Basically, the number of images to be incorporated

into the permanent dataset decreases along with the increase of the threshold. The

same applies to the number of images to be held in the “cache set”. If fewer images

are kept in the “cache set” and are used to update the model, the model tends to be

similar to the initial model. In the extreme case, if the threshold equals 1, no image

will be incorporated to the dataset. Neither will new images be used to retrain the

model. The model will stay the same as the initial model. Hence the incorporated

images will be highly similar to the initial dataset and the collected dataset will not

be very diverse (Fig. 1.15 Left). To the other extreme, if the threshold equals 0, un-

related images will be accepted. Some of these unrelated images with high entropies

will be used to update the model. In this scenario, self training will reinforce the

error in each iteration and tend to drift. We demonstrate this concept drift issue by

showing the dataset collection performance of OPTIMOL with different likelihood

ratio thresholds in Fig. 1.13.

1.4 Walkthrough for the accordion category

As an example, we describe how OPTIMOL collects images for the “accordion” cat-

egory following Alg.1 and Fig. 1.1. We use Fig. 1.4-1.8 to show the real system.
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Figure 1.3: Influence of the threshold(Eq.1.11) on the number of images to be appended to the
dataset and held in the cache set on 100 “accordion” images. x-axis is the value of threshold
represented in percentile. The validation ratio thresholds are 1, 5, 10, 30, 50, 70, 90, 100, which
are equivalent to -1.94, 2.10, 14.24, 26.88, 44.26, 58.50, 100.22 and 112.46 in log likelihood ratio
thresholds respectively for the current classifier. y-axis denotes the number of images. Blue region
represents number of images classified as unrelated. Yellow region denotes the number of images that
will be appended to the object dataset. Pink region represents number of images held in the “cache
set”. The “true” bar represents the proportion of true images in the 100 testing images. These bars
are generated using the initial model learned from 15 seeds images. The higher the threshold is, the
fewer number of images will be appended to the permanent dataset and held in the “cache set”.

• Step 1 (Downloading and preprocessing): As shown in Fig. 1.4, 1659 images are

downloaded as our image pool by typing the query word “accordion” in image search

engines such as Google image, Yahoo image and Picsearch. We use the first 15 images

from the web resource as our seed images, assuming that most of them are related to

the “accordion” concept. The remaining (non-seed) images are divided into 17 groups.

The first 16 groups have 100 images each and the last, 17th group has 44 images. The

OPTIMOL framework will process one group per iteration. Each image is represented

as a set of unordered local patches. Kadir and Brady [82] salient point detector offers

compact representations of the image, which makes computation more efficient for

our framework. We apply this detector to find the informative local regions that are

salient over both location and scale. Considering the diversity of images on the web,

a 128-dim rotationally invariant SIFT vector is used to represent each region [94]. We

build a 500-word codebook by applying K-means clustering to the 89058 SIFT vectors

extracted from the 15 seeds images of each of the 23 object categories. Each patch

in an image is then described by using the most similar codeword in the codebook

via vector quantization. In Fig. 1.5, we show examples of detected regions of interest

and some codeword samples.
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Keyword: Accordion

Seed Images 1st group (100 images) 2nd group (100 images) More groups

Figure 1.4: Downloading part in Step 1. A noisy “accordion” dataset is downloaded using
“accordion” as query word in Google image, Yahoo! image and Picsearch. Downloaded images will
be further divided into groups for the iterative process.

Figure 1.5: Preprocessing in Step 1. Top: Regions of interest found by Kadir&Brady detector.
The circles indicate the interest regions. The red crosses are the centers of these regions. Bottom:
Sample codewords. Patches with similar SIFT descriptors are clustered into the same codeword,
which are presented using the same color.

• Step 2 (Initial batch learning): As shown in Fig. 1.6, a batch learning algorithm

described in Sec. 1.3.2 is applied on the seed images to train an initial “accordion”

model. Meanwhile, same number of background images are used to trains a back-

ground model. In model learning, the hyper-parameters γ and α are constant numbers
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1 and 0.01 respectively acting as smooth factors. We will show later in Fig. 1.12 how

they influence the model. According to Eq.1.4, given a high γ value, we expect to

obtain more dishes (global topics in a category) in the model. Similarly, following

Eq.1.3, a higher α value populates more tables (local clusters in each image). After

Step 2, we obtain a fairly good object category model, which can perform reasonable

classification.

             Seeds

Initialize Learn Category

Model

Figure 1.6: Initial batch learning. In the first iteration, a model is learned from the seed
images. The learned model performs fairly well in classification as shown in Fig. 1.9.

• Step 3 (Classification): Models obtained from the learning step are used to classify

a group of images from the pool, typically 100 images. By measuring the likelihood

ratio, this group is divided into unrelated images and related images as shown in Fig.

1.7. The unrelated images will be discarded. Related images are further measured

by their entropy. High entropy ones will be held in the “cache set”. Low entropy

images will be appended to the permanent dataset. In classification, our threshold

is selected as “30%”. This is a conservative choice that allows only the top 30%

validation images with highest likelihood ratio to be classified as foreground images.

This threshold is equivalent to likelihood ratio threshold 26.88. As shown in Fig. 1.3,

this criterion agrees (conservatively) with the observation that an average estimate

of 15% of images returned by the search engine are related to the query word(s).

10% of the related images with high entropies will be kept in the “cache set” for the

incremental learning of the model. These images also participate in next 2 iterations

in classification. After three iterations, images still left in the “cache set” will be

discarded.

• Step 4 (Incremental Learning) As shown in Fig. 1.8, incremental learning is only

applied to images held in the “cache set”. In the meantime, the same number of new

background images are used to update the background model. In this step, we keep

the same set of learning parameters as those in Step 2.
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Figure 1.7: Classification. Classification is performed on a subset of raw images collected from
the web using the “accordion” query. Images with low likelihood ratios measured by Eq.1.11 are
discarded. For the rest of the images, those with low entropies are incorporated into the permanent
dataset, while the high entropy ones stay in the “cache set”.

Images held in the cache

Category

Model

Incremental

learning

Figure 1.8: Incremental Learning. The model is updated using only the images held in the
“cache set” from the previous iteration.

• Repeat Step 3 and 4 till the user terminates the program or images in the downloaded

image pool are exhausted.
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1.5 Experiments & Results

We conduct three experiments to demonstrate the effectiveness of OPTIMOL. Exp.1

consists of a set of analysis experiments.

• A performance comparison of the batch vs. incremental learning methods in terms

of the number of collected images, processing time and the recognition accuracy.

• Diversity of our collected dataset. More specifically, comparison between the average

images of our collected dataset and the Caltech 101 dataset. In addition, we show

average images of different clusters for the “accordion” and “euphonium” categories

as examples to provide more insights into the model.

• Influence of the hyper-parameters γ and α on the model. γ and α control the number

of global and local clusters of the images respectively.

• Dataset collection comparison of OPTIMOL using different likelihood threshold val-

ues to demonstrate the issue of concept drift.

• Illustration of images in the permanent dataset, the “cache set” and the “junk set”.

• Illustration of images collected by OPTIMOL using different entropy thresholds.

• Detection performance comparison of OPTIMOL using different numbers of seed

images.

• Polysemous class analysis(a case study of the polysemous words “mouse” and “bass”).

Exp.2 demonstrates the superior dataset collection performance of OPTIMOL over

the existing datasets. In addition to dataset collect, it also provides satisfying an-

notations on the collected images. Exp.3 shows that OPTIMOL is on par with the

state-of-the-art object model learned from internet images [51] for multiple object

categories classification.

We first introduce the various datasets used in the experiments. Then we show

experiment settings and results for the three experiments respectively.



CHAPTER 1. LEARNINGOBJECTMODEL FROMNOISY INTERNET IMAGES34

1.5.1 Datasets Definitions

We define the following four different datasets used in our experiments:

1. Caltech 101-Web & Caltech 101-Human

Two versions of the Caltech 101 dataset are used in our experiment. Caltech 101-Web

is the original raw dataset downloaded from the web containing a large portion of

visually unrelated images in each category. The number of images in each catego-

ry varies from 113 (winsor-chair) to 1701 (watch). Caltech 101-Human is the clean

dataset manually selected from Caltech 101-Web. The number of images in each cat-

egory varies from 31 (inline-skate) to 800(airplanes). By using this dataset, we show

that OPTIMOL achieves superior retrieval performance to human labeled results.

2. Web-23

We downloaded 21 object categories from online image search engines by using query

words randomly selected from object category names in Caltech 101-Web. In addition,

“face” and “penguin” categories are included in Web-23 for further comparison. The

number of images in each category ranges from 577 (stop-sign) to 12414 (face). Most

of the images in a category are unrelated images (e.g. 352 true “accordions” out of

1659 images).

3. Princeton-23 [28]

This dataset includes the same categories as used in Web-23. However, it is a more

diverse dataset which contains more images in every category. The images are down-

loaded using words generated by WordNet [103] synset as the query input for image

search engines. To obtain more images, query words are also translated into multiple

languages, accessing the regional website of the image search engines. The number

of images in each category varies from 4854 (inline-skate) to 38937 (sunflower).

4. Fergus ICCV’05 dataset

A 7-Category dataset provided by [51]. Object classes are: airplane, car, face, guitar,

leopard, motorbike and watch.
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Figure 1.9: Batch vs. Incremental Learning (a case study of the “inline skate” category with
4835 images). Left: The number of images retrieved by the incremental learning algorithm, the
batch learning algorithm and the base model. Detection rate is displayed on top of each bar. x-
axis represents batch learning with 15 seed images, batch learning with 25 seed images, incremental
learning with 15 seed images, incremental learning with 25 seed images, the base model learned
from 15 seed images and 25 seed images respectively. Middle: Running time comparison of the
batch learning method, the incremental learning method and the base model learned as a function
of number of training iterations. The incrementally learned model is initialized by applying the
batch learning algorithm on 15 or 25 training images, which takes the same amount of time as
the corresponding batch method does. After initialization, incremental learning is more efficient
compared to the batch method. Right: Recognition accuracy of the incrementally learned, batch
learned models and the base model evaluated by using Receiver Operating Characteristic (ROC)
Curves.

1.5.2 Exp.1: Analysis Experiment

Comparison of incremental learning and batch learning. In this experiment,

we compare the computation time and accuracy of the incremental learning algorith-

m, the batch learning algorithm as well as the base model learned from initial seed

images (Fig. 1.9). To keep a fair comparison, the images used for batch learning

and incremental learning are exactly the same in each iteration. For all three al-

gorithms, background models are updated together with the foreground models by

using the same number of images. All results shown here are collected from the “in-

line skate” dataset; other datasets yield similar behavior. Fig. 1.9 (Left) shows that

the incremental learning method is comparable to the batch method in the number

of collected images. Both of them outperform the base model learned from the seed

images only. Fig. 1.9 (Middle) illustrates that by incrementally learning from the new
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images at every iteration, OPTIMOL is more computationally efficient than a batch

method. Finally, we show a classification performance comparison among OPTIMOL,

the batch method and the model learned from seed images in Fig. 1.9 (Right) by a

set of ROC curves.

In our system, the image classifier evolves as the model gets updated in every

iteration of the self training process. In the image dataset collection process, the newly

updated classifier categorizes the current group of images into foreground images and

background images. The testing images are therefore different in each iteration of

the self training process. Evaluating different classifiers on different test image sets

respectively provide little useful information of the classifier quality. A good classifier

could perform poorly on a challenging dataset while a poor classifier might perform

satisfactorily on a simple dataset. Thus, we only compare our model at the end of the

incremental learning process with a model that is learned in a batch mode by testing

both models on the same set of test images. We use an ROC curve to illustrate the

classification result for each model, shown in Fig. 1.9. Classifier quality is measured

by the area under its ROC curve. As demonstrated in Fig. 1.9 (Right), while batch

learning and incremental approaches are comparable to each other in classification,

both of them show superior performance over the base models trained by seed images

only. In addition, Fig. 1.9 (Left) and Fig. 1.9 (Right) show that the number of

seed images has little influence on the performances of the iterative approaches. This

can be easily explained by the property of self training which teaches the model

automatically by using the predicted result. Once a decent initial model is learned,

self training can use the correct detection to update the model. This is equivalent to

feeding the model manually with more images.

Diversity analysis. In Fig. 1.10, we show the average image of each category

collected by OPTIMOL comparing with those of Caltech101. We also illustrate images

collected by OPTIMOL from the Caltech 101-web and Web-23 datasets online4. We

observe that images collected by OPTIMOL exhibit a much larger degree of diversity

than those in Caltech101.

Furthermore, we use “accordion” and “euphonium” categories as examples to

4http://vision.stanford.edu/projects/OPTIMOL/main/main.html#Dataset
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Figure 1.10: Average image of each category, in comparison to the average images of Caltech101.
The grayer the average image is, the more diverse the dataset is.

demonstrate the learned internal structure of our dataset in Fig. 1.11. Fig. 1.11

demonstrates how our model clusters the images. The average image at the top of

each tree is very gray indicating that our collected dataset is highly diverse. The

middle layer shows the average images of different clusters in this dataset. Attached

to these average images are the example images within each cluster. Each of the

clusters exhibits unique pattern whereas the root of each tree demonstrates a combi-

nation of these patterns. Here only the three clusters with most images are shown.

Theoretically, the system can have unbounded number of clusters given the property

of HDP.

Hyper-parameter analysis. The concentration parameter γ controls the number
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Figure 1.11: Diversity of our collected dataset. Left: Illustration of the diverse of clusters in
the “accordion” dataset. Root image is the average image of all the images in “accordion” dataset
collected by OPTIMOL. Middle layers are average images of the top 3 “accordion” clusters generated
from the learned model. Leaf nodes of the tree structure are 3 example images attached to each of
the cluster average image. Right: Illustration of the diverse clusters in the “euphonium” dataset.

of global clusters shared within each class. α influences the number of local clusters in

each image. We demonstrate the influence of these hyper parameters on the number

of global and local clusters in the “accordion” class in Fig. 1.12. In Fig. 1.12 (Left),

we show that as the value of γ increases, the number of global clusters estimated by

the model increases too. The average number of local clusters in each image increases

when α increases (Fig. 1.12 (Right)).
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Figure 1.12: Left: Number of global clusters shared within each category as a function of the
value of γ. Right: Average number of clusters in each image as a function of the value of α. The
standard deviation of the average numbers are plotted as vertical bars centered at the data points.

Concept drift analysis. We have discussed in Sec. 1.3.4 that “concept drift” is the
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phenomenon of object model drifting from one category to another. This will result

in degraded recognition accuracy. To demonstrate the issue of “concept drift”, we

compare the dataset collection performance of OPTIMOL by using different likeli-

hood ratio threshold values. We present results of the “accordion” and “euphonium”

datasets where likelihood ratio thresholds are set at 0, 30, 60, 90 percentile respec-

tively in Fig. 1.13. Our experiment shows that a tight likelihood threshold allows

fewer images to be classified as the foreground images with less false positives but

more misses. A low likelihood threshold can help OPTIMOL to collect more images.

But it introduces relatively more false positives hence leads to concept drift.
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Figure 1.13: Left: Data collection results of OPTIMOL with different likelihood ratio threshold
values for the “accordion” dataset. X-axis denotes the likelihood ratio threshold values. Y-axis
represents the number of collected images. The number on the top of each bar represents the
detection rate for OPTIMOL with that entropy threshold value. Right: Data collection results of
OPTIMOL with different likelihood ratio threshold values for the “euphonium” dataset.

Illustration of images in the permanent dataset, the “cache set” and the

“junk set”. We have discussed in Sec. 1.3.3 that learning with all the images ac-

cepted in classification lead to over-specialized dataset. To avoid this problem, we

introduce the “cache set” to incrementally update the model. In this experiment,

we compare the appearances of the images incorporated into the permanent dataset,

the “cache set” as well as the discarded ones (in “junk set”). We show example im-

ages from the “accordion” class in Fig. 1.14(Left). We observe that those images

to be appended to the dataset are very similar to the training images. Images kept

in the “cache set” are more diverse ones among the training images whereas images



CHAPTER 1. LEARNINGOBJECTMODEL FROMNOISY INTERNET IMAGES40

being discarded are unrelated to the image class. In Fig. 1.14(Right), we show more

example images with highest and lowest entropy values from “accordion” and “inline-

skate” classes.
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Inline skateAccordion

High Entropy Low Entropy High Entropy Low Entropy

Figure 1.14: Left: Illustration of images in the permanent dataset, the “cache set” and the “junk
set”. X-axis represents the likelihood while y-axis represents the entropy. If the likelihood ratio of
an image is higher than some threshold, it is selected as a related image. This image will be further
measured by its entropy. If the image has low entropy, it will be appended to the permanent dataset.
If it has high entropy, it will stay in the “cache set” to be further used to train the model. Right:
Examples of high and low entropy images in “accordion” and “inline-skate” classes.

Illustration of images collected using different entropy thresholds. In addi-

tion, we show example images from the “accordion” dataset collected by using two

different entropy threshold values. Specifically, the two entropy threshold values se-

lected are: top 30% of the related images with high entropy and all related images.

Our experiment shows that a low entropy threshold allows a large proportion of the

related images to be used to learn the model. Most of them have similar appearance

compared to the seed images. Learning from these images makes the model suscepti-

ble to over-specialized. In other words, the updated model tends to collect even more

similar images in the next iteration. Fig. 1.15(Left) shows that images collected by

OPTIMOL with a low threshold are highly similar to each other. On the other hand,

a high threshold provides more diverse images for the model learning, which leads

to a more robust model capable of collecting more diverse images. We show these

diverse images in Fig. 1.15(Right).

Detection performance comparison. In this experiment, we compare detection
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Collected using high entropy threshold Collected using low entropy threshold 

Figure 1.15: Sampled images from dataset collected by using different entropy threshold values.
Left: Example images from dataset collected with entropy threshold set at top 100% (all images).
Right: Example images from dataset collected with entropy threshold set at top 30%.

performance of OPTIMOL with different numbers of seed images. Using “accordion”

dataset as an example, we show in Fig. 1.16 detection performance as a function of

number of seed images. We use the detection rate as the criterion to measure the

performance of detection. A higher detection rate indicates better performance. Our

experiment shows that when the number of seed images is small, the detection rate

increases significantly along with the number of seed images. When adequate initial

training images are provided to train a good classifier, OPTIMOL acts robustly in

selecting good examples to train itself automatically. From then on, adding seed im-

ages makes little difference in the self-training process.
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Figure 1.16: Detection performance. x-axis is the number of seed images. y-axis represents
the detection rate.
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Polysemous class analysis. We have discussed in the introduction that one chal-

lenge in collecting images from text queries is the issue of polysemy. A “mouse” could

mean a computer mouse, or an animal mouse. In this experiment, we demonstrate

that OPTIMOL is capable of discovering different clusters of images that reflect the

polysemous nature of the query word(s). Fig. 1.17 illustrates the result. As Fig.

1.17 shows, an image search result of “mouse” gives us images of both the comput-

er mouse and the animal mouse, in addition to other noisy images not necessarily

related to either. Using a small number of seed images, OPTIMOL learns a model

that captures the polysemous nature of the query. In Fig. 1.17, we show examples

of images belonging to two main topic clusters estimated by OPTIMOL. It is clear

that one topic contains images of the animal mouse, whereas the other contains im-

ages of the computer mouse. OPTIMOL achieves this discovery of multiple semantic

clusters (i.e. polysemy) due to its ability to automatically assign meaningful topics

to different images.

1.5.3 Exp.2: Image Collection

21 object categories are selected randomly from Caltech 101-Web for this experiment.

The experiment is split into three parts: 1. Retrieval from Caltech 101-Web. The

number of collected images in each category is compared with the manually collected

images in Caltech 101-Human. 2. Retrieval from Web-23 using the same 21 categories

as in part 1. 3. Retrieval from Princeton-23 using the same 21 categories as in part

1. Results of these three experiments are displayed in Fig. 1.20. We first observe

that OPTIMOL is capable of automatically collecting very similar number of images

from Caltech 101-Web as the humans have done by hand in Caltech 101-Human.

Furthermore, by using images from Web-23, OPTIMOL collects on average 6 times

as many images as Caltech 101-Human (some even 10 times higher). Princeton-23

provides a further jump on the number of collected images to approaximately 20

times as that of Caltech 101-Human. In Fig. 1.20, we also compare our results with

LabelMe [119] for each of the 22 categories. A “penguin” category is also included so

that we can compare our results with the state-of-art dataset collecting approach [11].
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Bass(Search engine results) Bass(Instrument) Bass(Fish) 

Mouse(Search engine results) Mouse(Computer)Mouse(Animal)

Figure 1.17: Polysemy discovery using OPTIMOL. Two polysemous query words are used as
examples: “mouse” and “bass”. Left: Example images of “mouse” and “bass” from image search
engines. Notice that in the “mouse” group, the images of animal mouse and computer mouse are
intermixed with each other, as well as with other noisy images. The same is true for the “bass” group.
For this experiment, 50 seed images are used for each class. Right: For each query word, example
images of the two main topic clusters discovered by OPTIMOL are demonstrated. We observe that
for the “mouse” query, one cluster mainly contains images of the animal mouse, whereas the other
cluster contains images of the computer mouse.

In all cases, OPTIMOL collected more related images than the Caltech 101-Human,

the LabelMe dataset and the approach in [11]. In addition, we conduct an additional

experiment to demonstrate that OPTIMOL performs better than the base model by

comparing their performance of dataset collection. The result is shown in Fig. 1.20,
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where the number of images collected by the base model is represented by the gray

bar. The likelihood ratio threshold is set at the same value for the full OPTIMOL

model and the base model. The comparison indicates that the full OPTIMOL model

collects significantly more images than the base model. This is attributed to the

effectiveness of the iterative classification and model learning in OPTIMOL. Note

that all of these results are achieved without any human intervention5, thus suggesting

the viability of OPTIMOL as an alternative to costly human dataset collection. In

Fig. 1.18, we demonstrate sample images from the OPTIMOL-collected datasets of

“accordion” and “inline-skate” categories in the Princeton-23 data. We highlight the

false positives among the images. These mistakes are most likely due to the similar

appearance of the false positive images to those of the foreground images.

Figure 1.18: Left: Randomly selected images from the image collection result for “accordion”
category. False positive images are highlighted by using red boxes. Right: Randomly selected
images from the image collection result for “inline-skate” category.

1.5.4 Exp.3: Classification

To demonstrate that OPTIMOL not only collects large datasets of images, but also

learns good models for object classification, we conduct experiment on Fergus IC-

CV’05 dataset. In this experiment, we use the same experiment settings as in Fergus

et al. [51] to test the multi-class classification ability of OPTIMOL. 7 object category

5We use 15 images from Caltech 101-Human as seed for the image collection experiment of
Caltech 101-Raw since we do not have the order of the downloaded images for Caltech 101-Raw.
The detection rates of Caltech 101-Raw and Web-23 in Fig. 1.20 are comparable indicating the
equivalent effects of automatic and manual selection of seed set on image dataset collecting task.
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models are learnt from the same training sets used by [51]. We use the same validation

set in [51] to train a 7-way SVM classifier to perform object classification. The input

of the SVM classifier is a vector of 7 entries, each denoting the image likelihood given

each of the 7 class models. The results are shown in Fig. 1.19, where we achieve an

average performance of 74.8%. This result is comparable to the 72.0% achieved by

[51]. Our results show that OPTIMOL is capable of learning reliable object models.
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Figure 1.19: Confusion table for Exp.3. We use the same training and testing datasets as in
[51]. The average performance of OPTIMOL is 74.82%, whereas [51] reports 72.0%.

1.6 Discussion

We have developed a new approach (OPTIMOL) for image dataset collection and

model learning. The self training framework makes our model more robust and gener-

alized whereas the incremental learning algorithm boosts the speed. Our experiments

show that as a fully automated system, OPTIMOL achieves accurate diverse dataset

collection result nearly as good as those of humans. In addition, it provides a useful

annotation of the objects in the images. Further experiments show that the models

learnt by OPTIMOL are competitive with the current state-of-the-art model learned

from internet images for object classification. Human labor is one of the most costly

and valuable resources in research. We provide OPTIMOL as a promising alternative

to collect larger diverse image datasets with high accuracy.
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While the object recognition results are promising, semantic image understanding

is much more comprehensive than object categorization and localization. In Chapter

2, we discuss our effort on developing visual models towards complete understanding

of images.
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Figure 1.20: Image collection and annotation results by OPTIMOL. Each row in the
figure contains two categories, where each category includes 4 sample annotation results and a bar
plot. Let us use “Sunflower” as an example. The left sub-panel gives 4 sample annotation results
(bounding box indicates the estimated locations and sizes of the “Sunflower”). The right sub-panel
shows the comparison of the number of images in “Sunflower” category given different datasets. The
blue bar indicates the number of “Sunflower” images in LabelMe dataset, the yellow bar the number
of images in Caltech 101-Human. The OPTIMOL results are displayed using the red, green, and
cyan bars, representing the numbers of images retrieved for the “Sunflower” category in Caltech
101-Web, Web-23 and Princeton-23 dataset respectively. The gray bar in each figure represents the
number of images retrieved by the base model trained with only seed images. The number on top
of each bar represents the detection rate for that dataset.
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Figure 1.21: Image collection and annotation results by OPTIMOL. Notation is the same as Fig.
1.20. Since the pictures in the “face” category of Caltech 101-Human were taken by camera instead
of downloading from the web, the raw Caltech images of the “face” category are not available.
Hence, there is no result for “face” by 101 (OPTIMOL). All of our results have been put online at
http://vision.stanford.edu/projects/OPTIMOL.htm



Chapter 2

Towards Total Scene

Understanding

Images can provide rich information of our complex world. There is much more mean-

ingful content beyond objects in an image, e.g. scenes, events, activities, emotions,

and intentions. Psychologists have shown that the human visual system is particu-

larly efficient and effective in perceiving high-level meanings in cluttered real-world

scenes. While recognizing isolated objects and object classes is a critical component

of visual recognition, a lot more is needed to be done to reach a complete under-

standing of visual scenes. Here, we discuss our effort on developing visual recognition

algorithms towards complete understanding of visual scenes, which we call total scene

understanding.

Chapter 2 is organized as follows. We first discuss the importance and motiva-

tion for total scene understanding Sec. 2.1. We then review related prior work in

Sec. 2.2. In Sec. 2.3 , we start with introducing a first attempt towards classifying

events/complex scenes in static images by integrating scene and object categoriza-

tions. We provide a unified framework to classify an image by recognizing, annotating

and segmenting the objects within the image in Sec. 2.4. Earlier versions of this work

appeared in ICCV 2007 [91], a book chapter in ‘Studies in Computational Intelligence

- Computer Vision’ [45] and CVPR 2009 [92].

49
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Figure 2.1: An example of what our total scene model can understand given an unknown
image. At the scene level, the image is classified as a “polo” scene/event. A number of
objects can be inferred and segmented by the visual information in the scene, hierarchically
represented by object regions and feature patches. In addition, several tags can be inferred
based on the scene class and the object correspondence.

2.1 Introduction and Motivation

When presented with a real-world image, such as the image at the top in Fig. 2.1,

what do you see? For most of us, this picture contains a rich amount of semantically

meaningful information. One can easily describe the image with the objects it contains

(such as human, athlete, grass, trees, horse, etc.), the scene environment it depicts

(such as outdoor, grassland, etc.), as well as the activity it implies (such as a polo

game). Recently, a psychophysics study has shown that in a single glance of an image,

humans can not only recognize or categorize many of the individual objects in the

scene, tell apart the different environments of the scene, but also perceive complex

activities and social interactions [44]. As humans, we can effortlessly classify this

image as a rowing image (high-level scene/event classification), recognize different

objects within the image (annotation), and localize and delineate where the objects

are in the image (segmentation). In computer vision, a lot of progress has been

made in object recognition and classification in recent years (see [43] for a review).



CHAPTER 2. TOWARDS TOTAL SCENE UNDERSTANDING 51

A number of algorithms have also provided effective models for scene environment

categorization [128, 109, 135, 46]. But little has been done in holistic scene/event

recognition of static images. Towards this goal, we propose principle probabilistic

models to represent complex scene/event images in coherent frameworks. Three main

motivations have guided our work. We highlight our contribution in achieving each

of them in unified frameworks.

Total scene understanding. Most of the earlier object and scene recognition

work offers a single label to an image, e.g. an image of a panda, a car or a beach.

Some go further in assigning a list of annotations without localizing where in the image

each annotation belongs (e.g. [89]). A few concurrent segmentation and recognition

approaches have suggested more detailed decomposition of an image into foreground

object and background clutter. But all of them only apply to a single object or a

single type of object (e.g. [84]). A more related pioneer work is by Heitz et. al. [68],

which performs segmentation on individual single type of foreground object together

with a small group of stuff objects. Our proposed models captures the co-occurrences

of multiple types of objects and high-level scene/event classes. Recognition becomes

more accurate when different semantic components of an image are simultaneously

recognized, allowing each component to provide contextual constraints to facilitate

the recognition of the others. In addition, both object recognition within a scene as

well as scene classification can benefit from understanding the spatial extents of each

semantic concept. Our total scene model can recognize and segment multiple objects

as well as classify scenes in one coherent framework.

Flexible and automatic learning. Learning scalability is a critical issue when

considering practical applications of computer vision algorithms. For learning a single,

isolated object, it is feasible to obtain labeled data. But as one wishes to understand

complex scenes and their detailed object components, it becomes increasingly labor-

intensive and impractical to obtain labeled data. Fortunately, the Internet offers a

large amount of tagged images. We propose a framework for automatic learning from

Internet images and tags (i.e. flickr.com), hence offering a scalable approach with no

additional human labor.
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Robust representation of the noisy, real-world data. While flickr images

and tags provide a tremendous data resource, the caveat for exploiting such data

is the large amount of noise in the user labels. The noisy nature of the labels is

reflected in the highly uneven number and the quality of flickr tags: using a “polo”

image as an example, many tags do not have obvious visual correspondences (e.g.

“pakistan”, “adventure”); some tags can be incorrect (e.g. “snow”, “mountain”);

and visually salient tags are often missing (e.g. “grass”, “human”). Our total scene

model offers, for the first time, a principled representation to account for noise related

to either erroneous or missing correspondences between visual concepts and textual

annotations.

Total scene understanding is both an intriguing scientific question as well as a

highly useful engineering one. From the scientific point of view, much needs to be

done to understand how such complex and high level visual information can be rep-

resented in efficient yet accurate way. From an engineering point of view, total scene

understanding is a useful task for numerous of applications. It is part of the ongoing

effort of providing effective tools to retrieve and search semantically meaningful visual

data. Such algorithms are at the core of the large scale search engines and digital

library organizational tools. Total scene understanding is also particularly useful for

helping us to build a safe world, as well as descriptive interpretation of the visual

world for visually-impaired patients.

2.2 Related Work

A number of previous works have offered ways of recognizing scene categories [109,

135, 46]. Most of these algorithms learn global statistics of the scene categories

through either frequency distributions or local patch distributions.

Object categorization is one of the most widely researched areas recently. One

could grossly divide the literature into those that use generative models (e.g. [140, 52,

84]) and those that use discriminative models or methods (e.g. [47, 32, 134, 146]). Also

related are algorithms about object recognition in context, either through geometric

constraints [71] or through semantic relations [115]. But none of these approaches has
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offered a rigorous probabilistic framework to perform detailed scene understanding

tasks.

Several previous works have taken on a more holistic approach in scene inter-

pretation [104, 72, 127, 132]. In all these works, global scene level information

is incorporated in the model for improving better object recognition or detection.

Mathematically, our approach is closest in spirit with Sudderth et al [127]. We

both learn a generative model to label the images. Our event understanding model,

however, differ fundamentally from the previous works by providing a set of integra-

tive and hierarchical labels of an image, performing the what(event), where(scene) and

who(object) recognition of an entire scene. In addition, our total scene understanding

model extends this to more exhaustive image understanding including simultaneous

object recognition, image annotation and segmentation.

2.3 Event Image Understanding by Scene and Ob-

ject Recognition

Before we discuss our coherent framework for simultaneous classification, segmenta-

tion and annotation, we introduce our first attempt towards total scene understand-

ing, an approach which classifies events/complex scenes in static images by integrating

scene and object categorizations. In this work, we define an event to be a seman-

tically meaningful human activity, taking place within a selected environment and

containing a number of necessary objects. Take Fig. 2.2 as an example, the event is

a rowing game. The scene environment is a lake, and the objects that are involved to

define this event are athletes and the rowing boat. We present here a first attempt

to mimic the human ability of recognizing an event and its encompassing objects and

scenes. Fig. 2.2 best illustrates the goal of this work. We would like to achieve event

categorization by producing as much semantic level image interpretation as possible.

This is somewhat like what a school child does when learning to write a descriptive

sentence of the event. It is taught that one should pay attention to the 5 W’s: who,

where, what, when and how. In our system, we try to answer 3 of the 5 W’s: what
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Athlete

Rowing boat

Water

Tree

event: Rowing

scene: Lake

Figure 2.2: Telling the what, where and who story. Given an event (rowing) image such as the
one on the left, our system can automatically interpret what is the event, where does this happen
and who (or what kind of objects) are in the image. The result is represented in the figure on the
right. A red name tag over the image represents the event category. The scene category label is
given in the white tag below the image. A set of name tags are attached to the estimated centers of
the objects to indicate their categorical labels. As an example, from the image on the right, we can
tell from the name tags that this is a rowing sport event held on a lake (scene). In this event, there
are rowing boat, athletes, water and trees (objects).

(the event label), where (the scene environment label) and who (a list of the object

categories).

2.3.1 The Integrative Model

Given an image of an event, our model integrates scene and object level image inter-

pretation in order to achieve the final event classification. Let’s use the sport game

polo as an example. In the foreground, a picture of the polo game usually consists

of distinctive objects such as horses and players (in polo uniforms). The setting of

the polo field is normally a grassland. Following this intuition, we model an event

as a combination of scene and a group of representative objects. The goal of our

approach is not only to classify the images into different event categories, but also to

give meaningful, semantic labels to the scene and object components of the images.

To incorporate all these different levels of information, we choose a generative
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model to represent our image. Fig. 2.3 illustrates the graphical model representa-

tion. We first define the variables of the model, and then show how an image of a

particular event category can be generated based on this model. For each image of

an event, our fundamental building blocks are densely sampled local image patches

(sampling grid size is 10× 10). In recent years, interest point detectors have demon-

strated much success in object level recognition (e.g. [94, 36, 108]). But for a holistic

scene interpretation task, we would like to assign semantic level labels to as many

pixels as possible on the image. It has been observed that tasks such as scene classi-

fication benefit more from a dense uniform sampling of the image than using interest

point detectors [135, 46]. Each of these local image patches then goes on to serve

both the scene recognition part of the model, as well as the object recognition part.

For scene recognition, we denote each patch by X in Fig. 2.3. X only encodes here

appearance based information of the patch (e.g. a SIFT descriptor [94]). For the

object recognition part, two types of information are obtained for each patch. We

denote the appearance information by A, and the layout/geometry related informa-

tion by G. A is similar to X in expression. G in theory, however, could be a very

rich set of descriptions of the geometric or layout properties of the patch, such as 3D

location in space, shape, and so on. For scenes subtending a reasonably large space

(such as these event scenes), such geometric constraint should help recognition. In

Sec. 2.3.4, we discuss the usage of three simple geometry/layout cues: verticalness,

sky at infinity and the ground-plane.1

We now go over the graphical model (Fig. 2.3) and show how we generate an event

picture. Note that each node in Fig. 2.3 represents a random variable of the graphical

model. An open node is a latent (or unobserved) variable whereas a darkened node

is observed during training. The lighter gray nodes (event, scene and object labels)

are only observed during training whereas the darker gray nodes (image patches) are

1The theoretically minded machine learning readers might notice that the observed variables
X,A and G occupy the same physical space on the image. This might cause the problem of “double
counting”. We recognize this potential confound. But in practice, since our estimations are all
taken placed on the same “double counted” space in both learning and testing, we do not observe a
problem. One could also argue that even though these features occupy the same physical locations,
they come from different “image feature space”. Therefore this problem does not apply. It is,
however, a curious theoretical point to explore further.
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Figure 2.3: Graphical model of our approach. E, S, and O represent the event, scene and object
labels respectively. X is the observed appearance patch for scene. A and G are the observed appear-
ance and geometry/layout properties for the object patch. The rest of the nodes are parameters of
the model. For details, please refer to Sec. 2.3.1

observed in both training and testing.

1. An event category is represented by the discrete random variable E. We as-

sume a fixed uniform prior distribution of E, hence omitting showing the prior

distribution in Fig. 2.3. We select E ∼ p(E). The images are indexed from 1

to I and one E is generated for each of them.

2. Given the event class, we generate the scene image of this event. There are in

theory S classes of scenes for the whole event dataset. For each event image,

we assume only one scene class can be drawn.

• A scene category is first chosen according to S ∼ p(S|E,ψ). S is a discrete

variable denoting the class label of the scene. ψ is the multinomial parameter
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that governs the distribution of S given E. ψ is a matrix of size E×S, whereas

η is an S dimensional vector acting as a Dirichlet prior for ψ.

• Given S, we generate the mixing parameters ω that governs the distribution of

scene patch topics ω ∼ p(ω|S, ρ). Elements of ω sum to 1 as it is the multinomial

parameter of the latent topics t. ρ is the Dirichlet prior of ω, a matrix of size

S × T , where T is the total number of the latent topics.

• For each of the M patches X in the scene image

– Choose the latent topic t ∼ Mult(ω). t is a discrete variable indicating

which latent topic this patch will come from.

– Choose patch X ∼ p(X|t, θ), where θ is a matrix of size T × VS . VS is

the total number of vocabularies in the scene codebook for X. θ is the

multinomial parameter for discrete variable X, whereas β is the Dirichlet

prior for θ.

3. Similar to the scene image, we also generate an object image. Unlike the scene,

there could be more than one objects in an image. We use K to denote the

number of objects in a given image. There is a total of O classes of objects for

the whole dataset. The following generative process is repeated for each of the

K objects in an image.

• An object category is first chosen according to O ∼ p(O|E, π). O is a discrete

variable denoting the class label of the object. A multinomial parameter π

governs the distribution of O given E. π is a matrix of size E ×O, whereas ς is

a O dimensional vector acting as a Dirichlet prior for π.

• Given O, we are ready to generate each of the N patches A,G in the kth object

of the object image

– Choose the latent topic z ∼ Mult(λ|O). z is a discrete variable indicating

which latent topic this patch will come from, whereas λ is the multinomial

parameter for z, a matrix of size O × Z. K is the total number of objects

appear in one image, and Z is the total number of latent topics. ξ is the

Dirichlet prior for λ.
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– Choose patch A,G ∼ p(A,G|t, φ), where φ is a matrix of size Z×VO. VO is

the total number of vocabularies in the codebook for A,G. φ is the multi-

nomial parameter for discrete variable A,G, whereas α is the Dirichelet

prior for φ. Note that we explicitly denote the patch variable as A,G to

emphasize on the fact it includes both appearance and geometry/layout

property information.

Putting everything together in the graphical model, we arrive at the following

joint distribution for the image patches, the event, scene, object labels and the latent

topics associated with these labels.

p(E, S,O,X,A,G, t, z, ω|ρ, φ, λ, ψ, π, θ) = p(E)p(S|E,ψ)p(ω|S, ρ)

·
M∏

m=1

p(Xm|tm, θ)p(tm|w)
K∏
k=1

p(Ok|E, π)
N∏

n=1

p(An, Gn|zn, φ)p(zn|λ,Ok) (2.1)

where O,X,A,G, t, z represent the generated objects, appearance representation of

patches in the scene part, appearance and geometry properties of patches in the

object part, topics in the scene part, and topics in the object part respectively. Each

component of Eq.2.1 can be broken into

p(S|E,ψ) = Mult(S|E,ψ) (2.2)

p(ω|S, ρ) = Dir(ω|ρj·), S = j (2.3)

p(tm|ω) = Mult(tm|ω) (2.4)

p(Xm|t, θ) = p(Xm|θj·), tm = j (2.5)

p(O|E, π) = Mult(O|E, π) (2.6)

p(zn|λ,O) = Mult(zn|λ,O) (2.7)

p(An, Gn|z, φ) = p(An, Gn|φj·), zn = j (2.8)

where “·” in the equations represents components in the row of the corresponding

matrix.
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2.3.2 Labeling an Unknown Image

Given an unknown event image with unknown scene and object labels, our goal is: a)

to classify it as one of the event classes (what); b) to recognize the scene environment

class (where); and c) to recognize the object classes in the image (who). We realize

this by calculating the maximum likelihood at the event level, the scene level and the

object level of the graphical model (Fig. 2.3).

At the object level, the likelihood of the image given the object class is

p(I|O) =
N∏

n=1

∑
j=1

P (An, Gn|zj, O)P (zj|O) (2.9)

The most possible objects appear in the image are based on the maximum like-

lihood of the image given the object classes, which is O = argmaxOp(I|O). Each

object is labeled by showing the most possible patches given the object, represented

as O = argmaxOp(A,G|O).
At the scene level, the likelihood of the image given the scene class is:

p(I|S, ρ, θ) =
∫
p(ω|ρ, S)(

M∏
m=1

∑
tm

p(tm|ω) · p(Xm|tm, θ))dω (2.10)

Similarly, the decision of the scene class label can be made based on the max-

imum likelihood estimation of the image given the scene classes, which is S =

argmaxSp(I|S, ρ, θ). However, due to the coupling of θ and ω, the maximum likeli-

hood estimation is not tractable computationally [17]. Here, we use the variational

method based on Variational Message Passing [142] provided in [46] for an approxi-

mation.

Finally, the image likelihood for a given event class is estimated based on the

object and scene level likelihoods:

p(I|E) ∝
∑
j

P (I|Oj)P (Oj|E)
∑
i

P (I|Si)P (Si|E)

(2.11)
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The most likely event label is then given according to E = argmaxEp(I|E).

Figure 2.4: Our dataset contains 8 sports event classes: rowing (250 images), badminton (200
images), polo (182 images), bocce (137 images), snowboarding (190 images), croquet (236 images),
sailing (190 images), and rock climbing (194 images). Our examples here demonstrate the complexity
and diversity of this highly challenging dataset.

2.3.3 Learning the Model

The goal of learning is to update the parameters {ψ, ρ, π, λ, θ, β} in the hierarchical

model (Fig. 2.3). Given the event E, the scene and object images are assumed

independent of each other. We can therefore learn the scene-related and object-

related parameters separately.

We use Variational Message Passing method to update parameters {ψ, ρ, θ}. De-
tailed explanation and update equations can be found in [46]. For the object branch

of the model, we learn the parameters {π, λ, β} via Gibbs sampling [83] of the latent

topics. In such a way, the topic sampling and model learning are conducted iterative-

ly. In each round of the Gibbs sampling procedure, the object topic will be sampled

based on p(zi|z\i, A,G,O), where z\i denotes all topic assignment except the current

one. Given the Dirichlet hyperparameters ξ and α, the distribution of topic given

object p(z|O) and the distribution of appearance and geometry words given topic

p(A,G|z) can be derived by using the standard Dirichlet integral formulas:
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p(z = i|z\i, O = j) =
cij + ξ

Σicij + ξ ×H
(2.12)

p((A,G) = k|z\i, z = i) =
nki + φ

Σknki + φ× VO
(2.13)

where cij the total number of patches assigned to object j and object topic i, while nki

is the number of patch k assigned to object topic i. H is the number of object topics,

which is set to some known, constant value. VO is the object codebook size. And a

patch is a combination of appearance (A) and geometry (G) features. By combining

Eq.2.12 and 2.13, we can derive the posterior of topic assignment as

p(zi|z\i, A,G,O) = p(z = i|z\i, O)p((A,G) = k|z\i, z = i) (2.14)

Current topic will be sampled from this distribution.

2.3.4 System Implementation

Our goal is to extract as much information as possible out of the event images, most

of which are cluttered, filled with objects of variable sizes and multiple categories. At

the feature level, we use a grid sampling technique similar to [46]. In our experiments,

the grid size is 10 × 10. A patch of size 12 × 12 is extracted from each of the grid

centers. A 128-dim SIFT vector is used to represent each patch [94]. The poses of

the objects from the same object class change significantly in these events. Thus, we

use rotation invariant SIFT vector to better capture the visual similarity within each

object class. A codebook is necessary in order to represent an image as a sequence

of appearance words. We build a codebook of 300 visual words by applying K-means

for the 200000 SIFT vectors extracted from 30 randomly chosen training images per

event class. To represent the geometry/layout information, each pixel in an image

is given a geometry label using the codes provided by [72]. In our framework, only

three simple geometry/layout properties are used. They are: ground plane, vertical

structure and sky at infinity. Each patch is assign a geometry membership by the
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major vote of the pixels within.

2.3.5 Dataset and Experimental Setup

Dataset

As the first attempt to tackle the problem of static event recognition, we have no

existing dataset to use and compare with. Instead we have compiled a new dataset

containing 8 sports event categories collected from the Internet: bocce, croquet, polo,

rowing, snowboarding, badminton, sailing, and rock climbing. The number of images

in each category varies from 137 (bocce) to 250 (rowing). As shown in Fig. 2.4, this

event dataset is a very challenging one. Here we highlight some of the difficulties.

• The background of each image is highly cluttered and diverse;

• Object classes are diverse;

• Within the same category, sizes of instances from the same object are very different;

• The pose of the objects can be very different in each image;

• Number of instances of the same object category change diversely even within the

same event category;

• Some of the foreground objects are too small to be detected.

We have also obtained a thorough groundtruth annotation for every image in the

dataset. This annotation provides information for: event class, background scene

class(es), most discernable object classes, and detailed segmentation of each objects.

Experimental Setup

We set out to learn to classify these 8 events as well as labeling the semantic contents

(scene and objects) of these images. For each event class, 70 randomly selected images

are used for training and 60 are used for testing. We do not have any previous work

to compare to. But we test our algorithm and the effectiveness of each components
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of the model. Specifically, we compare the performance of our full integrative model

with the following baselines.

• A scene only model. We use the LDA model of [46] to do event classification

based on scene categorization only. We “turn off” the influence of the object

part by setting the likelihood of O in Eq.2.11 to a uniform distribution. This is

effectively a standard “bag of words” model for event classification.

• An object only model. In this model we learn and recognize an event class

based on the distribution of foreground objects estimated in Eq.2.9. No geom-

etry/layout information is included. We “turn off” the influence of the scene

part by setting the likelihood of S in Eq.2.11 to a uniform distribution.

• A object + geometry model. Similar to the object-only model, here we include

the feature representations of both appearance (A) and geometry/layout (G).

Except for the LDA model, training is supervised by having the object identities

labeled. We use exactly the same training and testing images in all of these different

model conditions.

2.3.6 Results

We report an overall 8-class event discrimination of 73.4% by using the full integrative

model. Left panel of Fig. 2.5 shows the confusion table results of this experiment. In

the confusion table, the rows represent the models for each event category while the

columns represent the ground truth categories of events. It is interesting to observe

that the system tends to confuse bocce and croquet, where the images tend to share

similar foreground objects. On the other hand, polo is also more easily confused with

bocce and croquet because all of these events often take places in grassland type of

environments. These two facts again with our intuition that an event image could be

represented as a combination of the foreground objects and the scene environment.

In the control experiment with different model conditions, our integrative model

consistently outperforms the other three models (see Fig. 2.5 Right). A curious obser-

vation is that the object + geometry model performs worse than the object only model.
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Figure 2.5: Left: Confusion table for the 8-class event recognition experiment. The average
performance is 73.4%. Random chance would be 12.5%. Right: Performance comparison between
the full model and the three control models. The x-axis denotes the name of the model used in each
experiment, where “full model” indicates the proposed integrative model (see Fig. 2.3). The y-axis
represents the average 8-class discrimination rate, which is the average score of the diagonal entries
of the confusion table of each model.

We believe that this is largely due to the simplicity of the geometry/layout properties.

While these properties help to differentiate sky, ground from vertical structures, they

also introduce noise. As an example, water and snow are always incorrectly classified

as sky or ground by the geometry labeling process, which deteriorates the result of

object classification. However, the scene recognition alleviates the confusion among

water, snow, sky and ground by encoding explicitly their different appearance prop-

erties. Thus, when the scene pathway is added to the integrated model, the overall

results become much better.

Finally, we present more details of our image interpretation results in Fig. 2.6.

We set out to build an algorithm that can tell a what, where and who story of the

sport event pictures. We show here how each of these W’s is answered by our algo-

rithm. Note all the labels provided in this figure are automatically generated by the

algorithm, no human annotations are involved.
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2.3.7 Discussion

In this work, we propose an integrative model that learns to classify static images

into complicated social events such as sport games. This is achieved by interpreting

the semantic components of the image as detailed as possible. Namely, the event

classification is a result of scene environment classification and object categorization.

Our goal is to offer a rich description of the images. It is not hard to imagine such

algorithm would have many applications, especially in semantic understanding of

images. Commercial search engines, large digital image libraries, personal albums

and other domains can all benefit from more human-like labeling of images. Our

model is, of course, just the first attempt for such an ambitious goal. Much needs

to be improved. In the next section, we introduce a further step towards complete

understanding of images, resulting in a hierarchical generative model that unified

framework to classify an image by recognizing, annotating and segmenting the objects

within the image.
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Figure 2.6: (This figure is best viewed in color and with PDF magnification.) Image interpretation
via event, scene, and object recognition. Each row shows results of an event class. Column 1 shows
the event class label. Column 2 shows the object classes recognized by the system. Masks with
different colors indicate different object classes. The name of each object class appears at the
estimated centroid of the object. Column 3 is the scene class label assigned to this image by our
system. Finally Column 4 shows the sorted object distribution given the event. Names on the
x-axis represents the object class, the order of which varies across the categories. y-axis represents
the distribution.
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2.4 A Probabilistic Model Towards Total Scene

Understanding: Simultaneous Classification, An-

notation and Segmentation

In this section, we propose an algorithm that classifies the overall scene, recognizes

and segments each object component, as well as annotates the image with a list of

tags. The result of our algorithm is a generative model that encodes a hierarchy of

semantic information contained in the scene (Fig. 2.1). To our knowledge, this is the

first model that performs all three tasks in one coherent framework. For instance, a

scene of a polo game consists of several visual objects such as human, horse, grass,

etc. In addition, it can be further annotated with a list of more abstract (e.g. dusk) or

visually less salient (e.g. saddle) tags. Our generative model jointly explains images

through a visual model and a textual model.

2.4.1 The Hierarchical Generative Model

We propose a hierarchical generative model which aims to interpret scene images,

their objects and the associated noisy tags. The model shown in Fig. 2.7 describes

the scene of an image through two major components. In the visual component, a

scene consists of objects that are in turn characterized by a collection of patches and

several region features. The second component deals with noisy tags of the image

by introducing a binary switch variable. This variable enables the model to decide

whether a tag is visually represented by objects in the scene or whether it represents

more visually irrelevant information of the scene. Therefore, the switch variable

enables a principled joint modeling of images and text and a coherent prediction of

what tags are visually relevant. The hierarchical representation of image features,

object regions, visually relevant and irrelevant tags, and overall scene provides both

top-down and bottom-up contextual information to components of the model.
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Figure 2.7: A graphical model representation of our generative model. Nodes represent
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information (i.e. tags). Nc, No, Nx, Nfi , i ∈ 1, 2, 3, 4 denote the numbers of different scenes,
objects, patches and regions for region feature type i respectively. Hyperparameters of the
distributions are omitted for clarity.

The Generative Process

In order to explain the generative process of our model mathematically, we first

introduce the observable variables. Each image d ∈ D is over-segmented into small

coherent regions by using Felzenszwalb et al [49]. For each region, we extract NF = 4

types of features, where F = {shape, color, location, texture}2. We further vector

quantize region features into region codewords, denoted by the variable R in the

model (see example of the representative regions for “horse” in Fig. 2.1). We use

100, 30, 50, 120 codewords for each feature type, respectively. Additionally, the set

of patches X is obtained by dividing the image into blocks. Similarly, patches are

represented as 500 codewords obtained by vector quantizing the SIFT [94] features

extracted from them (see example of the representative patches for “horse” in Fig.

2We use the shape and location features described in [96]. Color features are simple histograms.
Texture features are the average responses of filterbanks in each region.
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2.1). Noisy tags are represented by the variable T , which is observed in training. To

generate an image and its corresponding annotations, a scene class C is sampled from

a fixed uniform prior distribution. Given a scene, we are now ready to generate both

the visual and textual components of the scene.

Generating the visual component. Given the scene class C, the probability of

objects in such scenes is governed by a multinomial distribution. For each of the Nr

image regions denoted by the left internal box in Fig. 2.7, we first sample an object

O ∼ Mult(ηc). Given the object O, we sample the image appearance:

1. For each i ∈ F , sample global appearance features: Ri ∼ Mult(αi|O), where
there is a unique αi for each object and each type of region feature.

2. Sample Ar many patches: X ∼ Mult(β|O).

Generating the tag component. At the same time, a region index Z is sampled

from a uniform distribution. Z is used to account for the different numbers of tags and

regions in this image, as suggested by [16]. As mentioned above, the switch variable

S allows tags T to correspond to either visually relevant (i.e. the objects) or visually

irrelevant (i.e. more abstract information) parts of the scene. This is formulated by

allowing tags T to be drawn from either the distribution governed by object O, or

the one controlled by scene class C. These ideas are summarized in the following

generative procedure. For each of the Nt image tags:

1. Sample an index variable: Z ∼ Unif(Nr). Z is responsible for connecting an

image region with a tag.

2. Sample the switch variable S ∼ Binomial(γOZ
). S decides whether this tag is

generated from the visually relevant object O or more visually irrelevant infor-

mation related to the scene C. Fig. 2.8 shows examples of switch probabilities

for different objects.

(a) If S = non-visual: sample a tag T ∼ Mult(φc).

(b) If S = visual: sample a tag T ∼ Mult(θOZ
).
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Putting the generative process together, the resulting joint distribution of scene

class C, objects O, regions R, image patches X, annotation tags T , as well as all the

latent variables becomes:

p(C,O,R,X,S,T,Z|η, α, β, γ, θ, φ) = p(C) · (
Nr∏
n=1

p(On|η, C))

×
Nr∏
n=1

((

NF∏
i=1

p(Rni|On, αi)) ·
Ar∏
r=1

p(Xnr|On, β))

×
Nt∏

m=1

p(Zm|Nr)p(Sm|OZm , γ)p(Tm|OZm , Sm, θ, C, φ) (2.15)

2.4.2 Properties of the Model

Our model is designed to perform three visual recognition tasks in one coherent

framework: classification, annotation and segmentation. Eq.2.15 shows the joint

probability of variables governing these three tasks. Later, in Eq.2.23, it will be clear

how scene classification can directly influence the annotation and segmentation tasks.

Through the coupling of a scene C, its objects and their regions the model creates

a hierarchical representation of an image. By modeling three layers jointly, they each

improve the overall recognition accuracy. Each scene C defines a unique distribution

p(O|C) over objects. Additionally, the scene class C influences the distribution p(T |C)
over tags. This scene class influence serves as a top-down contextual facilitation of

the object recognition and annotation tasks.

One unique feature of our algorithm is the concurrent segmentation, annotation

and recognition, achieved by combining a textual and a visual model. Furthermore,

our visual model goes beyond the “bag-of-words” model by including global region

features and patches inspired by [21].

Lastly, the model presents a principled approach to dealing with noisy tags. Fig.

2.8 shows probability values of switch variable “S” for different objects. When a tag

is likely to be generated from a visually irrelevant, abstract source (e.g. “wind”), its

p(S =visual) is low; whereas tags such as “grass”, “horse” show high probability of
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being visually relevant.
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Figure 2.8: Probabilities of different objects. Words such as “horse” or “net” have higher
probability because users tend to only tag them when the objects are really present, largely
due to their clear visual relevance. On the contrary, words such as “island” and “wind” are
usually related to the location or some other visually irrelevant concept, and usually not
observable in a normal photograph.

2.4.3 Learning via Collapsed Gibbs Sampling

We have described the model in detail and can now turn to learning its parameters.

To this end, we derive a collapsed Gibbs sampling algorithm [106]. For each image

and its tags, we sample the following latent variables: object O, switch variable S

and index variable Z. Let Odn denote the object for the nth region in the dth image,

Rdn and Xdn represent the sets of its region features and patches. We define set

Adn = {j : Zdj = n} and Bdn = {j : Zdj = n, Sdj = visual}. The switch variables

related to Adn is denoted as SA, i.e., SA = {Sdj : j ∈ Adn}. The tags related to

Bdn are represented as TB = {Tdj : j ∈ Bdn}. Odn represents all object assignments

excluding Odn. Similarly, we define the switch, index and tag variables Sdm, Zdm,

Tdm, Sdm, Zdm and T dm for the mth tag in the dth image. SA and TB represent the

corresponding assignments excluding Adn and Bdn respectively. Following the Markov

property of variable O, we analytically integrate out parameters η, α, β, γ, φ, θ. Then,

the posterior over the object Odn can be described as:

p(Odn = o|Odn, Cd,R,X,S,T,Z) ∝ p(Odn = o|Odn, Cd) · p(Rdn|Rdn,O) ·

p(Xdn|Xdn,O) · p(ZA|Nr) · p(SA|O,Z, SA) · p(TB|O,Z,S, TB) (2.16)
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Using standard Dirichlet integral formulation, we obtain the first element of this

product:

p(Odn = o|Odn, Cd = c) =
nco,−dn + πo∑

o′ nco′,−dn +Noπo
(2.17)

where πo is the symmetric Dirichlet hyperparameter governing η. No is the total

numbers of different objects. nco,−dn denotes the number of assignments of the object

class o to scene class c, not including the current instance.

Similarly, the other counting variables nofi,−dn, nox,−dn, nos,−dm and not,−dm are

also defined as the number of occurrences for fi, x, s, t with o excluding the instances

related to dn or dm. Given nos = #(Z = z,Oz = o, S = s), nos,−Adn
indicates the

frequency of s co-occurring with o excluding instances related to set Adn. Given

not = #(Z = z,Oz = o, S = visual, T = t), not,−Bdn
is the frequency of t co-occurring

with o excluding instances related to set Bdn. nct,−dm denotes the number of times

tag t co-occurring with scene type c, excluding the current instance. Furthermore,

Nfi , Nx, Nt are the total numbers of different region features, patches and tags.

The hyperparameters πo, πfi , πx, πs, πct, πot are symmetric Dirichlet distributions

governing η, αi, β, γ, φ, θ.

S only has two possible values: S = visual indicates a visually relevant object and

S = non-visual indicates a visually irrelevant object or scene information. Hence,

Ns = 2.

The second and third part of Eq.2.16 become:

p(Rdn|Rdn,O) =

NF∏
i=1

p(Rdni = fi|Rdni,Odn = o,Odn)

=

NF∏
i=1

nofi,−dn + πfi∑
f ′
i
nof ′

i ,−dn +Nfiπfi
(2.18)

p(Xdn|Xdn,O) =
Γ(
∑

x′ nox′,−dn +Nxπx)

Πx′Γ(nox′,−dn + πx)
× Πx′Γ(nox′ + πx)

Γ(
∑

x′ nox′ +Nxπx)
(2.19)

p(Z = z|Nr) =
1
Nr

, hence p(ZA|Nr) is constant. The part related to S is:

p(SA|O, SA,Z) =
Γ(
∑

s′ nos′,−Adn
+Nsπs)

Πs′Γ(nos′,−Adn
+ πs)

Πs′Γ(nos′ + πs)

Γ(
∑

s′ nos′ +Nsπs)
. (2.20)
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The contribution of tags to object concept Odn is:

p(TB|O, TB,Z,S) =
Γ(
∑

t′ not′,−Bdn
+Ntπot)

Πt′Γ(not′,−Bdn
+ πot)

Πt′Γ(not′ + πot)

Γ(
∑

t′ not′ +Ntπot)
. (2.21)

Similarly, we derive the posterior over the switch variable S and index Z.

Up to this point, the update equations only need tags and images. However, there

is no information of which tag T corresponds to which object O inside the image.

Without such information it is possible to confuse tag-object relations, if both only

occur together, e.g. “water” and “sailboat”. To prevent such a case, we introduce an

automatic initialization system which provides a few labeled regions.

2.4.4 Automatic Initialization Scheme

In this section, we propose an initialization scheme which enables us to learn the

model parameters with no human effort of labeling. The goal of the initialization

stage is to provide a handful of relatively clean images in which some object regions

are marked with their corresponding tags. During the learning process, these regions

and tags provide seed information to the update equations.

In the preprocessing step, we use a lexicon to remove all tags that do not belong

to the “physical entity” group. Any lexicon dataset may be used for this purpose,

we choose WordNet [103]. We also group all words in one WordNet synset (a group

of synonyms) to one unique word, e.g. “sailing boat” and “catboat” are both trans-

formed to “sailboat”.

In the next step, we query flickr.com with the object names collected from the

previous step to obtain initial training sets for each of the object classes. We then

train the object model described in [21] and apply it to all scene images. A few

object regions are collected from a handful of images for each object class. We now

have a small number of partially annotated scene images and their still noisy tags, we

select the best K of such images to seed the learning process described in Sec. 2.4.3.

This is done by ranking the images by favoring larger overlaps between the tags and
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Filtered words:
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water,
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wind
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Figure 2.9: Walk-through of the learning process. (a): The original image. (b): The
original tags from Flickr. Visually irrelevant tags are colored in red. (c): Output of Step
1 of Algorithm 1: Tags after the WordNet pruning. (d): Output of Step 2 of Algorithm 1:
The image is partly annotated using the initialization scheme. Different object concepts are
colored differently. Note that there is a background class in our initialization scheme, which
is denoted in black in this figure. Since the criterion for being selected as an initial image
is very conservative, the image annotations are clean but many regions are not annotated
(missing tags). (e): Output of Step 3 of Algorithm 1: After training the hierarchical model,
the image is completely and more precisely segmented. (f): Final annotation proposed by
our approach. Blue tags are predicted by the visual component (S = visual). Green tags
are generated from the top down scene information learned by the model (S = non-visual).

annotated objects 3.

2.4.5 Learning Summary

Algorithm 1 summarizes the learning process. Furthermore, Fig. 2.9 provides an

example walk-through of one training image. After the pre-processing stage, some of

the noisy tags are pruned out, but some visually relevant tags are still missing (e.g.

tree, sky). The automatic initialization scheme then provides some segmented and

annotated regions as seeds for the learning of the generative model. Using these seed

images and additional unannotated images, the visual and textual components of the

model are jointly trained. The effect of this joint learning is a robust model that can

segment images more accurately (Fig. 2.9(e)). Note that some visually irrelevant

tags could also be recovered at the end of training (Fig. 2.9(f), e.g. wind). This is

attributed to the top-down influence of the scene class on the tags. Having learned

3rank(Od, Td, P (Td|C)) =
∑

Td∈Od
∩

Td
P (Td|C)∑

Td∈Od
∪

Td
P (Td|C) , where Td are the flickr tags of image d and P (Td|C)

is the observed probability of tag Td given the scene class C
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———————————————————————————————-
Algorithm 1 Automatic training framework
————————————————————————————————————-

Step 1: Obtaining Candidate Tags Reduce the number of tags by keeping word-
s that belong to the “physical entity” group in WordNet. Group synonyms using
WordNet synsets.

Step 2: Initialize Object Regions

Obtain initial object models. Apply the automatic learning method of [21] to learn an
initial object model.

Annotate scene images. Apply the learned object model to annotate candidate object
regions in each scene image.

Select initialization images. Select a small number of initialized images by a ranking
metric described by Footnote3

Step 3: Automatic Learning. Treat the automatically selected top ranked images
as “supervised” data, add more flickr images and their tags to jointly train the model
described in section 2.4.1.

———————————————————————————————————–

this model, we can now turn to inference.

2.4.6 Inference: Classification, Annotation and Segmenta-

tion

Classification. The goal of classification is to estimate the most likely scene class

for an image given an unknown image without any annotation tags. We use the

visual component of the model (i.e. the region and patch appearances) to compute

the probability of each scene class, by integrating out the latent object variable O:

p(C|Rd,Xd) =
p(C,Rd,Xd)

p(Rd,Xd)

∝
∏
Nr

∑
O

p( R|O)p(X|O)p(O|C) (2.22)

Finally, we choose c = argmaxCp(C|Rd,Xd).
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Annotation. Given an unknown image, annotation tags are extracted from the

segmentation results derived below.

Segmentation. Segmentation infers the exact pixel locations of each of the

objects in the scene. By integrating out all the scene classes, we obtain:

p(O|R,X) =
∑
C

p(O,C|R,X) ∝
∑
C

p(O,C,R,X)

=
∑
C

p(O|C)p(R|O)p(X|O)p(C) (2.23)

We observe that object segmentation is influenced both by the top-down force of

scene class (first term in Eq.2.23) as well as the bottom-up force generated by the

visual features (second and third terms in Eq.2.23).

2.4.7 Experiments and Results

We test our approach on 8 scene categories suggested in [91]: badminton, bocce,

croquet, polo, rock climbing, rowing, sailing, snowboarding. By using these category

names as keywords, we first automatically crawl the Flickr website to obtain 800

images and their tags for each category. 200 randomly selected images from each

class are set aside as the testing images. After Step 1 of Algorithm 1, we obtain a

vocabulary of 1256 unique tags. For segmentation experiments we consider the 30

most frequent words from this list. Note, however, that top down influence from the

scene information still enables our model to be able to annotate images with tags from

the full list of 1256 words. We offer more details about this dataset in the technical

report.

Our hierarchical model can perform three tasks: image level classification, indi-

vidual object annotation as well as pixel level segmentation. We now investigate

performance of these tasks as well as the influence of parts of the model such as the

switch variable on overall accuracy.
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Scene Classification

The goal in this experiment is to classify an unknown image as one of the eight

learned scene classes. We perform three experiments to analyze the different aspects

of our model and learning approach. All evaluations are done based on the 8-way

classification results4.

A. Comparison with different models. We compare the results of our model

with three other approaches: (i) a baseline bag of words image classification model

[46]; (ii) the region-based model used to initialize our initial object class models [21];

(iii) a modified Corr-LDA model based on [16] by adding a class variable on top of

the mixing proportation parameter θ in the original model.

We provide the same list of tags generated by our system to our model and the

modified model of [16]. Fig. 2.10 summarizes the results. Our model consistently

outperforms the other three approaches, whereas the region-based model [21] and the

modified Corr-LDA model outperform a simple bag of words model. A comparison

of the modified Corr-LDA model and our model underlines the effectiveness of our

selective learning of visually relevant and irrelevant tags of the real-world data.
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Figure 2.10: Comparison of classification results. Left: Overall performance.
Confusion table for the 8-way scene classification. Rows represent the models for each
scene while the columns represent the ground truth classes. The overall classification
performance is 54%. Right: Comparison with different models (Experiment
A). Performance of four methods. Percentage on each bar represents the average
scene classification performance. 3rd bar is the modified Corr-LDA model [16].

4An 8-way classification result can be depicted by an 8 × 8 confusion table. By convention, we
use the average of the diagonal entries of the table as the overall classification results of a particular
model.
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Figure 2.11: Left: Influence of unannotated data (Experiment B). Classification
performance as a function of number of unannotated images. The y axis represents the
average classification performance. The x axis represents the number of unlabeled images. It
shows the unannotated images also contribute to the learning process of our model. Right:
Effect of noise in tags (Experiment C). Performance of different models as a function
of noise percentage in the tags. The y axis is average classification performance. The x axis
represents the percentage of noisy tags. While the performance of corr-LDA decreases with
the increase of percentage of noise, our model performs robustly by selectively learning the
related tags.

B. Influence of unannotated data. To provide some insight into the learning

process, we show in Fig. 2.11(Left) the classification performance curve as a function

of the number of unlabeled images given to the model. In this experiment, the

number of initialized images are fixed to 30. Performance gradually increases when

more unlabeled images are included. This proves the effectiveness of unlabeled data

in our learning framework.

C. Effect of noise in tags. In order to underline the robustness of our model to

noisy training data, we present a set of experiments in which we dilute the original

flickr tags with different percentages of noise by adding arbitrary words from the list

of 1256 words during the training process. Fig. 2.11(Right) shows that while the

algorithm of [16] decreases in accuracy when noise increases, our model is oblivious

to even large percentages of noise. The robustness to noise is mostly attributed to the

switch variable “S”, which correctly identifies most of the noisy tags, hence keeping

the visual part of the model working properly even amidst a large amount of tagging

noise.
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Image annotation

Annotation tags are given through the results of segmentation. If there is a region of

a certain object, we treat the name of this object as a tag.

D. Comparison to other annotation methods. In this experiment, we com-

pare annotation results with two other state-of-the-art annotation methods – Alipr

[89] and Corr-LDA [16]. We use precision-recall and F-measures to demonstrate the

annotation results. Table 2.1 lists detailed annotation results for seven objects, as

well as the overall scores from all object classes. Our annotation consistently and

significantly outperforms the other two methods. This can be largely attributed to

the selective learning of useful tags that can find a balance between bottom-up visual

appearance cues and top-down scene class information.

Alipr Corr LDA Our Model
Object Prec Rec F Prec Rec F Prec Rec F
human .83 .97 .89 .83 1.00 .91 .85 .98 .91
horse – – – .17 .91 .28 .17 .91 .29
grass .42 .86 .56 .22 1.00 .35 .33 .86 .48
sky .59 .33 .43 .55 .17 .26 .44 .92 .59
tree .45 .38 .41 .25 .01 .03 .38 .93 .54
net – – – – – – .27 .85 .41
sand – – – – – – .24 .46 .32
Mean .15 .22 .16 .16 .40 .15 .28 .73 .34

Table 2.1: Comparison of precision and recall values for annotation with Alipr, corr-LDA
and our model. Detailed results are given for seven objects, but means are computed for
all 30 object categories (Experiment D).

Image segmentation

Our model not only classifies an image as a scene class, but also provides pixel level

segmentation of the objects in the image without any such information given during

training. We first compare quantitative results with another approach and then show

a qualitative difference in example segmentations with and without the top down

contextual influence provided by the scene class C.



CHAPTER 2. TOWARDS TOTAL SCENE UNDERSTANDING 80

Cao & Fei-Fei, 2007 Our Model
Object Prec Rec F Prec Rec F
human .35 .23 .28 .43 .47 .45
horse .13 .49 .20 .27 .53 .36
grass .62 .38 .47 .59 .50 .54
sky .79 .44 .56 .74 .73 .73
tree .40 .48 .44 .41 .59 .48
net .04 .09 .05 .45 .26 .33
sand .11 .32 .16 .29 .35 .32
Mean .22 .34 .28 .42 .46 .43

Table 2.2: Results of segmentation on seven object categories and mean values for all 30
categories (Experiment E).

E. Comparison to another segmentation method. In the image segmenta-

tion and annotation experiments, we train our model on 30 initialized images plus 170

unlabeled images. We test on 240 images where groundtruth is provided by human

segmentation. Precision is computed by dividing the total area of correctly segment-

ed pixels by the total area of detected pixels for each object. Recall is calculated by

dividing the total area of correctly segmented pixels by the total area of true pixels

of each object. We compare our segmentation results with the region-based model

in [21]. [21] is used in the training of our initial object models. It is also one of the

state-of-the-art concurrent object segmentation and recognition methods. Table 2.2

shows that our model significantly outperforms [21] in every object classes.

F. Influence of the scene class on annotation and segmentation. In this

experiment, we examine the top-down, contextual influence of a scene in our model

(Fig. 2.12). We compare our full model to a damaged model in which the top

down influence of the scene class is ignored. Our results underscore the effectiveness

of the contextual facilitation by the top-down classification on the annotation and

segmentation tasks.

2.5 Discussion

Holistic understanding of complex visual scenes is an indispensable functionality of

the future generations of artificial intelligence system. One of the most important
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Figure 2.12: Comparison of object segmentation results with or without the top down scene
class influence. Each triplet of images show results of one scene class (Experiment F). The
left image shows object segmentation result without the top down contextual information,
i.e. by setting the probability distribution of object given scene class to a fixed uniform
distribution. The center image shows object segmentation result by using the full model.
We observe objects are more accurately recognized and delineated. The right image shows
the probability of the 5 most likely objects per scene class. This probability encodes the
top down contextual information.
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ultimate goal is to provide personal assistance to visually-impaired or blind people.

Currently, other than specific domain applications such as texts and faces, little tech-

nology is available to assist them to interpret and analyze the visual environment in

a comprehensive and meaningful way. Our project aims to contribute to both the

scientific questions of image modeling and the technological advancement of visu-

al intelligence. Towards this goal, we have proposed principle probabilistic models

towards complete understanding of complex scene images. Hierarchical models are

developed to unify the patch-level, object-level, and scene-level information. We have

introduced our first attempt to recognize event/complex scene images by combining

objects and scene environment in the event images. We then extend this model to

a probabilistic model for simultaneous classifying, annotating and segmenting chal-

lenging complex scene images, providing a principled probabilistic treatment of noisy

tags often seen in real-world data. Through an automatic training framework, we

show that our model outperforms state-of-the-art methods in classifying, labeling

and segmenting complex scene images.



Chapter 3

Probabilistic Model for Automatic

Image Organization

Semantic image understanding of individual images is helpful for inferring the rela-

tionship among images based on visual content. The growing popularity of digital

cameras allows us to easily capture and share meaningful moments in our lives, re-

sulting in giga-bytes of digital images stored in our hard-drives or uploaded onto the

Internet. While it is enjoyable to take, view and share pictures, it is tedious to or-

ganize them. Hierarchies are a natural way to organize concepts and data [15]. A

meaningful image hierarchy can ease the human effort in organizing thousands and

millions of pictures, making image organization, browsing and searching more con-

venient and effective (Fig. 3.1). In this chapter, we introduce a a non-parametric

hierarchical model for automatically constructing a semantically and visually mean-

ingful hierarchy of texts and images on the Internet.

Two types of hierarchies have recently been explored in computer vision: language-

based hierarchy and low-level visual feature based hierarchy. Pure language-based

lexicon taxonomies, such as WordNet [103, 125], have been used in vision and multi-

media communities for tasks such as image retrieval [80, 81, 33] and object recogni-

tion [99, 130]. While these hierarchies are useful to guide the semantically meaningful

organization of images, they ignore important visual information that connects im-

ages together. For example, concepts such as snowy mountains and a skiing activity

83
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(a) now: computers organize images by meta-data (dates, filenames,...)

(b) future: computers organize images by seman�c and visual contents 
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More...
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More...
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Figure 3.1: Traditional ways of organizing and browsing digital images include using dates or
filenames, which can be a problem for large sets of images. Images organized by semantically
meaningful hierarchy could be more useful.

are far from each other on the WordNet hierarchy, while visually they are close. On

the other hand, a number of purely visual feature based hierarchies have also been

explored recently [65, 98, 123, 3, 7]. They are motivated by the observation that

the organization of the image world does not necessarily follow a language hierarchy.

Instead, visually similar objects and concepts (e.g. shark and whale) should be close

neighbors on an image hierarchy, a useful property for tasks such as image classi-

fication. But visual hierarchies are difficult to interpret – none of the work has a

quantitatively evaluated of the effectiveness of the hierarchies directly. It is also not

clear how useful a purely visual hierarchy is.

Motivated by having a more meaningful image hierarchy useful for end-tasks such

as image annotation and classification, we propose a method to construct a seman-

tivisual hierarchy, which is built upon both semantic and visual information related

to images. Specifically, we make the following contributions:

1. Given a set of images and their tags, our algorithm automatically constructs a

hierarchy that organizes images in a general-to-specific structure.

2. Our quantitative evaluation by human subjects shows that our semantivisual

image hierarchy is more meaningful and accurate than other hierarchies.
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3. Serving as a knowledge ontology, our image hierarchy performs better on image

classification and annotation.

3.1 Related Work

Building the Image Hierarchy. Several methods [3, 7, 65, 98, 123] have been

developed for building image hierarchies from image features. Most of them assess

the quality of the hierarchies by using end tasks such as classification, and there is

little discussion on how to interpret the hierarchies1. We emphasize an automatic con-

struction of semantically meaningful image hierarchies and quantitative evaluations

of the constructed hierarchy.

Using the Image Hierarchy. A semantically meaningful image hierarchy can be

useful for several end-tasks such as classification, annotation, searching and indexing.

In object recognition, using WordNet [103] has led to promising results [99, 130]. Here,

we focus on exploiting the image hierarchy for three image related tasks: classification

(e.g., “Is this a wedding picture?”), annotation (e.g., a picture of water, sky, boat,

and sun) and hierarchical annotation (e.g., a picture described by photo→ event →
wedding → gown).

Most relevant to our work are those methods matching pictures with words [5, 37,

23, 16, 138, 92]. These models build upon the idea of associating latent topics [69,

17, 15] related to both the visual features and words. Drawing inspiration from this

work, our approach differs by exploiting a image hierarchy as a knowledge ontology

to perform image annotation and classification. We are able to offer hierarchical

annotations of images that previous work cannot, making our algorithm more useful

for real world applications like album organization.

Album Organization in Multi-media Research. Some previous work has

been done in the multimedia community for album organization [22, 77, 29]. These

algorithms treat album organization as an annotation problem. Here, we build a

general semantivisual image hierarchy. Image annotation is just one application of

1[123] has provided some interesting insights of their hierarchy by labeling the nodes with class
names of human segmented image regions [141] but without any quantitative evaluations.
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our work.

3.2 Building the Semantivisual Image Hierarchy

Our research in building such a semantically meaningful image hierarchy considers

the following issues:

• Images should cluster meaningfully at all levels of the hierarchy. Tags related

to the images should be correctly assigned to each node of the hierarchy;

• Our algorithm organizes the images in a general-to-specific relationship which

is deliberately less strict compared to formal linguistic relations;

• It is unclear what a semantically meaningful image hierarchy should look like

in either cognitive research [117] or computer vision. Indeed formalizing such

relations would be a study of its own. We follow a common wisdom - the

effectiveness of the constructed image hierarchy is quantitatively evaluated by

both human subjects and end tasks.

Sec. 3.2.1 details the model. Sec. 3.2.2 sketches out the learning algorithm. Sec. 3.2.3

visualizes our image hierarchy and presents the quantitative evaluations by human

subjects.

3.2.1 A Hierarchical Model for both Image and Text

We use a multi-modal model to represent images and textual tags on the semantivisual

hierarchy (Fig. 3.2). Each image is decomposed into a set of over-segmented regions

R = [R1, . . . , Rr, . . . , RN ], and each of theN regions is characterized by four appearance

features – color, texture, location and quantized SIFT [94] histogram of the small

patches within each region. An image and its tags W = [W1, . . . ,Ww, . . . ,WM ] form

an image-text pair. M is the number of distinct tags for this image. Each image is

associated with a path of the hierarchy, where the image regions can be assigned to

different nodes of the path, depending on which visual concept the region depicts. For
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Figure 3.2: Schematic illustration of associating a training image in the semantivisual
hierarchical model (left) and assigning a test image to a node on a given path of the
hierarchy (right). The hierarchical model is summarized in variable T , where only
one path is explicitly drawn from C1 to Cn. Left of the model: Two training
images and their Flickr tags are shown. Each image is further decomposed into
regions. Each region is characterized by the features demonstrated in the bounding
box on the left. A region is assigned to a node that best depicts its semantic meaning.
Right of the model: A query image is assigned to a path based on the distribution
of the concepts it contains. To further visualize the image on a particular node of the
path, we choose the node that corresponds to the dominating region concepts in the
image.

example, in the “photo→zoo→parrot→beak” path, a foliage region of a bird photo is

likely to be associated with the more general “zoo” node, whereas a region containing

the bird beak is likely to be assigned to the leaf node “beak”.

Fig. 3.3 (Top) shows the graphical model. Each image-text pair (R,W ) is as-

signed to a path Cc = [Cc1 , . . . , Ccl , . . . , CcL ] in the infinite image and text hierarchy

T = [C1, . . . ,Cc, . . . ,C∞]. Here l indicates the level in the path, with L the maximum.

The path is sampled from an nCRP(γ) (nested Chinese Restaurant Process)[15],

where γ is a parameter controlling the branching probability.

Let d be the index of an image-text pair, with Nd regions, Md tags in this image-

text pair, and NF = 4 types of region descriptors indexed by j. The joint distribution
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Figure 3.3: The graphical model (Top) and the notations of the variables(Bottom).

of all random variables (hidden and observed) is

p(C,θ,Z,R,S,W ,β,φ|α,ϕ, λ) =∏
c∈T

∏4
j=1 p(βj,c|ϕj)p(φc|λ)

∏D
d=1 p(Cd|C1:d−1)p(θd|α)∏Nd

r=1 p(Zd,r|θd)
∏4

j=1 p(Rd,r,j |Cd, Zd,r,β)∏Md
w=1 p(Sd,w|Nd)p(Ww|Cd,Zd, Sd,w,φ), (3.1)

where λ, ϕj, α are Dirichlet priors for the mixture proportion of concepts θ, region

appearances given concept β, and words given concept φ. The conditional distribu-

tion of Cd given C1:d−1, p(Cd|C1:d−1), follows the nested Chinese restaurant process

(nCRP).
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Remarks. The image part of our model is adapted from the nCRP [15], which

was later applied in vision in [7, 123]. We improve this representation by coupling

images and their tags through a correspondence model. Inspired by [16], we use the

coupling variable S to associate the image regions and the tags. In our model, the

correspondence of tags and image regions occurs at the nodes in the hierarchy. This

differentiates our work from [3, 7, 65, 98, 123]. Both textual and visual information

serve as bottom up information to estimation of the hierarchy. As shown in Fig. 3.5,

by combining the tag information, the constructed image hierarchy becomes semanti-

cally meaningful, since textual information are often more descriptive. A comparison

between our model and [15] demonstrates that our visual-textual representation is

more effective than the language-based representation (Fig. 3.6).

3.2.2 Learning the Semantivisual Image Hierarchy

Given a set of unorganized images and user tags associated with them (e.g. Flickr

images and user tags), the goal of learning is to estimate an image hierarchy in

which images and tags of the same concept can be associated with each other via

learning of the concept index Z and the coupling variable S. In addition, their

location in the hierarchy is estimated by learning the concept index Z and the path

C. This involves computing the posterior distribution of the hidden variables given

the observations. However, this posterior is intractable to compute in our model. We

use an approximation algorithm i.e. Gibbs sampling [62]. Gibbs sampling defines a

Markov chain whose stationary distribution is the posterior of interest. The chain is

defined by iteratively drawing each hidden variable from its conditional distribution

given the other hidden variables and observations. We use a collapsed version of

Gibbs sampling algorithm by integrating out β, φ and θ. It samples the concept

index Z, the coupling variable S and the path C.

Sampling concept index Z. The conditional distribution of a concept index

of a particular region depends on 1) the likelihood of the region appearance, 2) the

likelihood of tags associated with this region and 3) the concept indices of the other

regions in the same image-text pair. Since the path assignment for the image-text

pair is fixed at this step, the resampled concept index is restricted to this path. For



CHAPTER 3. PROBABILISTICMODEL FORAUTOMATIC IMAGEORGANIZATION90

the rth region of dth image-text pair, let Sr = {w : Sd,w = r} be the set of tags

associated with this region r,

p(Zd,r = l|rest) ∝

p(Zd,r = l|Z−r
d , α)

∏4
j=1 p(Rd,r,j |R−dr,Cd,Z, ϕj)

p({Wd,w : w ∈ Sr}|W−dw:w∈Sr ,Cd, Zd,r, λ) =∏4
j=1

n−dr
Cd,l,j,Rd,r,j

+ϕj

n−dr
Cd,l,j,·

+Vjϕj
×
∏

w∈Sr

n−dw
Cd,l,Wd,w

+λ

n−dw
Cd,l,·

+Uλ
× n−r

d,l+α

n−r
d,·+Lα

,

where n−r
d,l is the number of regions in the current image assigned to level l except

the rth region, n−dr
Cd,l,j,Rd,r,j

is the number of regions of type j, index Rd,r,j assigned to

node Cd,l except the rth region in image-text pair d, and n−dw
Cd,l,Wd,w

is the number of

tags of index Wd,w assigned to node Cd,l except the wth region in image-text pair d.

Marginal counts are represented with dots.

Sampling coupling variable S. Coupling variable S couples the image regions

with the tags. Since it has a uniform prior over the number of regions, its conditional

distribution solely depends on the likelihood of the tag, i.e. how frequently one specific

tag is assigned to a node through an image region. Note that the path assignment is

still fixed at this step. The conditional probability is

p(Sd,w = r|rest) ∝ p(Wd,w|Sd,w = r,S−dw,W−dw,Zd,Cd, λ)

=
n−dw
Cd,Zd,r

,Wd,w
+λ

n−dw
Cd,Zd,r

,·+Uλ
.

Sampling path C. The path assignment of a new image-text pair is influenced by

the previous arrangement of the hierarchy and the likelihood of the image-text pair:

p(Cd|rest) ∝ p(Rd,Wd|R−d,W−d,Z,C,S)p(Cd|C−d),

where p(Cd|C−d) is the prior probability induced by nCRP and p(Rd,Wd|R−d,W−d,Z,C,S)

is the likelihood,
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Figure 3.4: Example images from each of the 40 Flickr classes.

p(Rd,Wd|R−d,W−d,Z,C,S) ∝
∏Md

w=1

n−d
Cd,Zd,Sd,w

,Wd,w
+λ

n−d
Cd,Zd,Sd,w

,·+Uλ
×

∏L
l=1

∏4
j=1

(
Γ(n−d

Cd,l,j,·
+Vjϕj)∏

v Γ(n−d
Cd,l,j,v

+ϕj)
×

∏
v Γ(n−d

Cd,l,j,v
+nd

Cd,l,j,v
+ϕj)

Γ(n−d
Cd,l,j,·

++nd
Cd,l,j,·

+Vjϕj)

)
.

The Gibbs sampling algorithm samples the hidden variables iteratively given the

conditional distributions. Samples are collected after the burn in.

3.2.3 A Semantivisual Image Hierarchy

We use a set of 4, 000 user uploaded images and 538 unique user tags2 across 40

image classes from Flickr3 to construct a semantivisual image hierarchy. The average

number of tags for each image is 4. As Fig. 3.4 shows, photos from real-world sources

are very challenging to average, even for human. We detail in this section how we

conduct our evaluation and how effective our image hierarchy is compared to other

hierarchies.

Implementation. Each image is divided into small patches of 10 × 10 pixels, as

well as a collection of over-segmented regions based on color, brightness and texture

homogeneity [4]. Each patch is assigned to a codeword in a codebook of 500 visual

2Incorrectly spelled words and adjectives are omitted.
3The image classes are: animal, bride, building, cake, child, christmas, church, city, clouds,

dessert, dinner, flower, spring, friends, fruit, green, high-school, calcio, italy, europe, london, love,
nature, landscape, macro, paris, party, present, sea, sun, sky, seagull, soccer, reflection, sushi,
vacation, trip, water, silhouette, and wife.
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words obtained by applying K-means clustering to the 128-dim SIFT features ex-

tracted from 30 randomly chosen images per class. Similarly, we obtain our 4 region

codebooks of size 100, 50, 100 and 100 for color (HSV histogram), location (vec-

tor quantization of the region center, top and bottom position), texture (normalized

texton [88] histogram ) and normalized SIFT histogram respectively. To speed up

learning, we initialize the levels in a path by assigning the regions with high tf-idf

(term frequency-inverse document frequency) scores in one of the visual feature to

the leaf node and those with low tf-idf scores to the root node. It takes about 2 hours

to learn the hierarchy from 4, 000 images and 30 minutes for test on 4, 000 images on

a PC with an Intel 2.66GHz CPU.

Visualizing the semantivisual hierarchy. For all 4, 000 images and 538 tags,

we obtain a hierarchy of 121 nodes, 4 levels and 53 paths. Fig. 3.5 visualizes in more

details different parts the hierarchy. Our observations are as follows.

• The general-to-specific relationship is observed in most parts of the hierarchy.

The root node contains images that are difficult to be named, but fall under

the general category of “photo”. Directly under the root, images are organized

into “architecture”, “garden”, “event”, “food”, etc. Examine the leftmost path

of the “event” subtree. This path is about photos taken at wedding events.

The leaf node of this path is “wedding gown”, a child of “wedding” and a

sister of “wedding flower”. This organization can be useful for browsing large

photo libraries. The users no longer have to remember different dates of various

wedding events. Instead, they can quickly access the wedding concept and its

related classes.

• We have argued that purely visual information sometimes cannot provide se-

mantically meaningful image hierarchy. As demonstrated by the “event” sub-

tree, it is difficult to imagine that pictures of “dancing at a birthday party” can

be a sister node to “birthday cake” based only on low-level image features. Our

semantivisual hierarchy offers a connection between these two groups via the

parent of “birthday.”
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• Similarly, a purely language-based hierarchy would be likely to miss close con-

nections such as “tower” and “business district” (in the “architecture” subtree).

In WordNet, “tower” and “business district” have to traverse 15 inherited parent

nodes to reach each other.

• Our hierarchy illustrates that images assigned to each node are diverse. It is

easy to predict that for nodes at the higher levels, the visual appearance of

images are diverse because the semantic meaning of the nodes is general. For

example, “food” can be interpreted as “sushi”, “cake”, or “dinner”. As one

traverses down along a path, concepts represented in the nodes become more

specific. However even at the bottom levels such as “sugar” and “cheese”, the

images are diverse. This is because of the tightly coupled clustering of images

using both the visual and textual information. A purely visual-feature based

algorithm would not be able to achieve this.

A quantitative evaluation of image hierarchies. Evaluating the effectiveness

of an image hierarchy is not an easy task. What makes a meaningful image hierarchy?

We consider two criteria for evaluation: 1) good clustering of images that share similar

concepts, i.e., images along the same path, should be more or less annotated with

similar tags; 2) and good hierarchical structure given a path, i.e., images and their

associated tags at different levels of the path, should demonstrate good general-to-

specific relationships. To measure if an image on a path associates well with the set

of concepts depicted by this path, we present human subjects trials in which each

image and six word concepts are presented (Fig. 3.6). Inspired by [25], we present

five of the six tag concepts associated with the path of the image (learned by the

model) and one randomly chosen tag concept that is unlikely to be in the path. The

subject is asked to select which set of tags are unrelated to the image (Fig. 3.6 (top

left)). In the ideal case, if the image path is effective, then it is more likely that the

randomly chosen word would be the only irrelevant concept to the image. An Amazon

Mechanical Turk (AMT) experiment is set up for this evaluation. We compare our

hierarchy with one that is obtained by using only text clustering [15]. Fig. 3.6 (top

right) shows that our hierarchy is more effective than the purely text-based method.
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Figure 3.5: Visualization of the learned image hierarchy. Each node on the hierar-
chy is represented by a colored plate, which contains four randomly sampled images
associated with this node. The color of the plate indicates the level on the hierar-
chy. A node is also depicted by a set of tags, where only the first tag is explicitly
spelled out. The top subtree shows the root node “photo” and some of its children.
The rest of this figure shows six representative sub-trees of the hierarchy: “event”,
“architecture”, “food”, “garden”, “holiday” and “football”.
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Figure 3.6: Evaluation of the hierarchy. Top: “How meaningful is the path” experi-
ment. Top Left: The AMT users are provided with a list of words. The users need
to identify the words that are not related to the image to the left. Top Right: Quan-
titative results of our hierarchy and nCRP[15]. Our hierarchy performs the best by
incorporating the visual information associated to the tags. Bottom: “How mean-
ingful is the hierarchy” experiment. Bottom Left: The AMT users are provided
with all permutations of candidate words from the path corresponding to the image
that correctly represents the hierarchical structure. Bottom Right: Quantitative
results of our hierarchy, nCRP [15] and Flickr. All three algorithms use exactly the
same tag input to construct the hierarchy.

The second metric measures how good the hierarchical relations are in our image

hierarchy. Again we use AMT. We break down the evaluation by path. For each trial,

a path of L levels is selected from the hierarchy. The (L−1)! permutations of the nodes

in the path4 are presented to a human subject, depicted by the text concepts (see

Fig. 3.6 (bottom left)). Subjects are instructed to select the path that best illustrates

a general-to-specific hierarchical relation. We compare the human selected path (as

ground-truth) with the model generated path using modified Damerau-Levenshtein

distance. We compare our hierarchy with two purely text-based hierarchies including

one obtained by [15] and the default by Flickr. Fig. 3.6 (bottom right) shows that

our hierarchy agrees more with human ground-truth than the others.

4The root node is kept intact because “photo” is always assigned to it.
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Figure 3.7: Results of the hierarchical annotation experiment. Three sample images
and their hierarchical annotations by our algorithm and the original Flickr tags are
shown. The table presents quantitative comparison on our hierarchy and nCRP[15].
The performance is measured by the modified Damerau-Levenshtein distance between
the proposed hierarchical annotation by each algorithm and the human subjects’
result.

3.3 Using the Semantivisual Image Hierarchy

A good image hierarchy can serve as a knowledge ontology for difficult recognition

tasks such as image classification and annotation. In the following experiments, we

choose three tasks to show the applications of the hierarchy.

3.3.1 Hierarchical Annotation of Images

Given our learned image ontology, we can propose a hierarchical annotation of an un-

labeled query image, such as photo→zoo→bird→flamingo. For an unannotated image

I with the posterior path assignments represented as SC = {C1
I ,C

2
I , · · · ,C

|SC |
I }, the

probability of tag W for level l is estimated by averaging the paths in SC ,

p(W |I, level = l) ≈ (1/|SC |)
∑|SC |

i=1 p(W |φ̃i, C
i
I(l)),

where φ̃i is the MAP (maximum a posterior) estimate of tag concept distributions

from the training data given the ith sample, C i
I(l) specifies the node in path Ci

I at
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level l and p(W |φ̃, C i
I(l)) indicates the probability of tag W given node Ci

I(l) and φ̃,

i.e. φ̃Ci
I(l),W

.

We show in Fig. 3.7 examples of the hierarchical image annotation results and

the accuracy for 4000 testing images evaluated by using our image hierarchy and the

nCRP algorithm [15]5. Our experiment shows that our semantivisual hierarchical

model outperforms the text-only model [15]. There are two reasons. First, [15]

cannot perform well on sparse tag words (about 4 tags per image in our dataset). Its

proposed hierarchy has many words assigned to the root node, resulting in very few

paths. This hierarchy cannot demonstrate the real structure of the image-text data.

Second, a simple clustering algorithm such as KNN cannot find a good association

between the test images and the training images in our challenging dataset with large

visual diversity. In contrast, our model learns an accurate association of visual and

text data simultaneously.

3.3.2 Image Labeling

Serving as an image and text knowledge ontology, our semantivisual hierarchy and

model can be used for image labeling without a hierarchical relation. This is the image

annotation task. For a test image I and its posterior samples SC = {C1
I ,C

2
I , · · · ,C

|Sc|
I }

and SZ = {Z1
I ,Z

2
I , · · · ,Z

|SZ |
I } (|SC | = |SZ |). We estimate the probability of tag W

given the image I as,

p(W |I) ≈ (1/|SC |)
∑|SC |

i=1

∑L
l=1 p(W |φ̃i, C

i
I(l))p(l|Zi

I),

which sums over all the region assignments over all levels. Here p(l|Zi
I) is the

empirical distribution over the levels for image I. In this setting, the most related

words will be proposed regardless of which level they are associated to.

Quantitatively, we compare our method with two other image annotation methods:

the Corr-LDA [16] and a widely known CBIR method Alipr [89]. We collect the top 5

5Note that the original form of [15] is only designed to handle textual data. For comparison
purposes, we allow it to annotate images by applying the KNN algorithm to associate the testing
images with the training images and represent the hierarchical annotation of the test image by using
the tag path of the top 100 training images.
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Figure 3.8: Results of the image labeling experiment. We show example images
and annotations by using our hierarchy, the Corr-LDA model [16] and the Alipr
algorithm [89]. The numbers on the right are quantitative evaluations of these three
methods by using an AMT evaluation task.

predicted words of each image by each algorithm and present them to the AMT users.

The users then identify if the words are related to the images in a similar fashion

as Fig. 3.6(top). Fig. 3.8 shows that our model outperforms Alipr and Corr-LDA

according to the AMT user evaluation. As shown in Fig. 3.8(first image column),

Alipr tries to propose words such as “landscape” and “photo” which are generally

applicable for all images. Corr-LDA provides relatively more related annotation such

as “flower” and “garden” based on the co-occurrence of the image appearance and

the tags among the training images. Our algorithm provides both general and specific

descriptions, e.g. “wedding”, “flower” and “gown”. This is largely because our model

captures the hierarchical structure of images and tags.

3.3.3 Image Classification

Finally, we evaluate our model on a highly challenging image classification task. An-

other 4, 000 images are held out as test images from the 40 classes. Each image is

represented by the estimated concept distribution over the entire hierarchy. If there

are K nodes in the learned hierarchy, the dimension of the distribution is K. Only

nodes that are associated to the image have nonzero values in the distribution. We

calculate the χ2-distances between the concept distribution of the test images and

those of the training images. The KNN algorithm is then applied to obtain the class
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Figure 3.9: Comparison of classification results. Top Left: Overall performance.
Confusion table for the 40-way Flickr images classification. Rows represent the mod-
els for each class while the columns represent the ground truth classes. Top Right:
Comparison with different models. Percentage on each bar represents the aver-
age scene classification performance. Corr-LDA also has the same tag input as ours.
Bottom: classification example. Example images that our algorithm correctly
classified but all other algorithms misclassified.

label. Fig. 3.9 shows the confusion table of classification achieved by our algorith-

m. In the bar plot in Fig. 3.9, we compare our result to spatial pyramid matching

(SPM) [85], SVM [30], Bart et. al. [7], Corr-LDA [16] and LDA [17].

From Fig. 3.9 (top right), we observe that LDA [17] gives the lowest classification

performance. This shows that a flat single modality model cannot capture the com-

plex structure of our challenging dataset. The classification performance improves by

incorporating semantic meaning of the images in training (Corr-LDA [16]) or a more

descriptive hierarchical representation [7]. By encoding semantic meaning to the hier-

archy, our semantivisual hierarchy delivers a more descriptive structure, which could
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be helpful for classification. Finally, comparison among our algorithm, SPM and

SVM demonstrates the importance of semantic meaning in interpreting complicate

and noisy real world images such as “Christmas” or “party” photos.

3.4 Discussion

In this chapter, we propose a principle probabilistic model to discover the “seman-

tivisual” image hierarchy by incorporating both image and tag information. We

emphasize the importance of quantifying the effectiveness of the learned hierarchy, as

well as comparing our method with others in the end-task applications. Our experi-

ments show that humans find our semantivisual image hierarchy more effective than

those solely based on texts or low-level visual features. We then use several end tasks

to illustrate its wide applications.

While demonstrating the effectiveness in modeling visual recognition tasks related

to semantic image understanding, our previous work leaves ample room for improve-

ment especially in another fundamental problem in computer vision, i.e. visual feature

representation. In Part III, we demonstrate our novel high level image representation

called Object Bank.



Part III

High Level Image Representation

for Semantic Image Understanding
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Chapter 4

Introduction

High-level image recognition is one of the the most challenging domains in the field

of computer vision. Any high-level image recognition task using computer vision al-

gorithms starts with image representation, the process of turning pixels into a vector

of numbers for further computation and inference. Of all the modules for a robust

high-level image understanding system, the design of robust image representation is

of fundamental importance and has been attracting many vision researchers. In the

past decade, a great amount of research has been conducted on image representation.

Among the image representations widely adopted so far, most of them are low level

image representations focusing on describing images by using some variant of image

gradients, textures and/or colors (e.g. SIFT [94], filterbanks [58, 112], GIST [109],

etc.). However, there exists a large discrepancy between these low level image repre-

sentations and the ultimate high level image recognition goals, which is the so called

“Semantic gap”. One way to close the semantic gap is by deploying increasingly

sophisticated models, such as the probabilistic grammar model [149], compositional

random fields [79], and probabilistic topic models [46, 127]. While these approaches

are based on rigorous statistical formulation, good learning and inference are still

extremely difficult. In addition, most of the papers have shown promising results

only on small scale datasets. It still remains a very challenging task for the models

to bridge the low level representations and the high level visual recognition tasks.

Attribute-based methods have made significant progress in object recognition in

102
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recent few years. Its success in recognition is largely accredited to the introduction of

“attributes”, which effectively summarize the low-level image properties [56, 39, 131].

In attribute based recognition, a polar bear can be described as white, fluffy object

with paws. Such visual attributes summarize the low-level features into object parts

and other properties, and then are used as the building blocks for recognizing the

object. Attribute based methods have demonstrated great potential for high-level

vision tasks. For example, in [131], the authors build an image representation from a

collection of classifier predictions and have achieved promising results in object image

classification.

On the other hand, using global/local structure information has proved to be

useful to increase the descriptive power of a representation. For example, by applying

spatial pyramid structure to bag of words (BoW) representation, [85] proposed the

Spatial Pyramid Model that gives superior performance compared with the original

BoW features.

Therefore, we hypothesize that object appearance and their spatial locations could

be very useful for representing and recognizing images. In this part, we introduce

Object Bank, a novel high level image feature to represent complex real-world image

by collecting the responses of many object detectors at different spatial locations in

the image. Drawing an analogy to low-level image representation, instead of using

image filters to represent local texture, we introduce object filters to characterize local

image properties related to the presence/absence of objects. By using a large number

of such object filters, our object filter bank representation of the image can provide rich

information of the image that captures much of the high-level meaning. Object Bank

is a novel high level image representation, which encodes knowledge of objects for

challenging high level visual tasks in real world problems such as image classification.

4.1 Background and Related Work

A plethora of image feature detectors and descriptors have been developed for object

recognition and image classification [109, 9, 82, 102, 94]. We particularly draw the

analogy between our object bank and the texture filter banks [112, 58]. Instead of
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using gradients or colors in an image to represent it, Object Bank characterizes local

image properties by using object filters related to the presence/absence of objects,

adding more high level information into the representation to bridge the semantic

gap.

Object detection and recognition also entail a large body of literature [43, 20]. In

this work, we mainly use the current state-of-the-art object detectors of Felzenszwalb

et. al. [47], as well as the geometric context classifiers (“stuff” detectors) of Hoeim

et. al. [70] for pre-training the object detectors.

A few recent works have begun to explore visual attributes based image recognition

[131, 39, 56]. These approaches focus on single object classification based on visual

attributes. The visual attributes in these approaches does not necessarily directly

related to visual pattern in the images, e.g. “carnivore” and “can bite”. Different

than these approaches, Object Bank representation encodes semantic and spatial

information of objects universally applicable for high level visual recognition tasks.

In [135], a handful number of concepts are learned for describing an image. For

each location only the most probable concept is used to form the representation based

on binary classification result. Significant amount of information is lost during their

feature extraction process. Our approach, on the other hand, encodes the probabilities

of all objects candidates appearing in all locations in the image resulting in much

richer image representation.

The idea of using object detectors as the basic representation of images is related

to work in multimedia by applying a large number of “semantic concepts” to video

and image annotation [67]. However, in [67], each semantic concept is trained by using

the entire images or frames of video. Understanding cluttered images composed of

many objects will be challenging since there is no localization of object concepts

in images in this approach. To our knowledge, Object Bank is the first high level

image representation that provides probability of objects appearing in images and

their spatial locations as the signature of images.

In Chapter 5, we first introduce our new way of representing complex visual-world,

Object Bank. As a proof of concept, we apply Object Bank to high level image

classification tasks by using simple, off-the-shelf classifiers. It delivers superior image
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recognition results to all reported state-of-the-art performance on various benchmark

datasets. We further analyze the effectiveness of each ingredient in Object Bank and

demonstrate that Object Bank can not only achieve state-of-the-art performance in

high level visual recognition tasks but also discover meaningful aspects of objects in

an image. In Chapter 6, we explore a supervised feature selection method to make

our representation more efficient and reveal semantically meaningful feature patterns.

Lastly, in Chapter 7, we propose an unsupervised multi-level structured sparse image

coding approach to compress Object Bank to a lower-dimensional and more compact

encoding of the image features while preserving and accentuating the rich semantic

and spatial information of Object Bank.



Chapter 5

The Object Bank Representation

of Images

In this chapter, we introduce the concept of high-level Object Bank (OB) representa-

tion. The ultimate goal of Object Bank representation is to encode as much objects

information including their semantic meaning, spatial locations, sizes and view points

etc. as possible for representing complex scene images. We achieve this by construct-

ing Object Bank, a collection of object filters trained on multiple objects with different

view points.

5.1 Construction of Object Bank

Fig. 5.1 illustrates our Object Bank representation construction process. Given an

image, an object filter response can be viewed as the response of a “generalized object

convolution.” We obtain object responses by running a bunch of object filters (each

is an object detector trained from images with similar view point) across an image

at various locations and scales by using the sliding window approach. For each scale

and each detector, we obtain an initial response map, whose value at each location

indicates the possibility of the occurrence of that object. To capture the spatial

location property of objects, we build a spatial pyramid for the response map. At

each layer of the spatial pyramid structure, we extract the signal from all grids.
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Finally, we build the Object Bank representation by concatenating all the extracted

responses. We summarize the representations generated by using different pooling

methods below:

Max response representation (OB-Max, Fig. 5.1). As shown in Fig. 5.1, OB-Max

encodes the strongest object filter response at each grid and each level of the spatial

pyramid and detector scale. In our case, we have 177 objects, 12 scales and 21 spatial

pyramid grid(L=2), which is in 44604 dimension in total. In the example image shown

in Fig. 5.1, given the OB-Max representation, the possibility of sailboat and water

appearing in that specific grid is higher than other objects. If not specified, OB-Max

is the default Object Bank pooling method in this chapter.

Average response representation (OB-Avg, Fig. 5.1). OB-Avg encodes the average

object filter response in each grid at each level of the spatial pyramid and detector

scale. From the responses to different object filters, we form the Object Bank feature

by representing the (scene/event) image as a vector of average values from each spatial

pyramid grid.

Histogram response representation (OB-Hist, Fig. 5.1). OB-Hist captures more

detailed information of the object filters than OB-Max. Instead of using maximum

response value of each object detector in each grid of the spatial pyramid representa-

tion of each of the response map, we construct a histogram of the responses in each

grid. The histogram has a vector length of the number of objects, and the value of

each bin is indicated by the number of pixels with the response value within that bin.

Four histogram bins in each grid are used in the experiment. As the example in Fig.

5.1 illustrates, within that specific grid, most response values of sailboat detector are

high whereas most response values of bear detector are low.

5.2 Implementation Details of Object Bank

So what are the “objects” to use in the Object Bank? And how many? An ob-

vious answer to this question is to use all objects. As the detectors become more

robust, especially with the emergence of large-scale datasets such as LabelMe [119]

and ImageNet [34], this goal becomes more reachable.
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Figure 5.1: (Best viewed in colors and magnification.) Illustration of the object filter
representations. Given an input image, we first run a large number of object detectors at
multiple scales to obtain the object responses, the probability of objects appearing at each
pixel. For each object at each scale, we apply a three-level spatial pyramid representation of
the resulting object filter map, resulting in No.Objects×No.Scales×(12+22+42) grids. An
Object Bank representation of an image is a concatenation of statistics of object responses
in each of these grids. We consider three ways of encoding the information. The first is the
max response representation (OB-Max), where we compute the maximum response value of
each object, resulting in a feature vector of No.Objects length for each grid. The second is
the average response representation (OB-Avg), where we extract the average response value
in each grid. The resulting feature vector has the same length as the maximum response.
The third is the histogram representation (OB-Hist). Here for each of the object detectors,
we keep track of the percent of pixels on a discretized number of response values, resulting
in a vector of No.BinnedResponseValues× No.Objects length for each grid.

But time is not fully ripe yet to consider using all objects in, say, the LabelMe

dataset. Not enough research has yet gone into building robust object detector for

tens of thousands of generic objects. And even more importantly, not all objects are

of equal importance and prominence in natural images. As Fig. 5.2(Left) shows, the

distribution of objects follows Zipf’s Law, which implies that a small proportion of

object classes account for the majority of object instances.

We choose a few hundred most useful (or popular) objects in images1. An im-

portant practical consideration for our study is to ensure the availability of enough

1This criterion prevents us from using the Caltech101/256 datasets to train our object detec-
tors [42, 64] where the objects are chosen without any particular considerations of their relevance to
daily life pictures.
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Figure 5.2: (Best viewed in colors and magnification.) Left: The frequency (or popularity)
of objects in the world follows Zipf‘s law trend: a small proportion of objects occurs much
more frequently than the majority. While there are many ways of measuring this, e.g.,
by ranking object names in popular corpora such as the American National Corpora [73]
and British National Corpus [38], we have taken a web-based approach by counting the
number of downloadable images corresponding to object classes in WordNet on popular
search engines such as Google, Ask.com and Bing. We show here the distribution of the
top 2000 objects. Right: Rough grouping of the chosen object filters based loosely on the
WordNet hierarchy [103]. The size of each unshaded node corresponds to the number of
images returned by the search.

training images for each object detectors. We therefore focus our attention on ob-

taining the objects from popular image datasets such as ESP [136], LabelMe [119],

ImageNet [34] and the Flickr online photo sharing community. After ranking the ob-

jects according to their frequencies in each of these datasets, we take the intersection

set of the most frequent 1000 objects, resulting in 177 objects, where the identities

and semantic relations of some of them are illustrated in Fig. 5.2(Right). To train

each of the 177 object detectors, we use 100∼200 images and their object bounding

box information from the LabelMe [119] (86 objects) and ImageNet [34] datasets (177

objects). We use a subset of LabelMe scene dataset to evaluate the object detector

performance. Final object detectors are selected based on their performance on the

validation set from LabelMe.

Before we apply Object Bank representation for visual recognition tasks, we first

ask whether this representation encodes discriminative information of images. In

Fig. 5.3, we compare the Object Bank image representation to two popular low-level

image representations: GIST [109] and the Spatial Pyramid (SPM) representation of

SIFT [85]. The low-level feature responses of the two images belonging to different
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semantic classes are shown to be very similar to each other, whereas the object filter

bank features can easily distinguish such scenes due to the semantic information

provided by the object filter responses. In Sec. 5.3, the discriminability of our Object

Bank representation is further supported by a series of comparison to the state-of-

the-art algorithms based upon low-level image representation on high level visual

recognition tasks.

Tower Sky

Object Filters

MountainTree

GIST (!lters) SIFT-SPM (L=2)Original Image

Tower SkyMountainTree

Figure 5.3: (Best viewed in colors and magnification.) Comparison of Object Bank rep-
resentation with two low-level feature representations, GIST and SIFT-SPM of two types
of images, mountain vs. city street. For each input image, we first show the selected filter
responses in the GIST representation [109]. Then we show a histogram of the SPM repre-
sentation of SIFT patches [85] at level 2 of the SPM representation where the codeword map
is also shown as a histogram. Finally, we show a selected number of object filter responses.

5.3 High Level Visual Recognition by Using Dif-

ferent Visual Representations

As we try to tackle the high level visual recognition tasks, the semantic gap between

low-level features and high-level meanings becomes big. One solution to this is to

use complex models to pool in information [127, 91, 132, 92]. But the drawbacks are

clear. Researchers have to put large amount of effort to design such complex models.

Due to the complexity, they might not scale well with large scale data or different

datasets. In addition, some models [127, 91] require extra amount of supervision,

which causes such models to be impractical. Can we leverage on relatively simple
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statistical models and classifiers, but try to develop descriptive image representation

to close the semantic gap better? We hypothesize that by introducing features that

are “higher level”, such as Object Bank, we could do this.

While it is good to see a clear advantage of discriminative power of Object Bank

over the low level image representations visually, we want to further examine its

potential in high level visual recognition tasks on multiple benchmark datasets.

In our experiments, we use simple off-the-shelf classifiers to dissect the contribu-

tion of the representations in classification. We compare to related image represen-

tations as well as the state-of-the-art approaches with more complex models. Scene

classification performance is evaluated by average multi-way classification accuracy

over all scene classes in each dataset.

5.3.1 Object Bank on Scene Classification

Before we describe the experiment details, we first introduce the four benchmark scene

datasets used in our scene classification experiment, ranging from generic natural

scene images (15-Scene [85], LabelMe 9-class scene dataset 2), to cluttered indoor

images (MIT Indoor Scene [114]), and to complex event and activity images (UIUC-

Sports [91]). We list below the experiment setting for each dataset:

• 15-Scene: we use 100 images in each class for training and rest for testing following [85].

• LabelMe: we randomly draw 50 images from each scene classes for training and 50 for testing.

• MIT Indoor: This is a dataset of 15620 images over 67 indoor scenes assembled by [114]. We

follow their experimental setting in [114] by using 80 images from each class for training and

20 for testing.

• UIUC-Sports: This is a dataset of 8 complex event classes. 70 randomly drawn images from

each classes are used for training and 60 for testing following [91].

For each dataset, we follow the setting in the paper introduced it and train a

multi-class linear SVM.

Fig. 5.4 summarizes the results on scene classification based on Object Bank

and a set of well known low-level feature representations: GIST [109], Bag of Words

2From 100 popular scene names, we obtained 9 classes from the LabelMe dataset in which there
are more than 100 images: beach, mountain, bathroom, church, garage, office, sail, street, forest.
The maximum number of images in those classes is 1000.
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Figure 5.4: (Best viewed in colors and magnification.) Comparison of classification performance
of different features (GIST vs. BOW vs. SPM vs. Object Bank) and classifiers (SVM vs. LR) on
(top to down) 15 scene, LabelMe, UIUC-Sports and MIT-Indoor datasets. In the LabelMe dataset,
the “ideal” classification accuracy is 90%, where we use the human ground-truth object identities to
predict the labels of the scene classes. Previous state-of-the-art performance are displayed by using
the green bars.

(BOW) [31] and Spatial Pyramid Matching (SPM) [85] on four challenging scene

datasets. We also compare the performance of a simple linear SVM model and plain

logistic regression built upon Object Bank representation to the existing state-of-

the-art algorithms on each benchmark datasets, demonstrating that a semantically

meaningful representation can help to reduce the burden of sophisticated models for

bridging the “semantic gap” between high level visual recognition tasks and low level

image representation 3. We achieve substantially superior performances on three out

of four datasets, and are on par with the 15-Scene dataset.

The advantage of Object Bank is especially obvious when the images are highly

cluttered by objects. Its substantial performance gain on the UIUC-Sports and the

MIT-Indoor scene datasets illustrates the importance of using a semantically mean-

ingful representation for complex scenes cluttered with objects. For example, the

difference between a living room and a bedroom is less obvious in the overall texture

(easily captured by BoW or GIST), but more significant in the different objects and

their arrangements. This result underscores the effectiveness of OB, highlighting the

fact that in high-level visual tasks such as complex scene recognition, a higher level

image representation can be very useful.

3We also evaluate the classification performance of using the detected object location and its
detection score of each object detector as the image representation. The classification performance
of this representation is 62.0%, 48.3%, 25.1% and 54% on the 15 scene, LabelMe, UIUC-Sports and
MIT-Indoor datasets respectively.
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Object Bank Classemes

39% 36%

Table 5.1: Object classification performance by using different high level representations.

5.3.2 Object Bank on Object Recognition

A fundamental task in high level visual recognition is object recognition, in particu-

lar, generic object categorization. Generic object categorization is a challenging task

owing to the various appearance and locations of objects in the images. Object Bank

is constructed from the responses of many objects, which encodes the semantic and

spatial information of objects within images. It can be naturally applied to object

recognition task. We compare to classemes [131], an attribute based representation

obtained as the output of a large number of weakly trained concept classifiers on

the image without considering the spatial location and semantic meaning of object-

s. By encoding the spatial locations of the objects within an image, Object Bank

significantly outperforms [131] on the 256-way classification task, where performance

is measured as the average of the diagonal values of a 256×256 confusion matrix.

The improvement of Object Bank over classemes underscores the importance of rich

spatial information of objects and semantic meaning of objects encoded in Object

Bank.

In Sec. 5.4, we analyze the effectiveness of both components in detail and demon-

strate the advantage of using rich spatial information and semantic meaning of ob-

jects. We examine the most effective objects in each of the scene types. We fur-

ther illustrate interesting patterns of object relationships discovered from our Object

Bank representation, which can serve as potential contextual information for advanced

models for high level visual tasks such as object detection, segmentation and scene

classification.
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5.4 Analysis: Role of Each Ingredient

In this section, we thoroughly analyze the role of each important component of our

Object Bank representation in a systematical fashion. We demonstrate the designing

rationale of Object Bank representation, the influence of detector quality and different

components of Object Bank, and eventually provide a good understanding of Object

Bank and how to construct a good Object Bank representation.

The ideal object filters is capable of capturing object appearance accurately with-

out losing significantly useful information during the process of construction. Here,

we investigate the effectiveness of different designing choices.

1. An robust object detector is able to produce accurate responses of object indi-

cating the probability of the object appearing at each pixel in an image. We first

examine the quality of different object detection algorithms [32, 47] as accurate

appearance object filters.

2. Object view points vary over a wide range in different images. Multiple view

points are essential for training our object filters to capture the multiple views

of objects. We evaluate the effectiveness of the filters trained from different

view points.

3. Object sizes could differ significantly in different images. We run object filters at

different scales to incorporate responses of multiple object sizes. We examine the

effectiveness of the different scales and the accumulated scales with an emphasis

on the importance of using multiple scales.

4. To capture the various locations of objects in images, we apply a spatial pyra-

mid structure over the responses generated by object filters. We analyze the

necessity of constructing the spatial pyramid structure.

5. Our Object Bank representation is a collection of statistics based upon responses

to the object detectors. We further examine the influence of different pooling

methods on extracting the statistics from the response map.
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Figure 5.5: Left: Detection performance comparison of different detection methods on ImageNet
objects. Right: Classification performance of different detection methods on UIUC sports dataset
and MIT Indoor dataset.

6. Objects are the most critical designing component in our Object Bank repre-

sentation. Finally, we analyze different schemes for selecting objects for Object

Bank construction.

In the following experiments, we measure the importance of each component of

Object Bank based on its contribution to recognition of scene images in different

benchmark datasets. If not specified, we employ simple plain logistic regression as

the classifier. Classification performance is obtained from 5-fold random sampling of

the training and testing examples.

5.4.1 Comparison of Different Types of Detectors

The first question is what type of object detectors/filters we should use in Object

Bank. We are interested in examining the difference between a more sophisticate

object detector LSVM [47] and a simple object detector Dalal & Triggs [32]. We first

compare how well the detectors capture the object appearance based upon detection

performance of LSVM and Dalal & Triggs on object categories from the ImageNet

dataset.

As demonstrated in left panel of Fig. 5.5, the performance of Object Bank based

on stronger object detectors (LSVM) is better than that of Object Bank represen-

tation based on Dalal & Triggs. This reflects that a strong object detector captures

the object identity and location in an image more accurately, hence provides better

description of an image. We envisage the Object Bank will become better as more
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Figure 5.6: Diverse views of rowing boats in different images. Images are randomly selected from
the UIUC sports dataset.

accurate object detection algorithms are developed. In the ideal case, if we use a

perfect object detector, we can achieve close to perfect classification performance in

semantically separatable dataset. An interesting observation is that if we use the

names of objects appear in each image from the UIUC sports dataset as the feature,

we can achieve 100% in classification accuracy by using a simple linear SVM classifier.

5.4.2 Role of View Points

The view points of objects in different images could vary dramatically. For example,

in Fig. 5.6, rowing boats appear in different view points depending on the sceneries

the photographers want to snap.

In order to capture this property, we train the object detectors by using object

images with different view points. To show our design rational on view points, we

apply Object Bank representation generated from objects with front view, side view

and the combination of both to a scene classification task.

Demonstrated in the comparison (Left panel of Fig. 5.7), front view contributes

more in classification experiments on both datasets than side view of objects. Combin-

ing the two views further boosts classification performance on MIT Indoor dataset4,

which shows that combining multiple view points is useful.

To verify our assumption and further investigate the effectiveness of combining

multiple view points, we conduct a control experiment by training and testing on

different views of one specific object. We select “rowing boat” as an example since it

4The difference is not significant (1%). One possible reason for this is that there is not much
view variance in most of the object detector training data from ImageNet. Majority of the training
images are front shots of the objects.
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Figure 5.7: Left: Classification performance of Object Bank generated from detectors trained on
images with different view points on the UIUC sports dataset and the MIT Indoor dataset. Right:
Classification performance of Object Bank generated from different views on images with different
view points.

has diverse view points.

As Fig. 5.7(Right) demonstrates, representation generated from only front view

or side view performs reasonably well on test images with similar view points. Object

Bank representation, by incorporating both views, significantly outperforms these two

baselines on all three types of testing images with different view points.

5.4.3 Role of Scales

Object size in different images could vary dramatically, we therefore run object filter

on different image scales to accurately capture this. In this experiment, we evalu-

ate the importance of generating responses of objects at multiple scales in Object

Bank. We compare classification performance by using Object Bank representation

corresponding to each individual scale and the combination of multiple scales.

We observe that individual scales perform similarly to each other with the medi-

um size scale consistently delivers the best result on both the UIUC sports and the

MIT Indoor datasets. Our observation reflects that our object detector captures the

medium size objects within these two datasets the best. This observation aligns well

with the fact that the majority of objects in the ImageNet images have medium size.

Each individual scale cannot capture all the variances but can already perform rel-

atively good on this dataset. Same applies to the MIT Indoor dataset. We further
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show an accumulative concatenation of scales.
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Figure 5.9: Left: Classification performance on the UIUC sports event dataset by using Object
Bank representation corresponding to each single scale. Right: Classification performance on the
MIT Indoor dataset by using Object Bank representation corresponding to each single scale. X axis
is the index of the scale from fine to coarse. Y axis represents the average precision of a 8-way
classification.

Fig. 5.9 shows that incorporating multiple scales is helpful since it captures the

variance of object sizes in the datasets.

Objects could have significantly different sizes even they belong to the same object

class. Here, we demonstrate that Object Bank is able to capture the scale variance. In

this control experiment, we divide the images in the “ball” class into six scale groups

based on the object size within the image. Same number of background images
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are randomly selected from the ImageNet object images in the binary classification

experiments. Representation generated from each individual scales and the combined

ones are tested on a held out set of testing images with subgroups separated in

a similar fashion. In addition, we simulate the real-world scenario by collecting a

mixed test set of multiple object size images. In a similar manner, we generate the

Object Bank representation based upon responses to combination of all scales.

We generate a mask whose transparency is proportional to the score in each grid

in the confusion matrix. Our experiment shows that the diagonal of Fig. 5.10 is much

brighter than the off diagonal ones, which indicates that Object Bank representation

generated from each individual scale recognizes objects with similar size significantly

better than the one generated from different size. In addition, the last row is much

brighter than all the other grids, reflecting combination of all scales performs the best

on different types of images. This again supports our design choice of incorporating

multiple scales in Object Bank representation.
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Figure 5.10: Binary classification experiment for each individual scale and the combination of
them. Each grid is filled in with “ball” in different size. Each row represents a model trained on
images with relatively similar scale (from small to large. Last row is the combination of all scales).
Each column represents a test set with relatively similar scale. The more transparent the mask is,
the better the classification accuracy is.



CHAPTER 5. THE OBJECT BANK REPRESENTATION OF IMAGES 120

Index Single UIUC Pyramid UIUC Single Indoor Pyramid Indoor

Level 0 81.1% - 36.2% -
Level 1 81.0% 81.8% 42.0% 42.9%
Level 2 81.4% 82.0% 42.2% 42.6%

Table 5.2: Classification performance by using different spatial location structure.

5.4.4 Role of Spatial Location

Besides object semantic meaning, spatial locations of objects are critical for describing

an image too. For example, “sky” always appears in the upper part of an image

whereas “water” is always at the bottom. If the response of “sky” has higher values

in the upper part of an image, it adds more evidence there is “sky” in the image. To

capture the spatial properties of objects in an image, we apply the spatial pyramid

structure on the response map. In this experiment, we analyze the effectiveness of

the spatial pyramid structure.

From the experiment, we observe similar pattern as observed in [85] except for

the good performance by using level 0 on the UIUC sports dataset. By using the

maximum response from only level 0 as Object Bank representation (1/21 of the

original dimension), we can achieve 81.1%. This reflects that in the UIUC sports

semantic meaning alone is very discriminative. As long as we see a horse, no matter

where it appears, it is able to differentiate polo scene from other scene types. On the

other hand, adding spatial information does improve the classification performance

with a small margin indicating the effectiveness of spatial location information of

object.

Spatial location is critical in separating different indoor images. For example,

computer room and office could both have computers, desks and chairs. But the

number of instances and the spatial location arrangement of them could be quite dif-

ferent. Object Bank representation encoding spatial location is able to capture such

difference and hence generates better performance in classification. Our classifica-

tion experiment on the MIT Indoor dataset shows that by encoding spatial location,

Object Bank representation significantly outperforms the one only contains semantic



CHAPTER 5. THE OBJECT BANK REPRESENTATION OF IMAGES 121

Figure 5.11: Left: Heat map of possible locations estimated from classification performance of
Object Bank representation generated from different spatial locations. Right: Example images with
the possible location map overlaid on the original image.

information.

To further demonstrate the effectiveness of the spatial location component in the

Object Bank representation, we conduct a spatial location control experiment. In

this experiment, we select an object that always appear at the top of the image, e.g.

“cloud” and an object that always appear at the bottom of the image, e.g. “grass”.

We use level 2 in the spatial pyramid structure as an example, each time we preserve

one of the spatial location as the representation and perform classification based on

the Object Bank feature extracted from it.

We observe that the Object Bank representation generated from regions with high

performance are also the locations where the object frequently appears. For example,

cloud usually appears in the upper half of a scene in the beach class whereas grass

appear at the bottom.

5.4.5 Comparison of Different Pooling Methods

As described earlier, Object Bank representation is summarized from the responses

of the image to different object filters. In order to obtain the geometric locations and
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Figure 5.12: Left: Classification performance of different pooling methods. Right: Classification
performance of PCA projected representations by using different pooling methods. Dimension is
fixed to the minimum number (∼ 100 dimensions) of principal components to preserve 99% of the
unlabeled data variance of the three representations. Average and maximum response values within
each spatial pyramid grid are extracted as the Object Bank feature in average pooling and max
pooling respectively. We discretize values within each spatial pyramid to construct the histogram
pooling representation.

semantic meaning of objects, we extract statistics of responses to object filters from

different spatial locations by using pooling methods. The quality of pooling method

influence the information that the Object Bank representation carries. In a similar

vain, we analyze the effectiveness of different pooling methods. We fix other designing

choices in our Object Bank and use the same classifier for different pooling methods.

One concern is that the richness of the representation could be attributed to the

high dimension of features. To investigate this possibility, we compress the three

representations to the same dimension by using PCA and perform classification on

the compressed representation.

Fig. 5.12 shows that Object Bank representation generated from histogram pool-

ing performs the best in classification even when it is compressed to the same di-

mension as the other two methods. It indeed carries more information that is more

descriptive of the images.

5.4.6 Role of Objects

Earlier in this chapter, we have introduced that Object Bank is built upon image

responses to a group of pre-trained object detectors. Object candidates are very
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Figure 5.13: Left: Classification performance on the UIUC sports event dataset by using Object
Bank representation corresponding to each single object. Right: Classification performance on the
MIT Indoor dataset by using Object Bank representation corresponding to each single object. X
axis is the index of the object sorted by using the detection performance on object datasets from
ImageNet. Y axis represents the average precision of a 8-way classification.

critical component in designing the Object Bank representation. In this subsection,

we analyze the effectiveness of different types of objects. Specifically, we are interested

in Object Bank generated from two sources respectively: a generic pool of objects

and a small group customized objects which are directly related to scene images.

Generic Object Bank

We first examine the generic Object Bank representation constructed from 177 most

popular objects from ImageNet5. We begin with investigate how well each individual

object is able to capture the essential information within images, evaluated by the

classification performance of Object Bank representation generated from each indi-

vidual object. In Fig. 5.13, each dot represents the classification performance of a

specific object. The first observation is that the classification precisions across single

objects are not necessarily correlated with the detection performance (objects are

sorted by their detection performance from high to low). This can be attributed to

the fact that the objects with good detections might not have semantic relationship

with the scene types we test on. In general, the performance over a single object

5We evaluate the popularity of the objects based on the number of images available for down-
loading by using the object name as the query word in major search engines.
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Figure 5.14: Classification performance on the UIUC sports event dataset and the MIT Indoor
dataset by using Object Bank representation corresponding to accumulative object. X axis is the
number of objects. Y axis represents the average precision of a 8-way classification.

falls in the 40%-60% range for the UIUC sports dataset, which indicates that the

information captured by a single object is quite significant. However, it is still far

from explaining away the information provided by combination of information from

all objects, i.e., the full-dimensional Object Bank representation.

To investigate the effectiveness of using multiple object candidates in Object Bank,

we vary the number of object candidates and test the resulting representation on

scene classification. By plotting the average precision when a feature corresponding

to a subsequent object is added one at a time in Fig. 5.17, we observe that the

classification accuracy increases along with the increase of number of objects. We

believe that future growth of Object Bank will lead to stronger representation power

and more discriminative images models build on Object Bank.

How Much Semantic Meaning and Appearance Helps: Customized Object

Bank

In the ideal case, if we know the identity of objects in each image, the classification

performance on the UIUC sports event dataset is 100%. Models that accurately

predict the semantic meaning of objects can serve as critical prior knowledge for

describing an image. An important characteristics of Object Bank representation is

that it encodes prior knowledge of objects. Here, we analyze the influence of prior

knowledge especially the semantic meaning and appearance knowledge of objects
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encoded in Object Bank representation generated by using a group of customized

objects.

We first investigate the appearance models, i.e. our object filters, trained from

both the ImageNet and UIUC training images. We show below comparison of object

filters trained on two candidate objects, “sail boat” and “human”. We illustrate the

models visualization comparison of these two objects.

Trained on UIUC training images: Sailboat Trained on ImageNet images: Sailboat

Trained on UIUC training images: Human Trained on ImageNet images: Human

Figure 5.15: Model comparison of “sail boat” and “human” models trained on the UIUC training
images (Left) and the ImageNet images (Right).

As shown in Fig. 5.15, models trained on the UIUC training images capture

a clearer shape of the objects. The model quality is also reflected by their object

detection performance on objects within the UIUC scene test images.

By clearly depicting the object appearance, models trained on the UIUC training

images detects the objects in the object images in a held-out set accurately (Fig.

5.16).

In addition, we compare the image classification performance by using only these
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Figure 5.16: Detection performance comparison of models trained on the UIUC training images
and the ImageNet images.
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Figure 5.17: Classification performance on the UIUC sports event dataset by using Object Bank
representation generated from sailboat and human models trained on the UIUC training images and
the ImangeNet images respectively. Y axis represents the average precision of a 8-way classification.

The customized Object Bank models captures the object property better, which

leads to better detection accuracy and better classification performance. Individual

customized object models exhibit lots of potential in generating more descriptive

image representation, we further verify the potential of customized object models of

all semantically related objects in the UIUC sports dataset.

We compare the overall classification performance by using all semantically related

models, where we train the customized Object Bank filters by using 25 object can-

didates from the UIUC training images. We construct the customized Object Bank

representation based on these filters, called UIUC-25. UIUC-25 carries knowledge of

object appearance from the UIUC training images whereas the generic Object Bank

representation (ImageNet-177) encodes prior knowledge of object appearance from
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the ImageNet object training images. We compare UIUC-25 to ImageNet-177, Ob-

ject Bank representation constructed from a subset of randomly selected 25 objects

(ImageNet-25) as well as the ‘pseudo’ Object Bank representation generated from a

set of synthesized models neglecting the semantic meaning of objects.
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Figure 5.18: Left: Classification performance on the UIUC sports event dataset by using UIUC-25
(customized Object Bank), ImageNet-177 (generic Object Bank), ImageNet-25 (25 objects randomly
selected from the ImageNet object candidates), randomly generated filters (Pseudo Object Bank)
and state-of-the-art algorithm on the UIUC sports dataset. The blue bar in the last panel is the
performance of “pseudo” Object Bank representation extracted from the same number of “pseudo”
object detectors. The values of the parameters in these “pseudo” detectors are generated without
altering the original detector structures. In the case of linear classifier, the weights of the classifier
are randomly generated from a Gaussian distribution instead of learned. “Pseudo” Object Bank is
then extracted with exactly the same setting as Object Bank. Right: Classification performance
on the UIUC sports event dataset by using different appearance models: UIUC-22, UIUC-25, and
ImageNet-177. Numbers at the top of each bar indicates the corresponding feature dimension.

In Fig. 5.18(Left), while the generic Object Bank (ImageNet-177 and ImageNet-

25) has very good generalizability, the customized Object Bank consistently delivers

much better result. It not only outperforms Object Bank generated from equivalent

number of object candidates in ImageNet, but also outperforms full dimensional Ob-

ject Bank. It is worth noticing that the dimension of full dimensional Object Bank is

over 7 times that of the customized Object Bank representation. Comparing to [91],

which requires labels of each pixel within an image in training, customized Object

Bank outperforms it significantly without additional information required. In fact,

obtaining bounding box costs less labor than obtaining object contour required in [91].

We further decompose the spatial structure and semantic meaning encoded in Object

Bank by using a “pseudo” Object Bank without semantic meaning. The significant
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improvement of Object Bank in classification performance over the “pseudo OB” is

largely attributed to the effectiveness of using object detectors trained from image.

On the other hand, “pseudo” Object Bank performs reasonably well indicating that it

does capture consistent structures in the images. To demonstrate the capabilities of

different models in encoding the structural information in images, we show the models

and their corresponding response maps in Fig.5.19. As we can observe from Fig.5.19,

Random_Gaussian

Best_Gaussian

Generic_OB

Customized_OB

Figure 5.19: Comparison of different models and response maps generated. Column 1: Models
visualized by using learned weights of histogram of oriented gradients. Here, “Random Gaussian”
represents a randomly generated model by using random numbers sampled from a Gaussian distri-
bution. “Best Gaussian” refers to the randomly generated model which performs best in classifying
images containing “sailboat” from other images in the UIUC sports dataset. Column 2-4: Original
images and the corresponding response maps. Each row corresponds to the response maps of images
in the first row generated by the model showed in the first column.

while the Object Bank models are capable of generating relatively accurate response

maps corresponding to the “sailboat” locations in the images, randomly generated

“pseudo” Object Banks does reflect consistency in generating the response maps. It

worths noticing that the best performed random model in “sailboat” classification

generates response maps which have high responses in every pixels in the images
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except the “sailboat” regions. Among the response maps, those generated by cus-

tomized Object Bank locate the “sailboat” most accurately. The significantly good

performance of the customized Object Bank can be easily explained: it is trained

on the UIUC scene images which generates object filters that are more semantically

related and accurate in appearance modeling.

An important question is that given the objects are semantically related, would

better appearance models improve the quality of Object Bank representation? We

investigate two possibilities for improving appearance models. A few object candi-

dates in the UIUC sports dataset has only a couple of training images, which leads to

deteriorated detection ability. Our first option to improve the appearance models is

to evaluate the detection performance of object candidates and filter out three mod-

els with low detection performance. We call the representation generated UIUC-22.

We can further improve our appearance models by increasing the number of scales,

i.e., the possibility of accurately capturing more object sizes. Specifically, we increase

the number of scales for UIUC-22 and UIUC-25 from 6 to 43, which makes the final

dimension of both enriched representations approximately the same as the original

Object Bank representation. We explore these two aspects as an example case study.

With a small number of semantically related models trained from the UIUC train-

ing images, the classification is more accurate than that of all 177 object candidates

in the original Object Bank representation. In addition, increasing the number of

scales lead to richer appearance model which generates even better representation for

classification.

5.4.7 Relationship of Objects and Scenes Discovered by OB

Object Bank is built upon the idea of using objects to describe images. It encodes rich

semantic and spatial structural information, from which we can discover interesting

relationship of the images that the Object Bank is extracted from. Intuitively, objects

are closely related to scenes they often appear. In this experiment, we aim to examine

the effectiveness of individual objects in different scene classes towards discovering

the interesting relationship between objects and scene types from the Object Bank
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representation. To dissect the relationship of each individual objects to the scene

types, we perform classification on the UIUC sports dataset based upon Object Bank

feature dimensions corresponding to individual object. A relationship map (Fig. 5.20)

is generated based on how accurate the individual object captures the discriminative

information in a scene.

Most Related Scene Classes for Sampled Objects

Figure 5.20: Most related scene type for each object. Rows are objects and column represent
scene types. Classification scores of individual objects are used as the measurement of relationship
between objects and scene types. The higher the classification accuracy, the more transparent the
mask is in the intersecting grid of the object and scene type.

Fig. 5.20 shows that objects that are “representative” for each scene can be

discovered by our simple method based upon Object Bank, indicating that semantic
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related objects indeed are important to scene classification. For example, “basketball

frame”, “net” and “window” are objects with very high classification accuracy in the

“badminton” scene class whereas “horse” has the highest classification score in “polo”

class.

5.4.8 Relationship of Different Objects Discovered by OB

Objects related to each other often exhibit similarity in appearance or similar patten

in classifying scene types. Such relationship can again be reflected by our Object

Bank representation. In a similar manner, we try to discover the relationship among

objects based on their classification behavior in this experiment. We use prediction

probabilities of each scene class as the feature of the objects and build the correlation

map (Fig. 5.21) based upon the distance between different objects.

We observe that the objects that are intuitively related to each other are also

those have strong correlations in Fig. 5.21. For example, “row boat” always co-occur

with “water”, “oar” and “cloud”. It is connected to “sailboat” due to their similar

connection with “water” and similarity structure in appearance. This suggests that

essential information from each image has been successfully extracted and preserved

in Object Bank, from which we can reconstruct the appearance similarity and co-

occurrence information. On the other hand, we examine the similarity of the response

maps generated by convolving each image with the trained object detectors, which

is dramatically different than what we discovered in Fig. 5.21 and does not have a

clear pattern. This is largely attributed to the fact that very few objects in the UIUC

sports dataset share appearance similarity. Our observation in this experiment leads

to a strong indication that the co-occurrence of objects is the main factor to relate

different objects to each other here.

5.5 Analysis: Guideline of Using Object Bank

In this analysis, we analyze the robustness of Object Bank to different classification

methods and provide simple guidelines for efficient computation.
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Figure 5.21: Relationship of objects. Classification scores of individual objects are used as the
feature to measure the distance among objects.
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Method UIUC Sports MIT Indoor
k-Nearest Neighbor, Euclidean metric 67.3% (k = 1) 25.4% (k = 29)
k-Nearest Neighbor, Gaussian Kernel 70.4% (k = 17) 28.1% (k = 20)
L2 regularized LR 80.2% 45.5%
L2 regularized L2 loss SVM 82.3% 46.6%
L2 regularized L1 loss SVM 82.3% 46.6%
L1 regularized L2 loss SVM 81.5% 42.1%
L1 regularized LR 82.0% 42.6%

Table 5.3: Classification performance of different methods.

5.5.1 Robustness to different classification models

We have established a clear advantage of using Object Bank representation for the

image classification task. We now examine whether Object Bank features still main-

tains its advantage when we apply different off-the-shelf classification methods to it.

In Table.7.2, we examine the effectiveness of different classification methods ranging

from very simple nearest neighbor algorithm to more sophisticated regularized SVM

and logistic regression models.

With this very descriptive image representation, even simple method such as k-

nearest neighbor can achieve comparable performance to state-of-the-art methods

with more complicate models. More sophisticated models can further boost the scene

classification performance. We envisage that models customized to Object Bank can

further maximize the potential of it on various high level visual recognition tasks.

5.5.2 Dimension Reduction by Using PCA

Object Bank representation is a robust representation with high dimension, which

can be easily compressed to a low dimensional representation for efficiency. Here,

we demonstrated the dimension reduction by using a simple projection method, i.e.

PCA.

As shown in Fig. 5.22, simple dimension reduction method such as PCA can

compress the Object Bank representation to much lower dimensions and still perform

comparably well to the original Object Bank. The computation time also decreased

dramatically along with the image representation dimensions. In addition, it performs
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Figure 5.22: Left: Best classification performance of projected representations by using different
pooling methods. All dimensions are below 150. Middle: Training time comparison of the original
Object Bank and the compressed Object Bank using OB-Max as an example. Right: Testing time
comparison of the original Object Bank and the compressed Object Bank for each image.

much better than low level features with the same dimension (SIFT) or significantly

higher feature dimensions (GIST and SPM). Our observation reflects that Object

Bank representation is a high dimensional representation with redundancy, which

can be easily compressed and efficiently applied to high level tasks.

5.5.3 Dimension Reduction by Combining Different Views

When we design Object Bank, we incorporate multiple views of objects for more

accurate description. Since the view points are complementary to each other, we

show that simple methods for combining different views and reducing the dimensions

of the Object Bank representation can be effective.

An object within an image can either be front view or side view, which is reflected

by the statistics of the values in the response map. Here we show that the high

average value of responses for one view of an object in an image is a strong indicator

of an object appears in that image. Therefore, the classification performance is even

higher than concatenating both views, where one of them might have low response

indicating the object does not present in the image. Selecting the view point by using

maximum variance is effective too. However, selection based on maximum response

value of different view points deteriorates the classification performance due to the

sensitivity of this selection method.
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Figure 5.23: Classification performance of different pooling methods for dimension reduction. We
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and maximum variance respectively for classification. This corresponds to 1/2 dimension reduction.

5.6 Discussion

The Object Bank representation described in this Chapter is a novel high level image

representation that can effectively bridge the “semantic gap” between low level image

representation and the high level visual recognition tasks. It is particularly useful

given the semantic and spatial knowledge encoded in the representation. The semantic

information is obtained by running object detectors over multiple scales of images to

capture the possibility of objects appear in the images. A spatial pyramid structure

is applied to the response map representing the possibility of objects in an image to

summarize the spatial statistics of objects. We analyze in depth the effectiveness of

each component in our Object Bank representation and provide useful guidelines for

usage of Object Bank.



Chapter 6

Semantic Feature Sparsification of

Object Bank

While the Object Bank representation offers a rich, high-level description of images,

a key technical challenge due to this representation is the “curse of dimensionality”,

which is severe because of the size (i.e., number of objects) of the Object Bank and

the dimensionality of the response vector for each object. Typically, for a modest

sized picture, even hundreds of object detectors would result into a representation of

tens of thousands of dimensions. Therefore to achieve robust predictor on practical

dataset with typically only dozens or a couple of hundreds of instances per class,

structural risk minimization via appropriate regularization of the predictive model is

essential.

In this chapter, we propose a regularized logistic regression method, akin to the

group lasso approach for structured sparsity, to explore both feature sparsity and

object sparsity in the Object Bank representation for learning and classifying complex

scenes. We show that by using this high-level image representation and a simple sparse

coding regularization, our algorithm not only achieves superior image classification

results in a number of challenging scene datasets, but also can discover semantically

meaningful descriptions of the learned scene classes.

136
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6.1 Scene Classification and Feature/Object Com-

pression via Structured Regularized Learning

We envisage that with the avalanche of annotated objects on the web, the number of

object detectors in our Object Bank will increase quickly from hundreds to thousands

or even millions, offering increasingly rich signatures for each images based on the

identity, location, and scale of the object-based content of the scene. However, from

a learning point of view, it also poses a challenge on how to train predictive models

built on such high-dimensional representation with limited number of examples. We

argue that, with an “overcomplete” Object Bank representation, it is possible to com-

press ultra-high dimensional image vector without losing semantic saliency. We refer

this semantic-preserving compression as content-based compression to contrast the

conventional information-theoretic compression that aims at lossless reconstruction

of the data.

In this chapter, we intend to explore the power of Object Bank representation in

the context of scene classification, and we are also interested in discovering mean-

ingful (possibly small subset of) dimensions during regularized learning for different

classes of scenes. For simplicity, here we present our model in the context of linear

binary classier in a 1-versus-all classification scheme for K classes. Generalization

to a multiway softmax classifier is slightly more involved under structured regu-

larization and thus deferred to future work. Let X = [xT
1 ;x

T
2 ; . . . ;x

T
N ] ∈ RN×J ,

an N × p matrix, represent the design built on the J-dimensional Object Bank

representation of N images; and let Y = (y1, . . . , yN) ∈ {0, 1}N denote the bina-

ry classification labels of N samples. A linear classifier is a function hβ : RJ →
{0, 1} defined as hβ(x) , argmaxy∈{0,1} xβ, where β = (β1, . . . , βJ) ∈ RJ is a vec-

tor of parameters to be estimated. This leads to the following learning problem

minβ∈RJλR(β) + 1
m

∑m
i=1 L(β;xi, yi), where L(β;x, y) is some non-negative, convex

loss, R(β) is a regularizer that avoids overfitting, and λ ∈ R is the regularization

coefficient, whose value can be determined by cross validation.

A common choice of L is the Log loss, L = log(1/P (yi|xi, β)), where P (yi|xi, β))
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is the logistic function P (y|x, β)) = 1
Z
exp(1

2
y(x · β)). This leads to the popular lo-

gistic regression (LR) classifier1. Structural risk minimization schemes over LR via

various forms of regularizations have been widely studied and understood in the liter-

ature. In particular, recent asymptotic analysis of the ℓ1 norm and ℓ1/ℓ2 mixed norm

regularized LR proved that under certain conditions the estimated sparse coefficien-

t vector β enjoys a property called sparsistency [137], suggesting their applicability

for meaningful variable selection in high-dimensional feature space. In this chapter,

we employ an LR classifier for our scene classification problem. And we investigate

content-based compression of the high-dimensional Object Bank representation that

exploits raw feature-, object-, and (feature+object)-sparsity, respectively, using LR

with appropriate regularization.

Feature sparsity via ℓ1 regularized LR (LR1) By letting R(β) , ∥β∥1 =∑J
j=1 |βj|, we obtain an estimator of β that is sparse. The shrinkage function on β

is applied indistinguishably to all dimensions in the Object Bank representation, and

it does not have a mechanism to incorporate any potential coupling of multiple fea-

tures that are possibly synergistic, e.g., features induced by the same object detector.

We call such a sparsity pattern feature sparsity, and denote the resultant coefficient

estimator by βF.

Object sparsity via ℓ1/ℓ2 (group) regularized LR (LRG) Recently, a mixed-

norm (e.g., ℓ1/ℓ2) regularization has been used for recovery of joint sparsity across

input dimensions. By letting R(β) , ∥β∥1,2 =
∑J

j=1 ∥βj∥2, where βj is the j-th

group (i.e., features grouped by an object j), and ∥ · ∥2 is the vector ℓ2-norm, we set

the feature group to be corresponding to that of all features induced by the same

object in the OB. This shrinkage tends to encourage features in the same group to

be jointly zero. Therefore, the sparsity is now imposed on object level, rather than

merely on raw feature level. Such structured sparsity is often desired because it is

expected to generate semantically more meaningful lossless compression, that is, out

1We choose not to use the popular SVM which correspond to L being a hinge loss and R(β)
being a ℓ2-regularizer, because under SVM, content-based compression via structured regularization
is much harder.
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of all the objects in the OB, only a few are needed to represent any given natural

image. We call such a sparsity pattern object sparsity, and denote the resultant

coefficient estimator by βO.

Joint object/feature sparsity via ℓ1/ℓ2 + ℓ1 (sparse group) regularized LR

(LRG1) The group-regularized LR does not, however, yield sparsity within a group

(object) for those groups with non-zero total weights. That is, if a group of parameters

is non-zero, they will all be non-zero. Translating to the Object Bank representation,

this means there is no scale or spatial location selection for an object. To remedy

this, we proposed a composite regularizer, R(β) , λ1∥β∥1,2 + λ2∥β∥1, which conjoin

the sparsification effects of both shrinkage functions, and yields sparsity at both the

group and individual feature levels. This regularizer necessitates determination of

two regularization parameters λ1 and λ2, and therefore is more difficult to optimize.

Furthermore, although the optimization problem for ℓ1/ℓ2 + ℓ1 regularized LR is

convex, the non-smooth penalty function makes the optimization highly nontrivial.

We derive a coordinate descent algorithm for solving this problem. To conclude, we

call the sparse group shrinkage patten object/feature sparsity, and denote the resultant

coefficient estimator by βOF.

6.2 Experiments and Results

We examine the behaviors of different structural risk minimization schemes over LR

on the Object Bank representation, focusing on their classification performance and

semantic interpretability. Specifically, we experimented ℓ1 regularized LR (LR1),

ℓ1/ℓ2 regularized LR (LRG) and ℓ1/ℓ2 + ℓ1 regularized LR (LRG1).

6.2.1 Semantic Feature Sparsification Over OB

In this subsection, we systematically investigate semantic feature sparsification of the

Object Bank representation. We focus on the practical issues directly relevant to

the effectiveness of Object Bank representation and quality of feature sparsification,
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and study the following four aspects of the scene classifier: 1) robustness, 2) feasi-

bility of lossless content-based compression, 3) profitability over growing OB, and 4)

interpretability of predictive features.

Robustness with respect to training sample size
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Figure 6.1: (a) Classification performance (and s.t.d.) w.r.t number of training images. Each pair
represents performances of LR1 and LRG respectively. X-axis is the ratio of the training images over
the full training dataset (70 images/class). (b) Classification performance w.r.t feature dimension.
X-axis is the size of compressed feature dimension, represented as the ratio of the compressed feature
dimension over the full Object Bank representation dimension (44604). (c) Same as (b), represented
in Log Scale to contrast the performances of different algorithms. (d) Classification performance
w.r.t number of object filters. X-axis is the number of object filters. 3 rounds of randomized sampling
is performed to choose the object filters from all the object detectors.

The intrinsic high-dimensionness of the Object Bank representation raises a legit-

imate concern on its demand on training sample size. We investigate the robustness

of the logistic regression classifier built on features selected by LR1 and LRG in this

experiment. We train LR1 and LRG on the UIUC-Sports dataset by using multiple

sizes of training examples, ranging from 25%, 50%, 75% to 100% of the full training

data.

As shown in Fig. 6.1(a), we observe only moderate drop of performance when the

number of training samples decreases from 100% to 25% of the training examples,

suggesting that the Object Bank representation is a rich representation where dis-

criminating information residing in a lower dimensional “informative” feature space,

which are likely to be retained during feature sparsification, and thereby ensuring

robustness under small training data. We explore this issue further in the next ex-

periment.
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Near losslessness of content-based compression via regularized learning

We believe that the Object Bank can offer an over complete representation of any

natural image. Therefore, there is great room for possibly (near) lossless content-

based compression of the image features into a much lower-dimensional, but equally

discriminative subspace where key semantic information of the images are preserved,

and the quality of inference on images such as scene classification are not compromised

significantly. Such compression can be attractive in reducing representation cost of

query image, and improving the speed of query inference.

In this experiment, we use the classification performance as a measurement to

show how different regularization schemes over LR can preserve the discriminative

power when we apply the content-based compression over Object Bank representation.

For LR1, LRG and LRG1, cross-validation is used to decide the best regularization

parameters, based on which image features can be ranked according to the magnitudes

of the estimated regularization coefficients β in the regression function. To compare

the extend of information loss as a function of different number of features being

retained in the classifier, we re-train a LR classifier using features from the top x%

percentile of the rank list, where x is a compression scale ranging from 0.05% to

100%. One might think that LR itself when fitted on full input dimensional can also

produce a rank list of features for subsequent selection. But it is known that LR does

not perform explicit feature sparsification, and can not zero-out irrelevant features

as do LR1, LRG and LRG1, and the ordering from LR does not necessarily reflect

true importance of features. For comparison purpose, we also include results from

the LR-ranked features, as can be seen in Fig. 6.1(b,c), indeed its performance drops

faster than all the regularization methods.

In Fig. 6.1 (b), we observe that the classification accuracy drops very slowly as

the number of selected features decreases. By excluding 75% feature dimensions,

classification performance of each algorithm decreases less than 3%. One point to

notice here is that, the non-zero entries only appear in dimensions corresponding to

no more than 45 objects for LRG at this point. Even more surprisingly, LR1 and LRG

preserve accuracies above 70% when 99% of the feature dimensions are excluded.

Fig. 6.1 (c) shows more detailed information in the low feature dimension range,
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which corresponds to a high compression ratio. We observe that algorithms imposing

sparsity in features (LR1, LRG, and LRG1) outperform unregularized algorithm (LR)

with a larger margin when the compression ratio becomes higher. This reflects that

the sparsity learning algorithms are capable of learning the much lower-dimensional,

but highly discriminative subspace.

Profitability over growing OB

We envisage the Object Bank will grow rapidly and constantly as more and more

labeled web images become available. This will naturally lead to increasingly richer

and higher-dimensional representation of images. We ask, are image inference tasks

such as scene classification going to benefit from this trend?

As group regularized LR imposes sparsity on object level, we choose to use it to

investigate how the number of objects will affect the discriminative power of Object

Bank representation. To simulate what happens when the size of Object Bank grows,

we randomly sample subsets of object detectors at 1%, 5%, 10%, 25%, 50% and 75%

of total number of objects for multiple rounds. As in Fig. 6.1(d), the classification

performance of LRG continuously increases when more objects are incorporated in

the Object Bank representation. We conjecture that this is due to the accumulation

of discriminative object features, and we believe that future growth of Object Bank

will lead to stronger representation power and discriminability of images models build

on OB.

6.2.2 Interpretability of the compressed representation

Intuitively, a few key objects can discriminate a scene class from another. In this

experiment, we aim to discover the object sparsity and investigate its interpretability.

Again, we use group regularized LR (LRG) since the sparsity is imposed on object

level and hence generates a more semantically meaningful compression.

We show in Fig. 6.2 the object-wise coefficients of the compression results for 4

sample scene classes. The object weight is obtained by accumulating the coefficient of

βO from the feature dimensions of each object (at different scales and spatial locations)
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Figure 6.2: Object-wise coefficients given scene class. Selected objects correspond to non-zero β
values learned by LRG.

learned by LRG. Objects with all zero coefficients in the resultant coefficient estimator

are not displayed. Fig. 6.2 shows that objects that are “representative” for each scene

are retained by LRG. For example, “sailboat”, “boat”, and “sky” are objects with

very high weight in the “sailing” scene class. This suggests that the representation

compression via LRG is virtually based upon the image content and is semantically

meaningful; therefore, it is nearly “semantically lossless”.

Knowing the important objects learned by the compression algorithm, we further

investigate the discriminative dimensions within the object level. We use LRG1 to

examine the learned weights within an object. In Chapter 5, we introduce that each

feature dimension in the Object Bank representation is directly related to a specific

scale, geometric location and object identity. Hence, the weights in βOF should reflect

the importance of an object at certain scale and location for recognizing a scene.

To verify the hypothesis, we examine importance of objects at different scales by

summing up the weights at all related spatial locations and pyramid resolutions within

the scale. We show one representative object in a scene and visualize the feature

patterns within the object group. As it is shown in Fig. 6.3(Top), LRG1 has achieved

joint object/feature sparsification by zero-out less relevant scales, thus only the most

discriminative scales are retained. To analyze how βOF reflects the geometric location,

we further project the learned coefficient back to the image space by reversing the

Object Bank representation extraction procedure. In Fig. 6.3(Middle), we observe

that the regions with high intensities are also the locations where the object frequently

appears. For example, cloud usually appears in the upper half of a scene in the beach

class.
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“boat” in “sailing”. Top Row: weights of Object Bank dimensions corresponding to different scales,
from small to large. The weight of a scale is obtained by summing up the weights of all features
corresponding to this scale in βOF . Middle: Heat map of feature weights in image space at the
scale with the highest weight (purple bars above). We project the learned feature weights back to
the image by reverting the Object Bank representation extraction procedure. The purple bounding
box shows the size of the object filter at this scale, centered at the peak of the heat map. Bottom:
example scene images masked by the feature weights in image space (at the highest weighted scale),
highlighting the most relevant object dimension.

6.3 Discussion

As we try to tackle higher level visual recognition problems, we show that more

semantic level image representation such as the Object Bank can capture important

information in a picture without evoking highly elaborate statistical models to build

up the features and concepts from pixels or low-level features. In this chapter, we

apply regularized logistic regression schemes on the high dimensional Object Bank

representation, and achieve nearly lossless semantic-preserving compression.

While the supervised regularized logistic regression method is effective in selecting
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the essential components in OB, the supervision required is a big obstacle for scal-

ability of this method. In the following chapter, we develop an algorithm exploring

to learn a low dimensional latent space in an unsupervised manner via regularized

projection, which is capable of generalizing knowledge to unseen classes.



Chapter 7

Multi-Level Structured Image

Coding on Object Bank

7.1 Introduction and Background

In this chapter, we propose a novel Multi-Level Structured Image Coding Approach,

or MUSIC, to encode the original high-dimensional Object Bank representation with a

much more compact, lower-dimensional, and semantically interpretable representation

called image code, upon which visual recognition tasks such as image classification

or retrieval, to name a few, can be effectively carried out with superior performance.

Given the Object Bank representations of a set of images, MUSIC learns a set of

image bases that span a lower-dimensional semantic space in which the whole image

dataset can be embedded, and the sparse codes for every image, by minimizing a

reconstruction error over the input Object Bank features. The key innovation behind

MUSIC is a two-layer latent sparse coding scheme that leverages on the rich semantic

and spatial information encoded in Object Bank to achieve compactness at both

object and image levels; and the usage of a structured object dictionary that consists

of both unique bases corresponding to every specific object in OB, and shared bases

generic to all objects, upon which the Object Bank response signals of an input image

can be reconstructed from the image code with high fidelity. The learned bases of the

image codes carries information that relates objects and their spatial distributions. An

146
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efficient coordinate descent algorithm is developed to solve the nontrivial optimization

problem of code generation and dictionary learning in a fully unsupervised fashion.

In order to learn a compact image code from the high dimensional and over-

complete Object Bank representation, we base our model MUSIC on sparse coding

(SPC) [110], which has shown lots of success in learning descriptive presentations for

audio [66] and image [144, 116]. Recent progress has been made on learning struc-

tured dictionaries by using composite regularizers [10, 75] and on developing highly

efficient algorithms [75, 95]. MUSIC fundamentally differs from these methods. First,

MUSIC is a two-layer SPC method and explicitly leverages the rich semantic and s-

patial information in Object Bank to achieve compactness at both object and image

levels, while most existing SPC methods learn a flat representation, e.g., the single-

layer encodings of image patches. Second, MUSIC learns a structured dictionary by

explicitly defining object-specific and shared bases1.

In summary, our contributions are:

1. Our learned image representation is a compact and robust representation that

captures object and spatial information. Thus, the learned representation is

efficient for future usage. It encodes the object appearance and spatial prop-

erty and consequently preserves the ‘gist’ of the structural information in the

representation.

2. We learn a generic ‘structure dictionary’ which essentially captures the relation-

ship of objects and their spatial locations. The original structural information

of the high dimensional representation can be easily reconstructed using this

dictionary.

3. we introduce the concept of ‘shared bases’ to absorb shared information across

different groups in the structure, and the concept of ‘specific bases’ to capture

1We note that the very recent work [78] uses a similar idea of learning with specific/shared (or
private/shared) dictionary elements for multi-view data analysis, but it is fundamentally different
from MUSIC which is two-layer and explores much richer structural information. Comparing to [78],
which softly couples the dictionaries on multi-views by using a structured regularizer, MUSIC is a
multi-level model, which first explicitly defines object-specific and shared bases and then enforces
bases selection. Although [78] could potentially be more flexible in identifying the shared and private
bases, they are computationally much more demanding to obtain the comparable number of bases.
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group-specific information.

7.2 Object Bank Revisit: a Structured High Di-

mensional Image Representation

In this section, we summarize the Object Bank (OB) representation briefly. Given

an image, a scale pyramid is first built by down-sampling the image into 12 different

scales. At each scale, an array of pre-trained object and stuff filters is applied to

solicit a response value from each pixel location2, an operation generating a response

map per scale. A response map is then divided into multiple grids similar to the

spatial pyramid representation [85]: 3 levels are used, where 1, 4, and 16 evenly

divided grids are obtained for each response map (Fig. 5.1). Within each grid,

maximum response score for each object filter is selected to build the final Object

Bank representation. Specifically, let O denote the number of object filters and G

denote the total number of grids for each input image (G = nScales×nGridsperscale
i.e. 12×(1+4+16) = 252). An Object Bank representation for each image is then

constructed by concatenating a set of O object-wise sub-vectors x = [x1; · · · ;xO],

where each xo∈RG denotes the responses produced by the oth object filter across all

grids3. The overall dimensionality of the Object Bank representation is O×G, which
can easily grow into tens of thousands as the number of object filters increases.

The Object Bank representation departs from traditional low-level image represen-

tation by encoding both semantic and spatial information of an image. For example,

the response maps of ‘sky’ or ‘airplane’ would show stronger signals in the upper

half of the image, whereas ‘beach’ or ‘car’ would be the opposite. Furthermore, the

Object Bank representation is by construction an over-complete characterization of

the image, in which redundant information can be across different scales, overlapping

spatial regions, and even at object levels.

2In our experiments, we follow the set-up of [93] and use the same 177 detectors.
3There can be an alternative representation, in which x is organized as a concatenation of set of

grid-wise sub-vectors, where each sub-vector xg∈RO in this case denotes the responses produced by
all the object filters at the grid g. But for simplicity, in our presentation of the method we focus on
the object-wise concatenation.
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7.3 Multi-Level Structured Image Coding

The redundancy in Object Bank representation potentiates a robust compression

without scarifying semantic contents. We present the Multi-Level Structured Image

Coding (MUSIC) for inferring a compact representation of the original Object Bank

features in a semantic latent space spanned by a set of learned bases. We begin with

a brief recapitulation of the basic sparse coding, upon which MUSIC is based.

7.3.1 Basic Sparse Coding

Widely applied in natural image, video and audio signal analysis [111, 110, 66], the

sparse coding technique (SPC) [110] computes a sparse representation of input data

x in a latent space spanned by a set of bases β = [β1; · · · ; βK ]. The basis set is

also known as a dictionary. An input vector x can be reconstructed from a linear

combination of the basis vectors, that is, x ≈
∑K

k=1 skβk, where the weight vector

s ∈ RK is called a sparse code or simply code, which usually has very few non-zero

elements. This approach can be directly applied to the Object Bank features, treating

the entire O ×G dimensional Object Bank representation x of an image as an input

sample, from which the latent-space representation can be computed using some

matrix factorization methods. The problem is that this approach can be extremely

inefficient because all the bases need to be as high-dimensional as the original OB.

Moreover, this method does not consider the rich structural information in Object

Bank discussed earlier.

7.3.2 The MUSIC Approach

To address the challenges posed by ultra high-dimensionality, structured regularity,

and over-completeness of the Object Bank representation, MUSIC builds on the fol-

lowing main innovations over the basic SPC: 1) Rather than computing a global code

directly from the whole input vector x, it computes sparse codes at object-level for

each response subvector xo in x, thus avoids the expensive high-dimensional matrix

factorization. 2) Rather than using a universal set of bases for reconstructing all xo’s,
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it employs both (small) basis-sets unique to each object and a basis-set shared by all

objects, which we refer to as a structured dictionary, to reconstruct every xo, thereby

it avoids laboring a large unstructured and semantically uninterpretable dictionary for

high fidelity reconstruction. 3) Rather than obtaining a sparse reconstruction simply

by pre-specifying the dictionary size (thereby the reconstruction vector dimension),

we impose both object-level and image-level sparsity-inducing bias in the code in-

ference and dictionary learning process. This enables us to incorporate structural

knowledge such as preferred co-occurrence of objects, or appearance and/or filter-

response, directly to the image codes, which is impossible in the basic SPC scheme

described above.

Specifically, we seek to obtain a low dimensional projection θ of the original Ob-

ject Bank features x in a latent space spanned by a structured dictionary. Fig. 7.1

shows the structure of MUSIC, which is a two-layer latent variable model. Below, we

describe our multi-level sparse coding scheme.

Object Coding in MUSIC

Given an input vector x resultant from a concatenation of O subvectors, each cor-

responding to an object-specific spatial response, we begin by reconstructing each

subvector xo from some bases in a dictionary, as shown in the first layer from x to s

in Fig. 7.1. Let β denote a structured dictionary, consisting of O sets of object-wise

unique bases, each denoted by βo ≡ {β⃗o,1, ..., β⃗o,M} where M is the number of bases

unique to every object; and one set of shared bases, denoted by βc ≡ {β⃗c,1, ..., β⃗c,L}
where L is the number of bases shared by all objects. Each basis β⃗k ∈ RG in the

dictionary roughly represents a canonical response pattern of one object detector on

different spatial locations in an image. We adopt a linear scheme for object-signal

reconstruction:

xo ≈
M∑
j=1

uo,j β⃗o,j +
L∑

j′=1

vo,j′ β⃗o,j′ = βou⃗o + βcv⃗o, (7.1)

where u⃗o and v⃗o represent the vectors of weights measuring the contributions of the
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Figure 7.1: Top: an illustration of MUSIC for inferring a compact image code from high-
dimensional Object Bank features. Here, xo ∈RG is the response of an object filter in the original
OB, so is the code of object o whose dimension is much lower than G (Sec. 7.3.2), θ is the image code
(Sec. 7.3.2) that aggregates so to achieve a single compressed representation for entire image, and
Bo represents all the bases needed for reconstructing signals from object o. In Bo, the colored grids
(column-wise) represent object-specific bases while the shaded grids represents shared bases. Across
all variables, grids in the same color are directly correlated. Bottom: The learned structured object
dictionary β. We show one example basis for each object and one shared basis. (This figure is best
viewed in colors and with pdf magnification.)

unique bases and shared bases, respectively. We denote so ≡ cat(u⃗o; v⃗o), which is

a concatenation of u⃗o and v⃗o, as the code of object o; likewise, Bo ≡ cat(βo; βc)
4

represents all the bases needed for reconstructing the response signals from object o.

Naively, one can code the signals x
(d)
o of image d by estimating s

(d)
o via a regularized

loss minimization scheme:

{s(d)o } = argmin
∑
d

∥x(d)
o −Bos

(d)
o ∥22 + ρ

∑
d

∥s(d)o ∥1, (7.2)

4Here cat() denotes a column-wise matrix concatenation.
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where ρ is a non-negative constant that balances the sparsity regularization term and

the reconstruction error term. However, not only is Bo unknown in this function, but

also, for different objects, the Bo’s contain a common element βc that couples different

codes for different objects. Finally, different xo’s from an image exhibit structural

regularities, such as spatial preference of objects, appearance and/or filter-response

similarities, which may render all so’s of a single image not independent of each other.

Therefore, in the sequel we need to furthermore consider a more global image coding

built on the object coding.

Image Coding in MUSIC

To capture the correlations among the codes of different object-wise responses, MU-

SIC employs an additional layer of coding as shown in Fig. 7.1, which aggregates the

codes so of all object-wise sub-vectors to achieve a single compressed Object Bank

representation θ of the entire image.

We define image code θ as a K = (O×M+L) dimensional vector of the form:

θ≡cat(θ1; . . . ; θO; θc), of which the elements θo, o = 1, . . . , O correspond to the proto-

type code of each of the unique portion u⃗o of the object code so; and the last element

θc corresponds to the prototype code underlying all of the shared portion v⃗o. Similar

to the object code extraction from xo’s, we adopt a regularized loss minimization

scheme to extract θ from so’s:

{θ} = argmin

O∑
o=1

∥θo − u⃗o∥22 + ∥θc − v⃗o∥22 + λ

O+1∑
i=1

∥θi∥2, (7.3)

where λ is another regularization constant. The choice of loss function determines how

the compact image code θ is aggregated from the individual representations so. The

use of a square error loss above will yield an average pooling for shared components

and a re-weighted feature concatenation for object-specific components as we shall

see. Note that, to introduce structured sparsity, here we employ an ℓ1,2-norm over

θ as a regularizer. This penalty can encourage joint sparsity of weights within an
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object code over all regions, i.e., all elements in a subvector θo or θc is shrunk to

zero simultaneously, which is a desirable bias to clean up spurious object filters. It

is also possible to explore other structured sparsity, such as regional effects, but for

simplicity, we leave these enhancements to the future work.

Just as for the case of so’s, the coding problem for θ cannot be solved in isolation

over each image only at the whole image level, because the object codes so are not

known in advance. Thus, as we shall show shortly, θ and so must be estimated

together in a joint optimization problem.

Structured Dictionary in MUSIC

As mentioned earlier, the dictionary β is a G×K matrix, where K=O×M+L denotes

the total number of bases, and we use Bo to denote the sub-matrix cat(βo; βc) for

constructing the signals from object o. Fig. 7.1 illustrates the structure of such a

dictionary, where the O object-specific sub-dictionaries βo are indicated by different

colors and the shared sub-dictionary βc is indicated by shaded blocks. We can see

that an object-specific basis represents a canonical spatial pattern for a particular

object and a shared basis tends to capture the common spatial pattern of all the

objects. Therefore, object-specific bases are sharp and vary a lot from one object to

another, while a shared basis is much flatter. In MUSIC, the dictionary β is learned

in conjunction with the coding process that renders so and θ. We will present a closer

examination of β in Sec. 7.4.1.

The MUSIC Model

Putting the three components presented above together, in order to learn an optimum

dictionary β, and infer the optimum coding coefficients (s, θ), we define MUSIC as

a coding/learning scheme based on minimizing a regularized square reconstruction

error. Formally, given a set of images {x(d)}, we solve the following optimization

problem which we call the MUSIC model:
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Algorithm 2 Dictionary Learning

Input: image corpus {x(d)}Dd=1, regularization constants (λ, γ, ρ), basis numbers (M,L).
Output: dictionary β
repeat

Sparse Coding: infer the sparse object codes s and image code θ for each image using
Alg. 3
Dictionary Learning: solve the following convex problem for β with projected gradient
descent

min
β

∑
do

∥x(d)
o −Bos

(d)
o ∥22, s.t.: β ∈ B. (7.5)

until convergence

min
θ,s,β

∑
d

L(x(d); s(d), β) + γL(s(d), θ(d)) +ρΩ(s(d))+λψ(θ(d)) s.t. : β ∈ B, (7.4)

where L(x(d); s(d), β) =
∑

o ∥x(d)
o −Bos

(d)
o ∥22 is the square error between input features

and their reconstructions; L(s(d), θ(d)) is a similar square error between object codes

and image code as defined in Sec. 7.3.2; Ω(s) is the ℓ1-norm of object codes as in

problem (7.2); and ψ(θ) is the ℓ1,2-norm of the image code as in problem (7.3).

Here, (λ, γ, ρ) are pre-specified non-negative hyper-parameters, which can be chosen

via cross validation. To make the problem identifiable, we put a constraint on the

dictionary β. We define B={β :
∑

k maxj |βkj|≤C}, which constrains the ℓ1,∞-norm

of β to be less or equal to a threshold C. ℓ1,∞-norm is used because it can effectively

avoid the spread of shared bases and bias the latent space towards being compact.

7.3.3 Optimization Algorithm: Coordinate Descent

We present an efficient procedure to solve problem (7.4). We note that the objec-

tive function is not joint convex, but it is bi-convex, that is, convex over one of (θ, s)

and β when the other is fixed. Therefore, a natural algorithm is the coordinate descent

algorithm, which has been widely used in sparse coding [144] and high-dimensional
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Algorithm 3 Sparse Coding for Compact Image Codes
Input: an image x and object dictionary β, regularization constants (λ, γ, ρ), basis
numbers (M,L).
Output: the image code θ and object codes s.
repeat

for o = 1 to O do
Solve the convex problem (7.2) for object-code so.

end for
Solve the convex problem (7.3) for θ.

until convergence

sparse learning problems [61]. The algorithm alternates between two steps of sparse

coding and dictionary learning, as outlined in Alg. 2 and explained below.

Sparse coding: this step solves problem (7.4) for (θ, s) with β fixed. This

subproblem is convex and many optimization algorithms can be applied. Here, we

adopt a coordinate descent strategy to iteratively solve it over θ and s. Due to the

independence assumption of different images, we can perform this step for each image

separately. For notation simplicity, we will ignore the subscript of image index. The

coordinate descent procedure is outlined in Alg. 3, where both problems (7.2) & (7.3)

have closed-form solutions.

Since the sparse codes for different images are not coupled, we can perform this

step for each image separately. We want to solve the problem for the image code θ

and local object code so. The coordinate descent procedure is as follows:

1. Optimize over θ: this step involves solving a group Lasso alike problem

min
θ

O∑
o=1

(∥θo − u⃗o∥22 + ∥θc − v⃗o∥22) + η

O+1∑
i=1

∥θi∥2,

where η = λ/γ is the ratio of the two regularization constants in problem 7.3. Here,

we develop a coordinate descent method to solve for θ. For each element θko , the

optimal condition is

−2(u⃗ko − θko ) + ηpko = 0,
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where pko is the kth component of the sub-gradient of ∥θo∥2. It is easy to see that if

θo ̸= 0, we have pko = θko
∥θo∥2 ; otherwise, we have ∥po∥22 ≤ 1. Now, we check whether

θo = 0, which requires that ∥po∥22 ≤ 1. Substituting θo = 0 into the above optimal

condition, we have pko = 2
η u⃗

k
o . Therefore, the sufficient condition for θo = 0 is that

∥u⃗o∥2 ≤ η
2 . If the condition holds, we have θo = 0, and no update is needed for all its

elements. Otherwise, if ∥u⃗o∥2 > η
2 , we have θo ̸= 0. Now, we need to solve for each

of its element. From the optimal condition, we have

−2(u⃗ko − θko ) + η
θko

∥θo∥2
= 0.

from which we have u⃗ko = (1 + η
2∥θo∥2 )θ

k
o . Taking the ℓ2-norm, we have

∥u⃗o∥2 = (1 +
η

2∥θo∥2
)∥θo∥2,

which implies that ∥θo∥2 = −η
2+∥u⃗o∥2. Therefore, we have the solution: if ∥u⃗o∥2 ≤ η

2 ,

we have θo = 0; otherwise, we have

θko = u⃗ko(1−
η

2∥u⃗o∥2
).

We can follow the above procedure to derive the closed-form solution of the shared

parameters θc. We omit it for clarity.

2. Optimize over s: when β and θ are fixed, so are not coupled. Therefore, we can solve

the following reduced problem for each so separately.

min
so

∥xo −Boso∥22 + γ(∥u⃗o − θo∥22 + ∥v⃗o − θc∥22) + ρ∥so∥1.

We note that the objective function is a summation of a differentiable function and

the non-differentiable ℓ1-norm. Here, we develop a coordinate descent algorithm, as

popularly used in Lasso and many other variants. For the object-specific part u⃗o, we

have the closed-form solution.
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∀1 ≤ k ≤M, u⃗ko =


s̄ko−0.5ρ
γ+∥βk

o ∥22
, if s̄ko > 0.5ρ

0 , |s̄ko | ≤ 0.5ρ
s̄ko+0.5ρ
γ+∥βk

o ∥22
, if s̄ko < −0.5ρ,

where s̄ko = γθko + (βko )
⊤(xo −

∑
i ̸=k u⃗

i
oβ

i
o −

∑
i v⃗

i
oβ

i
c) and βko is the kth column of

βo, likewise for βic. Because of the symmetry between u⃗o and v⃗o, the solution of the

shared part v⃗o has the similar form. We omit the derivation for clarity.

Update dictionary: this sub-step involves solving the convex problem (7.5),

which is quadratic.

min
β

∑
do

∥x(d)
o −Bos

(d)
o ∥22, s.t.: β ∈ B.

This problem can be efficiently solved with projected gradient descent, where the

projection to the ℓ1,∞-ball can be easily done [113].

7.4 Experiment

In this section, we thoroughly analyze a number of important properties of the MU-

SIC approach; and evaluate its performance on several high-level recognition tasks,

including scene classification, image retrieval and annotation.

7.4.1 Analysis of MUSIC

Before showing performance of the proposed MUSIC approach on several benchmark

applications, we examine some fundamental properties of MUSIC in this section.

We focus on interpretability of the learned structured basis dictionary; information

content of the image code, and discriminability of the MUSIC output over competing

methods. We use the UIUC-Sports event dataset, which contains images from 8 event

categories. 70 images from each class are used to learn the dictionary and compute

the image codes. We use the same settings as [93], i.e. the original Object Bank
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Figure 7.2: (a) A heat matrix of the bases in the structured dictionary. Each column corresponds
to a basis, and each row corresponds to a spatial location (i.e., a grid), which are grouped as “Top”,
“Middle” and “Bottom” locations in the image. Object names are displayed at the bottom. A high
value of a basis-element in a row indicates that the object is likely to appear in the corresponding
grid. The values of each object basis are standardized for salient visualization. (b) A heat matrix
of the average image codes θ of images from different classes are displayed on the right. Names of
the object-specific bases are displayed at the bottom.

is generated by using 177 object detectors. As described in Sec. 7.2, the overall

dimensionality is O ×G = 44604. In MUSIC, 7 object specific bases for each object

and 1 shared basis are used, which generates the image code with dimensionality of

7× 177 + 1 = 1240, ∼ 40-fold reduction from the original Object Bank features.

A Close Examination of the Basis Dictionary

As mentioned earlier. MUSIC learns a structured dictionary that includesO subsets of

object-specific bases, and 1 subset of shared bases. Each basis captures the canonical

pattern of either an object-specific or a universal Object Bank signal in all the regions

(i.e, grids) of the image. Fig. 7.2(a) shows a few examples of the learned object-specific

bases (each as a column in the heat matrix); the columns are ordered as leaves of

a hierarchical clustering of the columns for salient visualization. Each row in this

matrix corresponds to a spatial location in the image where the bases are recording

a canonical response of the object filters. As we can see, there is an apparent spatial

bias revealed in different bases. Bases corresponding to objects such as “water”,
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“beach”, “seashore”, etc. contain strong (i.e., red) signals at the bottom regions of

the image; whereas bases corresponding to “maintain”, “pool table”, “rock”, etc. tend

to have stronger signals in the middle regions of the image. Such spatial preference

is consistent with human knowledge of the objects locations. A side effect of such

spatial preference of objects is that a hierarchical clustering of the bases as we did here

can sometime, but not always, generate semantically coherent grouping; for example,

“water”, “beach” and “seashore” fall into a cluster on the left, whereas “sail” and

“sailboat” are in the same cluster on the right. However, as spatial biases are not

the only cue for grouping objects (e.g., see the apparent heterogeneous composition

of the cluster in the middle), we are cautious about over-interpreting or exploiting

this groupings.

A Close Examination of the Image Codes

We expect the image codes inferred by MUSIC from Object Bank to bear sufficient

information content so that they lead to high-quality reconstruction of the original

Object Bank signals, as well as being semantically interpretable.

Fig. 7.2(b) shows a heat matrix of subvectors of the average image codes obtained

by extracting the object prototype code θo of 34 example objects for the 8 classes.

Here, each row corresponds to an average image code for images from a category,

and each column corresponds to an object-specific basis used. Again, columns are

ordered by a hierarchical clustering simply for easy visualization. (We only show

here the portion of image code corresponding to the object-specific bases, the remain

corresponding to the shared bases, are, as expected, not as informative.) It can

be seen that different image categories do exhibit biased usage of different object-

specific bases, reflecting more frequent occurrences of the corresponding objects in

the images. For example, “sail” and “sailboat” have higher image code values in

the “sailing” class, while “sky”, “ship” and “boat” have higher image code values

in the “rowing” class. Such content bias in the image code implies its potential in

semantic-based discrimination, as we explore later.
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Predictive Performance

Now we dissect the building blocks of MUSIC and examine their influences on the

predictive power of the inferred image code. The evaluation is based on a small-

scale scene classification experiment on the UIUC sports data. 70 images are used for

training and 60 for test from each class, which is the default setting for all experiments

on this data. In the following, if not specified, we employ a multi-class linear SVM

as the default classifier operating on different image representations, including the

image code from MUSIC. We compare with the following alternatives:

1. specSPC: image code from MUSIC, but using only object-specific bases (i.e., L = 0).

2. SPC: basic sparse coding that uses all shared bases to compute object codes separate-

ly, which were subsequently concatenated into a whole image-level representation5.

3. PCA: a representative dimensionality reduction method.

4. L1-LR: ℓ1-norm regularized logistic regression (LR) trained directly on the high-

dimensional Object Bank representations, with ℓ1-norm regularization for direct fea-

ture selection.

5. SVM: a linear SVM learned from the original OB.

Table 7.1 summarizes the classification accuracy of different methods. For MUSIC,

as we have stated, the dimension of the image codes is 1240, much lower than that

of the original Object Bank (44604). We observe that the full MUSIC outperforms

other algorithms. Specifically,

5If we use average or max-pooling in the SPC to obtain image-level representations, it is found
that the performance will drop dramatically when only using a modest number (e.g., hundreds)
of bases. Using a large number of bases could help but it is much more expensive than MUSIC.
For example, suppose we use the same number of bases as the number of objects in both SPC and
MUSIC (i.e., M = 1 & L = 0). Then, MUSIC will be roughly the number of objects times faster
than the ordinary SPC. This is because SPC uses all the bases to reconstruct each object-wise Object
Bank feature, while MUSIC uses only 1 basis to reconstruct each object-wise Object Bank feature.
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Method Accuracy
SVM [93] 77.9%
L1-LR 76.2%
PCA 77.2%
SPC 78.7%
specSPC 78.0%
MUSIC 81.8%

Table 7.1: Classification accuracy of different models.

1. The superior performance of MUSIC over specSPC demonstrates that shared

bases can help separate common background information from the more seman-

tic salient information regarding unique objects.

2. Although inferior to MUSIC, the basic SPC and PCA achieve fairly good perfor-

mance, even slightly superior to L1-LR and linear SVM on the original Object

Bank representation. This observation suggests that, possibly due to severe

over-completeness of the original Object Bank features, standard feature selec-

tion methods such as L1-LR cannot effectively reduce the redundant features.

However, using an appropriate linear transformation (e.g., SPC or PCA) can ef-

fectively reduce the redundancy and achieve a compact representation. MUSIC

achieves a similar effect on dimensionality reduction, but is further benefited

from the rich structure information in sparse coding.

7.4.2 Applications in High-level Image Recognition

In this section, we evaluate the potential of image code in high-level visual recognition

tasks, specifically: scene classification, image retrieval and annotation.

Scene Classification

We first analyze the predictive power of the image codes learned by MUSIC for

classifying scene images from two complex scene datasets – UIUC sports event [91]

and MIT indoor scene [114]. For the MIT indoor scene dataset, we follow the settings
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Figure 7.3: (a) Comparison of classification performance to the methods that use existing low-level
representations or the original Object Bank representation and state-of-the-art approaches on the
UIUC sports data. (b) Comparison of classification performance to the methods that use existing
low-level representations, the original Object Bank representation, and state-of-the-art approaches
on MIT Indoor data.

in [114], using 80 images from each of the 67 classes to train a multi-class linear SVM

and test on a total of 1340 images (20 per class). We compare image code obtained

by MUSIC with those methods using low-level features (e.g., SIFT, SPM and GIST)

and the state-of-the-art algorithms. We use a linear SVM classifier for SIFT and

GIST features and a more complex classifier (i.e. SVM with an intersection kernel)

for SPM as in [85].

Fig. 7.3 shows the accuracy of different methods, defined as the average accuracy

of a multi-way classification result. The improvement of image code from MUSIC over

the low-level representations and the state-of-the-art approaches indicates image code

can successfully preserve the rich structure and semantic meaning of the Object Bank

representation. It is worth noticing that all state-of-the-art algorithms we compared

with require extensive supervision during training ([138] and [91] use object labels

within each training image, and [114] requires manual segmentation of a subset of

training images.) whereas MUSIC does not require such supervision. The fact MUSIC

outperforms the original Object Bank representation underscores the importance of

obtaining a more compact feature, where richly discriminative information in both

semantic and spatial domains are preserved, but the smaller dimensionality curtails

the high-dimensionality challenge posed by the original OB.
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Method MUSIC-kNN MUSIC-LR MUSIC Self-Taught
Accuracy 69.5% 79.2% 81.8% 80.4%

Table 7.2: Classification performance by using different classifiers and self-taught learning (we
learn a MUSIC on the MIT indoor data and apply it to infer image codes for images in the the
UIUC sports data) on the image codes inferred by MUSIC.
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We also investigate how different end classifiers affect the classification perfor-

mance by using our image codes from MUSIC. Here, we compare linear SVM (the de-

fault classifier) with kNN and logistic regression (LR), which are denoted by MUSIC-

kNN and MUSIC-LR, respectively. We also report the performance of using our image

codes for self-taught learning [116]. As shown in Table 7.2, the linear LR and SVM

perform comparably. Although inferior to SVM or LR, kNN is comparable to the best

method that uses a low-level representation (e.g., SPM [85]) and the state-of-the-art

methods as shown in Fig. 7.3(a).

Image Retrieval

We investigate the usefulness of our image code inferred from MUSIC on image re-

trieval tasks in two scenarios:
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Content-based Image Retrieval (CBIR) – use a query image to retrieve

relevant images. We compare the retrieval performance of using image codes to the

methods using low-level representations and the original OB [93] on the UIUC sports

data, where 130 images from each of the 8 classes are used. We use precision of the

top ranked images as the evaluation criterion (Fig. 7.4(Left)). Image code by MUSIC

outperforms those using low-level representations with a large margin. We attribute

this advantage of MUSIC to its encoding of rich semantic and spatial information. It

is worth noticing that although achieving comparable performance, the image code

has a much lower dimension (1240) and hence more efficient for practical applications

than the Object Bank representation (>40k dimension).

Concept-based Retrieval – use a concept to retrieve images. As shown in

Fig. 7.2(a), our object dictionary has clear object specific patterns. In Fig. 7.2(b),

we also show that such patterns can directly relate a group of images sharing one

concept based on the objects shared among them, which is useful for concept retrieval.

Here, we apply the image code to concept retrieval on Caltech 256 dataset [64] and

compare with the state-of-the-art algorithms, Torresani et. al. [131] and Rocchio

algorthim [27]. Similar to [131], we train an SVM on each retrieval concept. We

then rank the retrieved images based on the SVM prediction score. Following the

evaluation criteria used in [131], we report the precision of top 25 retrieved images by

using different representations in Fig. 7.4(Right). We observe superior performance

to the method of Torresani [131], which is largely attributed to the incorporation of

the spatial patterns of the objects6.

Image Annotation

Our last experiment is to apply the image code to an image annotation task, where a

list of image or object concepts is inferred for an image. We conduct this experiment

on the UIUC sports data, with 70 images per class for training (18 of them are

used as the validation set) and 60 for testing. We train an SVM classifier of each

object based on our representation of the images. Given a query image, the classifier

6The compactness of image code makes it a better choice over OB [93] for large scale retrieval
application.
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makes an annotation prediction for each concept. Our annotation result (48.27%

in standard F-measure, used in [138]) is superior than the reported state-of-the-art

performance of 38.20% in [138]. We attribute this improvement to the rich semantic

information encoded by the object detectors, which is suitable for high-level visual

tasks such as image annotation. Our method also outperforms the original Object

Bank representations (45.46%), which suggests that the more compact image codes

by MUSIC successfully preserve the semantic contents of the image while discarding

the noise and redundancy.
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Figure 7.5: Example image annotation results by MUSIC. Proposed tags are listed on the right
side of the image. Incorrect tags are highlighted in red. The average number of tags proposed is
∼10. For those images with more than 7 tags predicted, only the top 7 annotated tags with highest
empirical frequencies in the tag list of that image are shown.

Fig. 7.5 shows a few example results annotated by MUSIC. One source of mistakes

is due to semantic confusion, e.g. “net” in 2nd row and 1st column is proposed as a

result of its expected occurrence in badminton images. Another source of errors is the

object filters in OB, such as incorrectly labeling “ski” as “stick”. These observations

point out a number of useful future directions in improving our work.

7.5 Discussion

We have proposed a novel MUSIC model that learns a structured object dictionary

from images using a high-level representation (i.e., OB) and infers much more compact
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image code representation (∼ 1k dimension) than the original ultra-high dimension-

al Object Bank (44604 dimension). Our analysis demonstrates that the structural

regularity in the learned dictionary and the inferred image codes are consistent with

human knowledge. Using the inferred image codes, superior performance over origi-

nal Object Bank can be obtained with a much lower computational cost on various

high-level image recognition tasks. We plan to explore the potential of the compact

image codes in large scale recognition problems, which are infeasible for the original

Object Bank due to its high dimensionality and over-completeness.
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In this thesis, we have focused on two important aspects in semantic image un-

derstanding: model representation and feature representation. Specifically, we have

proposed principle probabilistic models to represent the objects, scene environments,

and event/activities in real-world complex images. To represent the semantic mean-

ing in our complex visual world, we propose a fundamentally new high level image

representation which encodes the objects appearance and geometric locations in the

image. Below, we will summarize the contributions of my thesis.

In Chapter 1, we tackle a classical problem in computer vision, object recogni-

tion. We propose OPTIMOL (a novel framework for Online Picture collecTion via

Incremental MOdel Learning), an automatic dataset collecting and model learning

system for object recognition. Our algorithm mimics the human learning process in

such a way that, starting from a few training examples, the more confident data you

incorporate in the training data, the more reliable models can be learnt. Our system

uses the Internet as the (nearly) unlimited resource for images. The learning and

image collection processes are done via an iterative and incremental scheme designed

for large scale image recognition task. The goal of this work is to use this tremendous

web resource to learn robust object category models in order to detect and search for

objects in real-world scenes. OPTIMOL is able to automatically collect much larger

object category datasets nearly as accurate as those collected by humans. It offers

not only more images in each object category dataset, but also a robust object model

and meaningful image annotation. It demonstrates excellent recognition and local-

ization abilities in large scale object recognition as well as robot navigation in real

world scenario. In Semantic Robot Vision Challenge, a competition designed to fuse

the state of the art in image understanding and automatic acquisition of knowledge

from large unstructured databases of images (such as those generally found on the

web), OPTIMOL framework won the 1st place prize in the software league.

There is more meaningful content beyond objects in an image, e.g. scenes, events,

activities, emotions, and intentions. In Chapter 2, we propose a first attempt to

classify complex scenes/events in static images by integrating scene and object infor-

mation. We observe that object recognition in the scene as well as scene environment

classification of the image facilitate each other in the overall activity recognition
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task. We formulate this observation in a principle probabilistic model representation

where activity classification is achieved by combining information from both the ob-

ject recognition and the scene classification pathways. While most existing research

focus on recognizing isolated objects and object classes in an image, we propose a

unified framework to classify an image by recognizing, annotating and segmenting the

objects within the image. To our knowledge, this is the first model that performs all

three tasks in one coherent framework. Our generative model jointly explains images

through a visual model and a textual model. Visually relevant objects are represented

by regions and patches, while visually irrelevant textual annotations are influenced

directly by the overall scene class. We propose a fully automatic learning framework

that is able to learn robust scene models from noisy web data such as images and user

tags from Flickr.com. We demonstrate the effectiveness of our framework by auto-

matically classifying, annotating and segmenting images from eight classes depicting

sport scenes. By jointly modeling of classification, annotation and segmentation, our

model significantly outperforms state-of-the-art algorithms in all three tasks.

In Chapter 3, we propose to construct a meaningful image hierarchy to ease the

human effort in organizing thousands and millions of pictures (e.g., personal albums).

Two types of hierarchies have recently been explored in computer vision for describ-

ing the relationship among images: language-based hierarchy and low-level visual

feature-based hierarchy. Pure language-based lexicon taxonomies, such as WordNet,

are useful to guide the meaningful organization of images. However, they ignore im-

portant visual information that connects images together. On the other hand, purely

visual feature-based hierarchies are difficult to interpret, and arguably not as useful.

Motivated by their drawbacks, we propose to automatically construct a semantically

and visually meaningful hierarchy of texts and images on the Internet by learning

a non-parametric hierarchical model. The quality of the hierarchy was quantitative-

ly evaluated by human subjects. Furthermore, we demonstrate that a good image

hierarchy can serve as a knowledge ontology for end tasks such as image retrieval,

annotation and classification.

Traditional low level image representations based on color and/or gradient have

achieved promising progress in visual recognition. However, color and gradient carry
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very little semantic meaning resulting in the so called “semantic gap” between the low

level image representation and the high level visual recognition tasks. On the other

hand, it is a remarkable fact that images are related to objects constituting them.

In Chapter 5, we introduce the novel concept of Object Bank, the first high-level

image representation encoding object appearance and spatial location information in

images. Object Bank represents an image based on its response to a large number of

pre-trained object detectors, or “object filters”, blind to the testing dataset and vi-

sual recognition task. Our Object Bank representation is a fundamentally new image

representation. It is a sharp departure from all previous image representations and

provides essential information for semantic image understanding. It demonstrates

promising potential in high level image recognition tasks. It achieves state-of-the-art

performance in image classification on various benchmark image datasets by using

simple, off-the-shelf classification algorithms such as linear SVM and logistic regres-

sion. In Chapter 6, we demonstrate that sparsity algorithms make our representation

more efficient and scalable for large scene dataset, and reveal semantic meaningful

feature patterns. Towards the goal of developing descriptive, efficient and scalable

image representation, we further propose an unsupervised structural sparsification

model for compressing Object Bank, with an innovative multi-level structural reg-

ularization scheme (Chapter 7). Our model learns an object dictionary that offers

intriguing intuition of real-world image structures. Moreover, we show that the new,

more compact representation outperforms a number of state-ofthe- art image repre-

sentations on a wide range of high-level visual tasks such as scene classification, image

retrieval and annotation.
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