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Abstract

Object and scene recognition is one of the most essential functionalities of human vision. It is also of fun-

damental importance for machines to be able to learn and recognize meaningful objects and scenes. In this

thesis, we explore the following four aspects of object and scene recognition.

It is well known that humans can be “blind” even to major aspects of natural scenes when we attend

elsewhere. The only tasks that do not need attention appear to be carried out in the early stages of the

visual system. Contrary to this common belief, we show that subjects can rapidly detect animals or vehicles

in briefly presented novel natural scenes while simultaneously performing another attentionally demanding

task. By comparison, they are unable to discriminate large T’s from L’s, or bisected two-color disks from

their mirror images under the same conditions. We explore this phenonmenon further by removing color

from the natural scenes, or increasing the number of images peripherally. We find evidence that suggests that

familiarity and meaningfulness might be among the factors that determine attentional requirements for both

natural and synthetic stimuli.

So what exactly do we see when we glance at a natural scene? And does what we see change as the glance

becomes longer? We asked naive subjects to report what they saw in nearly a hundred briefly presented

photographs. After each presentation subjects reported what they had just seen as completely as possible.

Afterward, another group of sophisticated individuals who were not aware of the goals of the experiment

were instructed to score each of the descriptions produced by the subjects in the first stage. Individual scores

were assigned to more than a hundred different attributes. Given the evaluation of the responses, we show

that within a single glance, much object and scene level information is perceived by human subjects. But the

richness of our perception seems asymmetrical. Subjects tend to have a bias to natural scenes being perceived

as outdoor rather than indoor.

In computer vision, it is commonly known that learning visual models of object categories notoriously

requires thousands of training examples. We show that it is possible to learn much information about a

category from just one image, or a handful of images. The key insight is that, rather than learning from

scratch, one can take advantage of knowledge coming from previously learnt categories, no matter how

different these categories might be. We explore a Bayesian implementation of this idea. Object categories are

represented by probabilistic models. Prior knowledge is represented as a probability density function on the

parameters of these models. The posterior model for an object category is obtained by updating the prior in

the light of one or more observations. We test a simple implementation of our algorithm on a database of 101

diverse object categories. We compare category models learnt by a simple implementation of our Bayesian

approach to models learnt from maximum likelihood (ML) and maximum a posteriori (MAP) methods. We

find that in a database of more than 100 categories the Bayesian approach produces informative models when

the number of training examples is too small for other methods to operate successfully.

We also propose a novel approach to learn and recognize natural scene categories. Unlike previous work,
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it does not require experts to annotate the training set. We represent the image of a scene by a collection of

local regions, denoted as codewords obtained by unsupervised learning. Each region is represented as part of

a “theme.” In previous work, such themes were learnt from hand-annotations of experts, while our method

learns the theme distributions as well as the codewords distribution over the themes without supervision. We

report satisfactory categorization performances on a large set of 13 categories of complex scenes.
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Introduction



2

To understand how humans see and to build machines to see are two important goals in science and engineer-

ing. The purpose of this thesis is two-fold. On the human vision side, we explore properties of natural scene

recognition through psychophysics experiments. On the computer vision side, we propose two algorithms

that learn and recognize objects and natural scenes.

We will introduce the significance of our questions as well as our contribution separately in each of the

following part:

In Part II, we present a series psychophysics studies that shows rapid natural scene categorization requires

very little attention. We further explore various aspects of this astonishing ability.

In Part III, we take the question of natural scene recognition further by studying what human subjects

perceive in a glance of a real-world image.

In Part IV, a computer vision model is proposed for learning object categories with very few training

examples. We use Bayesian learning technique to incorporate useful prior information to achieve this goal.

Finally in Part V, we show that natural scene categorization could be done without much human supervi-

sion in a hierarchical Bayesian model.
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Part II

Natural Scene Categorization in the

Near Absence of Attention
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Chapter 1

Introduction

1.1 Background

Psychologists have long known that certain visual search tasks require minimal or no attention. A hallmark of

preattentive vision is that it is achieved in a seemingly parallel fashion: a preattentive task may be carried out

simultaneously with other visual tasks [17]; target detection does not become significantly more difficult when

the number of distractors is increased [15, 140]. However, none of the known preattentive tasks approaches

the sophistication of everyday vision where complex scenes must be scrutinized in order to assess high level

properties such as the presence of danger and the structure of a social interaction. Virtually all of the visual

tasks that may be performed preattentively have been explained, either in detail or in principle, by quasi-linear

models that replicate mechanisms found in the early stages of our visual system [7, 83]. While much can be

accomplished by these simple mechanisms, it is quite clear that they are inadequate for explaining “high

level” perception such as recognition and categorization, i.e., visual processes that rely on neural activities

in the inferior temporal cortex and beyond [43, 68, 78]. This would suggest that there is no sophisticated

property of the scene that we can see without paying attention. In agreement with this view, change blindness

and inattentional blindness studies demonstrate that without visual attention, significant changes in a large

part of the visual field can easily escape our awareness [82, 96, 115, 128].

On the other hand, some complex visual tasks can be rapidly accomplished by our visual system. RSVP

(rapid serial visual presentation) experiments have demonstrated that natural objects belonging to a specified

category may be classified remarkably fast [109, 130]. Thorpe and colleagues have found that complex

natural scenes can be categorized in as little as 150ms [22, 29, 135, 136,146]. This astonishing speed relative

to the time constant of information processing and transmission in networks of neurons raises the question of

whether attention plays a critical role in this type of rapid visual processing.

In this study, we would like to explore the relationship between rapid natural-scene categorization and
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visual attention. More specifically, we ask whether a complex scene recognition task require much attention

and to what extent attention plays a role in various types of visual tasks.

1.2 Contribution

To the surprise of current attention theories [140], we find that there is little or no attentional cost in rapid

visual categorization of complex, natural images [77]: detecting the presence of an animal, or a vehicle, in a

natural photograph, a genuinely challenging task for today’s computer vision algorithms, can be carried out

by human observers in the near-absence of attention. Subjects could perform this task equally well alone or

simultaneously with another attention-demanding task (i.e., deciding whether 5 randomly rotated Ts and Ls

presented at fixation were all identical or whether one of them differed from the others). Under the same

dual-task conditions, subjects could not perform apparently simpler discrimination tasks involving synthetic

stimuli (discriminating between a single peripherally rotated T or L, or discriminating between red-green and

green-red bisected disks).

While the main result implies that natural scenes probably hold a special status for our visual systems, it is

unclear exactly what about these stimuli is responsible for this distinctiveness: is it the mere fact that a picture

is natural rather than synthetic, or are there some associated (or confounded) factors that could be responsible

for determining attentional requirements? We follow these questions in the second set of experiments that

investigate a variety of such potential factors and establish how they can affect the attentional requirements

of recognition tasks using natural and artificial stimuli. We find that natural scene categorization without

attention requires little stimulus-specific training. It is robust to lack of color information or increasing the

set size of the stimuli presented. In contrary, multiple redundant copies of synthetic stimuli do not improve

the performances of recognition without attention. Some simple tasks, such as single letter discrimination,

require much attentional assistance unless the letters are presented in a familiar, upright position. We hypoth-

esize that attention is particularly important for tasks that do not have neuronal representations in the visual

pathway. Natural scene categorization, a well-learned and familiarized task for most human observers, does

not require much attention.
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Chapter 2

General Method

2.1 Subjects

Fifteen highly motivated California Institute of Technology undergraduates and graduate students (from 20

to 26 years old) served as subjects in all or part of the following experiments. Each subject enrolled for at

least 15 daily sessions of 1 hour and received payment. Subjects reported normal color vision and visual

acuity (sometimes with corrective lenses or glasses), but underwent no tests in this respect. All subjects were

right-handed. All subjects were naive about the purpose of the experiments.

2.2 Apparatus

2.2.1 Database

The pictures were complex color scenes taken from a large commercially available CD-ROM library allowing

access to several thousand stimuli. The animal category images included pictures of mammals, birds, fish,

insects and reptiles. The vehicle category images included pictures of cars, trucks, trains, airplanes, ships and

hot-air balloons. There was also a very wide range of distractor images, which included natural landscapes,

city scenes, photos of food, fruits, plants, houses and artificial objects.

2.2.2 Equipment

Subjects were seated in a dark room especially designed for psychophysics experiments. The seat was ap-

proximately 100cm from a computer screen, which was connected to a Macintosh (OS9) computer. The

refresh rate of the monitor was 75Hz. All experimental software was programmed using the Psychophysics

Tool box [14, 101] and Matlab.
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2.3 Procedure

2.3.1 Experimental Paradigm
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Figure 2.1: Dual-Task experimental setup for a single trial. A fixation cross of 1-degree visual angle is flashed
for 300ms at the onset of each trial, started by the subject. After that, the central letter discrimination task
stimuli are presented for a Central SOA (Stimulus Onset Asynchrony) amount of time. The central stimuli are
then masked by an appropriate perceptual mask. Central SOA is determined individually for each subject so
that the performances of the central letter discrimination task center around 80% correctness. 52ms after the
onset of the central stimuli, a peripheral stimulus is presented randomly at a peripheral location centering at 6-
degree eccentricity. For different experiments reported in this paper, peripheral stimuli vary. Each peripheral
stimulus is then masked by its corresponding perceptual mask, after Peripheral SOA amount of time. It is
important to note that to ensure that attention is properly withdrawn by the central task under the dual task
condition, the peripheral mask always onsets earlier than or at the same time as the central stimulus mask.

We use a Dual-Task paradigm in all of our experiments [15, 129]. Each experiment consists of three

different conditions: the primary task– an attentionally demanding central task (identical in all experiments),

a secondary peripheral task (in which the role of attention is investigated) and a dual task condition in which

both the central and peripheral tasks are performed concurrently. In each experiment, all trials are organized

in the same way irrespective of the experimental condition (i.e., single-task condition or dual-task condition).

Only the number of required responses varies between conditions.

2.3.2 Central Letter Discrimination Task

In all experiments, each trial starts with a fixation cross 300±100ms before the onset of the central stimulus.

At 0ms, the central stimulus (a combination of five letters) is presented. The five letters (Ts and Ls, either

all identical, or one differing from the other four), appear at nine possible locations within 1.2◦ eccentricity.
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Each letter is randomly rotated. After the central SOA (Stimulus Onset Asynchrony, the time between the

appearance of the central stimulus and the onset of the central mask), each stimulus letter is masked by

the letter ‘F’ rotated according to the random orientation of the stimulus letter. For a given subject, the

central SOA is the same for both single-task and dual-task conditions. All trial types are presented with

equal probability. Subjects are instructed to respond by pressing ‘S’ on the keyboard if the five letters are

the same, or ‘D’ if one of the letters differs from the other four. Fig. 1 illustrates schematically the setup of

a sample trial of the dual task paradigm. In earlier studies it was found that the central task performance is

quite a sensitive measure to indicate the allocation of attentional resources [15]. Subjects’ performances on

this central task decreased drastically if the SOA was slightly decreased [77].

2.3.3 Peripheral Task

In each peripheral task, the stimulus is always presented 53ms after the central stimulus onset. Subjects

respond to these tasks in a speeded fashion. They are instructed to continuously hold down the mouse button

and release it as fast as possible (within 1000ms) when they have detected the target. For a given trial,

the location of the peripheral stimulus is randomly determined, keeping a distance of 6-degree eccentricity

(Fig. 2.1).

2.3.4 Training Procedure

Each novel subject to the dual task paradigm underwent a training process. It usually took more than 10 hours

for a new subject to coordinate his/her motor responses well enough to answer both a speeded peripheral

task and the central task. The central SOA, starting at 500ms, was decreased after each block where the

performance of this task exceeded 85% correct. The training procedure was terminated after the subject’s

performance had stabilized and the central SOA was below 250ms. This value is chosen to limit the possibility

of switching attention or eye movement during stimulus presentation. Central task and peripheral task always

received the same amount of training.

2.3.5 Data Analysis

For each subject in a given experiment, we obtain two baseline performances: central letter discrimination

with attention (single-task condition) and peripheral recognition task with attention (single-task condition).

Each of these two performances consists of performances of 9-15 blocks (depending on the experiment) of

96-trial experiments unless otherwise specified. Similarly, we also obtain the corresponding performances

for the central letter discrimination task with attention (primary task) and peripheral recognition task without
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attention under the dual-task condition. Each of these two performances consists of performances of 9-15

blocks (depending on the experiment) of 96-trial experiments unless otherwise specified. T-tests are computed

for each experiment to compare single- and dual-task performances. An alpha value of 0.05 is used for all

statistical tests.

To visualize results, we summarize each of the experiment using a “normalized performance” figure. The

“normalized performance” for each task is obtained in the following way. The averages of the two baseline

performances are linearly scaled to 100% such that chance level performance remains at 50%. Then the same

scaling factor for each subject is used to obtain normalized performance levels of the two tasks under the

dual-task condition. In other words,

Normalized performance = 0.5[(Pd − 0.5)/(Ps − 0.5)] + 0.5 (2.1)

where Pd and Ps refer to performance in the dual-task and single-task conditions, respectively. It is important

to point out that since the 100% baseline is the average performance of a given task under the single-task

condition (with attention), it is possible that the normalized performance, same task’s performance under the

dual-task condition (without attention) might sometimes be larger than 100%. This simply means that the

actual performance has a higher average under the dual-task condition than under the single-task condition.

Statistical tests will determine whether this difference is significant or not.
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Chapter 3

Experiments and Results

In this chapter, we present first the main experiment of our study. The key question of our investigation is

whether natural scene categorization requires visual attention. Following the main experiments, we present a

series of control experiments targeted to investigate various aspects of our findings in the main experiments.

3.1 The Main Experiment: Natural Scene Categorization without At-

tention

We studied the role of attention in natural scene categorization using a dual task paradigm, in which a natural

scene categorization task, where target scenes were defined by the presence of one or more animals, was

performed concurrently with another visual task that required visual attention [17, 74, 129] (Fig. 3.1). The

idea is to compare subjects’ performances of the categorization task under two conditions: the “single task”

condition where attention is available, and the “dual task” condition where attention is drawn away by the

other task. If the rapid natural scene categorization task demands attention, we should observe a significant

decrease in performance under the dual task condition. If the rapid natural scene categorization does not

entail much attentional cost, performances should be comparable.

3.1.1 Method

As described in Chapter 2, we use a dual task paradigm. The central task is attentionally demanding. It

involves discriminating displays composed of five randomly rotated Ts and Ls at the center of the visual

field. Subjects needed to respond by pressing one key when all five letters were the same and another key

when one of the letters differed from the other four. This task engages attention at the center of the display,

preventing attention from focusing on the natural scene in the periphery [17,74] (see also Fig. 3.3d-e). When

our subjects performed this task alone, their performances averaged around 77% (varied between 68% and
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82%, Fig. 3.2). This value can be used as a reference for the dual task condition: if a subject has continuously

engaged full attention to the central task, we expect the performance to be maintained at the same level; any

significant distraction or withdrawing of attention would decrease performance.

The peripheral task is our locus of interest–natural scene categorization. It is a modification of the one

used by Thorpe and colleagues [135]. A picture was flashed for only 27ms at a random location in the

periphery of the visual field, followed by a perceptual mask (Fig. 3.1). Subjects had to decide whether the

image contained an animal (or animals) or not, as fast and accurately as possible [135]. When subjects

performed this task alone, their performance averaged around 76% (ranging from 75% to 79%; Fig. 3.2).

3.1.2 Results

Under the dual task condition, subjects were instructed to focus attention at the center of the display, and

to try to perform both tasks as accurately as possible. Since we were interested in the reaction times of

the natural scene categorization task, we asked subjects to respond as fast as possible to the peripheral task

before answering the central one. For each subject, the central task performance under the dual task condition

showed no difference (p>0.05) from its counterpart under the single task condition (Fig. 3.2). This is a

clear indication that attention was locked at the center under the dual task condition. Furthermore, for each

individual subject the average peripheral categorization performance under the dual task condition was not

significantly (p > 0.05, t-test) different from the corresponding performance under the single task condition

(Fig. 3.2), suggesting that natural scene categorization can still be performed when attention is drawn away

(see also Fig. 3.3a-c).

One might argue that subjects could first attend to the peripheral stimulus before switching attention to the

central one. In that case, however, the time available to process the central stimulus would be much shorter

by at least 80ms than the actual central SOA (the peripheral stimulus is turned off 80ms after the onset of the

central stimulus). This strategy would result in a strong decrease in performance of the central task. Indeed,

in a separate control experiment, we asked all six subjects to perform the central letter task with an SOA

shortened by only 66ms. Their average performance dropped from 77% to 66% (individual t-test for each

subject, p = 0.01). This confirms that our results do not reflect a systematic switch of attention between the

two tasks.

Because of its high motor coordination demands, the dual task required extensive training. During this

period, our subjects were repetitively trained with the same set of 288 images. It could be argued that such

training could serve to optimize feature detection mechanisms for specific stimuli, reducing the attentional

demands for this task [16,65]. However, the above results were obtained with a set of 1056 novel images that
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Figure 3.1: Experimental Protocol. (a) Schematic illustration of one trial. After a fixation cross presented
at the center of the visual field, an attentionally demanding letter discrimination task is presented centrally.
The central stimulus (combination of five Ts and Ls) is then replaced by a perceptual mask (five Fs) after a
time interval commonly called the stimulus onset asynchrony (SOA, ranging from 133ms-240ms for different
subjects). Subjects are instructed to respond whether all five letters are the same or one of them is different.
In the peripheral natural scene categorization task, an image is presented peripherally for 27ms at a random
location and 53ms after the onset of the central stimulus. The peripheral stimulus is followed (after peripheral
SOA) by a perceptual mask. The peripheral SOA varies individually for each subject, ranging from 53ms to
80ms. The peripheral mask always appears before the central stimulus is replaced by its own mask. Subjects
make a speeded response to the presence of animals. Under the dual task condition, subjects are required
to perform both tasks concurrently. (b) Sample Images of the Stimulus Database. The pictures are complex
color scenes taken from a large commercially available CD-ROM library allowing access to several thousand
stimuli. The animal category images include pictures of mammals, birds, fish, insects, and reptiles. In a
separate experiment (Fig. 3.3b-c), an additional target category is used-vehicles. The vehicle category images
include pictures of cars, trucks, trains, airplanes, ships and hot-air balloons. There is also a very wide range
of distractor images, which include natural landscapes, city scenes, pictures of food, fruits, plants, houses,
and artificial objects.
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Figure 3.2: Main Results. Individual subject’s results for dual vs. single task performance (5 subjects).
The horizontal axis represents performance of the central task (attentionally demanding letter discrimination
task). The vertical axis represents performance of the peripheral task (natural scene categorization). Each
solid • represents the performance of one block (96 trials/block) under the dual task condition. All images
used for testing were novel for the subjects. Each open ◦ represents the average performance under the single
task condition. For each subject, performances of the letter discrimination task do not differ significantly
(t-test, p>0.05) under the single and dual task conditions, suggesting that attention was fully allocated to the
center in the dual task condition. Furthermore, the performances of the natural scene categorization task do
not differ significantly (t-test, p>0.05) either under the single and dual task conditions, suggesting that the
task may be performed while attention is engaged elsewhere.

were never presented during training. Furthermore, we show later (Fig. 3.3d and 3.3e) that the same amount

of training in other dual tasks did not reduce attentional demands. This makes it unlikely that our results are

a direct consequence of the training process. In addition to our experiments, a study done by Rousselet et al.

reaches a compatible conclusion with untrained subjects [120].

Reaction times measured under the single task condition are compatible with results observed by Thorpe

and colleagues, suggesting that our natural scene categorization task is performed in an ultra-rapid mode

[135]. Note that this task involves a speeded response under both single and dual task conditions. Under the

dual task condition, while categorization performance is unaffected, we observe an average delay of 117ms

in response times compared to the single task condition (single task: 491ms; dual task: 608ms). This delay

is likely to arise due to central rather than perceptual attentional competition [100]. Indeed, when subjects

are required to perform two tasks simultaneously, interference is known to occur at several different stages:

task preparation [50], response selection [99, 154] and response production [57, 92]. These limitations, often

referred to as the “psychological refractory period” [134], could easily account for the observed delay [100].

Moreover, a number of studies have shown that the presence of attention decreases perceptual latencies [58]

and reaction times to a significant extent [69, 107, 112]. This could also explain the observed delay.

Are the above results due to the high biological and evolutionary relevance of the target category “ani-

mal?” In other words, could we obtain a similar result using a man-made object category, e.g., vehicles [146]?

We tested one group of five subjects with both categorization tasks. In the vehicle task, target images included

cars, trains, airplanes, ships, etc. Half of the distractors were animal scenes, while the other half contained

neither animals nor vehicles (Fig. 3.3c). The animal task was essentially the same as in the main experiment
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Figure 3.3: (a) Summary: Categorization of Masked Animal Images. This panel corresponds to the normal-
ized average performance of the main experiment (Fig. 3.2). Each open circle (◦) is the average value of
one subject’s dual task performance, normalized according to his/her own single task performance: a lin-
ear scaling transforms the average single task performance into 100%, leaving chance at 50%. Performance
under the dual task condition that is higher than the corresponding performance under the single task con-
dition would result in a normalized performance higher than 100%. Error bars reflect the standard error of
the means. (b and c) Categorization of Natural and Artificial Objects. The same five subjects performed the
following two categorization tasks in alternating blocks. (b) Categorization of masked animal images among
vehicles and other distractors. Distractors for this task include fifty percent vehicle scenes and fifty percent
non-animal/non-vehicle scenes, randomly drawn from the same database described in Fig. 3.1b. Task perfor-
mance for each of the 5 subjects is comparable under dual task and single task conditions (t-test, p > 0.05).
This panel presents a summary of normalized average performance of each subject as detailed in panel (a). (c)
Categorization of masked vehicle images. Subjects are instructed to perform the natural scene categorization
task using vehicles as targets (including cars, trucks, trains, airplanes, ships and hot-air balloons). Distrac-
tors for this task include fifty percent animal scenes and fifty percent non-animal/non-vehicle scenes. The
panel illustrates normalized dual task performances of the 5 subjects. For each subject, task performance is
comparable under dual task and single task conditions (p > 0.05). These experiments provide evidence that
artificial as well as natural target categories can be detected in the near absence of attention. (d - e) Control
Experiments. (d) Peripheral letter discrimination task. 5 subjects are instructed to discriminate between the
letters T and L presented in the periphery. The letter, randomly rotated, is masked by the letter F after the
peripheral SOA (ranging from 53ms to 160ms). For each subject, this peripheral letter discrimination task
cannot be performed above chance in the absence of attention (paired t-test, p > 0.05). This panel presents
a summary of normalized average performance of each subject. (e) Peripheral color pattern discrimination
task. 5 subjects are instructed to discriminate a red/green color disc from a green/red color disc. The stim-
ulus is masked after the peripheral SOA (ranging from 66ms to 106ms). For each subject this peripheral
color pattern discrimination task cannot be performed above chance in the absence of attention (paired t-test,
p > 0.05). The results from these control experiments demonstrate that our central discrimination task effec-
tively withdraws attention away from the peripheral task (1). This panel presents a summary of normalized
average performance of each subject.
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(Fig. 3.2 and Fig. 3.3a), with the exception that 50% of the distractor images contained vehicles (Fig. 3.3b).

The two tasks were presented in alternation and all stimuli were masked. Our results show that for each

individual subject there is no significant decrease in categorization performance under the dual task condition

compared to the single task condition in both cases (Fig. 3.3b - c, t-test, p > 0.05). This result suggests that

categorization of natural scenes in the near absence of attention might well be a general phenomenon not

limited to evolutionarily relevant object categories. Another possible confound is that the subjects may not be

performing an animal (or vehicle) detection task, but rather may be detecting the presence of a “foreground

object.” Foreground objects may be more frequent in images containing animals or vehicles than in images

containing scenery only. However, the fact that animal photographs were used as distractors for the vehicle

task and vice versa makes this possibility implausible since “foreground objects” were contained both in the

target and distractor images.

The interpretation of our findings relies on the assumption that attention is allocated to the center of the

visual field under the dual task condition. This assumption is supported by the fact that there is no decrease

in the central performance under dual task compared to single task conditions. This implies that when the

peripheral task does demand attention, performance should suffer. To examine this question, we conducted

two control experiments in which the peripheral tasks involved either discriminating a briefly presented letter

followed by a mask (T or L followed by F; Fig. 3.3d) or discriminating a briefly presented and masked

color disk (red/green or green/red; Fig. 3.3e). These tasks have been shown by Braun and colleagues to

require attention [74]. In both of these control experiments, the central task was the same as in our previous

experiments (five Ts and Ls discrimination). We observed a sharp drop in performance of both peripheral

tasks (p < 0.0001 in Fig. 3.3d; p < 0.0001 in Fig. 3.3e). While subjects can perform at 74% and 78%

in peripheral single letter and color tasks, respectively, they cannot do any better than chance (individual

paired t-test for each subject, p > 0.05; average over all subjects is 51% for letter task; 51% for color task)

during the dual task scenarios. These results demonstrate that attention is effectively allocated to the central

task and provide further evidence that extensive training does not necessarily result in an improvement of

performances. Subjects performing these dual tasks received the same amount of training as those performing

the natural categorization tasks.

3.1.3 Discussion

Our findings show that rapid visual categorization of novel natural scenes requires very little or no focal

attention. Perception outside the focus of attention has mostly been reported for simple salient stimuli [17,

140]. In our task, however, human subjects are actively searching for a complex category of objects whose
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appearance is highly variable. It thus appears that a sophisticated high level of representation (e.g. semantic)

can be accessed outside the focus of attention. It has already been argued that the “gist” of a visual scene

could be available preattentively [8, 157]. In this context, the contents of the “gist” could in fact be extended

to include information about the presence of a complex target category whose appearance is not known in

advance.

3.2 Control Experiment 1: Effects of Training

We had demonstrated the human visual system’s amazing efficiency in natural scene categorization with

little or no attention [77]. In these experiments, an average training period of 10-15 hours on dual-task

was necessary for each subject. It is likely that this training helps sharpen the executive control necessary

for performing different tasks, particularly when they are carried out simultaneously [100, 126]. However,

training sometimes also decreases the attentional demand on perceptual processing [65]. So, could it be that

this superb efficiency in natural scene processing is mainly due to the training process that each subject had

received in these experiments? We had argued that this is unlikely since the same amount of training was

applied both to the natural scene categorization and the seemingly simpler synthetic stimuli tasks (rotated

single T versus L, bisected disk versus its mirror image). Our data showed, however, a large discrepancy

between the attentional requirements of these two types of tasks. It is difficult to explain this by the same

training process.

Here we further investigated the effects of training (or lack of it), particularly its influence on the natural

scene stimuli. If training indeed helped in performing natural scene categorization with little attention, this

might be achieved through learning specific visual features critical for performing this task. It is important to

note that all the data collected in the testing phase was from a set of novel images that the subjects were never

trained on. Therefore simple image-based learning or memorization cannot account for the observed results.

The testing stimuli, however, were drawn from the same set of images as the training images. Could subjects

have, therefore, learned to categorize animal versus non-animal (or vehicle versus non-vehicle) images be-

cause the same image types were presented repetitively? In a computational framework, it is conceivable that

a specific set of “animal filters” (or “vehicle filters”) were sharply tuned and enhanced during this training

period. But if this were the case, training on a specific task would only help to tune the specific “filters” for

that particular categorization task. If we tested on a different natural scene categorization task, we should be

able to observe a difference in performance.
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3.2.1 Method

We tested this hypothesis in two separate experiments. In the first experiment, we divided a group of 6

subjects into 2 groups. Both groups received the same amount of training in all tasks. Specifically, both groups

were trained on the central letter discrimination task (see Chapter 2.3.2) and a natural scene categorization

task under both single- and dual-task conditions. Recall that the “single-task” condition refers to the situation

where attention is available to perform the current peripheral task, while the “dual-task” condition refers

to the situation where attention is drawn to the center, leaving the peripheral task in the near absence of

attention. There are 96 trials in any given block of task under all conditions. In Group I, the 3 subjects

were trained on the “animal vs. non-animal” categorization task. They were instructed to categorize natural

scenes with or without animals in a go/no-go fashion by releasing a mouse button. The task was speeded so

that any lack of response after 1000ms was automatically registered as a “no target” answer. The test data

were then acquired by having them perform vehicle vs. non-vehicle categorization without any additional

training. Similarly to the animal categorization task, subjects responded by releasing the mouse button when

a target (vehicle(s)) was detected. In Group II, the 3 subjects were trained on vehicle categorization and

tested on animal categorization (Fig. 3.4). Previous experiments [77] have already established that a trained

natural scene categorization task requires little attention. We are, therefore, interested in seeing whether

such performance can be transferred from one type of categorization (e.g., animal) to another (e.g., vehicle).

Namely, will the performance of vehicle categorization without attention be comparable to the performance

of animal categorization without attention for Group I subjects, and vice versa for Group II?

One might argue that in the above manipulation, even though the tested natural scene category was not

trained, it was nevertheless learned during training because natural scene photographs shared many com-

monalities [95]. When one is trained on one type of natural scene categorization, say “animal scenes,” it is

possible that similar image statistics help to tune the “filters” on other types of natural scene categories (e.g.,

“vehicle scenes”). If this were the case, however, such performance should not hold for a recognition task

that does not share similar stimulus statistics. For the second experiment in this section, we tested this hy-

pothesis with another four subjects who were previously trained on the dual-task paradigm in a task that did

not involve natural scene photographs. Specifically, these subjects performed a face gender discrimination

task in a dual-task paradigm [114]. The gender discrimination task utilizes very different stimuli that bore

little commonality with the natural scene images [141]. After the subjects completed their training on this

task, we tested them on both animal and vehicle categorization tasks (Fig. 3.5).
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Figure 3.4: Cross-Training experiment. In this experiment 6 subjects are divided into 2 groups of 3 each. In
Group I, illustrated on the left, the subjects are trained with central letter discrimination and animal catego-
rization task, as well as the dual task condition using these two tasks. After training, they are immediately
tested on the vehicle categorization task in both the single task condition (with attention) and the dual task
condition (without attention). Results are shown in normalized performance plots. In Group II, illustrated
on the right, the subjects are trained with central letter discrimination and vehicle categorization task, as well
as the dual task condition using these two tasks. After training, they are immediately tested on the animal
categorization task in both the single task condition (with attention) and the dual task condition (without at-
tention). Results are shown in normalized performance plots. Our results illustrate that subjects need not be
trained for the specific natural scene categorization task in order to perform it without attention, suggesting
category-specific training is not necessary to carry out this high-level task without attention.

3.2.2 Results

The bottom panels of Fig. 3.4 illustrate the normalized performance results from the cross-training experiment

between two groups of subjects. In Group I, three subjects were trained on animal categorization and then

tested on vehicle categorization. Their central performances during the training phase show that under the

dual task condition, they had successfully maintained their attention at the central task (single central task,

average over 9 blocks: 75.9 ± 3.5%, 85.4 ± 3.9% and 83.2 ± 2.5% for each subject, respectively; dual

central task, average over 9 blocks: 70.3± 5.5%, 86.11± 2.7% and 80.8± 4.1%, respectively; t-test results:

t(16) < 1.75, p > 0.05 for each subject). During the testing condition, only one subject has a slight

drop in central task performance under the dual task condition (single central task, average over 9 blocks:

75.9 ± 3.6%, 85.4 ± 3.9% and 83.2 ± 2.5% for each subject, respectively; dual central task, average over

9 blocks: 71.2 ± 2.9%, 87.6 ± 3.7% and 81.3 ± 4.1%; t-test results: t(16) = 2.40, p = 0.01 for the first

subject; t(16) < 1.75, p > 0.05 for the rest). During the training phase, the subjects performed the animal

categorization task without any interference when comparing the performances under the dual task condition

with the single task condition (single peripheral task, average over 9 blocks: 79.5 ± 0.6%, 84.3 ± 0.6% and

77.1± 1.8%; dual peripheral task, average over 9 blocks: 77.3± 5.2%, 78.1± 5.6% and 74.3± 6.7%; t-test

results: t(16) < 1.75, p > 0.05 for each subject). A similar performance pattern is observed for these three
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Figure 3.5: Gender-Train Dual-Task experiment. In this experiment, 4 subjects are trained on the central
letter discrimination task, gender discrimination as well as the dual task condition using these two tasks.
Two examples of the stimuli of the gender discrimination task are shown here [141]. Subjects are instructed
to respond whether a briefly presented, then masked hair-less face peripherally is of a female or a male
face [114]. After the training process is completed, subjects are tested on two natural scene categorizations
without attention: animal and vehicle. Normalized performances of the single and dual task conditions are
presented for each natural scene categorization. Our results show little training on natural scenes is needed
to perform natural scene categorization.

subjects during the testing phase, in which they were put directly on the vehicle categorization task without

any prior training (single peripheral task, average over 9 blocks: 83.2± 4.5%, 87.3± 4.4% and 80.2± 2.6%;

dual peripheral task, average over 9 blocks: 82.2 ± 2.1%, 79.3 ± 3.9% and 77.3 ± 3.7%; t-test results:

t(16) = 3.22, p = 0.003 for the second subject; t(16) < 1.75, p > 0.05 for the rest). Note that there is

a slight drop in the vehicle categorization task under dual task condition for the second subject. This small

decrease, although significant, should be viewed in the light of the results of [74] and [77]: when attention

is taken away, performances for a simple rotated T versus L task (or Red-Green disk versus Green-Red disk)

dropped much more dramatically, often to chance level (50%). Compared to Group I, Group II subjects

went through reversed training and testing categorization tasks. During the training stage, three subjects

were trained on vehicle categorization only. All of them have successfully allocated attention at the center

under both the single task and dual task condition (single central task, average over 9 blocks: 68.6 ± 4.6%,

78.5 ± 6.1%, and 88.9 ± 3.2%; dual central task, average over 9 blocks: 67.9 ± 2.8%, 78.6 ± 7.2%, and

88.8±3.5%; t-test results: t(16) < 1.75, p > 0.05 for each subject). Their vehicle categorization task results

also show that they were able to perform this task without attention (single peripheral task, average over 9
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blocks: 72.2±7.9%, 77.4±1.2% and 81.6±1.6%; dual peripheral task, average over 9 blocks: 70.0±4.8%,

78.3±5.0% and 81.4±4.7%; t-test results: t(16) < 1.75, p > 0.05 for each subject). During the testing stage,

where subjects were tested directly on animal categorization without any prior training (training was done

using vehicle categorization), they maintained good performances on central task under both conditions just

as they did during the training sessions (single central task, average over 9 blocks: 68.6± 4.6%, 78.5± 6.1%

and 88.9± 3.2%; dual central task, average over 9 blocks: 68.6± 4.2%, 88.3± 2.7% and 88.4± 3.4%; t-test

results: t(16) = 3.79, p = 0.001 for the second subject; t(16) < 1.75, p > 0.05 for the rest). Similarly,

all three subjects performed the animal categorization task under the dual task condition as well as under

the single task condition (single peripheral task, average over 9 blocks: 74.8 ± 5.8%, 84.2 ± 1.8% and

81.1± 4.3%; dual peripheral task, average over 9 blocks: 70.4± 4.5%, 81.5± 3.0% and 77.8± 5.1%; t-test

results: t(16) < 1.75, p > 0.05 for each subject).

Fig. 3 illustrates the results from the second experiment in this section. Four new subjects were trained on

the dual task paradigm with the same central letter discrimination task but a peripheral face gender discrim-

ination task [114]. Testing of whether animal categorization and vehicle categorization require attention fol-

lowed after the training phase. In all but one case, all of the four subjects showed natural scene categorization

performances (both animal and vehicle) in the near absence of attention statistically indistinguishable from

the same tasks performed with attention available (single peripheral animal categorization task performance,

averaged over 9 blocks for each: 83.0± 3.2%, 81.9± 0.6%, 83.3 ± 3.4% and 76.9 ± 4.3%; dual peripheral

animal categorization task performance, averaged over 9 blocks: 79.9±4.3%, 77.4±3.7%, 74.3±3.3% and

77.1 ± 3.4%, t-test results: t(16) = 4.46, p = 0.0002 for the third subject; t(16) < 1.75, p > 0.05 for the

rest. Single peripheral vehicle categorization task performance, averaged over 9 blocks for each: 81.8±3.9%,

83.0±4.5%, 85.1±2.6% and 78.1±7.3%; dual peripheral vehicle categorization task performance, averaged

over 9 blocks: 79.6±2.5%, 80.0±2.7%, 73.6±14.8% and 77.8±6.4%, t-test results: t(16) < 1.75, p > 0.05

for each subject). Note that one subject showed a small decrease in animal categorization performance when

attention was drawn away (single task performance, average over 9 blocks: 83.3 ± 3.4%; dual task perfor-

mance, average over 9 blocks: 74.3± 3.3%; t-test results: t(16) = 4.46, p = 0.0002). Here again, this slight

decrease is much smaller than those observed on known “attentionally-demanding” tasks [74, 77]. Note that

the same subject’s performance on vehicle categorization was not significantly different in the single and dual

task conditions.

Both experiments in this section demonstrate that little training is needed for natural scene categorization

without attention. Subjects are able to perform natural scene categorization tasks in the near absence of

attention without previous training on the specific task or type of stimuli.
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3.2.3 Discussion

The first experiment in this section has shown that when trained on animal categorization (or vehicle) in the

near absence of attention, subjects can perform vehicle categorization (or animal) with no further training.

This effect is even more dramatically demonstrated by the second experiment, in which a totally different type

of stimulus is used during training. But as soon as subjects have learned to perform this recognition task under

the dual task paradigm, they can apply this ability to a natural scene categorization task. On the contrary, our

previous experiments have shown that single letter discrimination or color disk discrimination cannot be

performed without attention given the same amount of training as the natural scene categorization task [77].

Hochstein and colleagues argue that “higher-level” tasks can be more easily transferred than “lower-level”

tasks [59]. Could it be that less attentional resource is needed because natural scene categorization is carried

out in “higher” areas of the visual system than the other synthetic tasks? We will revisit this point in both

Control Exp 3 and Control Exp 5.

3.3 Control Experiment 2: Effect of Color

We set out to explore different factors that might contribute to the fast recognition of natural scene categories

with little or no attention. A simple question to ask is whether some low-level features might have been useful

cues to the categorization task. For example, it has been shown that color histograms are very informative for

natural scene recognition in both human and computer vision [93, 97, 111]. In today’s computer vision field,

some image retrieval algorithms have utilized color information to categorize different images [123]. Delorme

and colleagues have shown that color is not a critical component in fast categorization, under conditions

where attention was not explicitly controlled [22]. In the present experiment, we question the role of color

information in natural scene categorization with little or no attention, by changing the stimuli to grayscale.

3.3.1 Method

We use the same dual task paradigm for this experiment as in the previous experiment. The central task is

an attentionally demanding letter discrimination. The peripheral task is natural scene categorization, using

novel grayscale images (examples of the grayscale images are shown in Fig. 4). Five subjects participated in

this experiment. They were instructed to respond as fast as possible when they detected the presence of an

animal in the image shown at a random position peripherally. Subjects performed 15 blocks of dual task and

12 blocks of single task. Each block consisted of 96 trials.
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Figure 3.6: Natural scene categorization without color. In this experiment, the peripheral task is animal
categorization with grayscale natural scene images. All experimental conditions remain identical to the one
introduced in [77]. The only difference is that all peripheral task stimuli as well as the masks are presented
in grayscale. The top two rows show some samples of the target stimuli and distractor stimuli, respectively.
The bottom panel indicates subjects’ normalized performances of this task, showing that there is little cost in
grayscale natural scene categorization when attention is withdrawn elsewhere.

3.3.2 Results

It is first interesting to observe that individual SOAs for the natural scene categorization task are not much

different from the ones observed in [77] where color information was included in the images (average natural

scene categorization SOA of 5 subjects in [77]: 61msec; average SOA of 5 subjects in current experiment:

85msec; t-test result: t(8) < 1.86, p > 0.05). Fig. 3.6 illustrates the normalized performances of the subjects’

dual task performances. Note that each subject has achieved a central task performance at his/her baseline

level in dual task (single central task, average over 12 blocks for each subject: 76.9 ± 6.1%, 76.0 ± 3.2%,

74.2 ± 4.9%, 75.0 ± 4.4% and 74.3 ± 6.6%; dual central task, average over 15 blocks for each subject:

75.4 ± 5.7%, 78.4 ± 4.7%, 71.3 ± 5.5%, 70.8 ± 5.5% and 72.5 ± 6.3%; t-test results: t(25) < 1.71,

p > 0.05 for each subject). This result assures that much of attentional resource is rightfully allocated for

the demanding letter discrimination task under the dual-task condition. Four of the five subjects’ peripheral

natural scene categorization task performances remain comparable to their respective baseline performances
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(single peripheral task, average over 12 blocks for each subject: 79.3 ± 2.7%, 73.2 ± 7.1%, 76.9 ± 6.5%

and 74.2 ± 7.4%; dual peripheral task, average over 15 blocks for each subject: 75.2 ± 4.7%, 74.4 ± 5.1%,

71.7 ± 5.9% and 72.9 ± 5.8%; t-test results: t(25) < 1.71, p > 0.05 for each subject). Only one subject’s

natural scene categorization task performance decreases slightly while attention is allocated elsewhere (single

peripheral task, average over 12 blocks: 71.9 ± 5.6%; dual peripheral task, average over 15 blocks: 66.1 ±

5.3%; t-test results: t(25) = 3.82, p = 0.0004). Overall, grayscale natural scene images can be categorized

rather efficiently in the near absence of attention.

3.3.3 Discussion

Our results indicate that when much of their attention is locked elsewhere, subjects can perform rapid natural

scene categorization task without using color information. This result suggests that color information is not

critical in performing such a task in the near absence of attention. Dunai and colleagues have also found that

color cues are only more informative at a longer time scale to an attentionally demanding detection task [26].

In addition, Delorme and colleagues have already shown that color information is not critical in the initial

recognition of the same set of natural scenes that we are using [22]. These findings, together with ours,

suggest that natural scene categorization might be carried out by a rapid and efficient process that does not

require much of the slower color information. Torralba and colleagues suggested that some natural scene

images can be categorized based on second order statistics derived from power spectral analysis [138]. It

would be fruitful to test their hypothesis on object recognition such as animal or vehicle categorizations. To

conclude, removal of color information failed to make natural scene categorization an “attentionally demand-

ing” task. Thus, if this type of natural scene processing only relies on low-level features, color cannot be

counted as one such feature.

3.4 Control Experiment 3: Evidence for Parallel Processing

We have established so far the amazing robustness of the human visual system when categorizing natural

scenes with little attention. In an attempt to search for a “breaking point” of this ability, we investigate the

effects of natural scene categorization when the number of peripheral images is increased to two. In other

words, instead of searching for a possible target in just one image, the subjects have to now search for a

possible single occurrence of the target in two images. We ask whether by effectively halving the “signal to

noise ratio” would the efficiency of this task decrease? Our rationale is that by identifying the condition in

which such natural scene processing is no longer doable, we can start comparing and contrasting different
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conditions in order to understand the underlying neuronal mechanisms.

3.4.1 Method

The attentionally demanding central letter discrimination task remained the same as in the previous experi-

ments. Five Subjects performed a letter discrimination task at the central SOAs individually adjusted for each

of them. The peripheral task was a colored animal scene categorization. Each block consisted of 48 trials.

In half of the trials, there were two peripheral natural scene images (“double-image” condition), with two

equally likely configurations-either one of the two images contained a scene with animal(s); or neither image

contained an animal. In the other half of the trials, there was only one image, just like in the previous experi-

ments on scene categorization (“single-image” condition). Subjects are told to respond by lifting the mouse

button when they detect the presence of an animal (or animals) in both conditions. These two types of trials

were intermixed randomly throughout the experiment. Fig. 3.7 shows the schematic setup of this experiment.

For the double-image condition, the separation between the two images varied randomly between 4 and 12

degrees (each maintaining an eccentricity of 6 degrees, just as in the previous experiments). Subjects were

informed before the experiments of the two different possible conditions. No one reported any confusion or

difficulty with the instructions. There was a total of 15 blocks for the dual task condition and 15 blocks for

each single task condition.
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Figure 3.7: Experimental setup for single-image versus double-image experiment. We illustrate here the
setup of a single trial for this experiment. The basic procedure is the same as in Fig. 2.1. For a given trial,
there are two possible peripheral stimulus presentation setups. For 50% of the trials, there are two unrelated
natural scene images presented randomly in the periphery. Both images are of 6-degree eccentricity with
respect to the center of the screen. Their mutual separation varies randomly. Two similar perceptual masks
follow the images after the peripheral SOA amount of time. For the other 50% of the trials, there is only one
natural scene image presented randomly in the periphery, which is exactly the same case as in [77]. At the
end of the presentation, a random perceptual mask follows the image stimulus.
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3.4.2 Results

All 5 subjects were able to categorize novel natural scenes without attention. The top two panels of Fig. 3.8

illustrate the normalized dual task performances for the single-image condition and double-image condition,

respectively. First we observe that all subjects maintained their central letter discrimination task performances

under single task and dual task conditions (single central task performance, average over 15 blocks for each

subject: 75.4±3.3%, 71.5±1.3%, 67.7±5.0%, 77.6±4.9% and 77.1±3.8%; dual central task performance,

average over 15 blocks for each subject: 73.8 ± 5.4%, 71.5 ± 5.5%, 67.3 ± 4.3%, 75.0 ± 6.0% and 77.3 ±

5.9%; t-test results: t(28) < 1.70, p > 0.05 for each subject). These results indicate that attention was

successfully locked at the central task for all these subjects. Now we are interested in comparing subjects’

natural scene categorization performances with or without attention under single-image and double-image

conditions. Fig. 3.8 shows the performance pattern of double-image categorization (single task performance,

average over 15 blocks for each subject: 64.6±3.1%, 71.7±5.8%, 74.7±7.6%, 75.4±6.1% and 73.6±8.4%;

dual task performance, average over 15 blocks for each subject: 64.0 ± 6.4%, 68.1 ± 6.5%, 70.2 ± 5.8%,

72.3 ± 6.3% and 70.7 ± 6.0%; t-test results: t(28) < 1.70, p > 0.05 for each subject) as well as the single-

image case (single task performance, average over 15 blocks for each subject: 77.1 ± 5.4%, 80.1 ± 7.1%,

87.5±6.9%, 81.9±4.1% and 79.2±11.0%; dual task performance, average over 15 blocks for each subject:

76.3±4.9%, 74.0±4.3%, 79.0±8.3%, 83.8±5.9% and 70.4±9.0%; t-test results: t(28) = 2.48, p = 0.01

for the second subject, t(28) = 1.98, p = 0.03 for the third subject, t(28) < 1.70, p > 0.05 for the rest).

All subjects’ results show that when there are two images to process, the categorization performances with

attention (single-task condition) are statistically no different from the performances without attention (dual-

task condition). There is, however, a small but significant drop for one subject when categorizing the single-

image without attention compared to with attention. Similarly to the previous arguments, we think this is a

rather small effect in the light of the comparative results obtained from synthetic stimuli [74,77]. The average

baseline performances (i.e., single task condition when attention is available) show an overall decrease in the

double-image categorization condition (single task condition for single-image case: 81.2 ± 3.9%; single

task condition for double-image case: 72.0 ± 4.4%; t-test result: t(8) = 3.04, p = 0.008). This small set

size effect, which appears to contradict previous results by [120], might simply be attributed to our keeping

SOAs constant between the single- and double-image conditions. In addition, stimulus location was totally

unpredictable in our study, whereas it was fixed in the experiments of [120]. But the main result is that, when

attention is taken away, subjects were able to perform double-image categorization just as well as they did

when attention was available. This result suggests that by halving the “signal-to-noise ratio” of the stimuli,

natural scene categorization can still be efficiently carried out in the near absence of attention.
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Since we have randomly varied the visual angle distance between the two images under the double-

image condition, we can ask whether the subjects performances differ for different visual angle separations.

The bottom two panels of Fig. 3.8 show double-image condition performances sorted by the visual angle

separation. The left panel corresponds to the condition where attention is available (single task condition),

whereas the right panel corresponds to no-attention condition (dual task condition). The two leftmost bars

in each panel, placed at the 0 degree angles, indicate the average single-image performances of the subjects

with or without attention, respectively. We investigated the effects of visual angle separation between the two

stimulus images with a 2-way ANOVA (attentional condition vs. inter-stimulus separation). In accordance

with our previous results, there was no main effect of attention on performances (single task condition vs.

dual task condition: F (1, 96) = 1.2112, p > 0.05). There was no main effect of the visual angle separations

between stimuli either (F (11, 96) = 0.5817, p > 0.05). Additionally, there was no significant interaction

between these two factors (F (11, 96) = 1.1654, p > 0.05). Note that due to the size of the image itself, the

minimal separation distance between two images is 4 degrees.

3.4.3 Discussion

Our finding suggests that natural scene categorization task not only demands little attentional resource, but

is also highly parallel. When two images are presented simultaneously, subjects are able to process both of

the images in search of a target object in a comparable fashion as when there is only one image. Physiolog-

ical data from ERP recording also supports this finding. Rousselet et al. found that subjects are as fast for

animal categorization with two images as with one image [120]. Together our results suggest that high-level

information can be accessed by the visual system in a parallel fashion with little attentional assistance. It

suggests that some categorical information might be able to reach higher areas of the visual hierarchy rather

efficiently, without much serial focal-attention selection.

3.5 Control Experiment 4: Multiple Copies of the Synthetic Stimuli

We have so far probed in a number of ways to what extent natural scene categorization can be carried out

by the human visual system without attention. Our results tell us that such categorization is highly efficient

and robust to the lack of attentional resource. By contrast, seemingly much simpler tasks involving synthetic

stimuli do not enjoy this freedom of attention [18, 77]. In the following two experiments, we turn to the

question of these synthetic stimuli: what type of manipulation would decrease attentional requirements for

these stimuli? In other words, through which dimension of manipulation can we make the synthetic stimuli
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Figure 3.8: Results of the single-image versus double-image experiment. The top two panels illustrate nor-
malized performances of the single-image dual task and the double-image dual task, respectively. Five sub-
jects participated in this experiment. The results show that there is little difference between the single-image
case and the double-image case, suggesting that natural scene categorization without attention is a highly
parallel process. The bottom two panels break down the performances of the double-image case by the angle
of separation between the two images. The two leftmost bars in each panel, placed at the 0 degree angles,
indicate the average single-image performances of the subjects with or without attention, respectively. The
left panel shows the result when attention is available; whereas the right panel shows when attention is with-
drawn. For each attentional condition, there is no apparent pattern of performance difference as a function of
visual angle separation.

task “easier” without attention?

One possible hypothesis of this contrast between natural scene images and synthetic stimuli is that an

object target (e.g., an elephant) in a natural image might carry multiple “diagnostic features” for its detection

or recognition. The exact nature of these “diagnostic features” is unknown. But it is conceivable that many

of the body parts of an animal in the animal categorization task, for example, are potential cues for the

detection of the object. The synthetic stimuli, on the other hand, do not enjoy the luxury of multiple potential

“diagnostic features” [77]. In that study, there were two types of synthetic stimuli, a rotated T versus a rotated

L, and a Red-Green bisected disk versus a Green-Red bisected disk. In the case of T versus L, the only obvious

“diagnostic feature” is the T-junction versus the L-junction in the letters, respectively. A failure to detect such

junction would result into an ambiguous decision of the stimulus. Similarly, for the bisected disks, since the

stimuli position is random from trial to trial, it is not possible to determine whether it is a Red-Green disk
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or a Green-Red disk by detecting the color on half of the disk. The only “diagnostic feature” is the junction

between the two colored semicircles. Hence we predict that if the advantage of scene categorization without

attention lies in the higher probability of detecting one or more of the possible “diagnostic features,” then

increasing the number of stimuli in the synthetic stimulus task could result in an increase of performance.

3.5.1 Method

We test this hypothesis using the bisected color disks. Four subjects participated in this experiment. The

basic setup remained the same. The attentionally demanding central task was letter discrimination. In the

periphery, subjects were instructed to respond when the bisected disk(s) was (were) arranged in a red-green

fashion, as opposed to an equally likely green-red pattern. In half of the trials, there were four identical disks.

Subjects were assured of the fact that all stimuli were redundant. In the other half of the trials, there was only

one such bisected disk (which is the same condition as in [77]). These two types of trials were intermixed

randomly within a block of trials. All disks were the same size. Fig. 3.9 illustrates the arrangement of the

stimuli. In the single-disk condition, the disk was centered at 6-degree eccentricity. In the four-disk condition,

the center of the 4-disk array was located at 6-degree eccentricity. Each block consisted of 96 trials. Subjects

performed 18 blocks of experiments.

3.5.2 Results

The hypothesis described above predicts that an increased number of peripheral stimuli might result in an

increase of dual-task performance for recognition of the color disks. The intuition is that there are more

potential “diagnostic features” to be sampled by the visual system when the number of redundant stimuli

is greater. Contrary to our prediction, we observe no improvement in dual-task performances for the trials

where there are four disks rather than one. For both the single-disk and the four-disk conditions, subjects’ dual

task performances of the peripheral color disk recognition are not significantly better than chance (one-disk

performance under dual-task condition, averaged over 18 blocks for each subject: 50.4±7.63%, 49.3±6.6%,

48.9 ± 8.0%, and 52.4 ± 6.2%; four-disk performance under dual-task condition, averaged over 18 blocks

for each subject: 47.9 ± 8.1%, 49.7 ± 6.1%, 50.5 ± 3.4% and 46.9 ± 7.4%; t-test results: t(17) < 1.74,

p > 0.05 for each subject and each task). Note that when the peripheral color disk recognition task is carried

out with attention available, subjects’ performances center around 85% at their individual SOAs (one-disk

performance under single task condition, average over 18 blocks for each subject: 88.8±8.5%, 81.3±5.0%,

89.6± 3.3% and 77.0± 7.5%; four-disk performance, averaged over 18 blocks: 91.7± 6.3%, 87.1± 5.1%,

90.5 ± 5.4% and 74.5 ± 7.5%). It seems that the subjects cannot take advantage of the increased number of
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Figure 3.9: Multiple stimuli experiment. The basic setup of this experiment is also Dual-Task paradigm. A
color disk discrimination task is used peripherally. Two types of peripheral stimuli are mixed randomly during
the experiment. The top row shows the first peripheral stimulus and the normalized dual task performances.
Peripheral recognition task is a red-green color disk versus its mirror image, green-red color disk. Subjects’
performances of this task without attention is at chance level compared to their baseline performances, cen-
tered around 80% before normalization. The bottom row shows the second type of peripheral stimulus and
the corresponding normalized dual task performances. In this case, the recognition task remains the same as
the top row, with the exception that there are four copies of the same stimuli arranged in the indicated pattern.
We show here that subjects’ performances of this task without attention is also at chance level, no better than
the case with one copy of the stimulus.

possible “diagnostic features,” even when attention is fully available.

3.5.3 Discussion

We test the hypothesis that independent but “diagnostic features” might contribute greatly in recognition

without attention. The assumption was natural scene categorization might be potentially “easier” than the

synthetic stimuli recognition due to the multitude of “diagnostic features.” In other words, different body

parts of an animal (or vehicle) might increase the chance of detection while the synthetic stimuli tend to

have a very localized, nearly singular point of “diagnostic feature” (e.g., bisecting line of the double color

disks). We therefore increased the probable number of features by replicating the number of stimuli from 1

to 4. It is important to point out that this manipulation is not comparable to the one that we did in Exp 3. In
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Exp 3, we left the amount of “target signal” (or probability of the presence of an “animal” scene) constant

while doubling the amount of “distracting noise” (or probability of the presence of a “non-animal” scene).

Here the absolute number of potential “diagnostic features” is increased through having multiple, redundant

copies of stimuli. Our results show clearly that such increase of potential diagnostic features did not help

at all in recognition of synthetic stimuli without attention. This observation implies that it is unlikely that

the bottleneck of such synthetic stimuli recognition without attention is the number of available “diagnostic

features.” Natural scenes might have an overall advantage over the synthetic stimuli used here due to the

intrinsic image statistics or different processing mechanisms.

An alternative explanation also deserves further investigation. It is true that we have replicated the target

four times in each trial. But if one imagines that features related to the targets and distractors for the stimuli

live in a high dimensional “feature space.” Then it is possible that “diagnostic features” in the synthetic

stimuli case might lie too closely to the “distractor features” of the synthetic stimuli in the “feature space”.

On the other hand, in the rich natural scene stimuli case, the “diagnostic features” of the targets might be

much more easily isolated from the distractors than the synthetic stimuli case. If this hypothesis were true,

simply repeating the number of targets in the synthetic stimuli task would not increase the discriminability of

the target from the distractor, just as what we have observed here.

3.6 Control Experiment 5: Evidence for Well-learned Categories of

Objects Entailing Less Attentional Load During Recognition

So far our attempt to “increase” the difficulty of natural scene recognition without attention by reducing the

amount of signal or decreasing the amount of training has not broken down the system dramatically. Similarly,

adding copies of stimuli to the synthetic recognition task does not “ease” the task difficulty either. Hence, we

want to test whether task “predictability” can be an influential factor in the recognition task without attention.

Our observations, however, also point to the direction that it could be the different levels of processing

that result in such different performances between natural scenes and synthetic stimuli. It has been long

known that object categories are encoded in higher level visual areas such as the inferior temporal lobe

(IT) [78, 133]. The most prominent object category is face for the human visual system [27, 118]. Haxby

et al. have shown differentiable fMRI patterns in IT and related areas when responding to different types of

stimuli of a wide range of visual categories [54]. So could it be that existing neuronal representations of

natural scene categories are responsible for such efficient and fast recognition of natural images with little

attention? If this is the case, can we find meaningful categories of objects in synthetic stimuli to test this
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hypothesis?

We test here in this experiment two independent hypotheses by using the letter discrimination task as the

peripheral task. The first hypothesis is that stimulus predictability might affect the attentional requirement

in recognition. It is conceivable that less attention is required when subjects know beforehand the exact

shapes of the stimuli to be discriminated. The second hypothesis is that well learned object categories can be

recognized with significantly less attentional load. Evidence from the visual search paradigm using familiar

and unfamiliar letter-like patterns indicates that visual search speed is strongly facilitated by more familiar

objects [127, 151]. Peripheral letter discrimination task in dual task paradigm has previously been set up in

such a way that the single peripheral letter stimulus is randomly rotated on each trial [16, 77]. Though these

letters can be considered as well-learned categories of objects, letter recognition is better trained for upright

letters for obvious reasons (try reading this page upside down). Hence we might observe some performance

difference under the dual task condition between upright letter discrimination and the original, rotated letter

discrimination.

3.6.1 Method

We use the Dual-Task paradigm to test these hypotheses. As usual, we use the central letter discrimination

task as the attention-demanding central task. Three conditions are tested for the peripheral letter discrimina-

tion task: randomly rotated letter, fixed rotation and upright positions. For all conditions, the letter discrim-

ination task is between T and L (L is the target in a go/no-go setup where subjects have to release a mouse

button when the target is detected). The letter and its mask are located at a random position at 6-degree

eccentricity. For a given block of 96 trials, one of the three different tasks is run, and subjects are informed

beforehand about the block task. There are 10 blocks tested for each of the three conditions. Fig. 3.10 depicts

the three different conditions. Four subjects participated in this experiment. A short training period of 3-4

hours proceeded the actual testing. During this period only the randomly rotated letter discrimination was

trained concurrently with the central discrimination task. All three conditions were presented for an equal

amount of time in the subsequent real data collection. For each subject, the peripheral letter task SOA was

determined based solely on their single task performance on the randomly rotated letter discrimination task.

3.6.2 Results

When attention is available, the single task performances for all three different letter discrimination tasks are

highly comparable (randomly rotated, average over 4 subjects and 10 blocks: 77.4 ± 6.6%; fixed rotation,

average over 4 subjects and 10 blocks: 78.8 ± 7.0%; upright, average over 4 subjects and 10 blocks: 84.9±
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Figure 3.10: Rotated versus fixed rotation versus upright letter experiments. The basic setup of this experi-
ment is also Dual-Task paradigm. A letter discrimination task is used peripherally. Three different peripheral
conditions and their corresponding performances are shown in three columns. In the first column, the periph-
eral task is a randomly rotated T versus randomly rotated L, masked by a perceptual mask. Subjects perform
barely at or above chance when attention is not available. This result confirms [16, 77]. The second column
shows the peripheral task of a fixed rotation of T versus L, indicated in the figure. Subjects’ performances of
this task without attention are slightly better than the randomly rotated letter condition. In the last column,
we show results of subjects’ performances for the peripheral task in which the letter T and L are in their
upright position, a configuration that is familiar and well-learned for all of our subjects. The normalized per-
formances indicate a clear advantage of this condition, showing a near-baseline performance when attention
is withdrawn. This result suggests that tasks that are meaningful and well-learned can be carried out by the
visual system in a much more efficient manner.

4.8%; pair-wise t-test shows no statistically significant difference between each pair of the three different

tasks (t(9) < 1.83, p > 0.05 for all cases)). This suggests when there is abundant attentional resource,

carrying out the letter discrimination task for all rotation conditions is similar. It is important to point out

that the fixed rotation and upright conditions have similar performances as the randomly rotated condition.

This indicates that the SOA that was determined for each subject for the peripheral task was effective for

all conditions. We observed, however, different performance results under the dual-task paradigm. For the

randomly rotated letter task, subjects’ performances were congruent with what is reported in previous studies

[16, 77]. Two subjects’ performances were not significantly different from chance (randomly rotated letter

task performance under single-task condition, average over 10 blocks for each of the 2 subjects: 74.2± 3.3%

and 85.9±4.3%; randomly rotated letter task performance under dual-task condition, average over 10 blocks

for each of the 2 subjects: 53.7 ± 4.8% and 53.7 ± 5.2%; t-test results comparing the dual-task condition

with chance: t(9) < 1.83, p > 0.05 for each subject). The other two subjects performed slightly better
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than chance, but significantly lower than their baseline performances obtained when attention was available

(randomly rotated letter task performance under single-task condition, average over 10 blocks for each of the

2 subjects: 70.6±4.4% and 78.9±4.1%; randomly rotated letter task performance under dual task condition,

average over 10 blocks for each of the 2 subjects: 57.8 ± 7.2% and 61.5 ± 5.5%; t-test results comparing

dual-task condition performances with single-task condition performances: t(18) > 3.61, p < 0.001 for each

subject). For the fixed but uncommon rotation (non-upright), subjects’ performances varied more than the

random rotation condition. Three subjects’ dual-task performances were comparable to chance level or just

slightly higher (fix-rotation letter task performance under dual task condition, average over 10 blocks for each

of the 3 subjects: 56.0 ± 4.5%, 56.0 ± 6.7% and 59.1 ± 4.2%, t-test results: t(9) < 1.83, p > 0.05 for the

first two subject; t(9) > 4.30, p < 0.01 for the third subject). One subject performed at 81% of his baseline

level performance (single task condition: 78.1 ± 8.1%; dual task condition: 67.2 ± 4.6%). We should then

compare this result to the last condition: upright letter discrimination. Here all subjects performed above

80% of their baseline performance level (single task condition performance, average over 10 block for each

subject: 85.2± 4.4%, 87.2± 5.7%, 78.1± 8.1% and 89.1± 4.3%; dual task condition performance, average

over 10 blocks for each subject: 72.9 ± 7.9%, 77.3 ± 6.1%, 74.2 ± 9.1% and 83.6 ± 5.3%). One subject’s

performance was not significantly different from her performance when attention was available (single-task

condition: 78.1 ± 8.1%; dual-task condition: 74.2 ± 9.1%; t-test result: t(18) < 1.73, p > 0.05). There

is thus a clear pattern that the least amount of attention resource is needed when letters are in their upright

positions.

3.6.3 Discussion

Two independent hypotheses were tested in this set of experiments. We found that subjects could not recog-

nize rotated letters without attention even when the rotation is fixed to one angle throughout the entire testing

period of several hours. This result indicates that stimulus predictability alone cannot reduce much of the

attentional load required for such a task.

On the other hand, while keeping everything else exactly the same, recognizing upright letters shows

a clear advantage over randomly rotated letters when attentional resource is scarce. One might argue that

a fixed upright rotation is easier for a mental template matching algorithm because the stimuli are much

more predictable whereas such a method is less useful for a random rotation. This is why we observe a

significantly improved performance for the upright letter condition compared to the random letter condition.

But this argument does not support our observation for the fixed but uncommon rotation condition. If the

template-matching theory works, it should work for any fixed rotation, not just upright. In fact a modern
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computer vision algorithm can easily implement such a template-matching method to carry out this task.

Our results suggest that there is a clear bias for people to recognize upright letters better than other rotated

versions, even highly predictable ones. This is not surprising if we consider how much more learning one

receives on upright letter recognition over his or her lifetime. Similar evidence has also been found in the

visual search tasks. Wang et al. have reported that familiar letters take less time to search than unfamiliar

ones [151]. This observation supports our hypothesis that familiar and meaningful categories of objects can

be recognized with much less attentional load.



35

Chapter 4

Summary

4.1 Natural Scene Categorization Requires Little Attention

Natural scene categorization is one of the most evolutionarily relevant tasks of the human visual systems.

The superb efficiency of this task has stimulated much research across the fields of neural psychophysics,

physiology and modeling [8,77,109,135,138]. Contrary to the daily experience of the effortlessness of natural

scene recognition, it is one of the hardest tasks that the modern state-of-the-art computer vision algorithms

have yet to accomplish. This difficulty is mostly due to the vast variability across similar categories of the

natural scenes. Unlike low-level tasks such as orientation discrimination or texture recognition, in which

much of the tasks can be accomplished through filtering of the primary visual cortex [83], understanding the

categorical information across different examples of natural scenes is usually thought to be a high-level visual

task. In an effort to understand the processing of natural scene categorization, we have chosen an approach

to study the efficiency of this process in the near absence of attention.

Visual attention is considered to be one of the first and foremost means of controlling the flow of informa-

tion between different levels of visual processing. Numerous studies have probed the function of attention,

demonstrating much attentional control over stimuli with complex and conjugate features [140, 157]. Need-

less to say, the function of attention is tightly associated with the computational function of recognition in

the human visual system. We hope that by manipulating the attentional condition of various natural scene

categorization tasks, as well as comparing it with other recognition tasks, much light can be shed in the under-

standing of the fundamental mechanisms that enable us such a rapid and fast ability of scene categorization.

Our findings show that rapid visual categorization of novel natural scenes requires very little or no focal

attention. Perception outside the focus of attention has mostly been reported for simple salient stimuli [17,

140]. In our task, however, human subjects are actively searching for a complex category of objects whose

appearance is highly variable. It thus appears that a sophisticated high level of representation (e.g., semantic)
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can be accessed outside the focus of attention. It has already been argued that the “gist” of a visual scene

could be available preattentively [8, 157]. In this context, the contents of the “gist” could in fact be extended

to include information about the presence of a complex target category whose appearance is not known in

advance.

These results suggest that if attention gates visual information processing at early stages of the visual

system, such as V1 and V2 [3, 55, 80, 140], it cannot do so in an “all-or-nothing” fashion. At least some

information from unattended parts of the visual field can reach higher level areas of the infero-temporal cortex

and medial temporal lobe, where selective neuronal responses to various categories of objects [2, 21, 27, 71]

have been found.

4.2 Natural Scene Categorization Is an “Easy” Task to Learn and to

Perform

Perceptual learning is closely linked to the mechanisms of recognition and attention. Our results show that

contrary to common belief, certain seemingly much simpler stimuli are harder to learn to discriminate than the

complex natural scenes, when attention is not available. In fact, little stimulus specific training is necessary

for subjects to perform the natural scene categorization task. Given the current models of visual recognition,

this result is highly counterintuitive. Today’s start-of-the-art computer algorithms take much more training

to recognize natural scenes than simple geometric configurations [148, 153]. Hochstein and colleagues have

coined the term “easy” for task conditions where considerable learning transfer occurs [59]. Under this

definition, natural scene categorization is a much “easier” task given the results of our first set of experiments.

They hypothesized that “easier” tasks involve higher cortical level processing than lower ones. We will revisit

this point in our discussion of “meaningful categories,” in which our further findings with differently rotated

letters also give a hint to this possible architecture of the visual processing.

Another piece of indirect evidence of the “easiness” for natural scene categorization is its performance

pattern without color information. In Control Experiment 2 we found that there is virtually no cost in re-

moving color information from the natural scenes. Again, state-of-the-art computer algorithms for image

retrieval often utilize color features as one of the most informative cues for categorization. Our results show

a clear discrepancy between such algorithms and the actual properties of the human visual system. It is sug-

gested that rapid natural scene categorization might take advantage of coarser, achromatic information from

the magnocellular pathway earlier than the finer, chromatic parvocellular pathway [22]. Several studies on

face recognition [27] also suggest that there is a response of IT neurons for the early phasic component of the
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stimuli rather than more fine-tuned information. This suggests that categorical recognition might be achieved

in higher level visual areas using early waves of neuronal information, where more detailed features such as

colors and fine edges have not yet been computed or incorporated.

4.3 Parallel Processing

The robustness of natural scene categorization is further confirmed through the experiment of double-image

recognition (Control Experiment 3). Our human visual system is surprisingly parallel in processing the

complex stimuli of natural scenes [120]. In contrast, Exp 4 shows that such ability does not apply to stimuli

that are defined by their low-level differences, such as the configuration of the red semicircle and a green

semicircle. Attention has long been considered to be deployed preferentially to tasks that require much

scrutiny and processing. This experiment confirms further that the seemingly much simpler stimuli requires

more attention to be categorized.

It has been long suggested that the more a recognition task requires feature conjunctions and binding, the

more attention will be needed for this task [139, 140]. Therefore only “elementary features” are processed in

a parallel fashion (i.e., under visual search, where serial focal attentional scan is not required). Our results

suggest the possibility that natural scene categories might belong to the set of “elementary features” while

the color disks or rotated letters do not. But this type of feature is unlikely to be encoded in lower level

visual pathways where receptive fields are small and neurons tend to respond to primitive features such as

orientations and brightness.

4.4 Meaningful Categories

In an attempt to understand the efficiency and robustness of natural scene categorization, so far we have gath-

ered much indirect evidence that visual tasks involving higher cortical levels are recognized easier, learned

faster and deploy less attentional resource. In the last set of experiments, we find a stronger evidence suggest-

ing that meaningfulness and familiarity might participate in determining attentional load and more efficient

recognition and learning of the natural scene categorization task. Everything else being equal, an upright

letter is discriminated much better than one rotated to a fixed, but uncommon orientation. There is little

low-level difference between these two sets of stimuli, but they do differ in terms of familiarity and meaning-

fulness. A similar result was recently discovered by Reddy et al. [114]. In their study, they contrast gender

discrimination of hairless upright faces versus inverted faces in the near-absence of attention. They find that

little attention is required to perform the task with upright faces (which are both familiar and meaningful)
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while the attentional cost is rather high with inverted faces.

This observation is also consistent with the recent development of change blindness studies. Change

blindness has shown that attention is critical for our visual awareness [115, 128]. Changes of large patches

of the visual world can escape our awareness without attending to them. But the amount of attention needed

to discern such changes seems to depend also on the meaningfulness of the stimuli. Semantically relevant

information is less likely to be neglected in change blindness than less relevant information [61].

In short, we hypothesize that natural scene categorization requires little or no attentional cost because

of the familiarity and “meaningfulness” of the stimuli and task. Attention acts as a gauge for information

processing. When the task or stimuli are unfamiliar, hence are not directly associated with previous neuronal

representations, attention helps to select and process features for the recognition task. When there are pre-

existing neuronal representations for a given task or stimulus, for example natural scene categorization, little

attention is needed.

4.5 Conclusion

We have shown that natural scene categorization does not require attention and is independent of training with

the specific type of stimuli. It is robust to lack of color information or increasing the set size of the stimuli

presented. In contrary, multiple redundant copies of synthetic stimuli do not improve the performances of

recognition without attention. Some simple tasks, such as single letter discrimination, require much atten-

tional assistance unless the letters are presented in a familiar, upright position. We hypothesize that attention

is particularly important for tasks that do not have neuronal representations in the visual pathway. Natural

scene categorization, a well-learned and familiarized task for most human observers, does not require much

attention.
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Part III

Gist of Natural Scenes: Perception in a

Glance
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Chapter 5

Introduction

5.1 Background

When we visit a family member or a close friend, we often enjoy browsing through their family albums.

It probably never occurs to us that while flipping through the pages of the albums, our visual system is

working with superb efficiency and accuracy in rapidly grasping the meaning of every photograph. We never

experience any ‘perceptual glitch’ if the previous page was set in downtown Manhattan and the next one

switches to a conference room full of people and posters.

It has long been known that humans can understand a real-world scene quickly and accurately. Film

makers first demonstrated this ability through a technique called ‘flash cut.’ In a commercial motion picture

called ‘The Pawnbroker’ [81], S. Lumet inserted an unusually brief scene representing a distant memory.

Lumet found that a presentation lasting a third of a second, though unexpected and unrelated to the flow of

the main narrative, was sufficient for the audience to capture the meaning of the interposed scene [11].

Pioneering studies extended these anecdotal findings, bolstering the claim that humans could rapidly ap-

prehend a real-world scene. Potter et al. utilized rapid serial visual presentations (RSVP) of images and

revealed that subjects could perceive scene content in less than 200ms [108, 110]. Furthermore, she demon-

strated that while the semantic understanding of a scene is quickly extracted, it requires a few hundred mil-

liseconds to be consolidated into memory [108]. Later studies however documented limits to our perception

of a scene. Rensink et al. showed that changes to retinotopically large portions of the scene will sometimes

go unobserved. It is likely that this occurs if the regions are not linked to the scene’s overall ‘meaning’ [115].

Other hallmark investigations attempted to elucidate the information involved in this ‘overall meaning’;

their conclusions regarding scene perception paralleled concepts in auditory studies of sentence and word

comprehension. Biederman et al. found that recognition of objects is impaired when those objects are embed-

ded in a randomly jumbled rather than a coherent scene [8]. They further identified several physical (support,
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interposition) and semantic (probability, position, size) constraints, which objects must satisfy when within a

scene, similar to the syntactic and grammatical rules of language [9]. They investigated how object recogni-

tion was modulated by violating these constraints. Their results suggested that the schema of a scene-or the

overall internal representation of a scene that includes objects and object relations-is perceived within a sin-

gle fixation [9], regardless of expectation and familiarity [11]. Boyce and colleagues also demonstrated that

objects are more difficult to identify when located against an inconsistent background given a briefly flashed

scene (150ms), further suggesting that both recognition of objects and global contextual understanding are

quickly and deftly accomplished [13].

5.2 Contributions

While it has become clear then that some comprehension of scene is rapidly attained, the conceptual ‘content’

of this scene gist is still somewhat nebulous. What is it exactly that we perceive and understand when we

glance at the world?

In this study, we focus on particular facets of this question:

• There has been no commonly accepted definition of the content of ‘gist.’ Mandler and Parker have

suggested that three types of information are remembered from a picture: i) an inventory of objects; ii)

descriptive information of the physical appearance and other details of the objects; iii) spatial relations

between the objects [84]. In addition to this object information, propositional relationships between

objects, spatial layout of the scene, and a general impression of the low-level features that fill the scene

(e.g., texture, etc.) are speculatively incorporated into the scene gist [156]. Finally, Biederman has

proposed that global semantic meaning or context also contributes to the initial surmisal of a scene [9].

Positing the ‘contents’ of a glance as an operational definition of scene gist, we would like to ascertain

the visual and semantic information comprising scene gist.

• Rosch suggested that one distinguishes between ‘basic-level,’ ‘super-ordinate level’ and ‘sub-ordinate

level’ object categories [117]. Similarly, Tversky and Hemenway proposed the same taxonomy for

scene categories [142]. These authors motivate their theory with arguments of maximizing the visual

and linguistic information conveyed during naming. Does human perception of natural complex scenes

reveal a similar hierarchy of objects and scenes? What patterns arise during free recalling of cluttered

scenes of various objects? Would responses reveal similar hierarchies or different ones?

• One parameter to vary in examining scene perception is the length of presentation times. We are

curious to see whether there is a natural ordering in the range of percepts that becomes available under
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increasing temporal constraints.

• In all previous studies of scene perception, the experimenters have a set of predetermined hypotheses to

test. Their experiments are hence constructed to illuminate certain parameters relevant to their claims

and questions. Our design however might broaden the scope of scene perception research. Through

unbiased responses, we hope to uncover new aspects of scene perception previously not considered.

Keeping the above issues in mind, we propose to examine unbiased real-world scene perception as a

function of display time. We have designed an experiment in which subjects view one of nearly a hundred

natural scenes for a brief interval of time without any priming, pre- or post-stimulus cuing, as to its content.

We ask them to type freely what they have seen in as much detail as possible. We vary the presentation time

of the image between 27ms to half of a second.
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Chapter 6

General Method

Our subjects were asked to freely recall what they perceived in briefly displayed images of real-world scenes.

We explored the evolution of our subjects’ reports as a function of the length of presentation times. Our data

was collected in Stage I and analyzed in Stage II.

In Stage I, subjects viewed briefly a picture of a scene on a computer monitor and were then asked to type

what they had seen, using a free recall method to collect responses. Chapter 6.2 explains the details of this

stage of the experiment.

In Stage II, we asked an independent group of subjects to evaluate and classify the free recall responses

collected in Stage I. Chapter 6.3 is a detailed account of this evaluation process.

6.1 Dataset

In most previous studies of scene perception or object recognition, line drawings were used as stimuli [9,60].

Recently, several studies have used a large commercial database of photographs for studying the perception

of scenes and categories [77, 135, 138]. This dataset, unfortunately, is a collection of professionally pho-

tographed scenes, mostly shot with the goal of capturing a single type of objects or specific themes of scenes.

We are, however, interested in studying images of everyday scenes, as commonly seen by most people in a

naturalistic setting. Therefore, we assembled a collection of images trying to minimize this sampling bias.

Fig. 6.1 and Fig. 6.2 show our dataset of 44 indoor images and 46 outdoor images collected from the

internet in the following way. We asked a group of 10 naive subjects to randomly call out 5 names of scenes

that first came to their minds. Some of the names overlapped. After pruning, we had at hand about 20 to

30 different words/word phrases that corresponded to different environments. We then typed each of these

words/word phrases in the Google image search engine. On the first one or two pages of the search results,

we randomly selected 3-6 images that are sensibly related to the keyword. The Google image search engine



44

Figure 6.1: 46 images of outdoor scenes in our dataset of 90 grayscale images.

tended to return images that are found on people’s personal websites, most often taken with a snapshot

camera. While everyone has a bias when taking a picture, we believed the large number of images from
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Figure 6.2: 44 images of indoor scenes in our dataset of 90 grayscale images.

different unknown sources would help to average out these biases.

A number of authors have suggested that color information is not critical for the rapid categorization
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of scenes [29, 33, 36]. While color could be diagnostic in a later stage of recognition [93], we are mostly

concerned with the initial evolution of scene perception; thus we decided to use only gray scale versions of

our images for our experiments.

6.2 Experimental Stage I: Free Recall

6.2.1 Subjects

Twenty two highly motivated California Institute of Technology students (from 18 to 35 years old) proficient

in English served as subjects in Experiment Stage I. One author (A.I.) was among the subjects. All subjects

(including A.I.) were naive about the purpose of the experiments until all data were collected. Subjects

reported normal color vision and visual acuity (sometimes with corrective lenses or glasses), but underwent

no tests in this respect.

6.2.2 Apparatus

Subjects were seated in a dark room especially designed for psychophysics experiments. The seat was ap-

proximately 100cm from a computer screen, which was connected to a Macintosh (OS9) computer. The

refresh rate of the monitor was 75Hz. All experimental software was programmed using the Psychophysics

Toolbox [14, 101] and Matlab.

6.2.3 Procedure

Fig. 6.3 illustrates a single trial of Stage I. An image from our dataset was presented for one of 7 different

possible SOAs: 27ms, 40ms, 53ms, 67ms, 80ms, 107ms, and 500ms. For each trial, the particular SOA was

randomly selected with equal probability from these choices. The image was then masked by one of eight

natural image perceptual masks, constructed by superposing white noise band-passed at different spatial

frequencies [145]. The subject was then shown a screen with the words:

Please describe in detail what you see in the picture. Two sample responses are: 1. City scene. I see a

big building on the right, and some people walking by shops. There are also trees. Most of the trees are on

the left of the picture, against some background buildings. 2. Possibly outdoor. I really cannot tell much.

Probably some animals, maybe mammals...

Subjects were given an unlimited amount of time to write down their responses.

Each subject was shown all 90 images in the database, broken into 5 20-trial sessions. The images were

presented in random order. At the beginning of each session, 4 images outside of the database were used to
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time

Image onset: t = 0 msec 

Mask onset: t = SOA

An outdoor scene, I think. reminded me a 

a city... like walkingin a park in new york

or something. there seemed to be trees 

and a road and then this large skyscraper 

in the background.

Please type your description 

here:

+
Fixation cross onset: t = ~250 msec 

possible SOAs (in msec):

27, 40, 53, 67, 80, 107, 500

Subject types description

Figure 6.3: A single trial in Stage I: A fixation cross appeared for about 500ms. An image from our dataset
was then presented at the center, subtending 6◦ × 8◦ in visual angle. After a variable SOA, the image was
masked by one of 8 natural image perceptual masks. The mask was displayed for ∼ 250ms. The time
between the onset of the image and the onset of the mask is called Stimulus Onset Asynchrony (SOA). The
mask was presented for 500ms. Afterward, the subject was prompted to a screen in which he/she was asked
to type in the what he/she had seen of the image. Subjects were given an unlimited amount of time to write
down their responses. When they were ready to continue, they could initiate the next trial by pressing the
space bar.

familiarize the subject with the responses and SOAs. Free recall responses for these 20 (4 × 5) images were

excluded from all data analysis. Order of image presentation, as well as the choice of SOA for each image,

were randomized and counter-balanced among all subjects. Each subject thus contributed one description

for each image at one of the SOAs. Overall, our 22 subjects provided 1980 descriptions, i.e., we obtained

between 3 and 4 descriptions for each image and each SOA.

6.3 Experimental Stage II: Description Evaluation

6.3.1 Subjects

Five paid volunteer undergraduate students from different schools in the Los Angeles area (from 18 to 35

years old) served as scorers in Experiment Stage II. As scorers needed to analyze and interpret unstructured

written responses, they were required to be native English speakers. All scorers were naive about the pur-

pose of the experiments until all response evaluation was finished. Subjects reported normal visual acuity

(sometimes with corrective lenses or glasses), but underwent no tests in this respect.
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6.3.2 Apparatus

The scorers’ task was to evaluate and classify the image descriptions obtained in the previous stage. For

this purpose they used Response Analysis software, which we designed and implemented for this purpose

(Fig. 6.5). Subjects were seated in a lighted office room. The seat was approximately 100cm from a computer

screen, which was connected to a Macintosh (OS9) computer. The refresh rate of the monitor was 75Hz. All

Response Analysis user interface software was programmed using MATLAB and the GUI toolbox.
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Figure 6.4: Attribute Tree. The list of attributes was constructed by examining the entire set of free recall
responses/descriptions to extract a comprehensive inventory of terms referred to in these descriptions.

a possible evaluation sequence

Figure 6.5: Experiment Stage II: Evaluating the free recall responses.
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6.3.3 Procedure

Our aim was to evaluate free recall responses in a consistent and uniform manner for all subjects. To do this,

the content of all responses was assessed with respect to a standardized list of attributes.

The list of attributes was constructed by the experimenters, who examined the entire set of free recall

responses/descriptions to extract a comprehensive inventory of terms referred to in these descriptions. Most

attributes described fell into one of six categories: inanimate objects; animate objects; outdoor scenes; indoor

scenes; visual/perceptual features (i.e., shapes, lines, etc.); or event-related (this category comprised a more

cognitive understanding of the picture, in which human behavior related to the scene was inferred, i.e., social

interaction, sports/games, performances, concert, etc.). See Fig. 6.4 for the entire list of attributes.

The attribute list consisted of 105 terms. We organized these attributes into a hierarchical tree structure,

where the highest level represented the most general level of description (e.g., inanimate object); the inter-

mediate stages exhibited a greater degree of specificity (e.g., manmade inanimate object, building); and the

lowest level corresponded to the most detailed level of description (e.g., Capitol building). This taxonomy

schema stems from conventional notions of object and scene categorization, as originally developed by Rosch

(1978) and Tversky and Hemenway (1983), predicated on the superordinate level; the entry, or basic, level;

and the subordinate level. The findings of these authors formed the basis of our hierarchical classification

for the animate object, inanimate object, indoor, and outdoor branches of the tree. The last two branches–

sensory-related and event-related–have received less investigation, and thus were classified parsimoniously

with only two levels, more general (e.g., sensory-related) and more detailed (e.g., lines, shapes, etc).

Each of the 5 scorers read every response (22 subjects who each responded to the same 90 images = 1980

responses) and assayed them for mention or description of each attribute as well as correctness. The scorer

was guided through this task with the Response Analysis interface tool (Fig. 6.5). For each response, the

scorer proceeded as follows: the first screen contained the text of one of the responses, the image described in

the response, and a box with labels for the most general attributes: indoor, outdoor, animate object, inanimate

object, event-related, shape-related. Next to each attribute, a button allowed the scorer to indicate whether

the attribute had been described in the written response. If an attribute was checked as ‘described,’ the

scorer was additionally required to indicate whether the description of the attribute was either an ‘accurate’

or ‘inaccurate’ depiction of the corresponding image. This completed the first screen. For any attribute

checked, a successive screen was displayed, which comprised again the text of the response and the image,

but now the next level of more detailed attributes; for example, if inanimate object had been checked in the

first screen, a following screen would have contained the labels: manmade and natural (Fig. 6.4), for which

the user would again be prompted to indicate whether these attributes were described in the response, and if
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so, whether accurately described or not. If the user had then checked natural, a following screen would have

contained: the text of the response, the image, and the next level of attributes: body of water, plant, specific

plant, mountain/hill, distinctive texture. The entire branch was thus traversed.

If, on the first screen, the scorer had also checked indoor, then following screens would have also dis-

played: the text of the response, the image, and the next level of attributes: store, household room, kitchen,

office/classroom, technical environment, dining/restaurant, station/plaza, library, performance venue. In this

manner, the relevant portions of the tree were traversed, one branch at a time. This process was repeated for

each response.

As explicated earlier, 3-4 responses were provided for a given image at a given SOA. For a given attribute,

each scorer judged whether each of these 3-4 responses accurately described the attribute in the respective

image. The percentage of responses rated as accurate measured the ‘degree’ to which the attribute was

perceived in this image. This initial score thus reflected a particular image, SOA, and scorer. The scores were

then normalized: the seven scores for a given image (one for each SOA) were divided by the highest score

achieved for that image (across all SOAs). All evaluation scores were therefore between 0 and 1. Due to

this ‘within-image’ normalization, inherent differences in ‘difficulty’ of perceiving or understanding scenes

between different images were eliminated.

In all analyses, the scores were then averaged over all 5 scorers. In some analyses, the scores were

additionally averaged over images, so that the averaged evaluation score represented the degree to which the

attribute was perceived at a given SOA across the entire image set.
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Figure 6.6: A sample score plot for the building attribute.

To better illustrate the parameters just discussed, we will focus on the evaluation of one attribute, ‘build-

ing,’ depicted in Fig. 6.6. On the x-axis are the seven SOAs for which images were displayed. The y-axis

reflects normalized accuracy evaluation score.

For the SOA of 80ms, for example, each scorer sees roughly 3 responses for each image. For each
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response, the scorer determines whether the attribute ‘building’ was accurately reported with respect to the

corresponding image (the other 104 attributes were also checked, but we will not follow those for the purposes

of this example). Suppose the scorer indicates that building was described accurately in only one response.

The initial evaluation score for the attribute ‘building’ for this image at SOA 80ms is therefore 1/3, or 0.33.

Suppose also that the maximum accuracy score achieved in describing this image occurred at SOA 500ms,

where 2/3 of the responses accurately reported a building. This maximum score of 0.67 would be used to

normalize all scores, so that the evaluation score at SOA 80ms is now 0.5 and the score at 500ms is 1.0. This

normalization allows each image to be its own baseline; therefore differences in the quality of the image (i.e.,

simple vs. cluttered) will not affect scores. Finally, all normalized ‘building’ scores at SOA 80ms–one for

each image–are averaged to obtain the final evaluation score at this SOA for this particular scorer.

This process of normalization per image and then averaging over all images is done for each SOA. Again,

the resulting values are per scorer. Thus, in Fig. 6.6, the yellow, blue, green, cyan, and magenta lines each

represent the normalized evaluation scores (averaged over images) for one scorer.

These curves are then averaged over all the scorers. The resulting means are plotted in the red line in

Fig. 6.6, with error bars representing standard error of the mean (s.e.m.).

In addition, there is a black line resting at the bottom of the plot. It consists of scores given by our scorers

when the responses/descriptions are randomly matched to the images. This corresponds to our controls in

the response evaluation process. As this evaluation process is subjective, scorer bias in judging accuracy

of responses could be a potential confound, i.e., a scorer might be inclined to generally interpret vague or

nebulous responses as ‘probably correct,’ giving ‘the benefit of the doubt’ even for inaccurate descriptions.

To probe for this bias, each scorer was presented with 220 responses that were paired with an incorrect

image (e.g., not the image the subject was viewing when making the response). The scorer had to indicate

whether the response accurately described the image with which it was presented, the same task as for the real

response-image pairings. Since these are incorrect pairings, responses associated with longer SOAs will not

contain a more accurate description of any attribute (here, building) of the image with which it is presented

to the scorer. Therefore, assuming no scorer bias, the line should remain flat, as observed in Fig. 6.6. If

scorers do exhibit a propensity to liberally give credit to subjects for their responses, we would not expect

to see a low, flat line from the controls. Instead, we would anticipate other patterns, such as increasing

scores with SOA (since responses become more verbose and contain more content that could mistakenly be

viewed as accurate); or scores that rise up to intermediate SOAs (more verbose but still somewhat ambiguous

responses) but then decrease at the longest SOAs (where responses become specific enough that scorers have

little opportunity to give subjects the benefit of the doubt). The control curves from all scorers were averaged.
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Chapter 7

Experiments and Results

7.1 Experiment I: The ‘Content’ of a Single Fixation

How much of a scene can be initially perceived within the first glance?

Biederman’s findings implied that some kind of global context of the scene is registered in the early stages

of scene and object recognition [9].

Friedman and colleagues proposed that early scene recognition involves the identification of at least one

‘obligatory’ object [6, 44]. In this ‘priming model,’ the obligatory object serves as a contextual pivotal point

for the recognition of other parts of the scene [56]. There is also evidence that objects could be independently

recognized without facilitation by global scene context [56]. Despite this discrepancy between all these

models, one thing is clear: object recognition is an important aspect of early scene perception. Humans

appear to be able to recognize at least some objects in a naturally cluttered scene in a single glance.

So what is the content of the first glance of a scene? Does it include a list of objects, and/or relations of

objects, and/or background textures, and/or layout of space [156]?

In this first experiment, we try to extract as much information as possible from subjects’ reports of scenes

in a single fixation.

7.1.1 Method

We compare the subjects’ descriptions of scenes in two SOAs: 107ms and 500ms. While the average fixation

length during scene viewing can be as high as 339ms [113], numerous previous studies have used presenta-

tion times between 100ms to 200ms to investigate the effect of single fixation [9, 13, 108]. Here we follow

the tradition and use 107ms as an estimate of the length of the first fixation of a scene. 500ms is chosen as a

baseline presentation time for viewing a scene. It is commonly accepted that this amount of time is sufficient

for perceiving a natural scene and most of its contents. Fig. 7.1 shows two different example scenes and sam-
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ple descriptions at the two SOAs. In the first row, the scene is grasped with relative ease. Subjects are nearly

as good at perceiving the details of the scene at SOA 107ms as compared to the baseline viewing condition.

In the second row, the scene is much more cluttered and complex. We see that the extra presentation time for

SOA 500ms helps greatly in perceiving the details of the scene.

This is outdoors. A black, furry dog 

is running/walking towards the 

right of the picture. His tail is in the

air and his mouth is open.  Either 

he had a ball in his mouth or he 

was chasing after a ball.  (Subject EC)

 I saw a black dog carrying a gray 

frisbee in the center of the 

photograph. The dog was walking 

near the ocean, with waves lapping 

up on the shore. It seemed to be a 

gray day out.  (Subject JB)

inside a house, like a living room, 

with chairs and sofas and tables, 

no ppl.  (Subject HS)

A room full of musical instruments. 

A piano in the foreground, a harp 

behind that, a guitar hanging on the 

wall (to the right). It looked like there 

was also a window behind the harp, 

and perhaps a bookcase on the left.

(Subject RW)

SOA = 107ms SOA = 500ms

Figure 7.1: Subject description samples. In the first row, the scene is relatively easy. Subjects are nearly as
good at perceiving the details of the scene at SOA 107ms as compared to SOA 500ms. In the second row,
the scene is more cluttered and complex. When the paper is accepted for publication, we will publish all
descriptions collected for the entire dataset.

Several attributes were examined, from five branches of the analysis tree and at various levels of abstrac-

tion, from super-ordinate to subordinate. The evaluation scores for each of these attributes were averaged

over all images and all scorers. The scores for SOA 107ms and for SOA 500ms were compared; a pair of

bars representing the scores at these two SOAs are plotted for each attribute of interest.

7.1.2 Result and Discussion

Since we are interested in eliciting a fuller description of the semantic ‘content’ of a brief look at a scene, five

categories of attributes are considered: animate objects (including humans and animals); inanimate objects;

outdoor scenes; indoor scenes; and human activities/events. Fig. 7.2 summarizes all results.

In Fig. 7.2(a) and (b), we show these comparisons for objects. As our focus is primarily on scene

recognition, we will consider object recognition only briefly. In the super-ordinate category of animate

objects(Fig. 7.2(a), most levels are equivalently perceived within a single fixation as compared to the base-

line viewing condition. The super-ordinate level of animate object, more detailed levels such as people, and

attributes large mammal (subordinate to animal) and ethnicity, appearance and details and body/figure (sub-

ordinate to people) are reported with similar accuracy and are insignificantly different (One-Way ANOVA:

0.06 < t(8) < 4.07, p > 0.05). Three attributes differ weakly in a One-Way ANOVA: animal (t(8) = 7.70,
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p = 0.024); mammal (t(8) = 6.16,p = 0.04); and gender/age (t(8) = 9.73, p = 0.01), and two others

strongly differ (One-Way ANOVA: bird t(8) = 73.32, p < 0.001; dogs/cats t(8) = 33.98, p < 0.001).

While several detailed attributes of people, such as ethnicity, appearance, and body figures, are perceived

with adroitness, recognition of non-human animals does not appear to enjoy the same ease. Entry level ani-

mals, such as dogs, cats, and birds, are more reliably discriminated with longer presentation times, with dogs

and cats being particularly poorly recognized at 107ms. These propensities speak to a large body of literature

claiming an innate visual preference for faces and humans [30, 31, 116].

Fig. 7.2(b) displays the results for the inanimate objects contained in the image dataset. Several attributes

pertaining to inanimate object categories are perceived within a single fixation, namely the super-ordinate

category inanimate natural objects, plus more basic level objects such as rocks, plants, mountain/hills, grass,

sand and snow (One-Way ANOVA: 4.24e-4 < t(8) < 4.02, p > 0.05). In the realm of manmade objects, the

findings are less clear. Super-ordinate levels, such as manmade inanimate object, furniture, and structures

(roads, bridges, railroad tracks), and the basic level attribute car are more accurately reported at 500ms than

at 107ms (One-Way ANOVA: 14.20 < t(8) < 31.95, p < 0.01; except car, weakly significant: t(8) = 6.10,

p = 0.04). Other super-ordinate and entry-level objects, including vehicle, building, chair, and desk or table

exhibit equal accuracy at both SOAs (One-Way ANOVA: 0.80 < t(8) < 4.50, p > 0.05). The lack of an

unequivocal advantage for recognition of basic-level categories versus super-ordinate categories connotes a

discrepancy from Rosch’s study on object categories [117]. We observe that one of the main differences

between our setup and Rosch’s is the clutter and fullness of our scenes. In her study, objects are presented in

isolation, segmented from background. In our setup, objects are viewed under more natural conditions, with

clutter and occlusion.

Fig. 7.2(c) displays comparisons for the scene environments portrayed in our dataset. At SOA 107ms,

subjects easily name the super-ordinate level categories, outdoor, indoor, natural outdoor and manmade

outdoor. In addition, scenes such as office/classroom, field/park, urban streets, household rooms (dining

rooms, bedrooms, living rooms), and restaurant scenes are recognized within a single fixation (One-Way

ANOVA: 0.20 < t(8) < 5.23, p > 0.05). Only shop/store and water scenes require longer presentations

(One-Way ANOVA: 9.93 < t(8) < 50.40, p < 0.02; except sky, weakly significant: t(8) = 6.73, p =

0.03).Compared to objects then, scene context is more uniformly described by our subjects in a single fixation.

Our results suggest that semantic understanding of scene environments can be grasped rapidly and accurately

after a brief glance, with a hierarchical structure consistent with Tversky and Hemenway [142].

We have seen that both objects as well as global scene environments can be processed given a single

fixation. These attributes, however, are explicitly denoted by properties of a still image, where the physical
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features defining an object or the quintessential components of an environment can be readily rendered. Can

a more cognitive appraisal of the transpiring scenario be inferred with the same ease? In Fig. 7.2(d), we

look at attributes related to human activities and social events. Given our dataset, only five types of activities

are included: sport/game, social interaction, eating/dining, stage performance, and instrument playing. Of

the 5 activities, sport/game, social interactions and possibly stage performance can be reported after a single

glance (One-Way ANOVA: 0.25 < t(8) < 1.54, p > 0.05). Only one image each involved humans either

eating or playing instruments; thus these event-related attributes were not statistically meaningful and were

excluded from our analysis. These findings suggest that subjects cannot only extract objects as well as their

embedded environment, but in addition can infer the interaction of the objects in order to consolidate an

abstract, semantic meaning of their visual world.
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Figure 7.2: Fixation results for animate objects (a), inanimate objects (b), scenes (c) as well as social events
and human activities (d).

In summary, within this brief period of time, humans seem to be able to recognize objects at super-

ordinate category level as well as a variety of basic category level. Furthermore, a single fixation seems

sufficient for recognition of most common scenes and activities, many of them coinciding with the basic level

scene categories suggested by Tversky and Hemenway [142].
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7.2 Experiment II: Outdoor and Indoor Categorization

In recent years, several computer vision studies have suggested efficient algorithms for categorizing scenes,

exploiting both global and local image information [35, 94, 132, 144, 150]. While these methods shed light

on how coarse classification of scenes can be achieved in a feed forward fashion after supervised learning,

little is known in the human vision literature about the actual cues and mechanisms allowing categorization

of different scene classes. In their work on scene taxonomy, Tversky and Hemenway examined in particular

people’s understanding of the disparate components of indoor and outdoor scenes [142]. Their methods

however treated indoor and outdoor environments symmetrically, presuming no obvious preference or bias.

After reviewing the free recall responses in this experiment, we observed a proclivity towards recognition

and naming of one of these two kinds of environments. We thus sought to further explore this unexpected

affinity.

7.2.1 Method

To probe for a possible bias, we examined how the outdoor and indoor images in our dataset were classified

by our subjects, and how this classification changed as a function of presentation time (SOA). For each SOA,

a scatter plot was generated, each dot representing an image–red dots correspond to ground-truth outdoor

images, green dots to ground-truth indoor images. ‘Ground-truth’ is determined in the following way: for

each image, we take all responses of all subjects at SOA 500ms. If a majority of the subjects accurately

described the image as ‘outdoor,’ then the ground-truth label for the image is ‘outdoor.’ The same is true

for the ‘indoor’ images. For each image, we are able to ascertain the percentage of subjects that labelled the

image as ‘indoor’ or as ‘outdoor’ at a particular SOA time. Fig. 7.5 shows how the images are perceived at

different times. We shall discuss this more in the Results section.

Before we proceeded, we wished to know whether a bias in subject performance could be accounted for

by simple, low-level global cues. Indeed many studies have explored the usage of global cues for categorizing

natural scenes, and computer vision algorithms have demonstrated relative success in utilizing such cues to

accurately achieve a variety of classifications [94,132,144]. Following the same line of reasoning, we carried

out two control analyses of the global statistics of the scenes in our dataset.

In the first control experiment, we assessed whether indoor and outdoor scenes in our database could

be separated by simple frequency information [94]. Both the indoor and outdoor images were randomly

divided into two halves—a ‘training set’ and a ‘test set.’ Two power spectrum templates were then created:

1) an outdoor template, which averaged the power spectra of all outdoor images in the outdoor training set,

and 2) an indoor template, which averaged the power spectra of all indoor images in the indoor training set.
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Fig. 7.3(a) and (b) show two example outdoor and indoor templates for randomly drawn training sets. For

the images in the test sets, a two-dimensional correlation was performed between the power spectrum of each

image and the outdoor template, and between the power spectrum of each image and the indoor template. We

then obtained a ratio of correlation coefficients (outdoor correlation coefficient: indoor correlation coefficient)

for each image in the test sets. This correlation analysis was repeated, with training and test sets reversed, i.e.,

the images previously in the training sets formed the new test sets, and the images formerly used in the test

sets were used to generate the templates. Ratios of correlation coefficients were obtained for images of the

new test sets. In this way, correlations were performed on every image in the dataset, with templates formed

from a disjoint set of images. This procedure was reiterated 10 times, with a random segregation of images

into either the training sets or test sets each time.

Fig. 7.3(c) shows the distribution of this ratio score for all of the outdoor and indoor images. We use this

ratio score of the images to perform indoor versus outdoor classification. Fig. 7.3(d) is a Receiver Operating

Characteristic (ROC) curve of the result. A weak classification result of 68.0% is achieved for separating

indoor images from outdoor ones based on the average power spectra (chance classification by an ROC

analysis is considered to be 50%). Compared to the average performance of human observers at SOA 500ms

(90.5% in Fig. 7.5), this result indicates that little information could be used to classify indoor and outdoor

scenes based on low-level power spectral information.
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Figure 7.3: Power spectral analysis. (a) A sample outdoor template, which averaged the power spectra of
all outdoor images in the dataset (excluding the image itself if it is outdoor). (b) A sample indoor template,
which averaged the power spectra of all indoor images in the dataset (excluding the image itself if it is indoor).
(c) Distribution of the ratio score for outdoor and indoor images. The ratio score of correlation coefficients is
obtained from the outdoor correlation coefficient and indoor correlation coefficient for each image. (d) shows
two Receiver Operating Characteristic (ROC) curves (training and testing) of the classification results based
on the correlation ratios. A weak classification result of 68.0% is achieved for separating indoor images from
outdoor ones based on the average power spectra in the testing case.

Our second control addressed the argument that outdoor scenes tend to have a lighter top partly due to

the contrast of the sky, while there is no such cue in an indoor image. We therefore used a simple ‘sky’

template to explore this possibility (Fig. 7.4(a)). Three horizontal layers constituted this template, the top

consisting of high-intensity pixels, the middle median-intensity pixels, and the the bottom of low-intensity
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pixels. A two-dimensional correlation was performed between each image in the dataset and the template.

The correlation coefficient for each image was used for classification. Fig. 7.4(b) shows the distributions of

the correlation coefficients of all the indoor and outdoor images, while Fig. 7.4(c) shows the classification

results in ROC curve. Only a 47.5% performance is achieved by using the template method. This is no better

than chance, compared to a high human observer performance at SOA 500ms (90.5% in Fig. 7.5).
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Figure 7.4: Light top dark bottom correlation analysis. (a) Two horizontal layers constituted this template,
the top consisting of high-intensity pixels, and the the bottom of low-intensity pixels. (b) A two-dimensional
correlation was performed between each image in the dataset and the template. The correlation coefficient
for each image was used for classification. (c) shows the classification results in ROC curve. Only a 47.5%
performance is achieved by using the template method.

7.2.2 Results and Discussion

The recall performances for indoor versus outdoor scenes are shown in Fig. 7.5. We sampled the responses

as a function of stimulus presentation times: 40ms, 67ms, 120ms and 500ms. Ideally, all outdoor images

(green dots) would cluster at the (0, 1) corner of each of the panel in Fig. 7.5, while all indoor images (red

dots) would cluster at the (1, 0) corner of the panel. At short SOAs, however, fewer subjects mention the

indoor/outdoor category, while at 500ms, virtually all do. At the baseline SOA of 500ms (Fig. 7.5(d)), most

of the red dots are indeed located on the x-axis, as subjects correctly identified the outdoor images as outdoor.

Similarly, most of the green dots are located on the y-axis. In Fig. 7.5(a)-(d), we observe a very clear trend of

an early bias for outdoor images. At SOA 40ms, if subjects chose to make the indoor/outdoor dichotomous

distinction in their responses, they tended to identify asymmetrically outdoor images as outdoor, despite the

fact that there is a similar number of indoor and outdoor images in the dataset. This preference for outdoor

labelling continues even at SOA 107ms (Fig. 7.5(c)). In Fig. 7.5(a)-(d), we also present the four indoor

images that were most frequently misclassified as ‘outdoor’ at the corresponding SOA. Several of them are

consistent over a range of SOAs. By considering these images, it is possible that predominantly vertical

structures give rise to the ‘outdoor’ percept more easily when there is less than 107ms for viewing the image.
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In Fig. 7.7(c), we summarize the change of indoor and outdoor classification over presentation time in one

plot. Each diamond represents the average performance score at one SOA.
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Figure 7.5: Categorization results of indoor and outdoor scenes. Each column illustrates the result in a
specified presentation SOA. The top panel of each column is a scatter plot of the categorization results. Each
dot represents an image in the database, red for ground-truth outdoor and green for ground-truth indoor. The
x-axis indicates the percentage of subjects labelling an image as an outdoor image, and the y-axis indicates
the percentage of subjects labelling an image as an indoor image. A diamond shape with error bars indicates
the average performance. The bottom panel shows the four indoor images that were often confused as outdoor
scenes given this SOA.
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Figure 7.6: Categorization results of manmade outdoor and natural outdoor scenes. Each dot represents an
image in the database. The ground-truth labelling is represented by a color: red for manmade outdoor and
green for natural outdoor scenes. The x-axis indicates the percentage of subjects labelling an image as a
manmade outdoor image, while the y-axis indicates the percentage of subjects labelling an image as a natural
indoor image. A diamond shape with error bars is also plotted for each class of images (manmade outdoor
and natural outdoor) to indicate the average percentage.

While we observe this strong bias in favor of outdoor over indoor classification of natural scenes for

short display times, we do not see a large difference between manmade outdoor over natural outdoor images

(Fig. 7.6). Subjects labelled both natural and manmade outdoor scenes with similar accuracy. Given shorter

SOAs (less than 107ms), manmade outdoor scenes are at times confused with natural outdoor scenes, hence
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Figure 7.7: Summary plot of average categorization performances of all 7 SOAs. (a) Indoor versus outdoor
scenes; (b) Manmade outdoor versus natural outdoor scenes; (c) Indoor versus manmade outdoor scenes; (d)
Indoor versus natural outdoor scenes.
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Figure 7.8: Sensory information and object perception in outdoor and indoor scenes. (a) Sensory information
perception performance comparison between indoor and outdoor scenes across all SOAs. (b) Overall object
recognition performance comparison between indoor and outdoor scenes across all SOAs.

a lower average performance. But overall the trend is not nearly as pronounced as the bias between indoor

and outdoor scenes (Fig. 7.7(b)).

Fig. 7.7(c) and (d) summarize average classification results for indoor vs. manmade outdoor images, and

indoor vs. natural outdoor images, respectively. Unlike Fig. 7.7(a), there exists no indication of a bias in

either of these conditions. This suggests that while indoor scenes tend to be confused as outdoor scenes,

there is little confusion with manmade or natural outdoor scenes.

Where does this bias arise? Given the limited amount of information available when stimuli are presented

very briefly (less than or about a single fixation), did outdoor pictures have an advantage over indoor pictures

because subjects could perceive low-level, sensory related information more clearly? Or was it due to greater

ease in identifying objects in the outdoor scenes versus the indoor scenes, as the ‘priming model’ would

suspect [6, 44]? Fig. 7.8 illustrates the evaluation results in both indoor and outdoor scenes for sensory level

information (panel (a)) as well as object level information (panel (b)), from the shortest presentation time

(27ms) to the maximum (500ms). For sensory information perception, we see that the evaluation scores for
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both indoor and outdoor images do not differ at most presentation times except SOAs 53ms and 67ms (One-

Way ANOVA: 0.15 < t(8) < 5.26, p > 0.05; SOAs 53 and 67ms 11.46 < t(8) < 26.60, p < 0.05). Overall,

there is no evident trend to suggest that outdoor scenes permit better sensory information recognition as

compared to indoor scenes. Similarly, little trend is detected with respect to object level perception. For both

indoor and outdoor images, the evaluation scores for the subjects’ descriptions are not statistically different

(One-Way ANOVA: 0.01 < t(8) < 11.46, p > 0.05, except SOA 67ms t(8) = 26.60, p < 0.001). These

results indicate that while there is an obvious preference for perceiving outdoor images for short presentation

times, this bias does not seem to stem from a preference for perceiving the sensory information or object

contents of the different environments.

7.3 Experiment III: Sensory-level Recognition vs. Object/Scene-level

Recognition

Humans possess a superb ability in categorizing complex natural scenes. Thorpe and colleagues have demon-

strated that the presence of an animal (or vehicle) in a photograph can be rapidly detected by subjects,

and a neurophysiological correlate of this detection is observed in the prefrontal cortex area in as little as

150ms [135]. This ability is robust to multiple stimuli as well as withdrawal of attention [77, 120]. Further

studies also suggest that a low-level, object-independent mechanism precedes the detection or recognition of

semantically meaningful stimuli [64,146]. A key question following these findings is that of the natural evo-

lution of scene perception. In other words, what is the time course of such recognition? Although the exact

timing differs in these studies, an overall consensus stipulates that recognition starts with the perception of

low-level features and is followed by categorical recognition.

Similarly, traditional models of object recognition posit that a low-level visual processing precedes the

high-level object recognition, in which segmentation takes place before recognition [25, 90, 122]. Other

evidence suggests that semantically meaningful object recognition might in turn influence low-level, object-

independent segmentation [103–105]. Recently, Grill-Spector and Kanwisher have found that humans are

as accurate at categorizing objects as at detecting their presence [52]. Moreover, analysis of response time

suggests not only that a similar amount of information is needed for these two processes, but also the same

amount of neuronal processing time [52].

The conclusions above are drawn from experiments that rely on multiple forced choices paradigm, in

which subjects are given a short list of possible answers before viewing the image. We are interested in

examining the same question in a free recall scenario, one that is closer to the natural experience of scene
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perception. Intuition tells us that different levels of recognition might occur upon processing different levels

of information. While coarser or lower frequency information is sufficient to detect the existence of a dog, it

is not necessarily adequate to know the dog is a husky or a German shepherd. We would like to, therefore,

scrutinize subjects’ descriptions of natural scenes at different presentation times in order to investigate the

evolution of different levels of recognition. In particular, we would like to contrast whether higher-level con-

ceptual information (e.g., object identification, object categorization, scene categorization, etc.) is perceived

simultaneously with low-level or ‘sensory’ information (e.g., shape recognition/parsing).

7.3.1 Method

looked like something black in the 

center with four straight lines coming 

out of it against a white background.

(Subject: AM)

SOA 

27ms

There was a range of dark sploches in 

the middle of  the picture, running from 

most of the way on the left side, to all 

the way on the right side. This was 

surrounded primarily by a white or light 

gray color. (Subject: KM)

I saw a very brght object,  shaped in a 

pyramidal shape.  There was somethin 

black in the front, but I couldn't tell 

what it was. (Subject: JB)

possibly outdoors. maybe a few ducks, 

or geese. Water in the background. 

(Subject: JL)

It was definately on a coast byt hte 

ocean with a large [r]ock in the 

forground and atleast three bird sitting 

on the rock. (Subject: CC)

SOA 

500ms

SOA 

67ms

SOA 

40ms

Couldn't see much; it was mostly dark 

w/ some square things, maybe

 furniture. (Subject: AM) 

This looked like an indoor shot. Saw 

what looked like a large framed object 

(a painting?) on a white background 

(i.e., the wall).  (Subject: RW)

I saw the interior of a room in a house. 

There was a picture to the right, that 

was black, and possibly a table in the 

center. It seemed like a formal dining 

room. (Subject: JB)

Some fancy 1800s living room with 

ornate single seaters and some 

portraits on the wall. (Subject: WC)

The first thing I could recognize was 

a dark sploch in the middle. It may have 

been rectangular-shaped, with a curved 

top. . .but, that's just a guess.

(Subject: KM)

a person, I think, sitting down or crouching. 

Facing the left side of the picture We see 

their profile mostly. They were at a table or 

were some object was in front of them (to 

their left side in the picture).  (Subject: EC)

This looks like a father or somebod helping 

a little boy. The man had something in his 

hands, like a LCD screen or laptop. they 

looked like they were standing in a cubicle.

(Subject: WC)

Figure 7.9: Samples of subjects’ free recall responses to images at different SOAs.

In Chapter 6, we gave a detailed account of how subjects viewed and recorded their responses to each of

the natural scene images in our database. Fig. 7.9 shows three of the images and some of their free recall

responses at four different SOAs. Notice that when the presentation time is short (e.g., SOA = 27ms or

40ms), the terminology used in the free recall responses tends to be shape and low-level sensory feature

related, such as ‘dark,’ ‘light,’ ‘rectangular,’ etc. As the display time increases, subjects seem more confident

at identifying the identity of the objects as well as the category of scenes. More conceptual and semantic

terms, such as ‘people,’ ‘room,’ ‘chair,’ appear with increasing frequency.

We quantify the above observation by comparing the evaluation scores of the shape/sensory-related at-
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tribute, as a function of presentation time, with scores of other, more semantically meaningful, attributes. In

Chapter 6.3, we explained how both such evaluation scores as well as baseline performances are obtained.

Note that our images are highly cluttered and objects tend to occlude each other. A correct label is given to a

description as long as the shape information given is correct, not necessarily complete.
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Figure 7.10: Perceptual performances of different attributes across all 7 presentation times. The perceptual
performance is based on evaluation scores detailed in the Method section. The sensory related perception is
plotted as a benchmark in all three panels. Perceptual performances for (a) overall scene and object attributes;
(b) scene level attributes; and (c) object level attributes.

7.3.2 Results and Discussion

Fig. 7.10 summarizes our results. The y-axis of each panel is the evaluation score computed for each selected

attribute(s). For comparison, we plot the sensory information response in all three panels of Fig. 7.10. The

general trend in sensory information accuracy indicates that its score decreases, relative to other attributes, as

the presentation time increases. This pattern is intuitive and predictable, as subjects cease to report shape or

sensory related information when they are able instead to ascribe higher-level descriptions to the image, such

as object labels, scene context, and semantic relationships among the objects.

In contrast, evaluation scores for attributes such as object names and scene types rise as the SOA length-

ens. The accuracy and frequency with which these attributes are reported increases as more information

becomes available. All panels of Fig. 7.10 also include a black line (at the bottom) corresponding to the

random control responses. Since the scorers are evaluating descriptions that are randomly matched to images

and various SOAs, it is expected that the average evaluation score is low and similar across all SOAs. This is

indeed what we observe.

In Fig. 7.10(a), we compare the responses of low-level visual/sensory information to the high-level in-

formation related to object, animate object, inanimate object, scene, indoor scene, and outdoor scene super-

ordinate categorizations. At SOA 27ms and 40ms, subjects report sensory level information more frequently

and accurately than object- and scene-related information (One-Way ANOVA: 16.28 < t(8) < 97.29,

p > 0.05). The object, inanimate object and animate object attribute information dominates over sensory
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information at SOA 67ms (One-Way ANOVA: 2.21 < t(8) < 36.86, p < 0.05). Similarly, the outdoor scene

attribute becomes indistinguishable to that for sensory level information at SOA 53ms (One-Way ANOVA:

t(8) = 0.003, p = 0.96), while the indoor scene curves overtake the sensory curve at 80ms (One-Way

ANOVA: t(8) = 36.86, p = 0.03). Once again, we find an obvious advantage for accurate report of outdoor

scenes over indoor scenes, confirming our results in Experiment II.

In Fig. 7.10(b), the relation between sensory information and scene information is dissected at finer

levels. Interestingly, if we analyze outdoor scene information at a finer level, for example manmade outdoor

and natural outdoor, in both cases attribute report is inferior to that of sensory level information until SOA

80ms. On the other hand, the trajectory of manmade outdoor scene perception statistically coincides with

the perception of even more subordinate categorizations of outdoor scenes, such as urban scenes (One-Way

ANOVA: 0.37 < t(8) < 5.22, p > 0.05). Once again, the randomized control results remain a stagnant

flat line at the bottom of the plot. This provides a glimpse into the order in which various kinds of semantic

information becomes available for conscious report, as a function of presentation time.

In an analogous assessment, Fig. 7.10(c) displays evaluation scores as a function of SOA for object

information. Somewhere between 45ms and 67ms presentation time, various levels of object perception

become more pronounced than sensory level information (at SOA 67ms, animate and inanimate object are

both significantly more reported than sensory information. One-Way ANOVA: 5.34 < t(8) < 7.30, p <

0.05). This switch in the predominant information reported transpires with shorter SOAs as compared to the

reports of scene-related attributes discussed in the previous paragraph.

While our results cannot attest directly for the time course of information processing while viewing an im-

age, our evidence suggests that on average, less information is needed to access some level of non-semantic,

shape-related information in a scene compared to semantically meaningful, object- or scene-related informa-

tion. This result is different from what Grill-Spector and Kanwisher reported in [52]. One major difference

in our experimental design is that their subjects are forced to make a multiple choice while our subjects are

instructed to write down whatever they recall. In addition, in their database, scenes that contain objects have

very different statistics compared to the scenes that do not contain objects, namely randomized pixels. Stud-

ies have suggested that some reliable structural information of a scene may be quickly extracted based on

coarse spatial scale information [93]. Consistent with these findings, our data seem to also show that coarse

spatial information about shape segmentation can be perceived with less presentation of the image.
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7.4 Experiment IV: Hierarchies of Objects and Scenes

It has been shown that some level of categorization of objects is most natural for identifying the object as

well as for discriminating it from others. Rosch developed this category hierarchy for object recognition

and identification; Tversky and Hemenway suggested a similar taxonomy for natural environments [142].

We were therefore interested in seeing if any correlation existed between our subjects’ reports of scene and

object recognition and those findings in [117, 142].

7.4.1 Method

We studied how different levels of object and scene categorization evolved as a function of presentation

time (SOAs). We follow the same method as described in Chapters 7.3.1 and 6.3. Evaluation scores were

averaged over images to provide an estimate of perception for each attribute at each SOA. Baselines were

also constructed for these attributes and were averaged and displayed on each graph.
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Figure 7.11: Perceptual performances of different object attributes across all 7 presentation times. The per-
ceptual performance is based on evaluation scores detailed in Chapter 6. The shape segmentation related
perception is plotted as a benchmark in all three panels. (a) Animate object related attributes; (b) Man-
made inanimate object related attributes; (c) Natural inanimate object related attributes; (d) Building and
sub-ordinate building categories.
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Figure 7.12: Perceptual performances of different scene attributes across all 7 presentation times. The per-
ceptual performance is based on evaluation scores detailed in the Chapter 6. The shape segmentation related
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7.4.2 Results and Discussion

First we explored the relationship between levels of the animate object hierarchy. Subjects seem able to

perceive coarser level animate objects more accurately than finer levels, particularly at shorter presentation

times (Fig. 7.11(a)). We show in this plot three levels of animate objects: the super-ordinate level animate

objects, animal, and mammal. At SOA 27ms, there exists a clear advantage for more accurate and frequent

report of animate objects versus the other three categories (One-Way ANOVA between the following attribute

and animate objects. animal: t(8) = 12.38, p = 0.01; mammal: t(8) = 19.27, p = 0.002; large mammal:

t(8) = 6.61, p = 0.03). This advantage decreases by SOA 40ms, though it still retains statistical significance

with respect to animal and large mammal (One-Way ANOVA: animal t(8) = 9.99, p = 0.01; mammal

t(8) = 1.25, p = 0.30; large mammal t(8) = 6.55, p = 0.03). In short, given a very limited amount of

information, subjects tend to form a vague percept of an animate object, but little beyond that.

A comparable advantage is found for manmade inanimate objects. Fig. 7.11(b) shows that while the

evolution of structure and road/bridge are very similar, subjects tend to accurately report an overall impression

of a manmade inanimate object rather than provide a more detailed level categorization. At short SOAs (27ms

and 40ms), recognition of all levels of this hierarchy is poor. With longer presentation times (from SOA 53ms

on), recognition improves, preferentially for the most super-ordinate level of ‘manmade inanimate object’

(significantly greater than structure and road/bridge for SOAs 53ms–500ms. One-Way ANOVA: 13.13 <

t(7) < 40.5578, p < 0.05. except at 80ms, vs. road/bridge (One-Way ANOVA: t(7) = 1.24, p = 0.30) and

at 500ms, vs. road/bridge (One-Way ANOVA: t(7) = 4.35, p = 0.08). The trend is replicated in the hierarchy

of structure recognition (Fig. 7.11(d)). In this plot, we observe that there is very clear gradation in terms

of perception accuracy among buildings, distinctive architectural styles (e.g., Gothic building, triangular

roof, etc.) and specific buildings (e.g., Capitol hill, Golden Gate, etc.). As with Fig. 7.11(b), accuracy is

poor for all levels at SOA 27ms. With increasing presentation time, the more general attribute of ‘building’

is better discerned than finer level discriminations. From 40ms to 80ms, ‘building’ evaluation scores are

significantly greater than those for the finest level of descriptive resolution ‘specific building’ (One-Way

ANOVA: 9.82 < t(8) < 23.02, p < 0.05). For the earlier part of the same interval (53ms and 67ms), building

perception is also superior to the intermediate level attribute of ‘distinctive architectural features’ (One-Way

ANOVA: 10.12 < t(8) < 25.73, p < 0.05). Less of an overall trend is seen in natural inanimate objects,

largely due to the high noise level of the plot (Fig. 7.11(c)). It seems that different levels of categorization

occur more or less at similar times.

Our results on object hierarchies and the change of perceptual accuracy over increasing SOAs are not

necessarily in conflict with the findings of Rosch [117]. In her study, the goal is to determine the level of
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categorical representation that is most ‘informative’ and useful to identify and distinguish an object. An

unspoken assumption is that this categorization is achieved given the full amount of perceptual information.

In our setup, however, subjects do not have unlimited access to the images. They have to make a decision

given the perceptual limitation due to the particular exposure length of the image. We find that under this

setting, coarser level object categorization is in general more accurate than finer level ones. As information

becomes more and more available (i.e., longer SOA), this difference becomes smaller. Whenever there is

enough information, subjects would attempt to make a finer level categorization.

We adopted a similar strategy in examining the evolution of scene-related perceptions, as represented in

Fig. 7.12. Fig. 7.12(a) shows, as a function of presentation times, the accuracy scores of ‘indoor scenes’

and three different ‘basic-level’ indoor environments: ‘household rooms’ (e.g., livingroom, bedroom, etc),

‘office/classroom’ and ‘dining/restaurant’ [142]. Unlike the hierarchical perception of objects, different levels

of indoor scenes do not exhibit clear discrepancies in recognition frequency and accuracy at any SOA. Curves,

representing the accuracy and frequency of indoor; household rooms, including living rooms, bedrooms, and

dining rooms; offices; and classrooms, seem to overlap and are statistically equivalent (One-Way ANOVA:

0.06 < t < 5.04, p > 0.05). The accuracy scores for store show a minor but significant deviation from

the indoor curve at a few SOAs (One-Way ANOVA at 27 and 53 ms, for example 68.45t(8) < 111.70,

p < 0.05). However, only 3 images in our dataset correspond to store environments. This small sample may

not be representative. Overall, it seems that once subjects decided that an image was an indoor scene, they

had also determined what type of scene it was.

Fig. 7.12(b) shows the evaluation results for different levels of natural outdoor scenes (natural outdoor

scene, field, beach and water). The coarsest level of the hierarchy, ‘outdoor scene,’ has a clear advantage over

all other levels from the shortest SOA (27ms) till about 500ms (One-Way ANOVA: 5.96 < t(8) < 183.45,

p < 0.05) except at 80ms: outdoor natural t(8) = 3.13, p = 0.11 water t(8) = 2.71, p = 0.14). Outdoor

scenes can be then further identified as a ‘natural outdoor’ scene. Analogous to the indoor scenario, once

subjects have classified an image as a natural outdoor scene, they are capable of further identifying its basic-

level category. There is no statistical difference among the evaluation scores for natural outdoor and many of

its subordinate categories, such as field, mountains, and water. The one notable exception is the entry-level

scene ‘beach,’ which is significantly lower at all SOAs until 107ms (One-Way ANOVA < t(8) <, p > 0.05).

A commensurate hierarchical trend is observed in manmade outdoor scenes (Fig. 7.12(c)). Again, here

the most abstract level attribute (outdoor scene) is more accurately perceived than the basic-level scenes

from SOA 27ms on (One-Way ANOVA for most attributes at all SOAs 4.16 < t(8) < 128.94, p < 0.05.

except ‘industrial’ at SOA 80 and 107 0.64 < t(8) < 1.25, p > 0.05; and ‘skyline’ at SOA 27 and 53ms
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0.47 < t(8) < 4.16, p > 0.05). But the perceptual accuracy scores of manmade outdoor scene, urban centers,

skylines, industrial environments and other manmade outdoor environments are essentially indistinguishable.

A few instances of significant but small differences were noted between manmade outdoor and industrial, and

between manmade outdoor and ‘other manmade’ scenes (for example, One-Way ANOVA for other manmade

t(8) = 27.41, p < 0.001). These categories comprised images of construction sites, parking lots, and

swimming pools; such scenes have not been mapped out in terms of their taxonomy and could conceivably

be specific subordinate rather than basic level categories. This may in part account for these findings.

Tversky and Hemenway have suggested a taxonomy of scenes similar to that of objects [142]. Their

study follows a similar line of arguments as Rosch [117]. Our results show, however, that scene perception

differs from object perception. While object recognition reveals some hierarchical structure, only the overall

categorization of ‘outdoor’ environment seems to need less information than recognition of other scene types.

In general, super-ordinate level scene categories (e.g., indoor, manmade outdoor, natural outdoor) seems to

require the same amount of information in recognition as the basic-level scenes (e.g., field, beach, skyline,

urban centers, etc.).

7.5 Experiment V: Object and Scene Perception: Are They Corre-

lated?

Intuitively, much of the meaning of a scene is defined by the objects that comprise the scene. Biederman

has shown that recognition of objects is impaired when embedded in jumbled scenes rather than coherent

scenes [8]. On the other hand, recent computational work has suggested that global features such as the

spatial frequencies of the images are often sufficient for categorizing different environments without explicit

recognition of the objects [138]. So are the objects in the scene perceived first? Or is the scene context

grasped independently, and perhaps prior to recognizing the objects? How are the two perceptions related?

Such questions have been open for debate for more than two decades [46, 51, 60].

Supported by studies of scene consistency and object detection, the perceptual schema model proposes

that expectations derived from knowledge about the composition of a scene type interact with the perceptual

analysis of objects in the scene [9, 13, 85, 98]. This view suggests that scene context information can be

processed and accessed early enough to influence recognition of objects contained in scene, even inhibiting

recognition of inconsistent ones [11].

The priming model, on the other hand, proposes that the locus of the contextual effect is at the stage when a

structural description of an object is matched against long-term memory representations [6,44]. Regardless of
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the mechanism, both the priming model and the perceptual schema model claim that scene context facilitates

consistent objects more so than inconsistent ones. These theories predict that we should observe a correlation

of object identification performance with scene context catetgorization performance.

In contrast, a third theory called the functional isolation model proposes that object identification is iso-

lated from expectations derived from scene knowledge [60]. It predicts that experiments examining the

perceptual analysis of objects should find no systematic relation between object and scene recognition per-

formance [60].

In this experiment, we do not attempt to resolve the debate between these models directly. Instead,

we look at the correlation between subjects’ perceptions of different levels of object categorization with

scenes as the presentation time changes. If scene and object perception follow from unrelated and disparate

mechanisms as the functional isolation model suggests, little correlation between the two should be observed

regardless of the presentation time. Conversely, if they share computational resources or facilitate each other

in some way, we expect a correlation between the perception of objects and scenes. Furthermore, if there is a

correlation between object and scene, we would like to know how this correlation is affected by the amount

of available information—in other words, how different levels of object categorization relate to overall scene

perception.

7.5.1 Method

For each SOA, we were interested in the correlation between perception of the overall scene context and that

of the various levels of object categories (e.g., animate objects, animals, large mammals, etc.). If for example

we wanted to look at the correlation between overall scene perception and overall object perception at SOA

40ms, we found the evaluation scores for these two attributes for every image at this SOA. We then performed

a straightforward correlation between the two sets of scores for all images. The same process can be repeated

for any pair of attributes.

7.5.2 Results and Discussion

We show the relationship between object level information and scene level information in Fig. 7.13. Each

of the 8 panels in Fig. 7.13 is a scatter plot of the evaluation scores for these two attributes. Let us take

Fig. 7.13(a) as an example, where we show the object and scene recognition at SOA 40ms. Each dot on the

scatter plot represents one image. If more than one image falls on the same coordinate, the size of the dot

increases linearly with the number of images. Fig. 7.13(a)-(d) uses the scene attribute as a bench mark. The

red dots represent the images with the top 20% of evaluation scores for scene, at the baseline condition (SOA
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Figure 7.13: Object recognition performance versus scene recognition performance at various different SOAs.
Performance is based on evaluation scores. See Results and Discussion sections for detailed explanations.
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Figure 7.14: Overall correlation coefficients for scene versus objects and breakdowns.

500ms). The green dots are the images with the lowest 20% of evaluation scores for scene at the baseline

condition. The black dots represent the remaining images. For Fig. 7.13(a)-(d), we are interested in these

images’ evaluation scores for the scene attribute (x-axis) as well as object attribute (y-axis) at SOA 40ms,

67ms, 107ms and 500ms. On each scatter plot, we also show the correlation coefficient computed across all

images. From 40ms to 107ms, there is a weak correlation between the scene attribute and the object attribute

(ρ(40ms) = 0.38, ρ(80ms) = 0.26, ρ(107ms) = 0.29), suggesting that subjects will perceive objects a

little more accurately when they perceive scenes more accurately. At SOA 500ms, this correlation becomes
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nearly 0. But both scene and object scores cluster near the upper right corner of the plot, indicating very

high accuracy of perception for both of these attributes. Similar to Fig. 7.13(a)-(d), Fig. 7.13(e)-(h) show the

relationship between scene and object recognition using the object attribute as a bench mark. In this case, the

red dots are images that have the top 20% of evaluation scores for object under the baseline condition, and

the green dots are those images with the lowest 20% of evaluation scores. Since correlation does not reflect

causality, we should obtain the same correlation score whether the object or the scene attribute is used as a

bench mark. Our data in Fig. 7.13(e)-(h) show the same correlation scores as each of their counterpart plots

in Fig. 7.13(a)-(d).

We can further explore the different relationships between scene perception and various level object at-

tributes at different presentation times (Fig. 7.14). The x-axis is the log scale of SOA times, ranging from

40ms to 500ms. Most of the object attributes receive very low evaluation scores at 27ms, hence the omis-

sion. The y-axis is the correlation score between a given attribute (e.g., inanimate object) and overall scene

perception.

Compared to objects, the inanimate object attribute possesses a much stronger correlation with scene

perception (average correlation score between 40ms to 107ms is 0.55 for inanimate object, and 0.30 for

overall object, p < 10e-3). This relatively stronger correlation between scene and inanimate object perception

continues as we break it down to manmade inanimate objects and natural inanimate objects. They each

have an average correlation score of 0.39 (p ≤ 0.01) and 0.32 (p ≤ 0.04), respectively (for SOA 40ms to

107ms). In Fig. 7.14, we also show two manmade objects, vehicle and building. Interestingly, while building

is very similar to manmade inanimate object in terms of correlation between its recognition accuracy with

scene perception (average correlation score of 0.31 for SOA 40ms to 107ms, p ≤ 0.02, except SOA 107ms,

p = 0.09), vehicle attribute seems to have a near 0 correlation with the scene (average correlation score of

0.01 for SOA 40ms to 107ms, 0.40 ≤ p ≤ 0.92).

Curiously, the predominantly strong correlation between inanimate object perception and scene percep-

tion does not hold for those attributes involving animate objects. At the coarsest level, animate object

recognition has an average correlation score of −0.15 with scene perception (for SOA 40ms to 107ms,

0.02 ≤ p ≤ 0.77). At various levels of animate object recognition, the correlations with scene percep-

tion oscillate between no correlation (e.g., people, an average correlation of −0.08 for SOA 40ms to 107ms,

0.25 ≤ p ≤ 0.51) and a very weak correlation (e.g. animal and mammal, both with average correlation of

0.12 for SOA 40ms to 107ms, 0.12 ≤ p ≤ 0.92).

Our observations do not suggest causality. We merely indicate the correlation or lack of correlation

between scene perception and various levels of object perception. Overall we see a weak but significant
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correlation between scene and object perception (Fig. 7.13) at and up to presentation times of 107ms. This

correlation might suggest several possibilities: i) object and scene perceptions might share at least some

resources in processing; and/or ii) object (or scene) perception facilitate processing of scene (or object)

perception. Both the schema model and the priming model would support the present observation.

What is curious is that this correlation is not evenly shared by inanimate and animate objects (plus ve-

hicles). Fig. 7.14 demonstrates clearly that there is a qualitatively different correlative relation between

inanimate objects and scenes versus animate objects and scenes. The general trend is that recognition of

inanimate objects is dramatically more correlated with the perception of scene context than is perception of

animate objects. Given this observation, one possiblity is that familiarity may account for the diminished

facilitation between animate objects and overall scene perception. If we are innately more familiar with ani-

mals, especially human figures, the perception of these objects may depend less on the facilitation from other

factors. Interestingly, vehicle is among the least correlated object categories with scenes. Given our modern

lifestyle, subjects are in general very familiar with various kinds of vehicles in the pictures in our database.

Another highly speculative hypothesis would be that there is less mutual facilitation between the recognition

of mobile objects (such as animals, people and vehicles) and scenes. If prior knowledge of these objects

informs us that they are likely to move from scene to scene, there might be less expectation for recognizing

them in any particular scene. Admittedly, much still needs to be done to fully understand this unexpected

asymmetry between inanimate and animate objects.
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Chapter 8

Summary

We have shown a novel method to study scene perception. We collected free recall responses from subjects

who were instructed to view 90 different real-world scenes under different presentation times. An independent

group of subjects then evaluated the free recall responses. In this chapter, we summarize several interesting

findings from this novel approach.

8.1 The Gist of Gist

The term ‘gist’ has long been used to refer generally to the overall crux or meaning of something. In the

world of human vision, the term ‘gist’ has frequently been applied to scene understanding, yet the central

question remains as to what actually constitutes this scene gist. We would like to suggest that the term ‘gist’

is used to denote the perceived contents of a scene given a certain amount of viewing time. A sensible and

intuitive proposal would be a single glance or fixation. Many studies have shown much can be seen within a

single glance of a scene [8, 13, 52, 77, 135, 145]. These experiments, however, are all conducted with some

form of forced multiple choices. In Experiment I, we have collected a list of scene attributes perceived by

subjects within a single glance of real-world scenes. This list includes most common scene types, super-

ordinate categories of objects and a variety of basic categories of objects, as well as social activities and

human interactions. We suggest that these are all part of the scene ‘gist.’ It is also important to point out that

in our list of scene attributes, we do not include any sensory level information, such as shapes and illumination

contrast. Experiment III shows that such information can clearly be accessed within a single glance. In fact,

other semantically more meaningful attributes quickly predominate over sensory description in subjects’

reports. Since our assumption limits the definition of gist within semantically meaningful attributes, we do

not include the sensory and shape information.

Information contained in the ‘gist’ of a real-world scene seems to enjoy a tremendous privilege in visual
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processing. Temporally, this privilege is reflected through the ultra-rapid speed with which the brain catego-

rizes natural scenes [135]. Spatially, this complex scene categorization is not affected when spatial attention

is deployed elsewhere [77]. Our results in Experiment I further suggest that a rich collection of perceptual

attributes is represented and rises to conscious memory within a single fixation. Beyond a list of objects

and scene environment [156], more cognitive appraisals of the event—such as social interaction and sports

events—can be recognized effortlessly. It would be highly interesting for future studies to investigate the

neural correlates that are responsible for such superb ability of real-world scene perception.

8.2 Shapes, Objects and Scenes

A key question in perception is the neuronal time course a given perceptual task follows, in other words,

through what stages is a stimulus processed in order to manifest as semantically meaningful concepts.

The ventral visual pathway, linking the primary visual cortex through Inferior Temporal cortex to the

prefrontal cortex, is generally known as the ‘what’ visual pathway, as it is responsible for object recognition

through integrating features [28, 70, 89, 143]. Given the hierarchical structure of the visual system, many

have proposed a model in which elementary features of objects are first processed and then bound together

for object recognition [140, 157]. An ongoing debate in this picture is whether shape segmentation is a

necessary intermediate step between low-level feature processing and high-level object recognition [25, 90,

122]. Recently, Grill-Spector and Kanwisher have found that categorization of super-ordinate to basic level

objects (e.g., vehicle, musical instrument, bird, car, dog, etc.) is as accurate and fast as the mere detection

of the object [52]. Their conclusion is based on an experiment in which subjects are asked to either choose

one of the possible object categories or respond simply if an object is detected. Comparing their non-object

distractors, it is obvious that the low-level image statistics of the distractors (mostly pixel noise) are drastically

different from the images containing objects (all containing a central blob). Given this expectation, subjects

are likely to heighten their search for a centrally located blob when detecting objects. In our experiments,

subjects viewed freely a naturally cluttered real-world scene. Because our scenes are highly variable, they

cannot expect a centrally located blob when looking at an image. In Experiment III, we found that shape

related information has a slight advantage over semantically meaningful information of a scene. Our dataset

shows less information seems needed for lower-level shape recognition compared to higher-level semantically

meaningful recognition. This temporal constraint implicates a lower, feature level processing in facilitation

of the initial stages of complex scene recognition.

Another major question regards object recognition in cluttered scenes. Several psychological models

have been proposed to suggest different mechanisms of scene and object perception [6, 8, 9, 44, 60, 84, 98].
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information can serve as facilitating media for more accurate object recognition [8, 9]. Similar to this view,

Friedman et al. proposes in the priming model that a pivotal object, serving as the locus of the context,

becomes a seed in the long term memory of scenes [6, 44, 98]. Opposite to these two views, Henderson

and colleagues argue that object identification is independent from scene knowledge [60, 84]. This model

predicts that recognition of objects in a scene and the scene context itself should have little effect on each

other. In Experiment V, we show very weak evidence that object and scene recognition might be correlated

when information is scarce. But this correlation is not uniformly distributed among different level of object

categories. Results in Experiment V tells us that there is a stronger correlation between various levels of

inanimate objects and scenes compared to animate objects and scenes. We will come back to this point in

more detail in the next section.

In general, the question of the processing stages of cluttered scenes is still largely unsolved. Our experi-

ments add evidence that there might exist a mutual facilitation between overall scene recognition and object

recognition. In addition, low-level shape processing seems to require less information and possibly time com-

pared to more high-level, semantically meaningful categorizations of objects and scenes. Traditionally, scene

comprehension tends to be viewed in a serial fashion–in the order of sensory information, object features,

objects, and the overall scene. Many new studies have now suggested that contrary to this view, high-level

perception of natural scenes might be a highly efficient and parallel process [52, 77, 120, 135]. It would be

interesting to examine an alternative hypothesis in which most of the recognition stages occur in parallel

and constantly feed back information to each other to enhance the overall recognition of various components

of the scene. In this possible scenario, early sensory information extraction stages still precede most of the

semantic recognition stages. But as soon as there is any information for any possible level(s) of recognition,

our brains take advantage of this.

8.3 Two Puzzling Asymmetries?

In Experiment II, we observe a strong preference for outdoor scenes over indoor scenes when visual infor-

mation is scarce. Subjects seem to assume by default that an ambiguous image is more likely to be out-

door than indoor. This effect diminishes as the presentation time lengthens. At 500ms, outdoor and indoor

scene categorization becomes nearly perfect. Our results further show that the bias only appears at the most

super-ordinate level. When indoor scenes are compared with manmade or natural outdoor scenes, the bias

disappears. Furthermore, neither segmentation nor object recognition seem influenced by this bias between

these two categories of scenes. So what is it that causes this bias? Recent computational models have shown

that using global and local cues such as edge and color information, it is possible to separate most outdoor



76

and indoor scenes [35, 132, 138, 144]. This strongly suggests that whatever feature(s) enables this discrimi-

nation is(are) either missing or inaccessible when information is scarce. More studies should be performed

to pinpoint exactly what it is. This might be a very useful entry point to investigate the features needed for

rapid scene categorization.

Another curious asymmetry we observe in Experiment V is the stronger correlation between inanimate

object recognition and overall scene context versus that between animate object recognition and overall

scene context. One possible explanation of this phenomenon is the effect of familiarity. It has been long

known that there might be special neuronal resources designated for human parts such as faces and bod-

ies [24, 30, 31, 67, 116]. We have also found recently that familiarity might modulate the level of attentional

requirement in object recognition tasks [36]. If there is indeed an innate preference for animate objects such

as animals and humans, there might also exist efficient computational mechanisms for the visual system to

process this information rapidly and accurately. Compared to other object categorization, it might therefore

be less dependent on possible mutual facilitation mechanisms with scene gist perception. As this is largely

speculation, more experiments need to be done to address these hypotheses and account for this asymmetry.
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Part IV

Computational Models I: Object

Recognition
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Chapter 9

Introduction

9.1 Introduction and Motivation

Recognition is one of the most useful functions of our visual system. We recognize materials (marble, orange

peel), surface properties (rough, cold), objects (my car, a willow) and scenes (a thicket of trees, my kitchen)

at a glance and without touching them. We recognize both individuals (my mother, my office), as well as

categories (a 1960’s hairdo, a frog). By the time we are six years old we recognize more than 104 categories

of objects [10] and keep learning more throughout our life. As we learn, we organize both objects and

categories into useful and informative taxonomies and relate them to language. Replicating these abilities

in the machines that surround us would profoundly affect the practical aspects of our lives, mostly for the

better. Certainly, this is the most exciting and difficult puzzle that faces computational vision scientists and

engineers in this decade.

A rich palette of diverse ideas has been proposed during the past few years, especially on the problem of

recognizing objects and object categories (see our brief review of the literature below). There is broad con-

sensus of the fact that models need to capture the great diversity of forms and appearances of the objects that

surround us. This means models containing hundreds, sometimes thousands, of parameters. It is common

knowledge in statistics that estimating a given number of parameters requires a many-fold larger number of

training examples–as a consequence, learning one object category requires a batch process involving thou-

sands or tens of thousands of training examples [39, 125, 148, 153].

Unfortunately, it is often difficult and expensive to acquire large sets of training examples. Compounding

this problem, most algorithms for learning categories require that each training exemplar be aligned (typically

by hand) with a prototype. This becomes particularly problematic when fiducial points are not readily iden-

tifiable (can we find a natural alignment for images of octopus, of cappuccino machines, of bonsai trees?).

This is a large, practical obstacle on the way to learning thousands of object categories. It would be far better
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if we managed to find ways to train new categories with few examples.

Additionally, learning should be incremental, rather than batch. Imagine a machine placed in a new

environment. It would be useful for that machine to learn a new object class, maybe only tentatively, as soon

as it encounters a few exemplars, rather than waiting, perhaps in vain, for hundreds of examples to show up.

Online learning of object categories has not yet been approached in the literature.

Is there any hope? We believe so. A young child learns many categories per day [10]. It seems unlikely

that this would require a large set of training images for each category as well as much supervision. Informal

observation also tells us that for an adult, learning a new category is both fast and easy, sometimes requiring

very few training examples: given 2 or 3 images of an animal you have never seen before, later on you can

usually recognize with some reliability other exemplars of the same species.

We hypothesize that, once a few categories have been learnt the hard way, some information may be

abstracted from that process to make learning further categories more efficient. In other words, we should

be able to make use of the knowledge that has been gained so far rather than starting from scratch each time

we learn a new category. We pursue here this hypothesis in a Bayesian setting: we extract “general knowl-

edge” from previously learnt categories and represent it in the form of a prior probability density function

in the space of model parameters. Given a training set, no matter how small, we update this knowledge and

produce a posterior density, which is then used for detection/recognition. Our experiments show that this is a

productive approach and that indeed some useful information about categories may be obtained from a few,

even one, training example.

9.2 Literature Review

In order to place our work in context we make a few observations and mention the relevant literature on object

recognition.

Researchers in this area face three main challenges. Representation: how should we model objects and

categories? Learning: how may we acquire such models? Detection/recognition: given a new image, how

do we detect the presence of a known object/category amongst clutter, and despite occlusion, viewpoint and

lighting changes? The great richness and diversity of methods and ideas in the literature indicates that these

issues are far from being settled. However, there is broad consensus on a few significant points. First of all,

the shape and appearance of the objects that surround us are complex and diverse, therefore models should

be rich (lots of parameters, heterogeneous descriptors). Second, the appearance of objects within a given

category may be highly variable, therefore models should be flexible (allow for some slop in the parameters).

Third, in order to handle intra-class variability and occlusion, models should be composed of features, or
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parts, which are not required to be detected in all instances; the mutual position of these parts constitutes

further model information. Fourth, it is difficult, if not impossible, to model class variability using principled

a-priori techniques; it is best to learn the models from training examples. Fifth, computational efficiency

must be kept in mind.

Work on recognition may be divided into two groups: recognition of individual objects [42, 53, 79, 119]

and recognition of categories [4, 19, 39, 72, 75, 121, 124, 125, 131, 148, 153]. Individual objects are easier

to handle, therefore more progress has been made on efficient recognition [79], lighting-invariant [79, 86]

and viewpoint-invariant [63, 119] representations and recognition. Classes are more general, require more

complex representations, and are more difficult to learn; most work has therefore focused on modeling and

learning. Viewpoint and lighting have not been treated explicitly (an exception is [152]), but rather treated as

an additional source of in-class variability. With the exception of work on handwritten digits [72], researchers

have only dealt with detection (a given category is present/absent) rather than recognition (recognizing one

out of many possible categories).

We are interested in the problem of learning and recognition of categories (as opposed to individual

objects). While the literature proposed learning methods that require batch processing of thousands of training

examples, the present work focuses on the previously unexplored problem of efficient learning: how could

we estimate models of categories from very few, one in the limit, training examples. Most researchers have

focused on special-interest categories: human faces [125, 148], pedestrians [149], hand-written digits [72]

and automobiles [39, 125]. Instead, we wish to develop techniques that apply equally well to any category

that a human would readily recognize. With this objective in mind, we carried out our experiments on a large

number of categories.

Another aspect that we wish to emphasize is the ability to learn with minimal supervision. We prefer to

develop methods that do not rely on hand-alignment of the training examples, for the reasons mentioned in

the introduction. For this reason, we use statistical models and probabilistic detection techniques developed

by [19, 39, 75, 153], which will be reviewed in Chapter 10.2.

9.3 Contribution

We show in this study that by utilizing prior information of the object world, our algorithm is able to learn

a completely new object category given very few training examples. This result is compared favorably to

today’s state-of-the-art computer vision algorithms in object recognition. We introduce an advanced machine

learning method, variational Bayesian method. Our algorithm is tested on a large object category database of

101 object categories.
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Chapter 10

A Bayesian Model

10.1 Overall Bayesian Framework

Let’s say that we are looking for a flamingo bird in a query image that is presented to us. To decide whether

there is a flamingo bird or not, we compare the probability of a flamingo being present in the image with the

probability of only background clutter being present in the image. The decision is simple: if the probability

for a flamingo present is higher, we decide this image contains an instance of a flamingo. If it is the other

way around, we decide there is no flamingo. To compute the probability of a flamingo being present in an

image, we need a model of a flamingo, which we learn from a set of training images containing examples of

flamingos. Then we could compare this probability with the background model, and in turn make our final

decision.

We can now translate the above events into a probabilistic framework. Let I be the query image, which

may contain an example of the foreground class Ofg , say flamingo. The alternative is that it contains back-

ground clutter belonging to a generic background class Obg. It is the set of training images that we have seen

while learning the flamingo class. Now the decision of whether this query image I has a flamingo or not can

be written in the following way:

R =
p(Ofg |I, It)

p(Obg |I, It)
(10.1)

=
p(I|It,Ofg) p(Ofg)

p(I|It,Obg) p(Obg)
(10.2)

If R, the ratio of the class posteriors, is greater than some threshold, T , then we decide the image contains

an instance of a flamingo. If it is less than T then the image does not contain a flamingo. Note that in

Eq. 10.2, we use Bayes Rule to expand Eq. 10.1, giving us a ratio of likelihoods and a ratio of priors on the

object classes. We can now further expand Eq. 10.2 by introducing a parametric model for the foreground
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and background class, whose parameters are θ and θbg , respectively:

R ∝

∫
p(I|θ,Ofg)p(θ|It,Ofg) dθ

∫
p(I|θbg ,Obg)p(θbg |It,Obg) dθbg

(10.3)

=

∫
p(I|θ)p(θ|It,Ofg) dθ

∫
p(I|θbg)p(θbg |It,Obg) dθbg

(10.4)

The ratio of priors, p(Ofg)
p(Obg) , is a constant, thus it is omitted in Eq. 10.3 since it may be incorporated in the

decision threshold. In addition, we have simplified p(I|θ,Ofg) into p(I|θ) for the sake of simplicity. Sim-

ilarly, p(It|θbg ,Obg) is abbreviated to p(It|θbg). The learning procedure involves estimating p(θ|It,Ofg),

the distribution of model parameters given the training images. Once this is known, we can evaluate R by

integrating out over θ. We now look at the particular object model used.

10.2 The Object Category Model

Our chosen representation is a Constellation model [20, 39, 153]. Given a query image, I, we find a set of

N interesting regions in the image. From these N regions, we obtain two variables: X–the locations of the

regions and A–the appearances of the regions. Section 14.2 gives details of how X and A are obtained. It is

X and A that we now model, I no longer being used directly. Similarly, in the case of the training images

It, we obtain Xt and At. Thus Eq. 10.3 becomes:

R ∝

∫
p(X ,A|θ,Ofg)p(θ|Xt,At,Ofg) dθ

∫
p(X ,A|θbg ,Obg)p(θbg|Xt,At,Obg) dθbg

(10.5)

=

∫
p(X ,A|θ)p(θ|Xt,At,Ofg) dθ

∫
p(X ,A|θbg)p(θbg |Xt,At,Obg) dθbg

(10.6)

We now examine likelihoods p(X ,A|θ) and p(X ,A|θbg), where in the general case, we have a mixture of

constellation models, with Ω components:

p(X ,A|θ) =

Ω∑

w=1

∑

h∈H

p(X ,A,h, w|θ) =

Ω∑

w=1

p(w|π)
∑

h∈H

p(A|h, θA
w )

︸ ︷︷ ︸

Appearance

p(X|h, θX
w )

︸ ︷︷ ︸

Shape

p(h|θw) (10.7)

where θ = {π, θA, θX } and p(h|θw) is a constant. Note that the shape, X , and appearance, A, are assumed

to be independent. Typically, a constellation model would have P (3 ∼ 7) diagnostic features, or parts.

But there are N (up to 100) interest points, or candidate features in the image. We therefore introduce an

indexing variable h, which we call a hypothesis. h is a vector of length P , where each entry is between 1 and

N , which allocates a particular feature to a model part. Any unallocated features are assumed to belong to
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the background of the image. The set of all hypotheses H consists of all valid allocations of features to the

parts; consequently |Hn|, the total number of hypotheses in image n is O(NP ). For simplicity, we assume

the background model is fixed and has a single parameter value, θbg , thus the integral in the denominator

of Eq. 10.6 collapses to p(X ,A, |θbg). If we believe no object to be present (the Obg case), then only one

hypothesis exists, h0, the null hypothesis, where all detections are assigned to be background. Hence the

denominator becomes:

p(X ,A, |θbg) = p(X ,A,h0, |θbg) = p(A|h0, θ
A
bg)p(X|h0, θ

X
bg)p(h0|θbg) (10.8)

Since this expression is constant for given X and A, we can use it to cancel terms in the numerator of Eq.

10.6.

The model encompasses the important properties of an object: shape and appearance, both in a probabilis-

tic way. This allows the model to represent both geometrically constrained objects (where the shape density

would have a small covariance, e.g., a face) and objects with distinctive appearance but lacking geometric

form (the appearance densities would be tight, but the shape density would now be looser, e.g., an animal

principally defined by its texture such as a zebra). Note, that in the model the following assumptions are

made: shape is independent of appearance; for shape the joint covariance of the parts’ position is modeled,

whilst for appearance each part is modeled independently. In the experiments reported here we use a slightly

simplified version of the model presented in [39] by removing the terms involving occlusion and statistics of

the feature finder, since these are relatively unimportant when we only have a few images to train from.

10.2.0.1 Appearance

Each feature’s appearance is represented as a point in some appearance space, defined in Chapter 11.1.1. For

a given mixture component, each part p has a Gaussian density within this space, with mean and precision

parameters θ
A
p,w = {µA

p,w,ΓA
p,ω} that are independent of other parts’ densities. The background model has

the same form, with fixed parameters θ
A
bg = {µA

bg ,Γ
A
bg}. Note that ΓA

p,w and ΓA
bg are diagonal matrices. Each

feature selected by the hypothesis is evaluated under the appropriate part density with features not selected

being evaluated under the background model:

p(A|h, θA
w) =

P∏

p=1

G(A(hp)|µ
A
p,w,ΓA

p,w)

N∏

j=1, j \h

G(A(j)|µA
bg ,Γ

A
bg) (10.9)
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where G is the Gaussian distribution and j represents features not assigned to a part in hypothesis h. If no

object is present then all features are modeled by the background:

p(A|h0, θ
A
bg) =

N∏

j=1

G(A(j)|µA
bg ,Γ

A
bg) (10.10)

Note that p(A|h0, θbg) is a constant for a given image, therefore it can be brought inside the integral and

summation over all hypotheses in Eq. 10.6 and 10.7. This cancels with all other background hypotheses

except the true foreground hypothesis h in Eq. 10.9:

p(A|h, θA
w)

p(A|h0, θ
A
bg)

=
P∏

p=1

G(A(hp)|µ
A
p,w,ΓA

p,w)

G(A(hp)|µA
bg ,Γ

A
bg)

(10.11)

10.2.0.2 Shape

The shape of each constellation model component is represented by a joint Gaussian density of the locations

of features within a hypothesis, after they have been transformed into a scale and translation-invariant space.

Translation invariance is achieved by using the leftmost part as a landmark and modeling all parts relative

to it. Scale invariance is obtained by taking the scale of the landmark feature and using it to normalize the

relative locations of the other parts. We assume uniform densities α−1 for the position of the object, where α

is the image area. The relative location of the parts is modeled by a 2(P − 1) dimensional Gaussian, with a

uniform background model for unallocated features:

p(X|h, θX
w ) = α−1 G(X (h)|µX

w ,ΓX
w ) α−(N−P ) (10.12)

where θX
w = {α, µX

w ,ΓX
w}. For the null hypothesis, p(X|h0, θ

X
bg) = α−N , which is also a constant, so we

cancel with all other background hypotheses except the true foreground hypothesis h in Eq. 10.12:

p(X|h, θX
w )

p(X|h0, θ
X
bg)

= αP−1 G(X (h)|µX
w ,ΓX

w ) (10.13)

Additionally, to reduce the number of hypotheses that must be considered in each frame, we impose an

ordering constraint on each hypothesis’ shape, such that the x-coordinate of each part much be monotonically

increasing. This reduces the number of hypotheses that must be considered by P ! and provides a useful

constraint in the learning process.
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10.2.1 Discussion of model

We make some comments concerning the model:

1. X (h) ∈ R
2P−2 and A(h) ∈ R

kP thus for k = 10, P = 4, the shape term has 6+21 = 27 (mean + full

covariance matrix) parameters. The appearance term has 40 + 40 = 80 (mean + diagonal covariance

matrix) parameters, thus the model has 27 + 80 = 107 parameters in total.

2. The total number of hyperparameters for k = 10, P = 4 is 109, since m and B are the same di-

mensionality as µ, Γ but additionally β and a (both real numbers) exist for both shape and appearance

terms: 107 + 2 = 109.

3. The constellation model is a generative model of the output of an interest region detector, not the

image pixels. Hence the performance of the model is dependent on the performance of the detectors

themselves. See Chapter ?? for an investigation into this dependency.

4. In our representation, there is nothing to prevent patches from overlapping that could lead to overcount-

ing of the evidence for the model. However, given relatively low number of features per image, this

should not be a major problem.

5. The shape model presented above uses a joint density over all parts, thus the data association problem

has complexity O(NP ). While this is the most thorough approach to modelling the location of parts,

it presents a major computational bottleneck. Imposing conditional independence by the use of a tree-

structured model would reduce the complexity to O(N 2P ) in learning and O(NP ) in recognition

[37, 41]. However, in doing so, other issues arise such as how the optimal graph structure should be

chosen. Since these issues are in themselves complex and are outside the focus of this paper, for the

sake of simplicity, we stick with the complete representation, despite its drawbacks.

6. Our model and representation of shape is suited to compact objects that do not have large amounts of

articulation (e.g., human bodies). For such categories, different graph structures and coordinate frames

(i.e., the angles between parts) may be more appropriate.

7. Our feature representation is currently confined to textured image patches. Alternative representations,

such as curve contours, which model the outline of the object could also be used with little modification

to the underlying model [38,40]. This would allow the model to handle categories where the outline of

the object is more important than its interior (e.g., bottles).

8. Currently the background model is very simple: a uniform shape distribution and a single Gaussian

distribution for appearance. Their crude nature is a consequence of the requirement, for efficiency,
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that the denominator in Eq. 10.5 must be able to cancel with the numerator, making evaluation of

the likelihood ratio simple. The parametric assumptions of the background model were tested by

examining the distribution of thousands of detections from an assorted collection of images. Our

observation was that these assumptions were reasonably accurate.

9. The framework describes object detection (i.e., object present or absent), however it can easily be

extended to localization by using the best hypothesis in each image (e.g., by taking a bounding box

around it). Multiple instances per image can also be found by a greedy approach: finding the best

hypothesis; summing over all hypotheses around its neighborhood to give a value of R for a sub-

window of the image; and removing all features within the sub-window and repeating until no sub-

windows with R greater than a given threshold can be found.

10. Our model is formulated as a mixture of Gaussians (Eq.10.7). In practice, we use a single mixture

component in this paper for all of the experiments. Weber et al. have demonstrated that by increasing

the number of mixture components, the model is capable of representing different aspects of the object

due to pose variations [152].

10.2.2 Form of the Parameter Posterior

In computing R, we must evaluate the integral
∫

p(X ,A|θ)p(θ|Xt,At,O) dθ. In Chapter 10.2 the form of

p(X ,A|θ) was considered. We now look at the posterior of θ, p(θ|Xt,At,O). Before we consider how this

density might be estimated, its form must be decided upon. Since the integral above is typically impossible

to solve analytically, we look at various forms of p(θ|Xt,At,O) that approximate the true density whilst

making the integral tractable.

10.2.3 Maximum Likelihood (ML) and Maximum A Posteriori (MAP)

If we assume that the model distribution p(θ|Xt,At,O) is highly peaked, we could approximate it with a δ

function at θ∗: δ(θ − θ∗). This allows the integral in Eq. 10.6 to collapse to p(X ,A|θ∗), whose functional

form is given by Eq. 10.7.

There are two ways of obtaining θ
∗, illustrated in Fig. 10.1. The simplest one is Maximum Likelihood

(ML) estimation [39, 153]. Here θ∗ = θML is computed by picking the θ that gives rise to the highest

likelihood value of the training data:

θ∗ = θML = argmax
θ

p(Xt,At|θ) (10.14)
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θ

p(D|θ)

θML

δ(θ−θML)

θ

p(D|θ)

p(θ)

p(D|θ)p(θ)

δ(θ−θMAP)

θMAP

(a) Maximum Likelihood (ML) (b) Maximum a posteriori (MAP)

Figure 10.1: Schematic comparison of ML and MAP methods.

If we had some prior knowledge about θ, we could also use this information to help estimate θ∗. The idea is

to weigh the likelihood of training examples at θ by the prior probability of θ at that point. This is called the

Maximum a posteriori (MAP) estimation.

θ
∗ = θ

MAP = argmax
θ

p(Xt,At|θ)p(θ) (10.15)

The form of p(θ) needs to be chosen carefully to ensure that the estimation procedure is efficient. In Appendix

A.3, we revisit this equation and give a more detailed account of p(θ) and methods for estimating θMAP.

Both ML and MAP assume a very well peaked p(θ|Xt,At,O) so that δ(θ − θ∗) is a suitable estimate

of the entire distribution. But when there is a very limited number of training examples, the distribution may

not be well peaked, in which case both ML and MAP are likely to yield poor models.

10.2.3.1 Other Inference Methods

Sampling methods. At the other extreme, we can use numerical methods such as Gibbs Sampling [47] or

Markov-Chain Monte-Carlo (MCMC) [48] to give an accurate estimate of the integral in Eq. 10.6, but these

can be computationally very expensive. In the constellation model, the dimensionality of θ is large (∼ 100)

for a reasonable number of parts, making MCMC methods impractical for our problem. Additionally, the

use of sampling-based methods is something of an art: issues such as what sampling regime to use have no

simple answer. Hence they are less attractive as compared with methods giving a distinct solution.

Recursive Approximations A variety of variational approximations exist that are recursive in nature

[62]. In such schemes, the data points are processed sequentially with the (approximate) marginal posterior

p(θ|Xt,At,O) being updated after each new data point. The major drawback to using them is that the final

solution is dependent on the ordering of the data points. In our problem the data has no obvious ordering,

hence such methods would complicate the learning procedure so we choose not to adopt them [33].
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10.2.4 Conjugate Densities

The final approach is to assume that p(θ|Xt,At,Ofg) has a specific parametric form, such that the integral

in Eq. 10.5 has a closed-form solution. Recalling the numerator of Eq. 10.5:

∫

p(X ,A|θ)p(θ|Xt,At,Ofg) dθ (10.16)

Our goal is to find a parametric form of p(θ|Xt,At,Ofg) such that the learning of p(θ) is feasible and the

evaluation of Eq.10.16 is tractable. This could be achieved by taking advantage of a class of prior distributions

that are conjugate to their posterior distributions. In other words, a conjugate prior for a given probabilistic

model is one for which the resulting posterior has the same functional form as the prior. In the case of

p(θ|Xt,At,Ofg), we use a Normal-Wishart distribution as its conjugate prior. Given that p(X ,A|θ) was

chosen to be a product of Gaussians (in Chapter 10.2), the entire integral of Eq.10.16 becomes a multivariate

Student’s T distribution. Efficient learning schemes exist for estimating the hyper-parameters of the Normal-

Wishart distribution [5], having the same computational complexity as standard ML methods. These are

introduced in Chapter 10.4.

10.3 Recognition Using a Conjugate Density Parameter Posterior

Having specified a functional form for the parameter posterior, we now give the actual equations for use in

recognition.

10.3.1 Parameter Distribution

Recall the mixture of constellation models from Eq. 10.3:

p(X ,A|θ) =

Ω∑

ω=1

p(ω|π)

|H|
∑

h=1

p(Xh|µ
X
ω ,ΓX

ω )p(Ah|µ
A
ω ,ΓA

ω ) (10.17)

Each component ω has a mixing coefficient πω ; a mean of shape and appearance µX
ω , µA

ω ; and a precision

matrix of shape and appearance ΓX
ω ,ΓA

ω . The X and A superscripts denote shape and appearance terms,

respectively. Collecting all mixture components and their corresponding parameters together, we obtain an

overall parameter vector θ = {π, µX , µA,ΓX ,ΓA}. Assuming we have now learnt the model distribution

p(θ|Xt,At) from a set of training data Xt and At, we define the model distribution in the following way:

p(θ|Xt,At) = p(π)
Y

ω

p(µX
ω |ΓX

ω )p(ΓX
ω )p(µA

ω |ΓA
ω )p(ΓA

ω ) (10.18)
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where the mixing component is a symmetric Dirichlet: p(π) = Dir(λωIΩ), the distribution over the shape

precisions is a Wishart p(ΓX
ω ) = W(ΓX

ω |aX
ω , BX

ω ) and the distribution over the shape mean conditioned

on the precision matrix is Normal: p(µX
ω |ΓX

ω ) = G(µX
ω |mX

ω , βX
ω ΓX

ω ). Together the shape distribution

p(µX
ω ,ΓX

ω ) is a Normal-Wishart density [5, 102]. Note {λω, aω, Bω, mω, βω} are hyper-parameters for

defining their corresponding distributions of model parameters. Identical expressions apply to the appear-

ance component in Eq. 10.18.

10.3.2 Closed-form Calculation of R

Recall that:

R =
p(X ,A|Xt,At,Ofg)

p(X ,A|Xt,At,Obg)
=

∫
p(X ,A|θ)p(θ|Xt,At,Ofg) dθ

∫
p(X ,A|θbg)p(θbg |Xt,At,Obg) dθbg

(10.19)

Due to the use of conjugate densities, the integral in the numerator becomes a multi-modal multivariate

Student’s T distribution (denoted by S):

p(X ,A|Xt,At,Ofg) =

Ω∑

ω=1

|H|
∑

h=1

π̃ω S(Xh| g
X
ω ,mX

ω ,ΛX
ω ) S(Ah| g

A
ω ,mA

ω ,ΛA
ω ) (10.20)

where gω = aω + 1 − d and Λω =
βω + 1

βωgω
Bω and π̃ω =

λω
∑

ω′ λω′

Note d is the dimensionality of the parameter vector θ. The denominator of Eq. 10.19 is a constant, since we

only consider a single value of θbg : θML
bg i.e. p(θbg |Xt,At,Obg) = δ(θbg − θML

bg ).

10.4 Learning Using a Conjugate Density Parameter Posterior

The process of learning an object category is unsupervised [39, 153]. The algorithm is presented with a

number of training images labeled as “foreground images.” It assumes there is an instance of the object

category to be learnt in each image. But no other information, e.g., location, size, shape, appearance, etc.,

is provided. The algorithm first detects interesting features in these training images, and then estimates

the parameters of the densities from these regions. Since the model is linear and Gaussian with conjugate

priors it should have a closed-form solution. However, the discrete indexing variable h, representing the

assignment of features to parts prevents such a solution. Instead an iterative variational method that resembles

the Expectation Maximization (EM) algorithm [23] is used to estimate the variational posterior. Afterwards

recognition is performed on a query image by repeating the process of detecting regions and then evaluating

the regions, using the model parameters estimated in the learning process.

The goal of learning is to obtain a posterior distribution p(θ|Xt,At,Ofg) of the model parameters given
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a set of training data {Xt,At} as well as some prior information. We formulate this learning problem using

Variational Bayesian Expectation Maximization (VBEM), applied to a multi-dimensional Gaussian mixture

model as introduced by Attias [5]. Detailed derivations of VBEM are given in Appendix A.2. In addition, we

also give a detailed derivation of the MAP parameter estimation in Appendix A.3.
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Chapter 11

Experiments and Results

11.1 Implementation

11.1.1 Feature detection and representation

We use the same features as in [39]. They are found using the detector of Kadir and Brady [66]. This method

finds regions that are salient over both location and scale. Gray-scale images are used as the input. The most

salient regions are clustered over location and scale to give a reasonable number of features per image, each

with an associated scale. The coordinates of the center of each feature give us X . Fig. 11.1 illustrates this on

images from four datasets. Once the regions are identified, they are cropped from the image and rescaled to

the size of a small (11 × 11) pixel patch. Each patch exists in a 121 dimensional space. We then reduce this

dimensionality by using PCA. A fixed PCA basis, pre-calculated from the background datasets, is used for

this task, which gives us the first 10 principal components from each patch. The principal components from

all patches and images form A.

11.1.2 Learning

Practical aspects of the Bayesian One-Shot learning procedure are now discussed, including: the choice of

the prior density, p(θ) and details of the Bayesian One-Shot implementation.

11.1.2.1 Choice of Prior

One critical issue is the choice of priors for the Dirichlet and Norm-Wishart distributions. In this paper,

learning is performed using a single mixture component, i.e., Ω = 1. So λ is set to 1, since πω will always

be 1. Ideally, the values for the shape and appearance priors should reflect object models in the real world. In

other words, if we have already learnt a sufficient number of classes of objects (e.g., hundreds or thousands),



92

(a) (b)

(c) (d)

Figure 11.1: Output of the feature detector on samples images from four categories. (a) Elephant, (b) Grand
piano, (c) Hawksbill, (d) Bonsai tree.

we would have a pretty good idea of the average shape (appearance) mean and variances given a new object

category. In reality we do not have the luxury of such a number of object classes. We use four classes of

object models learnt in a ML manner from [39] to form our priors. They are: spotted cats, motorbikes, faces

and airplanes. Since we wish to learn the same four datasets with our algorithm, we use a “leave one out”

strategy. For example, when learning motorbikes we obtain priors by averaging the learnt model parameters

from the other three categories (i.e., spotted cats, faces and airplanes), hence avoiding the incorporation of an

existing motorbike model. The hyper-parameters of the prior are then estimated from the parameters of the

existing category models. An example of this process is given in Chapter 11.2.3.

11.1.2.2 Details of Bayesian One-Shot algorithm

• Initial conditions are chosen in the following way. Shape and appearance means are set to the means

of the training data itself. Covariances are chosen randomly within a sensible range. Namely, they are

initialized to be roughly in the order of the average dimensions of the training images.

• Learning is halted when the largest parameter change per iteration (across all parameters) falls below a
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certain threshold (10−4) or the maximum number of iterations is exceeded (typically 500). In general,

convergence occurs within less than 100 iterations.

• Since the model is a generative one, the background images are not used in learning except for one

instance: the appearance model has a distribution in appearance space modeling background features.

Estimating this from foreground data proved inaccurate so the parameters are estimated from a set of

background images and not updated within the Bayesian One-Shot iteration.

• Learning a class takes roughly less than a minute on a 2.8 GHz machine when the number of training

images is less than 10 and the model is composed of 4 parts. The algorithm is implemented in Matlab.

It is also worth mentioning that the current algorithm does not utilize any efficient search method,

unlike [39]. It has been shown that increasing the number of parts in a constellation model results in

greater recognition power provided enough training examples are given [39]. Were efficient search

techniques used, 6-7 parts could be learnt, since the Bayesian One-Shot update equations require the

same amount of computation as the traditional ML ones. However, all our experiments currently use 4

part models for both the current algorithm and ML.

11.2 Experimental Results

11.2.1 Datasets

In the first set of experiments, the same four object categories as in [32,39] were used1, namely: human faces,

motorbikes, airplanes and spotted cats. These datasets contain a fair amount of background clutter and scale

variation, although each category is presented from a consistent viewpoint.

In addition, two naive subjects collected another dataset of 101 object categories for the second set of

experiments. The names of 101 categories were generated by flipping through the pages of the Webster

Collegiate Dictionary [1] and picking a subset of categories that were associated with a drawing. Using a

script, all images returned by Google Image Search engine for each category name were downloaded. The

two subjects then sorted through the images for each category, getting rid of irrelevant images (e.g., a zebra-

patterned shirt for the “zebra” category). Fig. 11.2 shows examples from 101 foreground object categories as

well as the background clutter category (obtained by typing “things” into Google).

Minimal preprocessing was performed on the categories. Categories such as motorbike, airplane, cannon,

etc. where two mirror image views were present, were manually flipped, so all instances faced in the same

direction. Additionally, categories with a predominantly vertical structure were rotated to an arbitrary angle.

1Available from www.vision.caltech.edu
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This is due to the convention that the leftmost part of each hypothesis is used as a reference point to translate

the rest of the parts (see Section 10.2.0.2). With vertically orientated structures, the horizontal ordering of the

features will be somewhat arbitrary, thereby artificially giving a large vertical variability.

11.2.2 Experimental Setup

Each experiment is carried out in the following way. Each dataset is randomly split into two disjoint sets of

equal size. N training images are drawn randomly from the first. A fixed set of 50 are selected from the

second, which form the test set. We then learn models using both Variational Bayesian and ML approaches

and evaluate their performance on the test set. For evaluation purposes, we also use 50 images from a

background dataset of assorted junk images from the Internet. For each category, we vary N from 1 to 6,

repeating the experiments 10 times for each value (using a different set of N training images each time) to

obtain a more robust estimate of performance. When N = 1, ML fails to converge, so we only show results

for the Bayesian One-Shot algorithm in this case.

When evaluating the models, the task is a binary decision–object present or absent. All performance

values are quoted as equal error rates from the receiver-operating characteristic (ROC) (i.e., p(True positive)

= 1 - p(False alarm)). The ROC curve is obtained by testing the model on 50 foreground test images and 50

background images . For example, a value of 85% means that 85% of the foreground images are correctly

classified but 15% of the background images are incorrectly classified (i.e., false alarms). In all the exper-

iments, the following parameters are used: number of parts in model = 4; number of PCA dimensions for

each part appearance = 10; and average number of detections of interest point for each image = 20. It is

also important to point out that except for the different priors, as described in section 11.1.2.1, all parameters

remain the same for learning all different categories. In other words, exactly the same piece of software was

used in all experiments.

11.2.3 Walkthrough for the Motorbike Category

We now go through the experimental procedure step-by-step for the motorbike category. 6 training images

are selected, as shown in Fig. 11.3. The Kadir interest operator is applied to them, giving Xt. Each of these

regions is then transformed into the fixed PCA basis, to give At. Next we consider the prior we will use in

learning. This has been constructed from models trained using ML from the three other datasets: spotted

cats, faces and airplanes. 10 ML models were trained for each category, giving a total of 30 models, each

being a point in θ-space. The parameters of the prior, {m0, β0, a0, B0} for both the shape and appearance

components of the model, are then directly computed from these points in the following manner:
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airplane face spotted cat motorbike accordion anchor

ant barrel bass beaver binocular bonsai

brain brontosaurus buddha butterfly camera cannon

car-side ceilingfan cellphone chair chandelier cougar-body

 cougar-face crab crayfish crocodile-full crocodile-head cup

dalmatian dollar-bill dolphin dragonfly electric-guitar elephant

 emu euphonium ewer ferry flamingo flamingo-head

 garfield gerenuk gramophone grand-piano hawksbill headphone

  hedgehog helicopter ibis inline-skate joshua-tree kangaroo

ketch lamp laptop llama lobster lotus

mandolin mayfly menorah metronome minaret nautilus

octupus okapi pagoda panda pigeon pizza

platypus pyramid revolver rhino rooster saxophone

schooner scissors scorpion sea-horse snoopy soccer-ball

stapler starfish stegosaurus stop-sign strawberry sunflower

tick trilobite umbrella watch water-lilly wheelchair

wild-cat windsor-chair wrench yin-yang zebra

Google Background

Figure 11.2: The 101 object categories and the background clutter category. Each category contains between 45 and 400 images.
Two randomly chosen samples are shown for each category. The categories were selected prior to the experiments and the images
were collected by operators not associated with the experiment. The last row shows examples from the background dataset. This
dataset is obtained by collecting images through the Google image search engine (www.google.com). The keyword “things” is used
to obtain hundreds of random images. Note only gray-scale information is used in our system. Complete datasets can be found at
http://vision.caltech.edu/feifeili/101 ObjectCategories.
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Figure 11.3: The training images for the motorbike category, with the output of the feature detector overlaid.

• m0 is estimated by computing the mean of µML over the M = 30 ML models: m0 = 1
M

∑

m µML
m .

• a0 is fixed to be number of degress of freedom in the precision matrix ΓML, which differs between the

shape and appearance terms. For shape, aX
0 = 2(P − 1)(P − 2), while aA

0 = kP .

• B0 is estimated by letting a0B
−1
0 , the mean of the precision be 1

M

∑

m ΓML, and using the previously

calculated value of a0 to give B0.

• β0 is estimated as the ratio between the precision of the mean and the mean of the precision: β0 =

‖1/M
P

m(µML
m −m0)2‖

‖a0B
−1

0
‖

.

Fig. 11.4 illustrates shows both the ML models (as points colored by category) and the prior density fitted

to them. Since the parameter space is high dimensional it is difficult to visualize but by considering each

appearance descriptor separately, the mean and variance of the part from each model can be plotted in 2-D.

Note the all parts use the same prior density for appearance. For shape, the mean and variance of location of

each part relative to the landmark part is shown. To understand how the prior assists in learning, models were

trained on background data alone and their parameters also plotted in Fig. 11.4 (as magenta ∗’s). Note that

the prior density was estimated only from the ML category models, not these background models. However,

they serve to illustrate the point that models that do not correspond to visual consistency occupy a different

part of parameter space to models trained on images with a consistent visual appearance. The prior captures

this knowledge so in the learning process it biases p(θ|Xt,At,Ofg) to areas of θ-space corresponding to

models of visual consistency.



97

−0.4 −0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

Mean

Va
ria

nc
e

Descriptor 1

−0.4 −0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

Mean

Va
ria

nc
e

Descriptor 2

−0.4 −0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

Mean

Va
ria

nc
e

Descriptor 3

−0.4 −0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

Mean

Va
ria

nc
e

Descriptor 4

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

Mean

V
a
ri
a
n
c
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

Mean

V
a
ri
a
n
c
e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

Mean

V
a
ri
a
n
c
e

(b)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

Mean

V
a

ri
a

n
c
e

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

Mean

V
a

ri
a

n
c
e

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Mean

V
a

ri
a

n
c
e

(c)

Figure 11.4: A visualization of the prior parameter density, estimated from ML models of spotted cats (green
×’s), face (red +’s) and airplanes (blue ◦’s). Models trained on background data are shown as magenta ∗’s
but are not used in estimating the prior density. In all figures the mean is plotted on the x-axis and the variance
on the y-axis. (a) Appearance parameter space for the first 4 descriptors. (b) X component of the shape term
for each of the non-landmark model parts. (c) Y component of shape.

Now that the prior and training data Xt and At have been obtained, we commence the learning process

described in Chapter 10.4. We only use one mixture component, so Ω = 1. The initial values of the hyperpa-

rameters {λω, aω, Bω, mω, βω} are initialized as in Table 11.1. Note that since we only have one component,

we do not need to worry about setting λ.

Hyperparameter Shape Appearance
M 1

I

∑

i
1

|H|

∑

h X (h) 1
I

∑

i
1

|H|

∑

h A(h)

β β0 β0

a 2(P − 1)(P − 2) kP
B 0.1I2(P−1) 0.1IkP

Table 11.1: Initial values of the hyperparameters of the parameter posterior for shape and appearance terms.

The initial posterior densities are illustrated in green in Fig. 11.5. Then we run Bayesian One-Shot until

convergence is reached. Fig. 11.5 shows the final parameter densities after learning in red. They can be seen

to be much tighter then the initial density, often lying close the prior density, which is likely to exert a large

influence with so few training images. The model corresponding to the mean of the parameter density is

shown in Fig. 11.6.

In the recognition phase, the learnt model is applied to 50 images containing motorbikes and 50 images

of scenes not containing motorbikes. For each image in both sets, the likelihood ratio R is computed (using

Eq. 10.19 and Eq. 10.21), giving an ROC-curve measuring the detection performance of the model. Fig. 11.6

shows the ROC curve for the model, along with sample images when the threshold, T , is set so as to give

equal numbers of false alarms and missed detections.
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Figure 11.5: The learning process. (a) Appearance parameter space, showing the mean and variance dis-
tributions for each of the models’ 4 parts for the first 4 descriptors. The parameter densities are colored as
follows: Black for the prior; green for the initial posterior density and red for the density after 30 iterations of
Bayesian One-Shot, when convergence is reached. (b) X component of the shape term for each of the model
parts. (c) Y component of shape. Note that in both (b) and (c), only the variance terms along the diagonal are
visualized - not the covariance terms.

In the recognition phase, the learnt model is applied to 50 images containing motorbikes and 50 images

of scenes not containing motorbikes. For each image in both sets, the likelihood ratio R is computed (using

Eq. ??), giving an ROC-curve measuring the detection performance of the model. Fig. 11.6 shows the ROC

curve for the model, along with sample images when the threshold, T , is set so as to give equal numbers of

false alarms and missed detections.

11.2.4 Caltech 4 Dataset

We first tested our algorithm on the four object categories used by Weber et al. [153] and Fergus et al. [39].

They are faces, motorbikes, airplanes and spotted cats. Our experiments demonstrate the benefit of using prior

information as well as using a full Bayesian computation in learning new object categories (Figs. 11.7-11.10).

Note that in Figs. 11.7-11.10, given 0 training images, the detection rate for each category is at chance level

50%. This tells us that given only the prior model, it is not sufficient to capture characteristic information of

the particular categories we are interested in. Only by incorporating this prior knowledge into the training

data, is the algorithm capable of learning a sensible model with only 1 training example. For instance, in

Fig. 11.7(c), we see that the 4-part model has captured the essence of a face (e.g., eyes and nose). In this case

it achieves an average detection rate of 82%, given only 1 training example.
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Figure 11.6: The mean model. (a) Shows the shape component of the model. The four +’s and ellipses
indicate the mean and variance in position of each part. The inter-part covariance terms are not shown. (b)
Shows the mean appearance distributions for the first 3 PCA dimensions. Each color indicates one of the four
parts. The background density is shown in black. (c) Shows the detected feature patches in the training image
closest to the mean of the appearance densities for each of the four parts. (d) Some examples of foreground
test images for the model, with a mix of correct and incorrect classifications. The pink dots are features
found on each image and the colored circles indicate the best hypothesis in the image. The size of the circles
indicates the score of the hypothesis (the bigger the better). (e) The model running on some background
query images. (f) The ROC curve for the model on the test set. The equal error rate is around 18%.

11.2.5 101 Object Categories

We have tested our algorithm on a large dataset of 101 object categories (Fig. 11.2). We summarize different

aspects of our experiments in the following sections.

11.2.5.1 Overall Results: ML vs. MAP vs. Bayesian

Using the Bayesian formulation, we are able to incorporate prior knowledge of the object world into the

learning scheme. In addition, we are also capable of averaging over the uncertainties of models by integrating

over the model distributions. Do both of these two factors contribute in the efficient learning of our algorithm?

Or is it only the prior that truly matters?

We are able to answer this question by comparing the detection result of the Bayesian One-Shot algorithm

not only to the ML method, but also to the MAP algorithm (as derived in Appendix A.3). Both the Bayesian

One-Shot and the MAP algorithms are given exactly the same prior distributions (estimated from faces,

airplanes and spotted cats models) for learning for each of the 101 categories. While Fig. 11.11 illustrates
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Figure 11.7: Summary of face model. (a) Test performances of the algorithm given 0− 6 number of training
image(s) (red line). 0 number of training images is when only the prior model is used. Note that the prior alone
is not sufficient for categorization. Each data point is obtained by 10 repeated runs with different randomly
drawn training and testing images. Error bars show one standard deviation from the mean performance. This
result is compared with the maximum-likelihood (ML) method (green). Note ML cannot learn the degenerate
case of a single training image. (b) Sample ROC curves for the Bayesian One-Shot algorithm (red) compared
with the ML algorithm (green line). The curves shown here use typical models drawn from the repeated
runs summarized in (a). (c)-(f) show typical models learnt with 1 and 5 training images. (c) Shape model;
appearance samples and appearance densities (of the first 3 descriptors) for a model trained on 1 image. (e)
Sample foreground test images for the model shown in (c). (d) and (f) correspond to a model trained on 5
images.
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Figure 11.10: Summary of airplane model.
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that prior knowledge helps in learning new object categories, the introduction of priors alone cannot account

for all the advantages of our Bayesian formulation. The Bayesian algorithm consistently performed better

than both the ML and MAP methods given few training examples. While MAP learning takes advantage

of the prior density, it is fundamentally the same as maximum likelihood in that a single parameter set is

estimated for the object category. Given few training examples, such an assumption is likely to overfit the

few data points. The Bayesian algorithm reduces the overfit by averaging over model uncertainties.

11.2.5.2 Good models and Bad models

Figs. 11.12 and 11.13 show in detail the results from the grand-piano and cougar-face categories, both of

which have achieved reasonable performances given few training examples (equal error rates of 84% and

85% respectively for 15 training examples). In the left-most columns, four examples of feature detection

results are presented. The center of each detection circle indicates the location of the feature detected while

the size of the circle indicates its scale. The second column shows the resulting shape model for the Bayesian

One-Shot method for {1, 3, 6, 15} training images. As the number of training examples increases, we observe

that the shape model is more defined and structured with a reduction in variance. This is expected since the

algorithm should be more and more confident of what is to be learned. The third column shows examples

of the part appearance that are closest to the mean distribution of the appearance. Notice that distinctive

features such as keyboards for the piano and eyes or whiskers for the cougar-face are successfully learned by

the algorithm. Two learning methods’ performances are compared in the top panel of the last column. The

Bayesian methods clearly show a big advantage over the ML method when training number is small.

It is also useful to look at the other end of the performance spectrum–those categories that have low

recognition performance. We give some informal observations into the cause of the poor performance. Fea-

ture detection is a crucial step for both learning and recognition. On both the crocodile and mayfly figures in

Fig. 11.14, notice that some testing images marked “INCORRECT” have few detection points on the target

object itself. When feature detection fails either in learning or recognition, it affects the performance results

greatly. Furthermore, Fig. 11.12(a) shows that a variety of viewpoints is present in each category. In this set

of experiments we have only used one mixture component, hence only a single viewpoint can be accommo-

dated. Our model is also a simplified version of Burl, Weber and Fergus’ constellation model [20,39,153] as

it ignores the possibility of occluded parts.
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Figure 11.11: Performance on 101 categories using three different learning methods: Maximum Likelihood
(ML), maximum a posteriori (MAP), and the Bayesian One-Shot algorithm. (a) - (d) show the performance
given training number(s) 1, 3, 6, and 15 and compare them with performance of the prior alone. “Percent
correct” is measured as 1− Eq. Error Rate. (e) summarizes the four panels above, showing the mean perfor-
mance (Eq. Error Rate). The error bars indicate one standard deviation.
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Figure 11.12: Results for the “grand-piano” category. Column 1 shows examples of feature detection. Col-
umn 2 shows the shape models learned from {1, 3, 6, 15} training images. Column 3 shows the appearance
patches for the model learned from {1, 3, 6, 15} training images. The top panel of Column 4 shows the com-
parative results between ML and Bayesian methods (the error bars show the variation over the 10 runs). The
bottom panel of Column 4 shows the recognition result for the Bayesian One-Shot algorithm for one training
image. Pink dots indicate the center of detected interest points.
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Figure 11.13: Results for the “cougar face” category.
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(a) Crocodile (b) Mayfly

Figure 11.14: Two categories with poor performance. (a) Crocodile (equal error rate = 35% for 1 training
example). (b) Mayfly (equal error rate = 42% for 1 training example).
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Figure 11.15: Effect of number of object categories in the prior model on the performance of testing cat-
egories. There are 20 randomly drawn object categories for training the prior model. There are 30 other
randomly drawn object categories in the testing category set. The x-axis indicates the number of object cate-
gories in the prior model. The y-axis indicates the average performance error of the 30 test categories given
the prior model.
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(a) TrainNum = 1 (b) TrainNum = 3 (c) TrainNum = 6 (d) TrainNum = 15

Figure 11.16: Quality of feature detection compared with object detection performances of the 101 categories
given {1, 3, 6, 15} training images ((a) - (d)). The x-axis of each plot is the detection performance of the
model. The y-axis is the quality of feature detection, defined by the percentage of detection points landed
within the outline of the object over the total number of detections. For each category, we average the
percentage over all images within this category.

11.2.5.3 A Further Investigation on Prior Models and Feature Detectors

One useful question to ask is whether learning is improved by constructing the prior model from more cate-

gories. To investigate this, we randomly select 20 object categories that will incrementally contribute to the

prior model. We learn a model for each of the 20 categories, forming a set of models C. We also randomly

select 30 object categories from the rest of the dataset, calling this set S. We train a model for each category

in S using a prior constructed from N models drawn from C. We vary N from 0 to 20. For N = 0, the prior

model is a broad, non-informative distribution over the shape and appearance space. For N > 0, we pick a

model from C, and update the prior as a weighted average between the old prior model and the new category

model, the weighting being N − 1 and 1 respectively. Fig.11.15 shows the relationship between the number

of categories contributing to the prior model and the performances averaged over all categories in S. We see



109

a trend of decreasing error when the number of categories in the prior model is between 1 and 8, although

this trend becomes less clear beyond 8.

We also explored the effect of feature detections on the overall object detection performances. Two

human subjects annotated the whole dataset, giving ground truth information of the location and the contours

of the objects within each image. Given this information, we are able to compute the proportion of features

detected within the object boundary as a fraction of the total number in the image. In Fig.11.16 we show

the relationship between the quality of the feature detections and the performances for each training number.

In general, a very weak positive correlation is observed between feature detection quality and performance.

This correlation seems to increase slightly as the training number increases.
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Figure 11.17: Shape only models and appearance only models compared with models using shape and ap-
pearance for each of the 101 categories given {1, 3, 6, 15} training images ((a) - (d)). The x-axis of each
plot is the detection performance of models using both shape and appearance. The y-axis is the detection
performance of shape only models and appearance only models for each category.

11.2.5.4 Bayesian One-Shot Algorithm: Shape-Only vs. App-Only vs. Shape-App models

In Chapter 10.2 we detailed the formulation of object class models. Each model of an object category carries

two sources of information: shape and appearance. We show in Fig. 11.17 that the contributions of shape

and appearance components of the model vary when the object category to be learnt differs. While some

categories depend more on the shape component (e.g., faces, electrical guitars, side view of cars, etc.), others

rely more on the appearance (leopards, octopus, ketch, etc.). For most categories, learning is slightly more

effective when the appearance component is included, as opposed to the shape part.

11.2.5.5 Bayesian One-Shot Algorithm: Discrimination Amongst 101 Categories

So far we have tested our algorithm in a detection scenario: for a particular object category we are only

deciding if it is present or not. We now test the algorithm in a discrimination scenario: one where we have

multiple categories (i.e., more than two) and must correctly classify the query images from each. In our
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experiment, we first learn a model for each of the 101 object categories. Query images are then drawn from

the test set of each category in turn and evaluated by all 101 models. For a given image, the assignment of

category it belongs to is in the “winner-take-all” fashion. In other words, the category model that achieved

the highest likelihood score is assigned to the image. For each category of images, we repeat the experiment

50 times with different randomly chosen training and test images. This gives a vector of 101 entries, each

being the average of the “winner-take-all” assignment over the 50 repetitions. We do this for each of the 101

categories, thereby obtaining the confusion table in Fig. 15.4.

By averaging the correct discrimination rates, i.e., the entries along the diagonal of Fig. 15.4, we obtain

the average correct discrimination rates for 3, 6 and 15 training examples of, respectively, 10.4, 13.9, and

17.7%. These rates would be approximately 1% if the classifiers were making random decisions. Recall that

the corresponding correct detection rates are 73.6, 76.2 and 80.1%. Is there a way to predict discrimination

rates from detection rates? We propose a simple approximation that produces good predictions and allows us

to evaluate our current results in the context of our long-term goal of classifying thousands of categories.

Simulation relating detection and discrimination performance. What is the difference between de-

tection and recognition? When detecting objects, e.g., bonsai trees, a single detector is first obtained for that

category (e.g., by training on an appropriate collection of images). That detector is then used to compute the

likelihood ratio of whether a given image contains a bonsai tree or not. If this number exceeds a threshold,

then a bonsai tree is believed to be present. When discriminating (or recognizing) objects, the same image is

inspected by a collection of detectors (e.g., bonsai, ceiling fan, automobile, etc.), each one of which is used to

calculate a likelihood ratio. The highest likelihood ratio is taken as the indicator of the most likely category

to be present. Whether we detect or discriminate, each detector will behave identically and will produce

two densities of likelihood ratios: one conditioned on the preferred object category being present and one

conditioned on the preferred category being absent from the image. The difference between detection and

discrimination in our experiments is purely the number of competing hypotheses. There are two hypotheses

in the case of detection, 101 hypotheses in the case of discrimination. Notice that one may in effect regard all

incorrect classification hypotheses (100 of them) as one by taking the hypothesis that is associated with the

highest likelihood ratio. This is the only incorrect hypothesis that has a chance of ‘winning.’ In our simple

model we hypothesize that all detectors are independent (this hypothesis is clearly wrong, it is only justified as

a coarse approximation). Furthermore, in our model all detectors have identical Gaussian densities describing

both the response to the favorite category and to images not containing the favorite category. Such densities

may be adjusted (by modifying the mean and variance) so that a given detection performance is obtained.

From such densities one may also calculate (numerically, in our simulations) the density corresponding to the



111

best incorrect hypothesis, again by taking the highest likelihood result of a number of competing incorrect

hypotheses. The probability of the discrimination error is then easily computed by Monte-Carlo simulations

as a function both of the number of competing models, and as a function of the average detection perfor-

mance. Such data is shown in Fig. 15.4(c). Notice that the red curve (100 categories) fits reasonably close to

our experimental findings. We therefore predict that, in order to obtain 90% correct discrimination rate on 20

categories, we need detection errors smaller than 1%. For 100 and 1000 categories, respectively, in order to

obtain a 90% correct discrimination rate we need, respectively, fewer than 3 errors every 1000 and 2 errors

every 104 images. These are sobering requirements! It is clear that, as we improve the quality of our detector

beyond, say, 95% correct, a more sensitive measure of performance will be given by discrimination rates,

and thus recognition experiments should be preferred to detection experiments when comparing different

approaches.

11.2.5.6 Discussions

Our results highlight a number of issues that we continue to investigate. The most important one is the

choice of priors. We have used a very general prior constructed from three categories and would like to

explore further the effects of different priors. Notice that in Fig. 11.11 the Maximum Likelihood method,

on average, gives a similar level of performance to the Bayesian One-Shot algorithm for 15 training images.

This is surprising, given the large number of parameters in each model, and therefore a few hundred training

examples are in principle required by a Maximum Likelihood method–one might have expected the ML

method to converge with the Bayesian One-Shot method at only around 100 training examples. The most

likely reason for this result is that the prior that we employ is very simple. Bayesian methods live and die by

the quality of the prior that is used. Our prior density is derived from only three object categories. Given the

variability of our training set, it is realistic that a prior based on many more categories would yield a better

performance. We have tested this hypothesis using a simple, synthetic example in Fig. 11.19. Our goal is

to learn a simple triangular shape model (Fig. 11.19(a)). We test the effect of priors on the Bayesian One-

Shot algorithm by giving the system three different priors: a triangular shape prior (similar to the synthetic

model in Fig. 11.19(a) used to generate the data), a trapezium shape prior and a square shape prior. The

Bayesian One-Shot algorithm with three different priors is compared to the maximum likelihood method. We

observe that it takes more than 100 training examples for the ML method to “catch up” with the Bayesian

One-Shot learning method given the triangular shape prior. On the contrary, it takes much smaller number of

training examples for the ML method to converge with the other two Bayesian One-Shot learning methods

with non-effective priors.
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Confusion Table: Train Num = 6
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Figure 11.18: (a) A confusion table for 6 training examples. The x-axis enumerates the category models,
one for each category, giving 101 in total. The y-axis is the ground truth category for the query image. The
intensity of an entry in the table corresponds to the probability of a given query image being classified as
a given category. Since the categories are consistently ordered on both axes, the ideal case would consist
of a completely black diagonal line, showing perfect discrimination power of all category models over all
categories of objects. (b) Histogram summary of diagonal entries of confusion tables for {1, 3, 6, 15} train-
ing examples. The x-axis represents the recognition percentage of the discrimination task. The y-axis is
a frequency count of the number of categories. The ∗ indicates the average confusion table performance
given each training number. (c) Relationship between the binary detection performance and discrimination
performance for differing number of categories using a one-dimensional Gaussian simulation.

Another important issue is the robustness of feature detection. We saw in Fig. 11.14 that the performance

of models is highly dependent on obtaining a good set of stable and distinctive features from each object

instance. We find that for some of the categories we experimented with, the Kadir-Brady feature detector [66]

fails to detect consistently useful features, hence performance is impaired. Thus we are currently working on

improving the quality and consistency of the feature detection stage.
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Figure 11.19: (a) The synthetic triangle model used in (b). Note the triangle is characterized by a 4-part
model. (b) Effect of different priors for learning a triangle model. Note that the point of convergence between
the ML method and the Bayesian One-Shot method depends on the choice of prior distribution. When a prior
is very effective (e.g., a triangular prior for learning a triangular model), it takes more than 100 training
examples to converge. But when the prior is not very effective (e.g., square or trapezium priors for learning a
triangular model), it takes less than 30 training examples for the two methods to converge.
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Chapter 12

Summary

We have demonstrated that, contrary to intuition, useful aspects of a new object category may be learnt from

a single training example (or just a few). As Table 16.1 shows, this is beyond the capability of existing

algorithms.

The key insight we have exploited is that categories we have already learnt give us information that

helps in learning new categories with fewer training examples. To pursue this idea we developed a Bayesian

learning framework based on representing object categories with probabilistic models. Prior information

from previously learnt categories is represented with a suitable prior probability density function on the

parameters of their models. These ‘prior’ models are updated with the few training examples available to

produce ‘posteriors’ that, in turn, may be used for both detection and recognition.

Our experiments, conducted on images from four categories, are encouraging in that they show that very

few (1 to 5) training examples produce models that are already able to achieve a detection performance of

around 10-20%. Our detection experiments conducted on 101 categories show that the method is applicable

to a great variety of appearances. Furthermore: that the categories from which the ‘prior’ knowledge is learnt

do not need to be visually similar to the categories that one wishes to learn.

While our experiments are very encouraging, they are by no means satisfactory from a practical stand-

point. As our recognition experiments show, the margin for improvement of the recognition rates is enormous.

Unless detection (object present/absent) error rates drop to almost zero, recognition rates of one out of 100-

1000 categories will be disappointing (Figure 15.4(c)). Much can be done towards the goal of obtaining better

error rates, as our current implementation is, at the moment, just a toy. In order to contain the complexity

of our experiments, we have simplified the probabilistic models that are used for representing objects. For

example, a probabilistic model for occlusion ( [20, 39, 153]) was not implemented, and we only used four

parts in our models, definitely not enough to represent the full complexity of object appearance. Further-

more, we only used three known categories to derive a prior. This is clearly a very small set that ought to be
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Fei-Fei et al. Assorted 101 1-5 Gen. N N
Fergus et al. [39] Assorted 6 > 100 Gen. N N
Weber et al. [153] Cars, Faces 2 > 100 Gen. + Disc. N N

Viola & Jones [148] Faces 1 ∼ 10,000 Disc. Y Y
Schneiderman & Kanade [125] Cars 1 2,000 Disc. Y N

Rowley et al. [121] Cars 1 500 Disc. Y N
Amit et al. [4] Faces, Characters 3 300 Gen. Y Y

LeCun et al. [72] Digits 10 60,000 Disc. N Y
LeCun et al. [73] Assorted 5 ∼300,000 Disc. Y N

Table 12.1: A comparison among a variety of object recognition approaches. The framework column spec-
ified in the approach is generative (Gen. ) or discriminative (Disc. ) or both. The hand alignment and
segmented columns indicate if the training data needs to be hand-aligned or hand-segmented for a given
approach.

substantially broadened in a real-world situation.

However, at this point it is probably more important to make progress at the conceptual level, and much

still needs to be done. First of all: the issue of priors. How much does prior knowledge improve as the number

of known categories increases? Is it easier to learn new categories which are similar to some of the ‘prior’

categories? Second, the issue of representations: How should one best represent prior knowledge? Is there

any other productive point of view, besides the Bayesian one that we have adopted here, which allows one to

incorporate prior knowledge? Third, as we have pointed out in the introduction, it would be highly valuable

to learn incrementally, where each training example will update the probability density function defined on

the parameters of each object category; we presented a few ideas towards this in [33, 91].

One last note of optimism: we feel that the problem of recognizing automatically hundreds, perhaps

thousands, of object categories does not belong to a hopelessly far future. We hope that the positive outcome

of our experiments on the large majority of 101 very diverse and challenging categories, despite the simplicity

of our implementation and the rudimentary prior we employ, will encourage other vision researchers to test

their algorithms on larger and more diverse datasets.
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Part V

Computational Model II: Natural Scene

Classification
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Chapter 13

Introduction

13.1 Background

The ability to analyze and classify accurately and rapidly the scene in which we find ourselves is highly

useful in everyday life. Thorpe and colleagues found that humans are able to categorize complex natural

scenes containing animals or vehicles very quickly [135]. Li and colleagues later showed that little or no

attention is needed for such rapid natural scene categorization [77]. Both of these studies posed a serious

challenge to the conventional view that to understand the context of a complex scene, one needs first to

recognize the objects and then in turn recognize the category of the scene [140].

Can we recognize the context of a scene without having first recognized the objects that are present? A

number of recent studies have presented approaches to classify indoor versus outdoor, city versus landscape

and sunset versus mountain versus forest using global cues (e.g., power spectrum, color histogram informa-

tion) [49, 132, 144]. Oliva and Torralba further incorporated the idea of using global frequency with local

spatial constraints [94]. The key idea in their study is to use intermediate representations before classifying

scenes: scenes are first labelled with respect to local and global properties by human observers. Similarly to

Oliva and Torralba’s work, Vogel and Schiele also used an intermediate representation obtained from human

observers in learning the semantic context of a scene [150].

A main requirement of such approaches is the manual annotation of “intermediate” properties. In Oliva

and Torralba’s work, human subjects are instructed to rank each of the hundreds of training scenes into 6

different properties (e.g., ruggedness, expansiveness, roughness, etc.). In Vogel and Schiele’s work, human

subjects are asked to classify 59, 582 local patches from the training images into one of 9 different “semantic

concepts” (e.g., water, foliage, sky, etc.). Both cases involve tens of hours of manual label. These works

clearly point to the usefulness of these intermediate representations and motivate us to think of methods for

learning these representations directly from the data: both because hand-annotating images is tedious and
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expensive, and because expert-defined labels are somewhat arbitrary and possibly sub-optimal.

Much can also be learnt from studies for classifying different textures and materials [76, 106, 147].

Traditional texture models first identify a large dictionary of useful textons (or codewords). Then for each

category of texture, a model is learnt to capture the signature distribution of these textons. We could loosely

think of a texture as one particular intermediate representation of a complex scene. Again, such methods

yield a model for this representation through manually segmented training examples. Another limitation of

the traditional texture model is the hard assignment of one distribution for a class. This is fine if the underlying

images are genuinely created by a single mixture of textons. But this is hardly the case in complex scenes.

For example, it is not critical at all that trees must occupy 30% of a suburb scene and houses 60%. In fact,

one would like to recognize a suburb scene whether there are many trees or just a few.

13.2 Contributions

The key insights of previous work, therefore, appear to be that using intermediate representations improves

performance, and that these intermediate representations might be thought of as textures, in turn composed of

mixtures of textons, or codewords. Our goal is to take advantage of these insights, but avoid using manually

labelled or segmented images to train the system, if at all possible. To this end, we adapt to the problems

of image analysis in recent work by Blei and colleagues [12], which was designed to represent and learn

document models. In this framework, local regions are first clustered into different intermediate themes, and

then into categories. Probability distributions of the local regions as well as the intermediate themes are both

learnt in an automatic way, bypassing any human annotation. No supervision is needed apart from a single

category label to the training image. We summarize our contribution as follows.

• Our algorithm provides a principled approach to learning relevant intermediate representations of

scenes automatically and without supervision.

• Our algorithm is a principled probabilistic framework for learning models of textures via textons (or

codewords) [76, 106, 147]. These approaches, which use histogram models of textons, are a special

case of our algorithm. Given the flexibility and hierarchy of our model, such approaches can be easily

generalized and extended using our framework.

• Our model is able to group categories of images into a sensible hierarchy, similar to what humans

would do.
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Chapter 14

Hierarchical Bayesian Model and
Learning

Fig. 14.1 is a summary of our algorithm in both learning and recognition. We model an image as a collection

of local patches. Each patch is represented by a codeword out of a large vocabulary of codewords (Fig. 14.3).

The goal of learning is then to achieve a model that best represents the distribution of these codewords in

each category of scenes. In recognition, therefore, we first identify all the codewords in the unknown image.

Then we find the category model that fits best the distribution of the codewords of the particular image.

Our algorithm is based on the Latent Dirichlet Allocation (LDA) model proposed by Blei et al. [12].

We differ from their model by explicitly introducing a category variable for classification. Furthermore, we

propose two variants of the hierarchical model (Fig. 14.2(a) and (b)).

14.1 Model Structure

It is easier to understand the model (Fig. 14.2(a)) by going through the generative process for creating a

scene in a specific category. To put the process in plain English, we begin by first choosing a category label,

say a mountain scene. Given the mountain class, we draw a probability vector that will determine what

intermediate theme(s) to select while generating each patch of the scene. Now for creating each patch in the

image, we first determine a particular theme out of the mixture of possible themes. For example, if a “rock”

theme is selected, this will in turn privilege some codewords that occur more frequently in rocks (e.g., slanted

lines). Now that the theme favoring more horizontal edges is chosen, one can draw a codeword, which is

likely to be a horizontal line segment. We repeat the process of drawing both the theme and codeword many

times, eventually forming an entire bag of patches that would construct a scene of mountains. Fig. 14.2(a) is

a graphical illustration of the generative model. We will call this model the Theme Model 1. Fig. 14.2(b) is

a slight variation of the model in Fig. 14.2(a). We call it the Theme Model 2. Unless otherwise specified, the



120

TRAINING TESTING

fe
a

tu
re

 d
e

te
ct

io
n

 &
 r

e
p

re
se

n
ta

ti
o

n
le

a
rn

in
g

fe
a

tu
re

 d
e

te
ct

io
n

 &
 r

e
p

re
se

n
ta

ti
o

n
re

co
g

n
it

io
n

unknown
image

class 1 class N

input image

Model 1 Model N

learn Bayesian
hierarchical
models for 
each class

local feature extraction

form codebook

Class 1 Class N
represent each

image into a
bag of codewords

decide
on best
model

Figure 14.1: Flow chart of the algorithm.

rest of the chapter will focus on Theme Model 1. Now we are ready to show the mathematical details of the

formulation of this model and how we learn its parameters.

14.1.1 The Theme Models

We begin with some notations and definitions for the Theme Model 1 in Fig. 14.2(a). We will contrast

explicitly the use of terminology with both [12] and the texture studies [76, 147].

• A patch x is the basic unit of an image, defined to be a patch membership from a dictionary of code-

words indexed by {1, . . . , T}. The tth codeword in the dictionary is represented by a T-vector x such

that xt = 1 and xv = 0 for v 6= t. In Fig. 14.2(a), x is shaded by common convention to indicate that it

is an observed variable. All other nodes in the graph are unobserved, hence no shading. The equivalent

of an image in [12] is a “document.” And a codeword (or patch) in our model is a “word” in theirs. In

texture and material literature, a codeword is also referred as to a “texton” [76, 147].
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Figure 14.2: (a) Theme Model 1 for scene categorization that shares both the intermediate level themes as
well as feature level codewords. (b) Theme Model 2 for scene categorization that shares only the feature level
codewords; (c) Traditional texton model [76, 147].

• An image is a sequence of N patches denoted by x = (x1, x2, . . . , xN ), where xn is the nth patch of

the image.

• A category is a collection of I images denoted by D = {x1, x2, . . . , xI}. In [12], this is equivalent to

a “corpus.”

We can now write down the process that generates an image i formally from the model.

1. Choose a category label c ∼ p(c|η) for each image, where c = {1, . . . , C}. C is the total number of

categories. η is a C-dimensional vector of a multinomial distribution.

2. Now for this particular image in category c, we want to draw a parameter that determines the distribu-

tion of the intermediate themes (e.g., how “foliage,” “water,” “sky” etc. are distributed for this scene).

This is done by choosing π ∼ p(π|c, θ) for each image. π is the parameter of a multinomial distribu-

tion for choosing the themes. θ is a matrix of size C × K, where θc· is the K-dimensional Dirichlet

parameter conditioned on the category c. K is the total number of themes.

3. For each N patches xn in the image:

• Choose a theme zn ∼ Mult(π). zn is a K-dim unit vector. zk
n = 1 indicates that the kth theme is

selected (e.g., “rock” theme).
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Figure 14.3: A codebook obtained from 650 training examples from all 13 categories (50 images from each
category). Image patches are detected by a sliding grid and random sampling of scales. The codewords are
sorted in descending order according to the number of patches that belong to the codeword. Interestingly
most of the codewords appear to represent simple orientations and illumination patterns, similar to the ones
that we would find in the early human visual system.
.

• Choose a patch xn ∼ p(xn|zn, β), where β is a matrix of size K × T . K is again the number

of themes, and T is the total number of codewords in the codebook. Therefore we have βkt =

p(xt
n = 1|zk

n = 1).

A K−dimensional Dirichlet random variable π has the property such that πi ≥ 0,
∑K

i=1 πi = 1. It

is a conjugate distribution of a multinomial distribution. Since the themes z are best described as a dis-

crete variable over the multinomial distribution, Dirichlet distribution becomes the natural choice to describe

distribution of π [45]. It has the following probability density:

Dir(π|θc·) =
Γ
(
∑K

i=1 θci

)

∏K
i=1 Γ(θci)

π
(θci−1)
i . . . π

(θcK−1)
K (14.1)
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Given the parameters θ, η and β, we can now write the full generative equation of the model. It is the

joint probability of a theme mixture π, a set of N themes z, a set of N patches x and the category c is

p(x, z, π, c|θ, η, β) = p(c|η)p(π|c, θ) ·
N∏

n=1

p(zn|π)p(xn|zn, β) (14.2)

p(c|η) = Mult(c|η) (14.3)

p(π|c, θ) =
C∏

j=1

Dir(π|θj·)
δ(c,j) (14.4)

p(zn|π) = Mult(zn|π) (14.5)

p(xn|zn, β) =

K∏

k=1

p(xn|βk·)
δ(zk

n,1) (14.6)

As Fig. 14.2(a) shows, Theme Model 1 is a hierarchical representation of the scene category model. The

Dirichlet parameter θ for each category is a category-level parameters, sampled once in the process of gener-

ating a category of scenes. The multinomial variables π are scene-level variables, sampled once per image.

Finally, the discrete theme variable z and patch x are patch-level variables, sampled every time a patch is

generated.

If we wish to model the intermediate themes for each category without sharing them amongst all cate-

gories, we would introduce a link between the class node c to each patch xn, such that xn ∼ p(xn|zn, β, c),

where there are C different copies of β, each of the size K × T . Then we have βc
kt = p(xt

n|z
k
n = 1). The

generative equations above (Eq. 14.2-14.6) are hence changed according to this dependency on c.

14.1.2 Bayesian Decision

Before we show how we could proceed to learn the model parameters, let us first look at how decisions

are made given an unknown scene. An unknown image is first represented by a collection of patches, or

codewords. We keep the notation x for an image of N patches. Given x, we would like to compute the

probability of each scene class:

p(c|x, θ, β, η) ∝ p(x|c, θ, β)p(c|η) ∝ p(x|c, θ, β) (14.7)

where θ, β and η are parameters learnt from a training set. For convenience, the distribution of p(c|η) is

always assumed to be a fixed uniform distribution in which p(c) = 1/C. Therefore we will omit to estimate

η from now on. Then the decision of the category is made by comparing the likelihood of x given each

category: c = arg maxc p(x|c, θ, β). The term p(x|c, θ, β) is in general obtained by integrating over the
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hidden variables π and z in Eq. 14.2:

p(x|θ, β, c) =

∫

p(π|θ, c)

(
N∏

n=1

∑

zn

p(zn|π)p(xn|zn, β)

)

dπ (14.8)

Unfortunately Eq. 14.8 is not tractable due to the coupling between π and β [12]. However, a wide range

of approximate inference algorithms can be considered, including Laplace approximation, variational approx-

imation and MCMC method [12]. In the following section, we briefly outline the variational method based

on Variational Message Passing (VMP) [155], a convenient framework to carry out variational inferences.

14.1.3 Learning: Variational Inference

In learning, our goal is to maximize the log likelihood term log p(x|θ, β, c) by estimating the optimal θ and

β. Using Jensen’s inequality, we can bound this log likelihood in the following way:

log p(x|θ, β) ≥
Z

X

z

q(π, z) log p(π,z,x|θ, β)dθ −

∫
∑

z

q(π, z) log q(π, z)

= Eq [log p(π, z, x|θ, β)] − Eq [log q(π, z)]

where the probability density function q(π, z|γ, φ) could be any arbitrary variational distribution. By letting

L(γ, φ; θ, β) denote the RHS of the above equation, we have:

log p(x|θ, β) = L(γ, φ; θ, β) +

KL(q(π, z|γ, φ) ‖ p(π, z|x, θ, β)) (14.9)

where the second term on the RHS of the above equation stands for the Kullback-Leibler distance of two

probability densities. By maximizing the lower bound L(γ, φ; θ, β) with respect to γ and φ is the same as

minimizing the KL distance between the variational posterior probability and the true posterior probability.

Given Eq. 14.9, we first estimate the variational parameters γ and φ. Substituting the variational lower

bound as a surrogate for the (intractable) marginal likelihood, we can then in turn estimate the model param-

eters θ and β. The iterative algorithm alternates between the following two steps till convergence.

1. (E-step) For each class of images, optimize values for the variational parameters γ and φ. The update
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rules are:

γi = θi +

N∑

n=1

φni (14.10)

φni ∝ βiν exp



Ψ(γi) − Ψ(

K∑

j=1

γj)



 (14.11)

where i is the image index, n the patch index and Ψ(·) a digamma function.

2. (M-step) Maximize the resulting lower bound on the log likelihood with respect to the model param-

eters θ and β. We can do this by finding the maximum likelihood estimates with expected sufficient

statistics computed in the E-step [12, 88].

14.1.4 A Brief Comparison

We can compare this hierarchical model with a traditional texton model for texture recognition, for instance

[76, 147]. Fig. 14.2(c) is a graphical representation of a traditional texton model. We see here that for a

given class of textures or materials, only a single multinomial parameter β is associated with the class. In

other words, to generate an image, all patches are drawn from a single “theme.” This might be fine when the

training data are “pure” textures segmented manually. Since there are no “contaminations” of other “themes”,

the single mixture learnt from the codewords might suffice. As shown by [76], this framework may be further

extended by training different models for the same category of textures under different lighting and view point

conditions. This again requires manual separations of data and labelling of the segmented textures. In Chapter

??, we will show empirically that by explicitly modelling the intermediate themes in these complex scenes,

our model achieves better recognition performances than the traditional “texton” model in Fig. 14.2(c).

14.2 Features and Codebook

In the formulation of the theme model, we represent each image as a collection of detected patches, each

assigned a membership to a large dictionary of codewords. We show now how these patches are obtained and

memberships assigned.

14.2.1 Local Region Detection and Representation

While most previous studies on natural scene categorization have focused on using global features such as

frequency distribution, edge orientations and color histogram [49, 132, 144], recently it has been shown local
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regions are very powerful cues [150]. Compared to the global features, local regions are more robust to

occlusions and spatial variations. We have tested four different ways of extracting local regions from images.

1. Evenly Sampled Grid. An evenly sampled grid spaced at 10× 10 pixels for a given image. The size of

the patch is randomly sampled between scale 10 to 30 pixels.

2. Random Sampling. 500 randomly sampled patches for a given image. The size of the patch is also

randomly sampled between scale 10 to 30 pixels.

3. Kadir and Brady Saliency Detector. Roughly 100 ∼ 200 regions that are salient over both location and

scale are extracted using the saliency detector [66]. Scales of each interest point is between 10 to 30

pixels.

4. Lowe’s DoG Detector. Roughly 100 ∼ 500 regions that are stable and rotationally invariant over

different scales are extracted using the DoG detector [79]. Scales of each interest point vary between

20 to 120 pixels.

We have used two different representations for describing a patch: normalized 11 × 11 pixel gray values

or a 128−dim SIFT vector [79].

14.2.2 Codebook Formation

Given the collection of detected patches from the training images of all categories, we learn the codebook by

performing k-means algorithm [76]. Clusters with too small a number of members are further pruned out.

Codeswords are then defined as the centers of the learnt clusters. Fig. 14.3 shows the 174 codewords learnt

from the gray value pixel intensities.
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Chapter 15

Experiments & Results

15.1 Dataset and Experimental Setup

Our dataset contains 13 categories of natural scenes (Fig. 15.1): highway ( [94], 260 images), inside of cities

( [94], 308 images), tall buildings ( [94], 356 images), streets ( [94], 292 images), suburb residence (241

images), forest ( [94], 328 images), coast ( [94], 360 images), mountain ( [94], 374 images), open country

( [94], 410 images), bedroom (174 images), kitchen (151 images), livingroom (289 images) and office (216

images). The average size of each image is approximately 250×300 pixels. The 8 categories that are provided

by Oliva and Torralba were collected from a mixture of COREL images as well as personal photographs [94].

The rest of the 5 categories are obtained by us from both the Google image search engine as well as personal

photographs. It is also worth noting that 4 (coast, forest, open country and mountain) of the categories are

similar to the 4 of the 6 categories reported in [150]. But unlike them, we only use grayscale images for both

learning and recognition. We believe that this is the most complete scene category dataset used in literature

thus far.

Each category of scenes was split randomly into two separate sets of images, N (100) for training and the

rest for testing. A codebook of codewords was learnt from patches drawn from a random half of the entire

training set. A model for each category of scenes was obtained from the training images. When asked to

categorize one test image, the decision is made by assigning a category label to the image from the category

model that gives the highest likelihood probability. A confusion table is used to illustrate the performance of

the models. On the confusion table, the x-axis represents the models for each category of scenes. The y-axis

represents the ground truth categories of scenes. The orders of scene categories are the same in both axes.

Hence in the ideal case one should expect a completely white diagonal line to show perfect discrimination

power of all category models over all categories of scenes. Unless otherwise specified, all performances in

Chapter ?? are quoted as the average value of the diagonal entries of the confusion table. For a 13-category
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Descriptor Grid Random Saliency [66] DoG [79]

11 × 11 Pixel 64.0% 47.5% 45.5% N/A
128-dim Sift 65.2% 60.7% 53.1% 52.5%

Table 15.1: Performance comparison given different feature detectors and representations. The performance
is quoted from the mean of the confusion table similar to that of Fig. 15.4. SIFT representation seems to be in
general more robust than the pixel grayvalue representation. The sliding grid, which yields the most number
of patches, outperforms all other detectors.

recognition task, random chance would be 7.7%. Excluding the preprocessing time of feature detection and

codebook formation, it takes a few minutes (less than 10) to obtain 13 categories of models (100 training

images for each category) on a 2.6 Ghz machine.

15.2 Results

Fig. 15.4 is an overview of the performance of the Theme Model 1 trained with 100 images from each of the

13 categories. Fig. 14.3 shows the corresponding codebook learnt. 650 testing images (50 from each class)

are used. There are a total number of 40 themes. Our model achieved an average performance of 64.0%

(random chance is 7.7%). A closer look at the confusion table (Fig. 15.4(a)) reveals that the highest block

of errors occurs among the four indoor categories: bedroom, livingroom, kitchen and office. Another way to

evaluate the performance is to use the rank statistics of the categorization results (Fig. 15.4(b)). Using both

the best and second best choices, the mean categorization result goes up nearly 20% to 82.3%.

Both Fig. 15.2 and Fig. 15.5 demonstrate some of the internal structure of the models learnt for each cat-

egory. Take the “highway” category as an example in Fig. 15.2. The left panel shows the average distribution

of the 40 intermediate themes for generating highway images. In the right panel, we show the average distri-

bution of all codewords for generating highway images, after a large number of samplings (1000). Clearly,

this distribution of codewords (174, Fig. 14.3) is very much influenced by the distribution of themes. We

show in the right panel 10 of the top 20 codewords that are most likely to occur in highway images. Note that

horizontal lines dominate the top choices. This is to be contrasted, for instance, to the likely codewords for

the tall building category. We see that most of the top-choice codewords are vertical edges in the case of tall

buildings. The 4 indoor categories all tend to have sharp horizontal and vertical edges. This is quite revealing

of the scene statistics for these manmade, indoor structures. Further, by looking at the distribution of both the

themes and the codewords of these four indoor categories, it is not surprising that they are easily confused

among each other. Fig. 15.3 then shows some testing image examples.

Taking the distributions of themes from each category, we can further establish some relationship among
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Figure 15.2: Internal structure of the models learnt for each category. Each row represents one category. The
left panel shows the distribution of the 40 intermediate themes. The right panel shows the distribution of
codewords as well as the appearance of 10 codewords selected from the top 20 most likely codewords for this
category model.
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Figure 15.6: Dendrogram of the relationship of the 13 category models based on theme distribution. y-axis
is the pseudo-euclidean distance measure between models.
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the categories by looking at the model distances among them (see the dendrogram in Fig. 15.6). When the

distribution of the themes are close, the categories would also be close to each other on the dendrogram.

For example, the closest categories are the 4 indoor environments. Fig. 15.7(a) shows that by sharing the

resources of codewords and intermediate themes, the number of significant codewords for learning more and

more new models tends to level off quickly [137].

Fig. 15.8 illustrates 3 different aspects of the algorithm: performances versus the number of training

examples (a), of themes (b) and of codewords in the codebook (c). Table 15.1 shows how different feature

detection and representation influences the performance.
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Chapter 16

Summary

We have proposed a Bayesian hierarchical model to learn and recognize natural scene categories. The model

is an adaptation to vision of ideas proposed recently by Blei and collaborators [12] in the context of document

analysis . While previous schemes [94,150] require a detailed manual annotation of the images in the training

database, our model can learn characteristic intermediate “themes” of scenes with no supervision, nor human

intervention, and achieves comparable performance to Vogel and Schiele (see Table 16.1 for details.).

Our model is based on a principled probabilistic framework for learning automatically the distribution

of codewords and the intermediate-level themes, which might be thought to be akin to texture descriptions.

Intermediate-level descriptions are shown to be useful [94]; Fig. 15.7(b) shows that indeed this model out-

performs the traditional “texton models” where only a fixed codeword mixing pattern is estimated for each

category of scenes [147]. One way to think about our model is as a generalization of the the “texton models”

[76, 147] for textures, which need samples of “pure” texture to be trained. By contrast, our model may be

trained on complete scenes and infer the intermediate “themes” from the data. In the future, it is important to

further explore this relationship between the “themes” to meaningful textures such as the semantic concepts

suggested by [94,150]. In addition, we provide a framework to share both the basic level codewords as well as

# of categ. training # per
categ.

training requirements perf. (%)

Theme Model 1 13 100 unsupervised 76
[150] 6 ∼ 100 human annotation of 9 semantic

concepts for 60, 000 patches
77

[94] 8 250 ∼ 300 human annotation of 6 properties
for thousands of scenes

89

Table 16.1: Comparison of our algorithm with other methods. The average confusion table performances are
for the 4 comparable categories (forest, mountain, open country and coast) in all methods. We use roughly
1/3 of the number of training examples and no human supervision than [94]. Fig. 15.8(a) indicates that given
more training examples, our model has the potential of achieve higher performances.
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intermediate level themes amongst different scene categories. Similarly to what Torralba and colleagues [137]

found, the number of features to be learnt increases sub-linearly as the number of new categories increases.

We tested our algorithm on a diverse set of scene types, introducing a number of new categories (13 here,

as opposed to 4+4 in [94] and 6 in [150]). The lackluster performances for the indoor scenes suggest that our

model is not complete. At a minimum, we need a richer set of features: by using different cues as well as a

hierarchy of codewords, we might be able to form much more powerful models for these difficult categories.
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Appendix A

A.1 Definition of Various Densities and Functions

A.1.1 Dirichlet Distribution

A Dirichlet, with variables π = {π1, . . . , πΩ} and parameters λ = {λ1, . . . , λΩ}:

D(π|λ) =
Γ(
∑Ω

ω=1 λω)
∏Ω

ω=1 Γ(λω)

Ω∏

ω=1

πλω−1
ω (A.1)

where π1, . . . , πΩ ≥ 0 and λ1, . . . , λΩ > 0 and
∑Ω

ω=1 πω = 1. The Dirichlet distribution is the conjugate
to the multinomial density.

A symmetric Dirichlet density has all the λ’s the same value, e.g., λ0, and the density reduces to:

D(π|λ0) =
Γ(Ωλ0)

Γ(λ0)Ω

Ω∏

ω=1

πλ0−1
ω (A.2)

A.1.2 Normal-Wishart Distribution

A Normal-Wishart density is the conjugate density for the parameters of a normal distribution. We first
condition on the Σ:

p(µ, Σ) = p(µ|Σ)p(Σ) (A.3)

then we model the µ term with a normal density and the Σ term with a Wishart:

p(µ|Σ) = G(µ|m,
1

β
Σ) (A.4)

where m, β are hyperparameters.
Technically, since Σ is a covariance matrix rather than a precision matrix, we actually use an inverse-

Wishart density:

p(Σ) = W−1(Σ|a, B) =
1

Γd(a/2)|Σ|(a+d+1)/2

∣
∣
∣
∣

B

2

∣
∣
∣
∣

a/2

exp (−
1

2
Tr(Σ−1B)) (A.5)

where d is the dimensionality of Σ, a, B are hyperparameters, with a being the number of degrees of freedom
in Σ and:

Γd(n/2) = πd(d−1)/4
d∏

i=1

Γ((n + 1 − i)/2) (A.6)
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A Wishart density (as supposed to an inverse-Wishart) has the following form:

W(Γ|a, B) =
|Γ|(a+d+1)/2

∣
∣B

2

∣
∣
a/2

exp (− 1
2Tr(ΓB))

Γd(a/2)
(A.7)

A.1.3 Gamma Distribution

A Gamma density with variable x and parameters b, c is:

Γ(x|b, c) =
1

Γ(c)

xc−1

bc
exp

(−x

b

)

(A.8)

where x ≥ 0 and Γ(c) is the Gamma function. The mean of the density is bc and the variance b2c.

A.1.4 Multivariate Student’s T Distribution

A d dimensional Student’s T distribution having the vector m as the variable, k degrees of freedom and
parameters b, C has the form:

S(m|k,b, C) =
1

∆( 1
21, 1

2 (k − d + 1)) |kC|1/2 (1 + (m − b)T (kC)−1(m − b))(k+1)/2)
(A.9)

where 1 is a vector of ones, of length d; C must be a positive definite matrix and k > d−1. ∆() is a Dirichlet
function:

∆(g, h) =
Γ(g1) . . . Γ(gd)Γ(h)

Γ(
∑

i gi + h)
(A.10)

A.1.5 Kullback-Leibler Distance

Given two p.d.f’s p() and q() that exist over the same space, x, the Kullback-Leibler distance between the
two distributions is:

KL(p||q) =
∑

x

p(x) log
p(x)

q(x)
(A.11)

Note that KL(p||q) ≥ 0 always holds.

A.1.6 Digamma Function

The Digamma function is defined as:

Ψ(z) ≡
d log Γ(z)

dz
=

Γ′(z)

Γ(z)
(A.12)

A.2 Learning using a conjugate density parameter posterior

Recall the mixture of constellation models from Eq. 17 in [34]:

p(X ,A|θ) =

Ω∑

ω=1

p(ω|π)

|H|
∑

h=1

p(Xh|µ
X
ω ,ΓX

ω )p(Ah|µ
A
ω ,ΓA

ω ) (A.13)

Each component ω has a mixing coefficient πω ; a mean of shape and appearance µX
ω , µA

ω ; and a precision
matrix of shape and appearance ΓX

ω ,ΓA
ω . The X and A superscripts denote shape and appearance terms,

respectively. Collecting all mixture components and their corresponding parameters together, we obtain an
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overall parameter vector θ = {π, µX , µA,ΓX ,ΓA}. Assuming we have now learnt the model distribution
p(θ|Xt,At) from a set of training data Xt and At, we define the model distribution in the following way:

p(θ|Xt,At) = p(π)
Y

ω

p(µX
ω |ΓX

ω )p(ΓX
ω )p(µA

ω |ΓA
ω )p(ΓA

ω ) (A.14)

where the mixing component is a symmetric Dirichlet: p(π) = Dir(λωIΩ), the distribution over the shape
precisions is a Wishart p(ΓX

ω ) = W(ΓX
ω |aX

ω , BX
ω ) and the distribution over the shape mean conditioned

on the precision matrix is Normal: p(µX
ω |ΓX

ω ) = G(µX
ω |mX

ω , βX
ω ΓX

ω ). Together the shape distribution
p(µX

ω ,ΓX
ω ) is a Normal-Wishart density [5, 102]. Note {λω, aω, Bω, mω, βω} are hyper-parameters for

defining their corresponding distributions of model parameters. Identical expressions apply to the appear-
ance component in Eq. A.14.

A.2.1 Variational methods

We first review briefly the variational method for model learning. We have some integral we wish to evaluate:
F =

∫

θ
f(θ) dθ. We write f(θ) as a function of its parameters and some hidden variables, S: f(θ) =

∫

S g(θ, S) dS. Applying Jensen’s inequality to give us a lower bound on the integral, we get:

F =

∫

θ,S

g(θ, S) dS dθ

≥ exp

(∫

θ,S

q(θ, S) log
g(θ, S)

q(θ, S)
dS dθ

)

provided

∫

θ,S

q(θ, S) dS dθ = 1 (A.15)

Variational Bayes makes the assumption that q(θ, S) is a probability density function that can be factored
into qθ(θ)qS(S). We then iteratively optimize qθ and qS using expectation maximization (EM) to maximize
the value of the lower bound to the integral (see [87, 102]). If we consider g(θ, S) the “true” p.d.f., by using
the above method, we are effectively decreasing the Kullback-Leibler distance between g(θ, S) and q(θ, S),
hence obtaining a q(θ, S) that approximates the true p.d.f.

A.2.2 Variational Bayesian EM

Recall that we have a mixture model with Ω components. Collecting all mixture components and their
corresponding parameters together, we have an overall parameter vector θ = {π, µX , µA,ΓX ,ΓA}. For
n training images, we have {X n

t ,An
t } with n = 1...N . In the constellation model, each image n has |Hn|

hypotheses, each one of which picks out P features from {X n,An} to give {X n
h ,An

h}. We have two latent
variables, the hypothesis h and the mixture component ω. We assume that the prior on any hypothesis always
remains uniform, namely 1/|Hn|, so it is omitted from the update equations since it is constant. We can now
express the likelihood of an image n as:

p(Xn
,An|θ) =

Ω
X

ω=1

|Hn|
X

h=1

p(ωn = ω|π)p(Xn
h |µX

ω ,Γ
X
ω )p(An

h|µ
A
ω ,Γ

A
ω ) (A.16)

where p(ω = ω|π) = πω . Both the terms involving X ,A above have a Normal form. The prior on the model
parameters has the same form as the model distribution in Eq. A.14:

p(θ) = p(π)
Y

ω

p(µX
ω |ΓX

ω )p(ΓX
ω )p(µA

ω |ΓA
ω )p(ΓA

ω ) (A.17)

where the mixing prior is p(π) = Dir(λ0IΩ), and the shape prior is a Normal-Wishart distribution p(ΓX
ω )p(µX

ω |ΓX
ω ) =

G(µX
ω |mX

0 , βX
0 ΓX

ω )W(ΓX
ω |aX

0 , BX
0 ). Identical expressions apply to the appearance component of Eq. A.17.
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A.2.3 The E-step of Bayesian One-Shot

The central idea of Bayesian One-Shot is to approximate the posterior distribution p(θ, ω, h|X ,A) by an
optimal approximation q(θ, ω, h) that is factorisable q(θ, ω, h) = q(θ)q(ω, h), where ω and h are hidden
variables while θ is the actual model parameter. In the E-step of Bayesian One-Shot, q(ω, h) is updated
according to:

q(ω, h) ∝ exp [I(ω, h)] where I(ω, h) =< log p(Xt,At, ω, h|θ) >θ (A.18)

and the expectation is taken w.r.t. q(θ) [102]. I(ω, h) can be further written as:

I(ω, h) = 〈log p(X|ω, h, θ)p(A|ω,X , h, θ)p(ω|θ)p(h)〉θ (A.19)

If we define I(ω, h) for each image n, each mixture component ω and each hypothesis h as γ̃n
ω,h, the indicator

posterior, we then have the update rule:

γ̃n
ω,h = π̃ωγ̃ω(Xn

h ) · γ̃ω(An
h) (A.20)

where:

log(π̃ω) = Ψ(λω) − Ψ(
∑

ω′

λω′) (A.21)

γ̃ω(Xn
h ) = exp

[

−
1

2
(Xn

h − mX
ω )T Γ̄

X
ω (Xn

h − mX
ω )

]

· (Γ̃X
ω )1/2exp

[
−dX

2βX
ω

]

(A.22)

log Γ̃X
ω =

dX

∑

i=1

Ψ((aX
ω + 1 − i)/2)− log |BX

ω | + dX log 2 (A.23)

Γ̄
X
ω = aX

ω (BX

ω )−1 (A.24)

where Ψ() is the Digamma function and dX is the dimensionality of X n
h . Superscript X indicates that the

parameters are related to the shape component of the model. The RHS of the above equations consists of
hyper-parameters for the parameter posteriors (i.e., λ, m, B, β and a). γ̃ω(An

h) is computed exactly the
same way as γ̃ω(Xn

h ), using the corresponding parameters of the appearance component. We then normalize
to give:

γn
ω,h =

γ̃n
ω,h

∑

ω′,h′ γ̃n
ω′,h′

(A.25)

which is the probability that component ω is responsible for hypothesis h of the nth training image.

A.2.4 The M-step in Bayesian One-Shot

In the M-step, q(θ) is updated according to:

q(θ) ∝ exp [I(θ)]p(θ) where I(θ) =< log p(Xt,At, ω, h|θ) >ω,h (A.26)

Again, the above equation can be written as:

I(θ) = 〈log p(Xt|ω, h, θ)p(At|ω,Xt, h, θ)p(ω|θ)p(h)〉ω,h (A.27)

and the expectation is taken w.r.t. q(ω, h).
We show here the update rules for the shape components. The equations are exactly the same for the
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appearance components. We define the following variables:

π̄ω =
1

N

N∑

n=1

|Hn|
∑

h=1

γn
ω,h (A.28)

N̄ω = Nπ̄ω (A.29)

µ̄X
ω =

1

N̄ω

N∑

n=1

|Hn|
∑

h=1

γn
ω,hX

n
h (A.30)

Σ̄
X
ω =

1

N̄ω

N∑

n=1

|Hn|
∑

h=1

γn
ω,h(Xn

h − µ̄X
ω )(Xn

h − µ̄X
ω )T (A.31)

Now we are ready to re-estimate the model distribution p(θ|Xt,At,O) through updating the hyper-parameters
({λω, aω, Bω, mω, βω}) that govern the shape of the distribution. For the mixing coefficients we have a
Dirichlet distribution q(π) = Dir(λ) where the hyper-parameters are updated by:

λω = N̄ω + λ0 (A.32)

For the means, we have q(µX
ω |ΓX

ω ) = G(mX
ω , βX

ω ΓX
ω ) where:

mX
ω =

N̄ωµ̄X
ω + βX

0 mX
0

N̄ω + βX
0

(A.33)

βX
ω = N̄ω + βX

0 (A.34)

For the noise precision matrix we have a Wishart density q(ΓX
ω ) = W(aX

ω , BX
ω ) where:

BX
ω =

N̄ωβX
0 (µ̄X

ω − mX
0 )(µ̄X

ω − mX
0 )T

N̄0 + βX
0

+ N̄ωΣ̄
X
ω + BX

0 (A.35)

aX
ω = N̄ω + aX

0 (A.36)

A.3 MAP learning

Having laid out the variational Bayesian framework for learning and recognition, we now give the learning
equations for the MAP scenario. In Section 6 of [34] we will compare the performance of ML [39], MAP
and the Variational Bayesian approaches.

In the MAP scenario, the integral in Eq.6 in [34] can be simplified as:
∫

p(X ,A|θ,O)p(θ|Xt,At,O) dθ ≈ p(X ,A|θMAP,O)

where θMAP = argmax
θ

p(Xt,At|θ,O)p(θ) (A.37)

The prior distribution of p(θ) in MAP has the same form as Eq. A.17 in Variational Bayes:

p(θ) = p(π)
Y

ω

p(µX
ω |ΓX

ω )p(ΓX
ω )p(µA

ω |ΓA
ω )p(ΓA

ω ) (A.38)

where the mixing prior is p(π) = Dir(λω,0IΩ), and the shape prior is a Normal-Wishart distribution
p(µX

ω |ΓX
ω )p(ΓX

ω ) = G(µX
ω |mX

ω,0, β
X
ω,0Γ

X
ω )W(ΓX

ω |aX
ω,0, B

X
ω,0). Identical expressions apply to the appear-

ance component of Eq. A.38.
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A.3.1 Expectation Maximization (EM) for MAP

The central idea of EM for MAP is to obtain the optimal θ through iteratively optimizing the q(θt, θt−1)
function, where θ contains the set of parameters {π, µX , µA,ΓX ,ΓA}:

q(θt, θt−1) =

Ω∑

ω

log p(ω,X ,A, θt) p(ω|X ,A, θt−1) (A.39)

In the E-step, we calculate the indicator function for each hypothesis h and each mixture component ω:

γ̃n
ω,h = πω γ̃ω(Xn

h ) γ̃ω(An
h)

where γ̃ω(Xn
h ) =

1

(2π)d/2|Σω|−1
exp

[

−
1

2
(Xn

h − mX
ω,0)

T Σ−1
ω (Xn

h − mX
ω,0)

]

(A.40)

The same form of equation applies to γ̃ω(An
h). Finally we obtain the normalized indicator function:

γn
ω,h =

γ̃n
ω,h

∑

ω′,h′ γ̃n
ω′,h′

(A.41)

In the M-step, we maximize q(θt, θt−1) over each of the parameters {π, µX , µA,ΣX ,ΣA}. For conve-
nience, we only show here the update rules for the mixture component as well as the shape related parameters.
Appearance related parameters have the same update form as their shape counterparts.

πω =

∑N
n=1

∑|Hn|
h=1 γn

ω,h + λω,0 − 1

N +
∑Ω

ω=1 λω,0 − Ω
(A.42)

µX
ω =

∑N
n=1

∑|Hn|
h=1 γn

ω,hX
n
h + βX

ω,0m
X
ω,0

∑N
n=1

∑|Hn|
h=1 γn

ω,h + βX
ω,0

(A.43)

Σ
X
ω =

PN

n=1

P|Hn|
h=1

γn
ω,h(Xn

h − µX
ω )(Xn

h − µX
ω )T + βX

ω,0(µ
X
ω − mX

ω,0)(µ
X
ω − mX

ω,0)
T + BX

ω,0
PN

n=1

P|Hn|
h=1

γn
ω,h + βX

ω,0 + aX
ω,0 + dX + 1

(A.44)


