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Abstract— Learning to recognize of object classes is one of
the most important functionalities of vision. It is estimated that
humans are able to learn tens of thousands of visual categories
in their life. Given the photometric and geometric variabilities
displayed by objects as well as the high degree of intra-class
variabilities, we hypothesize that humans achieve such a feat
by using knowledge and information cumulated throughout the
learning process. In recent years, a handful of pioneering papers
have applied various forms of knowledge transfer algorithms to
the problem of learning object classes. We first review some of
these papers by loosely grouping them into three categories:
transfer through prior parameters, transfer through shared
features or parts, and transfer through contextual information.
In the second half of the paper, we detail a recent algorithm
proposed by the author. This incremental learning scheme uses
information from object classes previously learned in the form
of prior models to train a new object class model. Training
images can be presented in an incremental way. We present
experimental results tested with this model on a large number
of object categories.

Index Terms— visual recognition, object classification,
Bayesian learning, incremental learning, one-shot learning,
knowledge transfer, priors

I. I NTRODUCTION

Humans interact with each other and the external world
through various sensory and motor systems. Roughly one
third of the brain cortex is devoted for functions related to
vision. In computer vision, a primary goal is to replicate the
visual functionalities that are important to humans. Among
them, visual object recognition is a leading area of research
in recent years. But it is only till recently that we start looking
at the problems of learning object classes under different
viewing conditions, and in large numbers (∼hundreds). In
this paper, we will mainly discuss methods related to object
classification. We define the task of identifying, with the
possibility of localizing and/or segmenting a member of
a defined object class asobject classification. In order to
learn to recognize object classes, an algorithm is destinedto
overcome a number of challenges.

Objects could be viewed under differentposes. We some-
times call it viewpoint transformation such as translation,
scaling, affine and projective transformations. Photometri-
cally, different illumination conditions would render very
different images of the same objects. A large number of
variations occur due to thedeformationsof articulated parts

in objects like human body and animals. Objects often do
not exist by themselves. Embedded in a background,clutters
pose a big challenge to recognition algorithms, especially
in which objects areoccludeddue to the clutter. Beyond
these transformations of single objects, object classification
is further complicated by the large intra-class variabilities
exhibited within a single class of objects. This is especially
troubling when the intra-class distance between members of
the objects are often larger than the inter-class distances
between different classes.

While the problem of object classification seems daunting
to the machines, it is well appreciated in psychology that
humans possess a superb ability in classifying different
objects at fleeting speed and without much attention [16],
[20], [22]. Biederman et al. have estimated that there are
about10 ∼ 30 thousands object classes in the world [3]. It
is known that a child at age six have learnt roughly the same
number of object categories as adults. This suggests that on
average, a child can learn about4 to 5 object classes per day.

Our own experiences also tell us that learning a new object
class is not often not a difficult task. Most of us would
agree that past experiences with other objects and object
classes have already taught us much of what objects are. We
have come to know how to handle lighting changes, assume
various geometric transformations, deal with clutters and
occlusions. To learn a new class, we rely on these previous
knowledge, and only simply register the incremental new
knowledge of the new object class. This process, formally
speaking, is calledknowledge transferin machine learning
terms. In stark contrast to the superb ability of learning to
classify object classes humans possess, most of today’s object
classification algorithms require a large number of training
examples to learn just every single class of objects. De-
pending on the dimensionality of the image representations
and the specific algorithm, the number of training examples
would range from hundreds to thousands [21], [24], [27].

The rest of this paper is organized in the following way. In
Section II, we give an overview of the existing literature of
object classification algorithms that have exploited the idea of
knowledge transfer in various forms. We then detail a recent
incremental algorithm we developed to learn object classes
in Section III. This method uses prior information gathered
from previously learned object classes. Finally we conclude
this paper in Section IV.



II. K NOWLEDGE TRANSFER IN OBJECT CLASSIFICATION

Knowledge transfer bears many possible forms in the
task of learning to classify objects. There is yet to date a
unifying definition or framework that encompasses the variety
of works proposed by researchers. In fact, while this line
of research is certainly gaining momentum in recent years,
so far a relatively small number of pioneering works have
explored this concept. It is worth noting that the problem of
incremental learning through knowledge transfer is intimately
related to the problem of one-shot learning. In the case of
one-shot learning, a single exemplar of an object class is
presented to the algorithm. As we have seen that image
data is notoriously complex and high dimensional. Learning
from a small number of training examples is often unfeasible
due to overfitting effects. Previous knowledge related to the
new object class is, therefore, highly important to assist
learning in such conditions and to facilitate to overcome such
problems. We will see in the sections below that in many
of the proposed knowledge transfer frameworks, the authors
have in their mind the problem of one-shot learning of object
classes. Roughly speaking, we could categorize the different
forms of knowledge transfer in the following three ways:by
model parameters, by feature or part sharing, by contextual
information.

A. transfer by model parameters

Success of an object classification systems relies critically
on the models one use for learning and recognition the
objects. By models, we mean the characterization that define
the task of object classification. For instance, in part-based
models [5], [9], [12], [27], a class of objects is defined by
parameters that characterize the distributions of the positions
and appearances of the object parts.

In [17], the authors propose a model for object classes
characterized by deformation matrices. In their paper, the
algorithm is to learn, say a digit “4” from a single image
example. But given that the algorithm has already learnt
letters, say the letter “A” from many training examples, the
task is to find an appropriate way to transfer the information
in the “A” models to the learning of digit “4” [17]. Here an
object class (e.g. ”A” class) is modeled by a set of image
transformation matrices that act upon each image samples in
order to bring them in correspondence with other members
of the same class. Suppose a set of transformationsTi is
learnt for the “A” class. Given a single example of digit “4”,
the algorithm first usesTi to artificially transfer the example
image “4” into many different variations. Given the enlarged
set of training examples, the new class, digit “4” could be
learnt as normal. In this work, the main idea is to use the
knowledge of transformations of old classes and transfer it
to the new training class.

In another work by [11], the authors propose a way of
knowledge transfer from a different angle. The task here is

similar to [17], in which the algorithm is to learn a new class
of objects, say character “e” given only one training example.
In order to overcome the destined overfitting problem when
the training number is extremely small, the authors utilize
information gained from learning other classes of objects.In
the learning process of other characters, a set of “relevant
dimensions” are discovered by a nonlinear, kernel based
metric learning algorithm [11]. Given this learnt distance
function and the single example of a new object class, the
algorithm learns a nearest neighbor classifier [11].

Both of the works above tackle the problem of one-shot
learning. The essence of these ideas is to obtain model related
parameters through training of relevant classes. Under the
assumption that the new class of objects is relatively close
to the old classes (digits and characters), these model related
information could be used to apply to the new class, either
through geometric transformations or through discriminative
dimensions.

Related to transferring through model parameters, another
line of work, inspired by [19], takes advantage of Bayesian
learning concepts [7]. The authors combine two learning
scenario under one unified framework: learning with few
examples by borrowing information from other classes; and
learning incrementally by updating models as training images
trickles in. We will detail this work in Section III.

B. transfer by sharing features

Another group of works emphasizes the use of sharing
features in order to learn new object classes.

One intuitive idea is to recognize the fact that for many
different classes of object, there are decomposable parts or
features that are shared across these classes. So in a setting of
learning more and more new classes, an efficient way to do
it is to maximize the repeated usage of these parts. Krempp
et al. have formalized this idea in their paper [15].

In this work, the authors focus on the problem of se-
quentially learning new classes of objects through knowledge
transfer, rather than the scenario of limited training numbers.
The key idea is to learn new object class from reusable parts
obtained from object classes that have already been learned
[15].

Recently, another work using transferred information
through features and parts has been applied to one shot
learning. In their paper, Bart et al. base the learning of
diagnostic features for new object class on similar features
learnt from other related classes [2]. The authors hypothesize
that diagnostic information exists in discriminative patches
that distinguish objects in one class from the other. They
propose an algorithm that automatically extract such patches
by maximizing the mutual information of such features with
the objects’ class identity. Suppose horses and cows are learnt
with ample examples, and useful features found. For for a
single image of a dog, diagnostic patches can be derived from



visual similar patches in horses and cows. So while there is
limited information given in the new class, knowledge from
the already learned classes helps the algorithm to smartly
select the useful features for the new class recognition.

We have shown that knowledge transfer is important in
learning conditions that are either limited by the number of
training examples, or set up in such a way that incremental
learning is required. But the idea of sharing knowledge is not
limited to such condition. Torralba et. al. have shown in that
by sharing visual features, one could learn multiple classes
of objects more efficiently than otherwise [23].

C. transfer by contextual information

So far we have been mostly looking at works that are
aimed to borrow information from one object class to the
other. Many of these works [2], [11], [17] rely on the fact
that the object classes are relatively similar to each other,
such as digits to letters, and dogs to horses. [7] and [23]
have taken broader steps and have used relatively different
objects classes to transfer useful information.

Objects do not often exist by themselves in the visual
world. They are likely to be embedded in a cluttered scene
in which different objects interact together. This observation
prompts Murphy et al to propose an algorithm that utilizes
ambient information from the environ to help learning and
recognizing objects [18]. The idea is that certain global in-
formation of the scenes, such as frequency distributions, can
act as reliable cues for object recognition. They, therefore,
propose a conditional random field algorithm to perform ob-
ject classification by borrowing such contextual information
[18].

Another recent work by Hoeim et al. also exploits contex-
tual information to assist object recognition. They observe
that object detection can be made easier in cluttered images
if one knows something about the geometry of the scenes,
such as the camera height, horizon position as well as the
support surfaces of the objects ( [13] and personal commu-
nication). They show in the experiments of pedestrian and
car recognition that many false positive detections of these
objects can be pruned out by using local and global geometry
knowledge.

III. I NCREMENTAL LEARNING WITH PRIOR KNOWLEDGE

We present here in more details an algorithm proposed
recently to learn new object classes using knowledge from
other classes [7]. This work is most similar in spirit to Section
II-A. It unifies incremental learning scenario with knowledge
transfer from prior models. Due to space limitation, we only
highlight here ideas and important points from papers [6]–[8].
The overall system is shown in Fig.1.

A. Overall approach

We first formalize the task of object classification. We start
with a learnt object class model and its corresponding model
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Fig. 1. Schematic illustration of the Bayesian learning algorithm [6], [7].
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Fig. 2. Illustration of the constellation model

distributionp(θ), whereθ is a set of model parameters for
the distribution. Give a new image and we want to decide
if it contains an instance of our object class or not. In this
query image we have identifiedN interesting features with
locationsX , and appearancesA. We now make a Bayesian
decision,R. For clarity, we express training images through
the detected feature locationsXt and appearancesAt.

R =
p(Object|X ,A,Xt,At)

p(No Object|X ,A,Xt,At)
(1)

=
p(X ,A|Xt,At, Object) p(Object)

p(X ,A|Xt,At, No object) p(No object)
(2)

≈
R

p(X ,A|θ, Object)p(θ|Xt,At, Object) dθR
p(X ,A|θbg, No Object)p(θbg |Xt,At, No Object) dθbg

(3)

Note the ratio of p(Object)
p(No Object) in Eq.2 is usually set manually

to 1, hence omitted in Eq.3.
The goal of learning in this formulation is to estimate the

density of the object modelsp(θ|Xt,At, Object). In other
words, in the high dimensional space that characterize the
objects, we would like to find the appropriate distribution
that defines the extent of where and how the models occupy
this space. We do this through the usage of prior knowledge.

At this point, we make a necessary diversion give a more
detailed description of what the object class model is. That
is to show what theseθ look like. Our chosen representation
is based on theconstellation model[4], [10], [26], [27].
A constellation model consists of a number of parts, each
encoding information on both the shape and appearance. The
appearance of each part is modeled and the shape of the
object is represented by the mutual position of the parts
[10]. The entire model is generative and probabilistic, so
appearance and shape are all modeled by probability density
functions, which are Gaussians. The model is best explained
by first considering recognition. We have learned a generative
object model, withP parts and a posterior distribution on the
parametersθ: p(θ|Xt,At) whereXt andAt are the location
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Fig. 3. A visualization of the prior parameter density, estimated from ML models of spotted cats (green×’s), faces (red+’s) and airplanes (blue◦’s).
Models trained on background data are shown as magenta∗’s but are not used in estimating the prior density. In all figures the mean is plotted on thex-axis
and the variance on they-axis. (a) Appearance parameter space for the first4 descriptors.(b) X component of the shape term for each of the non-landmark
model parts.(c) Y component of shape. This figure is best viewed in color with magnification.

and appearances of interesting features found in the training
data. Recall the Bayesian decision rule in Eq.1 to 3. We
assume that all non-object images can also be modeled by a
background with a single set of parametersθbg which are
fixed. The ratio of the priors may be estimated from the
training set or set manually (usually to 1). Our decision then
requires the calculation of the ratio of the two likelihood
functions. In order to do this, the likelihoods may be factored
as follows:

p(X ,A|θ) =
X
h∈H

p(X ,A, h|θ) =
X
h∈H

p(A|h, θ)| {z }
Appearance

p(X|h, θ)| {z }
Shape

(4)

Since our model only hasP (typically 3-7) parts but there are
N (up to 100) features in the image, we introduce an indexing
variableh which we call ahypothesiswhich allocates each
image feature either to an object or to the background. We
show in Fig.2 an example of the constellation model learned
for the motorbike class.

Appearance.Each feature’s appearance is represented as a
point in some appearance space. Each partp has a Gaussian
density (denoted byG) within this space, with mean and
precision parametersθA

p = {µA
p , ΓA

p } which is independent
of other parts’ densities.

Shape. The shape is represented by a joint Gaussian
density of the locations of features within a hypothesis. For
each hypothesis, the coordinates of all parts are subtracted off
from the left most part coordinates. Additionally, it is scale is
used to normalize the constellation. This enables our model
to achieve scale and translational invariance. The densityhas
parametersθX = {µX , ΓX}.

B. Learning with prior

The task in learning is to estimate the densityp(θ|Xt,At).
This is done using the Variational Bayes procedure [1], [14],
[25]. It approximates the posterior distributionp(θ|Xt,At)
by q(θ, ω, h). ω is the mixture component label andh is the
hypothesis. Using Bayes’ rule:q(θ, ω, h) ≈ p(θ|Xt,At) ∝
p(Xt,At|θ)p(θ). The likelihood terms use Gaussian densities

and by assuming priors of a conjugate form, in this case a
Normal-Wishart, our posteriorq-function is also a Normal-
Wishart density. The variational Bayes procedure is a vari-
ant of EM which iteratively updates the hyper-parameters
and latent variables to monotonically reduces the Kullback-
Liebler distance betweenp(θ|Xt,At) andq(θ, ω, h). Using
this approach allows us to incorporate prior information ina
systematic way and is far more powerful that a maximum-
likelihood approach used in [10]. We first briefly give an
overview of the algorithm [6], based on [1], which is a batch
learning algorithm. Then we introduce the new incremental
version of the algorithm. In order to provide some further
intuition of the prior models, we show in Fig.3 a visualization
of the prior parameter densities obtained from previously
learned object classes (in this case spotted cats, faces and
airplanes) for learning a new object class (motorbike).

There are two stages to learning: an E-step where the
responsibilities of the hidden variables are calculated and an
M-step where we update the hyperparameters ofq(θ, ω, h),
Θ = {λ, m, β, a, B}. The responsibilities for each imagen
is:

γ̃n
ω,h = π̃ω γ̃ω(Xn

h ) γ̃ω(An
h) (5)

using the update rules given in [1]. The hyperparameters
are updated from these responsibilities. This is done by
computing the sufficient statistics. While the update rulesfor
the shape components are shown, they are of the same form
for the appearance terms. The sufficient statistics, for mixture
componentω are calculated as follows::

π̄ω =
1

N

N∑

n=1

|Hn|∑

h=1

γn
ω,h and N̄ω = Nπ̄ω (6)

µ̄X
ω =

1

N̄ω

N∑

n=1

|Hn|∑

h=1

γn
ω,hX

n
h and (7)

Σ̄
X

ω =
1

N̄ω

N∑

n=1

|Hn|∑

h=1

γn
ω,h(X n

h − µ̄X
ω )(X n

h − µ̄X
ω )T (8)
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Note that to compute these, we need the responsibilities from
across all images. From these we can update the hyper-
parameters (update rules are in [1]).

1) Extension to incremental learning:We now give an
incremental version of the update rules, based on Neal
and Hinton’s adaptation of conventional EM [19]. Let us
assume that we have a model with hyper-parametersΘ =
{λ, m, β, a, B}, estimated usingM previous images (M ≥
0) and we haveN new images (N ≥ 1) with which we
wish to update the model. From theM previous images,
we have retained sufficient statisticsπe

ω, µe
ω,Σe

ω for each
mixture componentω. We then compute the responsibilities
for the new images, i.e.γn

ω,h for n = 1 . . .N and from them,
the sufficient statistics,̄πω , µ̄ω , Σ̄ω using eqn.’s 6 and 8.
In the Incremental M-step we then combine the sufficient
statistics from these new images with the existing set of
sufficient statistics from the previousM images. Then the
overall sufficient statistics,̂πω, µ̂ω, Σ̂ω are computed:

π̂ω =
Mπe

ω + Nπ̄ω

M + N
(9)

µ̂ω =
Mµe

ω + N µ̄ω

M + N
(10)

Σ̂ω =
MΣ

e
ω + NΣ̄ω

M + N
(11)

From these we can then update the model hyper-parameters.
Note the existing sufficient statistics are not updated within
the update loop. When the model converges, the final value
of the sufficient statistics from the new images are combined
with the existing set, ready for the next update:πe

ω =
π̂ω, µe

ω = µ̂ω,Σe
ω = Σ̂ω. Initially M = 0, so πe

ω, µe
ω,Σe

ω

drop from our equations and our model hyper-parameters are
set randomly (within some sensible range).

C. Experiments and results

Due to space limitation, we will not elaborate here the
details of the experimental methods as well as some of

the implementation technicalities. Information of experiments
performed here can be found in [7]. Fig.4 is a summary of
overall classification results as well as the learning time tested
on the Caltech 101 dataset [7].

Fig.5 shows in details the results from learning the grand-
piano object class using our algorithm. As the number of
training examples increases, we observe that the shape model
more defined and structured with reducing variance. This
is expected sinc ehte algorithm should be more and more
confident of what is to be learned. Fig.5(c) shows examples
of the part appearance that are closest to the mean distribu-
tion of the appearance model. Notice that critical features
such as keyboards for the piano are successfully learned
by the algorithm. Three learning methods’ performances are
compared in Fig.5(d). The Bayesian methods clearly show a
big advantage over the ML method when training number is
small. Bayesian Incremental method, however, shows greater
performance fluctuations as compared to the Bayesian Bath
method. Finally, we show some classified test images, using
an incremental model trained from a single image.

IV. SUMMARY

In this paper, we first present a brief summary of some
of the methods used in object classification algorithms that
exploit the idea of knowledge transfer to learn object classes
either incrementally or with a very small training number.
Several interesting themes have been explored to transfer
knowledge from elsewhere to the targeted object classes.
One idea is summarize knowledge from other classes into
model parameters. By using Bayesian learning method or
other techniques, such knowledge could be transferred into
the new learning task. A second idea is to share some
fundamental building blocks of the object classes. In the
problem of visual recognition, local features or parts are
the most natural choices of this method. A third way of
transferring knowledge is to use contextual information to
improve recognition or help learning. These methods are
developed under the assumption that most objects do not
exist by themselves in the visual world. Instead, they are
often related to their environment either geometrically or
semantically, or both. Useful knowledge of the surroundings
could therefore help the learning and recognition of objects.

There is still much to be explored in how to utilize knowl-
edge from different sources for learning object classes. For
instance, object classes can be organized into a hierarchy of
relationships. We often tend to implicitly learn an new class,
say the dalmatian dog, by evoking information of its related
classes, say dogs, German shepards and so. Information of
taxonomy and ontology might play useful role in object
classification. There is still much more to investigate in
how to use contextual information to infer objects. Other
modalities, such as information from texts, audio recordings
and so on may also provide useful knowledge.
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(e)

Fig. 5. Results for the “grand-piano” category. Panel (a) shows examples of feature detection. Panel (b) shows the shapemodels learned at Training Number
= (1, 3, 6, 15). Similarly to Fig.3(a), the x-axis represents the x position, measured by pixels, and the y-axis represents the y position, measured by pixels.
Panel (c) shows the appearance patches for the model learnedat Training Number= (1, 3, 6, 15). Panel (d) shows the comparative results between ML,
Bayesian Batch and Bayesian Incremental methods (the errorbars show the variation over the 10 runs). Panel (e) shows recognition result for the incremental
method at Training Number= 1. Pink dots indicate the center of detected interest points.This figure is best viewed in color with magnification.
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