In: Proceedings of the AAAI Fall Symposium on Sensory Aspects of

Robotic Intelligence. Asilomar, California, November 1991.

Using Motion Vision for a Simple Robotic Task

John Woodfill and Ramin Zabih
Computer Science Department

Stanford University
Stanford, California 94305

Abstract

We are interested in real-time visual capabilities for
robots in unstructured domains. We have developed
motion, stereo, and motion-based tracking algorithms
that run in real-time on a Connection Machine. Using
a camera placed on a HERO-2000 robot, we have con-
structed a system that pans to follow a large moving
object in the field of view. This system is capable of re-
liably tracking a moving person for several minutes. In
this paper, we describe the visual and robotic compo-
nents of our system, and review some of the challenges
that face researchers attempting to construct robots
with real-time visual sensing.

1 Introduction

We are interested in building autonomous robotic sys-
tems that operate in unstructured, dynamic environ-
ments. Sensing capabilities for such systems are a ma-
jor research challenge, as it will be necessary to deal
with a wide variety of possible events as they arise.

We have implemented a vision system suitable for
robots in such domains. That the environments are
unstructured, argues that neither model based ap-
proaches with limited model libraries, nor techniques
that rely on special properties of the scene or of the
object to be tracked (e.g., light objects against dark
backgrounds) will suffice. That the environments are
dynamic, suggests that real-time response will be crit-
ical. We have developed motion, stereo, and tracking
algorithms with an emphasis on breadth of coverage
and real-time performance.

Our implementations of these algorithms runs in
real-time on a Connection Machine at Xerox PARC.
We have mounted a camera on a HERO-2000 robot,
that can pan under the control of the tracking algo-
rithm. The robot has been operated several times in
the PARC auditorium, and has reliably tracked a per-
son walking around for several minutes.

We begin with a brief summary of our research goals,
that is intended to justify the importance of unstruc-
tured dynamic environments. We next describe the
vision algorithms and their integration with the pan-

ning robot. Finally, we survey some of the challenges of
real-time vision for robotics in unstructured domains.

2 Research Goals

We believe that the central task of Artificial Intelli-
gence is to produce autonomous artifacts. We are par-
ticularly interested in robots that interact with envi-
ronments that are dynamic and unstructured. Many
robots have been constructed that deal with some care-
fully structured domain, such as a conveyer belt or
a simple, static environment. Unstructured domains,
such as outdoor parks or offices shared with humans,
are unpredictable; one cannot, for instance, assume
that only a small known set of objects can be encoun-
tered.

It appears that robots without visual sensing will
be capable only of very restricted interactions with
their environments.! Visual sensors produce a two-
dimensional projection of the robot’s environment,
which is far richer than that available from sonar or
touch.

We are therefore interested in visual sensing for
robots in dynamic, unstructured domains. We have
chosen to concentrate on motion vision, and on track-
ing in particular. Motion is extremely important in a
dynamic, unstructured environment; it is critical for
detecting and avoiding moving obstacles. In addition
motion can be a crucial cue for segmentation and ma-
nipulation of objects.

Tracking is a visual capability which is likely to be
useful for a large number of purposes. Given the diffi-
culty of real-time visual sensing, it seems implausible
to construct an independent visual system for every
robotic behaviour (as has been argued for under the
rubric of “sensor fission” [2]). Instead, one will need
some general purpose modules that can be used for
several different behaviours. Tracking seems like a par-
ticularly useful such module.

1While it is true that bats, for instance, perform many
interesting tasks, their sonar is significantly better than
that possessed by commercially available robots.

3 Vision for a Robot Task

We have developed real-time motion, stereo, and mo-
tion based tracking algorithms for use in unstructured
environments. We have used the motion based track-
ing algorithm as the vision component of a feed-back
controlled panning camera system. We will describe
the various vision algorithms, and then discuss the in-
tegrated system.

3.1 Visual Capabilities

The visual capabilities of our system can be divided
into motion and stereo primitives that take images as
input, and the higher level operations tracking and seg-
mentation that use the results of the primitive compu-
tations. In this section we describe the primitive oper-
ations, followed by the tracking algorithm, segmenta-
tion, and finally implementation details. The discus-
sion of motion, stereo and tracking is terse. A more
complete discussion appears in [7].

3.1.1 Motion and Stereo

Given a temporally sequential pair of images, the mo-
tion computation must produce a dense motion field
that determines for each point on the first image, a
corresponding point on the second image (i.e., where
it has gone to). The stereo depth task is similar, but
starts with a stereo pair and produces a horizontal dis-
placement map in which smaller displacements corre-
spond to greater depth.

It seems unlikely that one can rely on the existence of
stable distinctive features in natural scenes, which fea-
ture based approaches require. Instead, we use an area
based computation that relies on correlating intensity
values. Area based motion and stereo dlgorithms usu-
ally rely on two criteria to determine the most likely
displacement for each pixel: how similar are the local
area on the first image and its corresponding local area
on the second image, and (because things in the world
tend to cohere) how well do neighboring points agree
on their displacement. These two criteria need to be
combined in some way to uniquely determine motion
at each pixel.

One approach to computing motion or depth fields
is to define a global optimality criterion and then to
optimize. Poggio [4] suggests, for example,

[760t (e,9)~1n(a+Dia, 1),)4V D) dady

as a regularization functional for stereo depth. The left
term measures the goodness of match, while the right
term measures smoothness of the resulting disparities.
A depth map can be generated from a stereo pair by
numerical minimization.

Given our concern with real-time performance, our
approach to combining the two criteria is direct. Ini-
tially, we find for each pixel on the first image the best

corresponding pixel on the second image. This cor-
respondence is determined using sum of squared dif-
ferences correlation on intensity values for each point
in a small local radius. The initial disparity estimate
must be smoothed to enforce neighborhood agreement.
The final disparity map is generated by determining for
each pixel, the most popular initial disparity estimate
surrounding the pixel. This smoothing step is simi-
lar to that used by Spoerri and Ullman for detecting
motion edges [5]. Both the initial estimate and the
smoothing step can be computed efficiently without
iteration.

3.1.2 Tracking

The goal of tracking is to maintain an object’s location
across multiple images. Due to the need for real-time
performance, the representations used in the vision sys-
tem are all retinotopic maps at the same scale as the
image. In particular a tracked object — the repre-
sentation of the object being tracked — is merely an
arbitrary set of pixels (sometimes called a boolean im-
age).

The tracking algorithm is an iterative one. On each
iteration, it takes as input a sequential pair of images
and a tracked object, or boolean image, representing
the location of an object in the first image. It pro-
duces as output a new tracked object representing the
location of the object in the second image.

The tracking algorithm has three steps: computing
a motion field, improving the estimate of the object’s
old location, and projecting the tracked object through
the motion field. Computing a motion field is done by
the motion computation described above.

Projecting the tracked object through the motion
field is also a simple notion. The motion field is a map
from pixels to pixels, that determines for each pixel
on the first image, a corresponding successor pixel on
the second image. The input tracked object is a set
of pixels on the first image. Intuitively, the output
tracked object, the result of projection, is the set of
successor pixels of pixels in the input tracked object.
However, complications arise because the motion field
is not an automorphism; a pixel may be the successor
of no pixels, or of two or more pixels, some tracked,
and some untracked.

The need to improve the estimate of the object’s
location arises because the tracking algorithm is itera-
tive. The input tracked object on one iteration results
from previous motion computations and projections.
The motion field tends to be slightly inaccurate, and
projecting through the motion field tends to distort
the tracked object. Improving the input tracked ob-
ject is possible since an object moving in a scene will
tend to produce discontinuities in the motion field at
its perimeter. The adjustment step attempts to align
the edges of the tracked object with these motion dis-
continuities.

This tracking algorithm has been shown to work on
a large variety of real image sequences. It works both
on indoor and outdoor scenes, although it is important
that the scene have texture.

Because the tracking algorithm is applied iteratively,
it needs to be initialized: the tracked object in the
initial image must be somehow selected. Furthermore,
the tracking algorithm occasionally loses the moving
object, either because the object stops for too long, or
due to camera noise, or for some other reason. Here
too it is necessary to find the approximate location of a
moving object so that the tracking algorithm can track
it. We refer to this process as segmentation.

3.1.3 Segmentation

Segmentation, that is, picking out a moving object in
the scene, is of critical importance to our system. The
task cannot be performed by hand — there is no time.
Nor can static segmentation cues such as intensity or
texture be relied on, as we intend to deal with arbitrary
moving objects. Our approach is similar to the use
of gray-level histograms for segmentation [3], but we
use motion rather than gray-levels as the segmentation
modality. The pixels in a scene containing a moving
object will tend to fall into two classes when grouped
by their trajectories. The pixels corresponding to the
moving object will tend to have moved along with the
object, while the pixels corresponding to the rest of the
scene will tend to have moved in opposition to camera
motion.

The motion field generated from a single pair of im-
ages does not tend to distinguish the motions of the
object from the rest of the scene clearly. However,
adding up the motion vectors from several sequen-
tial pairs of frames to form cross temporal trajectories
generates a reasonably clusterable histogram, provided
that the object has been moving. Once the trajecto-
ries have been histogrammed, the motions under the
largest peak are considered to be the motion of the
background, and the motions under the second largest
peak to be those of the object. Pixels that have ex-
hibited the motions determined to correspond to the
motion of the object are labeled as part of the tracked
object.

This histogramming approach works quite well in
practice, although it has some limitations. If the mov-
ing object is deforming, the motions corresponding to
the moving object may fall under two or more peaks
of the histogram. If the camera is dirty, an additional
peak may appear due to perceived stationarity in low
texture regions. We are exploring ways of integrat-
ing spatial coherence to mitigate these problems. Al-
though we currently deal with only one object, there
is no intrinsic reason for not segmenting and tracking
multiple objects.

3.1.4 Implementation Details

We have implemented the above described algorithms
on a 16 kilo-processor Connection Machine at Xerox
PARC. The tracking algorithm working on 128 by 128
images processes 15 pairs of images per second includ-
ing time for digitization and shipping images into the
Connection Machine. The motion computation can de-
tect motions of up to four pixels per image pair. This
limit combined with the 15 frames per second process-
ing speed, results in a maximum camera relative mo-
tion of 60 pixels per second.

There are two noteworthy details related to the
speed of the algorithm and the operation of the Con-
nection Machine. First, shipping images from digitizer
memory into the Connection Machine is fairly slow; it
accounts for approximately one third of our processing
time.

Second, the more images that are processed at a time
on the Connection Machine, the more efficient process-
ing becomes. This economy of scale results from the
fact that a serial front-end processor (in our case a Sun-
4) sends instructions to the Connection Machine. The
resulting per-instruction overhead can be amortized by
processing multiple images simultaneously. Our algo-
rithm runs most efficiently processing 8 or 16 pairs of

_ images at a time. However, at 15 frames per second,

this entails latency of more than one half or a whole
second. Currently we process 4 pairs of frames at a
time. This causes latency of about a quarter of a sec-
ond between the time something happens in the world,
and the time the tracking algorithm has finished pro-
cessing the image.

Since stereo processing would entail shipping twice
as much data into the Connection Machine as motion,
and since there are technical problems with digitiz-
ing simultaneous stereo pairs, we currently do not use
our stereo algorithm. Performance on stored data is
around 50 stereo pairs per second.

3.2 Robotic system

We have incorporated the above motion-based track-
ing algorithm into a robot system that pans to keep a
moving person centered in its field of view. Just as the
task has a simple description, the basic robot control
strategy is also simple. Whenever the tracking system
has determined the centroid of the object it is track-
ing, it requests the robot to center the camera on this
object centroid. In this section we describe the con-
figuration of the whole system along with the Hero’s
primitive operations. We touch on the positioning of
the camera and on relating camera rotations to pixel
shifts in images. Finally we discuss difficulties arising
from processing latency and time relative information,
along with a solution to these difficulties.

3.2.1 System configuration

The robotic system is comprised of an RS-170 8-bit
gray-level camera mounted on a Heathkit Hero-2000
robot with masking tape. The robot and camera are
tethered to a Sun-4 that contains a Datacube digi-
tizer, and a Connection Machine interface. Images pass
from the camera to the digitizer. Digitized images are
shipped into the Connection Machine. The results of
the tracking computation are passed back to the Sun
as object centroids. In turn, the Sun sends rotation
commands to the Hero robot via a serial line.

$.2.2 Robot primitives

The Hero robot uses angles relative to the front of the
robot base, termed home, for specifying torso orienta-
tion. Since our current system only pivots about its
center torso joint, and does not rotate its base, these
angles can be considered absolute. Hero provides two
basic orientation operations, one for setting the de-
sired torso angle, and one for testing the current torso
angle. Rotating the torso is slow, however, both set-
ting and testing may be done asynchronously, before
a previous torso rotation request has been fulfilled. A
new rotation request supersedes any previous requests.
Suppose, for instance, a request is made to turn 5 de-
grees left of home followed by a request for a rotation
of 7 right of home. If the robot is homed to start with,
this might result in an actual left rotation of 3 degrees
followed by a right rotation of 10 degrees.

3.2.3 Camera mounting

If images are being captured while the camera is
panned about an axis other than its center of projec-
tion, motion fields computed from thése images will
have multiple discontinuities arising from depth dis-
parities and parallax. If the camera is panned about
the center of projection, and if the camera parameters
are sufficiently close to a pin hole camera model the
resulting motion field is much simpler. A camera rota-
tion of o degrees results in a uniform image shift of &
pixels, for stationary parts of the scene.?

3.2.4 Rotation and image shift

Knowing the camera’s field of view, and which subset
of the pixels are being processed one can compute a
Pixels/Degree coefficient p, that given a camera rota-
tion o can predict an image shift of k¥ = pa pixels.
However, it may be difficult to determine the camera
and digitization parameters, and the robot’s rotation
control may not be properly scaled. Instead, we rely
on self-calibration. Our robot pans various fixed an-
gles @ and measures the image shift & produced by our

2 As an aside, this point argues for building stereo robot
camera heads with parallel independently panning cameras.

motion computation. Each such pan results in an es-
timate £ for the Pixels/Degree coefficient p. This is
done several times to produce a good estimate for p.

3.2.5 Control

The task of the control system is to map the output of
the tracking computation (object centroids) to robot
rotation requests. Three factors in the tracking algo-
rithm and robot combine to complicate this control
task. First, the result of the tracking algorithm is the
angle between the center of the tracked object and the
principle axis of the camera when the image was cap-
tured. Second, the tracking algorithm, processing four
pairs of images at a time, engenders a latency of about
a quarter of a second. Finally, the Hero requires rota-
tion requests in terms relative to home (the center of
the robot base).

The result of the tracking computation is an object
centroid in camera relative coordinates. The horizon-
tal coordinate of the centroid can be straightforwardly
mapped to a camera relative angle using the above
Pixels/Degree coefficient. However, since the camera
is moving, camera relative coordinates and angles are
in turn relative to the orientation of the camera at the
time when the image was captured.

By the time images have been processed, however,
the camera may have rotated several degrees, and there
is no way to map the result of tracking to a home rela-
tive rotation request which is what Hero expects. The
information we have at the end of a quarter second
tracking cycle (which is how long it takes for our al-
gorithm to process four image pairs) is about how the
world was a quarter second ago, and in terms of co-
ordinates relative to where the camera was pointing a
quarter second ago. The uncertainty about how the
world may have changed since an image was taken is
unavoidable. The problem arising from the mismatch
between the dated visual information and robot’s need
for rotation requests in terms of the center of its base
can be finessed.

In order to get around the temporal mismatch we
have implemented an additional pair of rotation prim-
itives. These are, first, a request to record the cur-
rent heading (i.e., the current angle away from home);
and second, an indexical rotation request that speci-
fies an angle relative to the last recorded heading. If
one records the current heading at the same time that
one captures an image, then the system can request a
rotation in terms of the position the camera had when
the image was taken.

Thus, every four frames, the system records the cur-
rent robot heading, and begins to process the four
frames. When vision processing is done, and an ob-
ject centroid is produced, the centroid is converted to
the angle o between the camera’s principle axis and
the centroid of the object. Finally, a request is made
to rotate the camera « degrees relative to the recorded

robot heading. If this rotation request were to com-
plete, the camera would end up pointing to where the
tracked object was a quarter of a second ago. In the
absence of any more recent information, and without
extrapolating the object’s motion, this would be the
optimal place for the camera to point. However, a
quarter of a second later, before most rotation requests
could finish, a new object centroid is available, and a
new request is issued.

4 Research Challenges

In the process of getting our robot to perfc.in this rel-
atively simple task, we have come upon a mumber of
difficulties that are likely to confront other researchers
attempting to use real-time vision in unstructured do-
mains. In this section we will review some of the chal-
lenges that we have faced, and also point out some
issues that we would like to see addressed in future
research.

The challenges can be grouped into three classes.
First, there are many practical difficulties involved
in obtaining real-time vision; most of these are algo-
rithm independent, and pertain to the conceptually
simple task of getting image data into the system. Sec-
ond, there are algorithmic challenges that must be ad-
dressed. Finally, there are a number of issues that
involve robotics.

4.1 Practical challenges

Data acquisition has been one of the principle obstacles
to building our system. Conceptually, the task is quite
simple, but in practice it has proved to be difficult and
time-intensive to solve. Present day cameras, digitizers
and computer I/O bandwidth are quite unsatisfactory
for real-time vision. ‘

Current camera technology is problematic in a num-
ber of ways, largely as a consequence of the 1950’s era
RS-170 (NTSC) specification, which almost all cam-
eras support. The RS-170 standard supplies a frame
of data every 1/30 second. When digitized, such a
frame looks like a two-dimensional array of 8-bit in-
tensity values (the array is slightly larger than 512 by
512). However, not all the data in the array comes
from the same time instant. This presents no prob-
lem for static scenes, but in dynamic environments it
causes tremendous trouble.

An intensity value in an array of digitized video data
represents the light level that some imaging element in
the camera recorded over a specific time interval. Ide-
ally, these time intervals would be the same for every
element in a frame, but the RS-170 specification (as
usually implemented) stands in the way. In a typi-
cal video camera, the time interval for the array ele-
ments in a single row are simultaneous (or very close).
However, the even numbered rows of data come signif-
icantly earlier than the odd rows — usually by about

1/60 of a second. The RS-170 specification requires
that the even numbered camera scan lines be read out
before the odd ones. The way most cameras implement
this specification results in the even lines coming from
a different time instant than the odd ones.

In a dynamic environment, real changes occur in
1/60 of a second. Suppose that there is a hanging
pendulum moving to the left, and consider what the
digitized data will look like. In the even numbered
rows of data, the pendulum will not have moved as far
as in the odd ones. So the pendulum’s appearance will
be jagged; it will have moved farther to the left in the
odd rcws than in the even ones. This situation is a
disaster for motion vision.

The best solution to this problem is to use either the
even rows of data or the odd ones.? It is not unrea-
sonable to use only half the available data, as cameras
generate far more data than can be processed in real
time. But a single field corresponds to a strange sub-
set of the scene before the camera: if a point in the
scene is present in that field, so is the point to its
left or right, but not the point directly above or be-
low! Correlation-based schemes in particular can have
trouble with this, because an image feature found in
one image may not even appear in the next image; if
it is sufficiently small, it may reside on the other field,
and thus disappear from view completely.

It is worth noting that cameras exist that do not in-
terlace. However, these cameras are expensive, and the
different pixels still don’t all correspond to the same
time instant.

Obtaining reasonable lighting conditions has also
proven to be difficult. CCD cameras tend to be sensi-
tive to infrared radiation, so outdoor scenes are often
saturated unless an IR filter is used. Automatic gain
control is provided by many cameras, but a large au-
tomatic change in gain from frame to frame will cause
most motion computations to fail. The alternative is to
set the gain statically, resulting in the obvious depen-
dence on uniform light levels. We have also observed
some peculiar effects that may be due to fluorescent
lighting.

Camera lenses, and the imaging surfaces themselves,
are inevitably dirty. This presents a problem in low-
texture scenes, as real motion may be masked by dirt
that appears as stationary texture. Cleaning imaging
surfaces and lenses is the simplest solution, but it is
hard to keep everything perfectly clean, and it’s un-
satisfactory to have a robot’s vision system that fails
unless the robot is kept in a Clean Room. Smooth-
ing images can remove the effects of dirt, but may also
have the effect of throwing real texture out as well. A
third (perhaps preferable) alternative would be to dy-

3In RS-170 terminology, the entire array of data avail-
able in 1/30 of a second is called a frame, the even and
odd halves of a frame are called fields, and the practice of
reading out first the even and then the odd field is called
interlacing.

namically compute a compensation function for each
cell on the imaging surface.

Finally, our system has detected spurious motions
that result from aliasing effects in scenes with sharp
edges. An example of such an effect would occur with
a black diagonal line on a white background. Consider
two images taken as the camera pans across the scene.
The first image might have a repeating pattern of pix-
els in varying shades of gray resulting from discretizing
patches in the world that lie on the edges of the black
line. On the second image, these patterns may again
appear, but they will have shifted phase. The patterns
that best match the first image may be above or be-
low the original pattern, inducing a spurious motion
estimate. This problem results from the discretization
required to produce television images. Although we
have not found any solutions to this problem, it is en-
couraging that people looking at such image sequences
can also perceive this illusion.

Digitization is likely to be a major obstacle to real-
time vision. Very few commercially available digitizers
are capable of digitizing consecutive frames (in other
words, running at 30 hertz). The ones that are tend
to be expensive, and difficult to program.

Another problem with real-time vision is the enor-
mous rate at which data is generated. A single 8-bit
gray-level camera will generate 10 megabytes of data
per second. It would not be unreasonable to want a
stereo pair of color cameras, that would produce 60
megabytes per second. This is far too much data to
process in real-time, even with a supercomputer. In-
stead, one must use subwindowing or subsampling, or
a combination of the two.

It seems that images that are smaller than 128 by
128 simply do not contain enough detail for tasks such
as tracking. Furthermore, most motion computations
require that the time interval between images be rela-
tively small. Another consequence of the RS-170 stan-
dard is that to obtain input data from a single frame
evenly spaced it is necessary to run at a frequency that
divides 30 hertz.

This entire discussion argues for a model of visual
processing much more like Meade’s proposed analog
retina. Ideally, a network of small processors should
be mounted as close to the imaging surface as possi-
ble. This would make it possible to perform a number
of computations which cannot be done using current
technology.

4.2 Challenges for algorithm design

The major difficulty from the algorithmic point of view
is to design robust real-time algorithms. The necessity
for real-time performance is obvious, but in an unstruc-
tured environment, robust performance is critical.

4.2.1 Robustness

We believe that robustness, in fact, is the key chal-
lenge for robotic vision. A robust vision algorithm
is one that works in a wide variety of environments.
This requirement is especially important if one is in-
terested in autonomous robots that act in unstructured
domains. A vision algorithm that is intended to find
particular objects in highly constrained scenes can le-
gitimately use highly specific properties of the objects
and scenes. For instance, a vision system to detect bro-
ken computer chips can use the fact that the chips are
rectangular, have a known size, or are imaged against
a blue background. In an unstructured domain such
assumptions are not justified.

Numerical parameters (such as thresholds) are a ma-
jor source of non-robustness. Their use is inevitable,
but their exact values make a great deal of difference
to the performance of most algorithms. Unfortunately,
the parameter values that cause an algorithm to per-
form well in one environment can cause failure in a
slightly different environment. In unstructured do-
mains, very little can be assumed about the inputs,
so the parameter values need to produce good perfor-
mance on a wide range of images.

We know of no theoretical tools that can measure
vision algorithm robustness (i.e., the ability of an al-
gorithm to perform in a variety of environments). Nor
do we know of any theoretical tools that can aid in the
design of such algorithms.

Synthetic data in our experience tends to be mislead-
ing; we have seen several cases in which algorithms that
perform well on synthetic images yet fail miserably on
real data. (Indeed, the description in section 4.1 sug-
gests that it is hard to synthesize data that is as bad as
what one actually gets from a camera.) Models of ob-
ject shape or motion, surface reflectances and lighting
conditions appear unlikely to obtain the broad cover-
age essential for unstructured domains.

In the absence of any theoretical tools, the only op-
tion left is empirical verification. If one is interested in
vision in unstructured domains, this requires examin-
ing an algorithm’s performance in many different en-
vironments. We have collected over 600 megabytes of
data, and examined the performance of our tracking
algorithm on tens of thousands of images.

Relying solely on empirical verification is quite un-
satisfactory, but it is not clear how the situation can
be improved. Robust algorithms are hard to design. It
is difficult to verify that an algorithm has any robust-
ness. Relying on purely empirical evaluation is always
problematic, but especially so when the task at hand
is ill-defined. For instance, one can expect to be able
to judge if a stereo or motion algorithm is giving good
results, as one has some idea of the physical properties
of the scene. But for any higher-level task, such as
tracking, performance is difficult to evaluate. For in-
stance, by what firm standard can one determine that

tracking is “failing”, or worse yet “tracking the wrong
object”?

Theoretical tools could conceivably alleviate some of
these problems. However, given the kinds of tools that
are available, we are not optimistic. Empirical veri-
fication of algorithms, while performing robotic tasks
in as wide a variety of environments as can be found,
seems to be the only alternative for the near future.

4.2.2 Real-time performance

Any vision system for a robot in a dynamic domain
needs to run in real time. This presents two related
difficulties. First, it is difficult to design an algorithm
that runs that fast. Even when such an algorithm has
been designed, the implementation has a tendency to
be fragile: minor changes can easily destroy the real-
time performance. Secondly, even when an such an
algorithm is available, a great deal of unpleasant sys-
tems programming is required to produce a system
with real-time performance.

There is another interesting property of the real-time
constraint. For most motion algorithms, it furnishes a
limit on how fast an object can move. Any scheme
based on matching, such as gray-level intensity corre-
lation or edge matching, will look for a match within
a fixed radius 7. The cost of the matching step is at
least O(r?), so r must be limited to achieve real-time
performance.

4.2.3 Task-directed visual algorithms

Another challenge for algorithm design is to somehow
make use of the notion of task without entirely losing
robustness. Most research in computational vision as-
sumes that the goal of vision is to produce as complete
and accurate a description of the environment as pos-
sible. But if vision is not seen as an end unto itself, but
as a part of an autonomous system performing some
task, certain problems may become easier. Taken to an
extreme, this view results in entirely special purpose
vision algorithms that (for instance) detect corridors
in a particular building, or track green objects against
non-green backgrounds.

However, it does seem that there is an intermediate
point between taking vision as “the problem of deriving
a symbolic description of a scene” [3], on the one hand,
and writing entirely non-robust visual algorithms, on
the other. [6] and [1] are two examples of worthwhile
attempts to find a middle ground, but it remains to be
seen if this will result in valuable algorithms.

4.3 Robotic challenges

Because the robotic component of our system is so min-
imal, we have not dealt with any difficulties that would
bear discussion. However, in thinking about how to
couple our vision system with more complex robots,

we have noted some shortcomings in the way robot
arms are currently built.

In general, robot arms seem to be designed to opti-
mize precision and speed of motion. Given the state of
the art in perception, this seems to be a poor design
choice, especially if one is interested in unstructured
domains. (To give the arm designers their due, they
have mostly been interested is automatic assembly or
similar tasks in highly structured domains, where their
design decisions make a lot of sense.)

If real-time visual feedback is available, it seems that
there is little point to precision, or at least to precision
in terms of positioning. The data available from such
visual sensing is likely to be quite noisy, at least in
the near future, and it makes little sense to have an
arm that can move precisely and quickly to the wrong
place! Furthermore, it is desirable that the arm move
slowly; as mentioned in section 4.2.2, the faster some-
thing moves the more computationally intensive it is
to track. It seems that a slow-moving imprecisely con-
trolled arm, which is what we want, would be far easier
and cheaper to build than the currently available robot
arms.

5 Conclusions

We have attempted to present a detailed example of
what is currently possible in terms of robots with vi-
sual sensing for unstructured domains. Hopefully our
experiences will provide other researchers with an idea
of the problems that need to be overcome to advance
to the next level of sensory competence for such robots.

5.1 Future work

In the near future, we intend to improve our panning
camera’s performance. In the slightly longer term, we
plan to begin experimentation with an arm in order to
perform more challenging robotic tasks. We are also
exploring small scale parallel implementation of the vi-
sion algorithms to increase the practicality of the re-
sults.

Acknowledgements

We wish to thank John Goldman of Thinking Ma-
chines for technical support, and also Hal Moroff of
Datacube. We have also received valuable advice from
Harlyn Baker, Dan Huttenlocher, Jim Mahoney, and
many members of Xerox PARC.

John Woodfill is supported by a Shell Doctoral fel-
lowship. Ramin Zabih is supported by a fellowship
from the Fannie and John Hertz Foundation. Addi-
tional financial support was provided by SRI through
Harlyn Baker and by CSLI through Meg Withgott.

References

(1]

(2]

(3]

(4]

(5]

(6]
[7]

J. Aloimonos, I. Weiss, and A. Bandopadhay. Ac-
tive vision. International Journal of Computer Vi-
sion, 1:333-356, 1988.

Anita Flynn and Rod Brooks. Building robots: Ex-
pectations and experiences. In Proceedings of the
IEEFE International Robotics and Systems Confer-
ence, Tsukuba, Japan, September 1989.

Berthold Horn. Robot Vision. The MIT Press,
1986.

Tomaso Poggio, Vincent Torre, and Christof Koch.
Computational vision and regularization theory.
Nature, 317:314-319, 1985.

Anselm Spoerri and Shimon Ullman. The early
detection of motion boundaries. In Iniernational
Conference on Computer Vision, pages 209-218,
1987.

Shimon Ullman. Visual routines. Cognition, 18:97—
159, 1984.

John Woodfill and Ramin Zabih. An algorithm for
real-time tracking of non-rigid objects. In Proceed-
ings of AAAI-91, Anahetm, CA., pages T18-723.
The MIT Press, 1991.

