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Abstract— Learning to recognize of object classes is one of
the most important functionalities of vision. It is estimated that
humans are able to learn tens of thousands of visual categ@s
in their life. Given the photometric and geometric variabilities
displayed by objects as well as the high degree of intra-clas
variabilities, we hypothesize that humans achieve such a dé
by using knowledge and information cumulated throughout tre
learning process. In recent years, a handful of pioneering apers
have applied various forms of knowledge transfer algorithns to
the problem of learning object classes. We first review somefo
these papers by loosely grouping them into three categories
transfer through prior parameters, transfer through shared
features or parts, and transfer through contextual information.
In the second half of the paper, we detail a recent algorithm
proposed by the author. This incremental learning scheme &s
information from object classes previously learned in the érm
of prior models to train a new object class model. Training
images can be presented in an incremental way. We present
experimental results tested with this model on a large numbre
of object categories.

Index Terms—visual recognition, object classification,

Bayesian learning, incremental learning, one-shot learmig,
knowledge transfer, priors

I. INTRODUCTION

in objects like human body and animals. Objects often do
not exist by themselves. Embedded in a backgroahdters
pose a hig challenge to recognition algorithms, especially
in which objects areoccludeddue to the clutter. Beyond
these transformations of single objects, object classifica

is further complicated by the large intra-class variale#it
exhibited within a single class of objects. This is espécial
troubling when the intra-class distance between members of
the objects are often larger than the inter-class distances
between different classes.

While the problem of object classification seems daunting
to the machines, it is well appreciated in psychology that
humans possess a superb ability in classifying different
objects at fleeting speed and without much attention [16],
[20], [22]. Biederman et al. have estimated that there are
about10 ~ 30 thousands object classes in the world [3]. It
is known that a child at age six have learnt roughly the same
number of object categories as adults. This suggests that on
average, a child can learn abaluto 5 object classes per day.

Our own experiences also tell us that learning a new object
class is not often not a difficult task. Most of us would
agree that past experiences with other objects and object
classes have already taught us much of what objects are. We

Humans interact with each other and the external worlthave come to know how to handle lighting changes, assume

through various sensory and motor systems. Roughly ongarious geometric transformations, deal with clutters and
third of the brain cortex is devoted for functions related toocclusions. To learn a new class, we rely on these previous
vision. In computer vision, a primary goal is to replicate th knowledge, and only simply register the incremental new
visual functionalities that are important to humans. Amongknowledge of the new object class. This process, formally
them, visual object recognition is a leading area of redearcspeaking, is calleknowledge transfein machine learning
in recent years. But it is only till recently that we startkimy  terms. In stark contrast to the superb ability of learning to
at the problems of learning object classes under differentlassify object classes humans possess, most of todagstobj
viewing conditions, and in large numberst{undreds). In classification algorithms require a large number of tragnin
this paper, we will mainly discuss methods related to objecexamples to learn just every single class of objects. De-
classification. We define the task of identifying, with the pending on the dimensionality of the image representations
possibility of localizing and/or segmenting a member ofand the specific algorithm, the number of training examples
a defined object class asbject classificationIn order to  would range from hundreds to thousands [21], [24], [27].
learn to recognize object classes, an algorithm is destmed  The rest of this paper is organized in the following way. In
overcome a number of challenges. Section II, we give an overview of the existing literature of
Objects could be viewed under differgmses We some-  object classification algorithms that have exploited tlesidf
times call it viewpoint transformation such as translation knowledge transfer in various forms. We then detail a recent
scaling, affine and projective transformations. Photoimetr incremental algorithm we developed to learn object classes
cally, differentillumination conditions would render very in Section Ill. This method uses prior information gathered
different images of the same objects. A large number ofrom previously learned object classes. Finally we corelud
variations occur due to théeformationsof articulated parts this paper in Section IV.



[I. KNOWLEDGE TRANSFER IN OBJECT CLASSIFICATION  similar to [17], in which the algorithm is to learn a new class

Knowledge transfer bears many possible forms in thé! OPIECtS, say character “e” given only one training exampl
task of learning to classify objects. There is yet to date 4n order to overcome the destined overfitting problem when

unifying definition or framework that encompasses the warie ("€ training number is extremely small, the authors utilize
of works proposed by researchers. In fact, while this Iinénformanon gained from learning other classes of objdcts.

of research is certainly gaining momentum in recent yearéhe learning process of other characters, a set of “relevant

so far a relatively small number of pioneering works havedimensions” are discovered by a nonlinear, kemel based

explored this concept. It is worth noting that the problem of;net”,C Iearr&mg a'9°”|thm [11]'I G|\;en this I%"’_‘mt dllstanc;a]
incremental learning through knowledge transfer is inteya  TUnction and the single example of a new object class, the

related to the problem of one-shot learning. In the case oflllgor'thm learns a nearest neighbor classifier [11].
one-shot learning, a single exemplar of an object class is Both of the works above tackle the problem of one-shot

presented to the algorithm. As we have seen that imaglgarning.The essence of t_hese ideas is to obtain modeddelat
data is notoriously complex and high dimensional. Learnind@ameters through training of relevant classes. Under the
from a small number of training examples is often unfeasibl@SSUmption that the new class of objects is relatively close
due to overfitting effects. Previous knowledge related t th {© the old classes (digits and characters), these modétdela
new object class is, therefore, highly important to assisftformation could be used to apply to the new class, either
learning in such conditions and to facilitate to overcomehsu through geometric transformations or through discrimieat
problems. We will see in the sections below that in manydimensions. .

of the proposed knowledge transfer frameworks, the authors Related to transferring through model parameters, another
have in their mind the problem of one-shot learning of objectin€ Of work, inspired by [19], takes advantage of Bayesian
classes. Roughly speaking, we could categorize the differe '€8ning concepts [7]. The authors combine two learning
forms of knowledge transfer in the following three wapy; ~ SCenario under one unified framework: learning with few

model parametersby feature or part sharingby contextual examples by borrowing information from other classes; and
information learning incrementally by updating models as training iesag

trickles in. We will detail this work in Section lll.
A. transfer by model parameters

Success of an object classification systems relies ctitical B. transfer by sharing features

on the models one use for learning and recognition the Another group of works emphasizes the use of sharing
objects. By models, we mean the characterization that defirf@atures in order to learn new object classes.
the task of object classification. For instance, in paredas One intuitive idea is to recognize the fact that for many
models [5], [9], [12], [27], a class of objects is defined by different classes of object, there are decomposable parts o
parameters that characterize the distributions of thetipasi  features that are shared across these classes. So in g séttin
and appearances of the object parts. learning more and more new classes, an efficient way to do
In [17], the authors propose a model for object classed is to maximize the repeated usage of these parts. Krempp
characterized by deformation matrices. In their paper, thet al. have formalized this idea in their paper [15].
algorithm is to learn, say a digit “4” from a single image In this work, the authors focus on the problem of se-
example. But given that the algorithm has already learnguentially learning new classes of objects through knogded
letters, say the letter “A” from many training examples, thetransfer, rather than the scenario of limited training namsb
task is to find an appropriate way to transfer the informationThe key idea is to learn new object class from reusable parts
in the “A” models to the learning of digit “4” [17]. Here an obtained from object classes that have already been learned
object class (e.g. "A’ class) is modeled by a set of imag€g15].
transformation matrices that act upon each image samples in Recently, another work using transferred information
order to bring them in correspondence with other memberthrough features and parts has been applied to one shot
of the same class. Suppose a set of transformatignis  learning. In their paper, Bart et al. base the learning of
learnt for the “A’ class. Given a single example of digit “4”, diagnostic features for new object class on similar feature
the algorithm first use%; to artificially transfer the example learnt from other related classes [2]. The authors hypataes
image “4” into many different variations. Given the enladge that diagnostic information exists in discriminative pas
set of training examples, the new class, digit “4” could bethat distinguish objects in one class from the other. They
learnt as normal. In this work, the main idea is to use theropose an algorithm that automatically extract such pestch
knowledge of transformations of old classes and transfer by maximizing the mutual information of such features with
to the new training class. the objects’ class identity. Suppose horses and cows arg lea
In another work by [11], the authors propose a way ofwith ample examples, and useful features found. For for a
knowledge transfer from a different angle. The task here isingle image of a dog, diagnostic patches can be derived from



visual similar patches in horses and cows. So while there is Learning Recognition
K_JH

limited information given in the new class, knowledge from model
the already learned classes helps the algorithm to smartly  x/imse/ “pethog hyperparams% ratio
select the useful features for the new class recognition. hyperpriors

We have shown that knowledge transfer is important in ewertiseknowiedge | priors

. .. . .. learnt categories | model
learning conditions that are either limited by the number of o ' _ o
training examples, or set up in such a way that incrementdi9- 1- Schematic illustration of the Bayesian learningogtm [6], [7].

test
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| Random
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learning is required. But the idea of sharing knowledge is no i )
limited to such condition. Torralba et. al. have shown inttha - e BEEps
by sharing visual features, one could learn multiple classe - ,ﬁ‘ T =
of objects more efficiently than otherwise [23]. ; % TR A *g & =
C. transfer by contextual information Lo I e . (B BB
So far we have been mostly looking at works that are (a) the shape model  (b) the appear. model (c) sample parts
aimed to borrow information from one object class to the
other. Many of these works [2], [11], [17] rely on the fact Fig. 2. lllustration of the constellation model

that the object classes are relatively similar to each other

such as digits to letters, and dogs to horses. [7] and [ZSA_ o ,
have taken broader steps and have used relatively differe {strlbut|onp(0), where® is a set of model parameters for

objects classes to transfer useful information. the distribution. Give a new image and we want to decide

Objects do not often exist by themselves in the visualf it contains an instance of our object class or not. In this

world. They are likely to be embedded in a cluttered scen?uery image we have identifielf interesting features with
in which different objects interact together. This obsé&ora ocations X', and appearanced. We now make a Bayesian

prompts Murphy et al to propose an algorithm that utmzesdecision,R. For clarity, we express training images through
ambient information from the environ to help learning andth€ detected feature locations and appearanced;.

recognizing objects [18]. The idea is that certain global in p _ p(Objec{ X, A, i, Ar) (1)

formation of the scenes, such as frequency distributioas, ¢ p(No ObjectX’, A, Xy, Ay)

act as reliable cues for object recognition. They, theefor B p(X, A|X;, A, Object) p(Object) @

propose a conditional random field algorithm to perform ob- ~ p(&, A|X;, A;, No objech p(No objech

ject classification by borrowing such contextual inforroati N [ p(X,.A|0,Objechp(8| Xz, A, Object) dO 3)

[18]. [ p(X, Al6y,, No Objechp(6, | Xz, Ar, No Objech d6y,
Another recent work by Hoeim et al. also exploits contex-

. ) . : - i0 of_P(Obiecy '
tual information to assist object recognition. They obgery NOte the ratio ofRe5pes in Eq2 is usually set manually

that object detection can be made easier in cluttered imagd@ 1. hence omitted in Eq. o _

if one knows something about the geometry of the scenes Th_e goal of Iearnlng in this formulation is to estimate the
such as the camera height, horizon position as well as trdensity of the object models(6];, Ay, Object. In other
support surfaces of the objects ( [13] and personal commu¥Ords in the high dimensional space that characterize the
nication). They show in the experiments of pedestrian an@PJects, we would like to find the appropriate distribution
car recognition that many false positive detections of ehesthat defines the extent of where and how the models occupy

objects can be pruned out by using local and global geometiS space. We do this through the usage of prior knowledge.
knowledge. At this point, we make a necessary diversion give a more

detailed description of what the object class model is. That
I1l. I NCREMENTAL LEARNING WITH PRIOR KNOWLEDGE s to show what thes@ look like. Our chosen representation

We present here in more details an algorithm proposet$ based on theconstellation model4], [10], [26], [27].
recently to learn new object classes using knowledge fron? constellation model consists of a number of parts, each
other classes [7]. This work is most similar in spirit to St ~€ncoding information on both the shape and appearance. The
I-A. It unifies incremental learning scenario with knowtgrl ~ appearance of each part is modeled and the shape of the
transfer from prior models. Due to space limitation, we onlyobject is represented by the mutual position of the parts
highlight here ideas and important points from papers f§}-[ [10]. The entire model is generative and probabilistic, so

The overall system is shown in Fig.1. appearance and shape are all modeled by probability density
functions, which are Gaussians. The model is best explained
A. Overall approach by first considering recognition. We have learned a generati

We first formalize the task of object classification. We startobject model, withP parts and a posterior distribution on the
with a learnt object class model and its corresponding modedarameter®: p(0|X;, A;) whereX; and.A; are the location
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Fig. 3. A visualization of the prior parameter density, mstied from ML models of spotted cats (gregrs), faces (red+’s) and airplanes (blue’s).
Models trained on background data are shown as magéntaut are not used in estimating the prior density. In all fegguthe mean is plotted on theaxis

and the variance on thg-axis. (a) Appearance parameter space for the firstescriptors(b) X component of the shape term for each of the non-landmark
model parts(c) Y component of shape. This figure is best viewed in color withgnification.

and appearances of interesting features found in the tiaini and by assuming priors of a conjugate form, in this case a
data. Recall the Bayesian decision rule in Etp 3. We  Normal-Wishart, our posteriaj-function is also a Normal-
assume that all non-object images can also be modeled byViishart density. The variational Bayes procedure is a vari-
background with a single set of parametés which are ant of EM which iteratively updates the hyper-parameters
fixed. The ratio of the priors may be estimated from theand latent variables to monotonically reduces the Kullback
training set or set manually (usually to 1). Our decisiomthe Liebler distance between(0|X;, A;) and¢(0,w, h). Using
requires the calculation of the ratio of the two likelihood this approach allows us to incorporate prior informatiomin
functions. In order to do this, the likelihoods may be faetbr systematic way and is far more powerful that a maximum-

as follows: likelihood approach used in [10]. We first briefly give an
p(X,A10) = 3 p(X, A, h6) = 3 p(Ah,6) p(X|h,6) () overview of the algorithm [6], based on [1], which is a batch
’ ey A e —— —— learning algorithm. Then we introduce the new incremental

Appearance Shape

version of the algorithm. In order to provide some further

Since our model only hag (typically 3-7) parts but there are intuition of the prior models, we show in Fig.3 a visualipati

N (up to 100) features in the image, we introduce an indexingf the prior parameter densities obtained from previously

variableh which we call ahypothesisvhich allocates each |earned object classes (in this case spotted cats, faces and

image feature either to an object or to the background. Wgjrplanes) for learning a new object class (motorbike).

show in Fig.2 an example of the constellation model learned There are two stages to learning: an E-step where the

for the motorbike class. responsibilities of the hidden variables are calculatedi @m
Appearance.Each feature’s appearance is represented asigy-step where we update the hyperparameters(@fw, h),

point in some appearance space. Each pdws a Gaussian @ — {X, m, 3, a, B}. The responsibilities for each image
density (denoted byy) within this space, with mean and jg:

precision parameten%;)4 = {u;', 7'} which is independent A5 h = Tw Foo (X)) A (AR) ()
of other parts’ densities.

Shape. The shape is represented by a joint Gaussia
density of the locations of features within a hypothesis. Fo
each hypothesis, the coordinates of all parts are subtratfte
from the left most part coordinates. Additionally, it is kc&
used to normalize the constellation. This enables our mod
to achieve scale and translational invariance. The dehsisy

Hsing the update rules given in [1]. The hyperparameters
are updated from these responsibilities. This is done by
computing the sufficient statistics. While the update rdides

the shape components are shown, they are of the same form
é?r the appearance terms. The sufficient statistics, fotumix
componentv are calculated as follows::

parameter®”™ = {p* T}, LN

B. Learning with prior o = W Zl }; Yo and N, = Nw,  (6)
The task in learning is to estimate the dengif@|X;, A;). _N IEI"\

This is done using the Variational Bayes procedure [1],,[14] P ; Z Z A7, X7 and (7

[25]. It approximates the posterior distributigri®|X;, A;) : No = ”’

by ¢(0,w, h). w is the mixture component label arkdis the N |H"|

hypothesis. Using Bayes’ ruleg(0,w, h) ~ p(0|X;, A:) x s 1 Z Z AL (X — BT — 5 )T(8)

p(X, A|0)p(0). The likelihood terms use Gaussian densities . No et hel



the implementation technicalities. Information of expagnts

performed here can be found in [7]. Fig.4 is a summary of

overall classification results as well as the learning tiested

on the Caltech 101 dataset [7].

7 Fig.5 shows in details the results from learning the grand-
e ot Pramaned prcen et piano object class using our algorithm. As the number of

() (b) training examples increases, we observe that the shapd mode

Fig. 4. (a) Average learning time for ML, Bayesian Batch and more defined and structured with reducing variance. This

Bayesian Incremental methods over all 101 categoriesgafpiPr IS expected sinc ehte algorithm should be more and more

mance comparison between ML, Bayesian Batch and Bayesiagonfident of what is to be learned. Fig.5(c) shows examples

Incremental methods for all 101 object categories giigraining o5 the part appearance that are closest to the mean distribu-

images per class. A category has three markers: Red-Ciegle r . . .
resents Bayesian Incremental method, Green-Plus Bay@sitoh tion of the appearance model. Notice that critical features

method and Blue-Diamond Maximum Likelihood method. The x-Such as keyboards for the piano are successfully learned
axis indicates Bayesian method categorization performanith by the algorithm. Three learning methods’ performances are
only the prior model. The y-axis indicates categorizati@nfer-  compared in Fig.5(d). The Bayesian methods clearly show a
mance for each of the three methods. big advantage over the ML method when training number is
- small. Bayesian Incremental method, however, shows greate
Note that to. compute these, we need the responsibilities fro performance fluctuations as compared to the Bayesian Bath
across all images. From these we can update the hypefiethod. Finally, we show some classified test images, using

Learning Time (seconds)

parameters (update rules are in [1]). . an incremental model trained from a single image.
1) Extension to incremental learningWe now give an
incremental version of the update rules, based on Neal IV. SUMMARY

and Hinton's adaptation of conventional EM [19]. Let us
assume that we have a model with hyper-paramegers
{A\,m, 3,a, B}, estimated usind/ previous imagesN/ >

0) and we haveN new images §¥ > 1) with which we
wish to update the model. From th& previous images,
we have retained sufficient statisties, u¢, 37, for each

In this paper, we first present a brief summary of some
of the methods used in object classification algorithms that
exploit the idea of knowledge transfer to learn object @ass
either incrementally or with a very small training number.
Several interesting themes have been explored to transfer
mixture component. We then compute the responsibilities Knowledge from elsewhere to the targeted object classes.
for the new images, i.e , for n = 1... N and from them, One idea is summarize kpowledge from oth(_er classes into
the sufficient statisticsir;,,ﬁw,f:w using eqn’s 6 and 8. model para_meters. By using Bayesian learning method_ or
In the Incremental M-step we then combine the sufficienfther techmqu_es, such knowledge C_OUId t_)e transferred into
statistics from these new images with the existing set ofe new Iearnlr!g_task. A second |de§1 is to share some
sufficient statistics from the previous/ images. Then the fundamental building blocks of the object classes. In the

overall sufficient statisticst.,, 1, 3., are computed: problem of visual recognition, local features or parts are
wr e the most natural choices of this method. A third way of

— Mmg, + N7, 9) transferring knowledge is to use contextual information to
M+N - improve recognition or help learning. These methods are
4 = Mpg, + Np,, (10) developed under the assumption that most objects do not
“ M+N exist by themselves in the visual world. Instead, they are
£ = M3, + N3, (11) often related to their environment either geometrically or
v M+ N semantically, or both. Useful knowledge of the surrounding

From these we can then update the model hyper-parametef§uld therefore help the learning and recognition of olsject
Note the existing sufficient statistics are not updated iwith ~ There is still much to be explored in how to utilize knowl-
the update loop. When the model converges, the final valugdge from different sources for learning object classes. Fo
of the sufficient statistics from the new images are combinednstance, object classes can be organized into a hierafchy o
with the existing set, ready for the next update, = relationships. We often tend to implicitly learn an new slas

T b6, = 1,2 = 3. Initially M = 0, so=¢, us,x¢  say the dalmatian dog, by evoking information of its related
drop from our equations and our model hyper-parameters afdasses, say dogs, German shepards and so. Information of

set randomly (within some sensible range). taxonomy and ontology might play useful role in object
) classification. There is still much more to investigate in
C. Experiments and results how to use contextual information to infer objects. Other

Due to space limitation, we will not elaborate here themodalities, such as information from texts, audio recagdin
details of the experimental methods as well as some afind so on may also provide useful knowledge.
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Fig. 5. Results for the “grand-piano” category. Panel (amshexamples of feature detection. Panel (b) shows the shapels learned at Training Number
= (1, 3,6,15). Similarly to Fig3(a), the x-axis represents the x position, measured bygigeid the y-axis represents the y position, measured bispixe
Panel (c) shows the appearance patches for the model leatriBaining Number= (1, 3,6, 15). Panel (d) shows the comparative results between ML,
Bayesian Batch and Bayesian Incremental methods (the learsrshow the variation over the 10 runs). Panel (e) shoveginéion result for the incremental
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method at Training Numbeg 1. Pink dots indicate the center of detected interest poiritss figure is best viewed in color with magnification.
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