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Abstract

In this paper, we discuss the issue of locating objects
through multiple sensory information. Sensor measure-
ments are subject to limitations of sensor precision and
accuracy. Although errors in position estimates are af-
fected only by the errors of sensor measurements, errors
in orientation estimates are also dependent on the di-
mensions over which the measurement has been made.
The concept of good measurement is used in selecting and
weighting partial estimates of the position and orientaion.
The problem of finding the best estimate of the position
and orientation is formulated as a linear system of these
multiple estimates. The best estimate is then obtained
by solving this system in a weighted least square sense.
This method has been implemented for a manipulator
end-effector instrumented with centroid and matrix tac-
tile sensors.

1. Introduction

An important characteristic of robots aimed at accom-
plishing advanced tasks is their ability to ascertain the
state of their workspaces. The uncertainties in the posi-
tion and orientation of an object with respect to a ma-
nipulator are primarily due [Brooks 1983] to mechanical
errors in the position and orientation of the object in the
workspace, dimensional tolerance in the object, and er-
rors in commanding the manipulator to a desired posi-
tion. Such uncertainties cannot be recovered prior to ac-
tual operations. A robust program will generate actions
that depend on real-time sensory information. Expected
errors in such sensory information will also allow an as-
sembly planning system to determine if an operation will
eventually succeed.

The problem of locating an object using sensory infor-
mation has so far received attention only as a part of
the problem of object recognition. Grimson and Lozano-
Perez [Grimson and Lozano-Perez 1984] proposed a solu-
tion using simple geometric relations based on pairs of ob-
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servations. Faugeras and Hebert presented [Faugeras and
Hebert 1983] a least square estimation method for the
position and orientation obtained from redundant mea-
surements. On the other hand, insufficient measurements
lead to an indeterminate problem. In the context of task
level specification, a symbolic solution for the position
and orientation based on spatial relationships has been
proposed in [Popplestone, Ambler, and Bellos 1980].

In this paper, we present a method for estimating the po--
sition and orientation of objects using multiple sensory
information. Sensor measurements are subject to limi-
tations of sensor reliability and precision. These limita-
tions impose an order of relative importance on the mea-
surements. We define good measurements and present a
weighting scheme of the measurements. Frequently, there
is redundancy in measurements that leads to an overde-
termined system. We solve the weighted system of mea-
surements for the best estimate of the position and orien-
tation, and determine the boundaries of the largest errors.
Finally, we describe the application of this method to
the location of an object in a two fingered two-degree-of-
freedom end-effector using two pressure conductive rub-
ber centroid sensors and a matrix tactile sensor.

2. Problem Definition
Measurements

Device measurements are characterised by their precision
and reliability. Precision is the built in ability of a sensor
to resolve measurements and reliability is the measure of
systematic errors. When measurements have to be pro-
cessed in order to produce useful information, additional
error due to this extraction process must be considered.
Finally, we characterize sensor measurements in the form
m £ Am.

Position and Orientation

To each sensor measurement of an identifiable feature of



the object, there is a corresponding measure of that fea-
ture in the object’s model. The objects have six degrees
of freedom with respect to the sensors. Thus,

‘pe =R°pi +h; (1
represents the transformation of the kt* point °p; de-
scribed in the object frame of reference to its description
*pe in the sensor frame. R is the 3x3 rotation transfor-
mation matrix, and h is the position vector of the origin
of the object frame in the sensor frame. We will assume
that all sensor measurements are described in a global
measurement frame of reference.

Given sensor measurements *py’s and corresponding val-
ues of °py’s from the object model, there are three posi-
tion and three orientation parameters to solve for. The
orientation components and the position components are
solved independently. The orientation is evaluated {rom

2)

where *v; and °v; are either vectors obtained {rom one
sensor measurement, or from points as,

‘vi =R°vy

3

vi = ("pr —* P1);
°vi = (°pr —° p1);

The position parameters are evaluated from a scalar equa-
tion on distance. For any distance measurement °d; in the
sensor along a direction *n; there is a distance °d; in the
model computed along °n;. These two measurement are
related by [Faugeras and Hebert 1983]

Th="d; —° d;. (3)
Measurements of at least two independent vectors is re-
quired to uniquely determine the orientation parameters
and at least one vertex or three non- parallel plane mea-
surements to solve for position parameters. However,
there are often more measurements than the least required
for unique solution. In such cases measurements can be
tested against their contribution to the error in the solu-
tion.

Good Measurements

The notion of good measurements is associated with the
error a measurement contributes to the solution. In this
section, we discuss this notion for the evaluation of orien-
tation and position parameters.

Orientation Estimate

The partial estimates of the orientation of an object are
evaluated from object features e.g.vertices, edges, faces
and normals. A partial estimate of orientation is strongly
dependent on the way sensor measurements are combined.
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Estimates that are obtained from two vertices, for exam-
ple, improve when the vertices are far apart. Estimates
also improve with the lengths of edges or the surface of
faces. A good sclection of features as well as the combi-
nation of sensors will contribute, therefore, to significant
improvement in the final estimate of the orientation. The
selection can be based on the evaluation of the associated
errors in orientation. An orientation error vector can then
be used to characterize 2ach partial estimate of the orien-
tation. Let us consider, for example, the partial estimate
of orientation obtained from two vertices measured by the
sensors k and [ The orientation error about the z-axis, in
the common sensor frame of reference, can be computed
from the errors in xy plane (see fig. 1)

54’;.» =¢2 — J1;

tan(¢z — é1);

oy (v, + Avg,) — v, (vy, — Avy,)
T (ve, + Avg) vy (v, — Av,.)’

It

(4)

where
Avy, = Amg, + Amg;

Av,, = Amy, +Amy,.

The orientation errors 63, and 8¢,, can be similarly ob-
tained. An estimate of the orientation can then be char-
acterized by the magnitude §®;T6®; of the orientation
error vector §®;. A selection procedure based on these
magnitudes will determine the most sxgmﬁcant set of par-
tial estimates of the orientation. The §®;T6®; will also
provide weighting for the selected set of partial estimate
that will be used to determine the final estimate of the
orientation.

Position Estimate

The solution of position parameters from equation (3) is
based on estimate of vertices or plane distances from the
origin. Each such estimate can be simply characterized
by the error in the distance measurement and {6d°} will
be used to weight each distance measurement.

y2+8y2
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y2-8y2
yl+8yl
121
y1-6y1
s X
x1-6xl  xl+46xl x2-6x2  x2+6x2
Fig. 1. Angular Uncertainty.



Orientation Representations

The clements of R in any of the three well known repre-
sentations namely Euler angle representation, roll, pitch,
yaw representation and axis-angle representation, must
be solved with the condition that RT R = I; where I is
3x3 identity matrix. It\requires solution of nine parame-
ters of R with six quadratic conditions of orthonormality
on R in addition to at least three linearly independent
measurement constraints.

Using quaternions, the probleni of orientation estimate
reduces to finding the solution of a linear system with the
normality condition on Euler parameters. A brief review
of quaternions and oricntations is presented in Appendix
A.

Orientation Parameters

We first reduce the solution of orientation parameters to
solution of a linear system. Then, we solve the system
using a weighted left inverse matrix. If (@ = (uo,u))
represents the quaternion corresponding to the transfor-
mation R, then rewriting the transformation (A7) in the

appendix
(5)

Equating the scalar and vector parts of this equation
yields,

C'viq =q°v;.

uo(vi = vi); (6)
0. )

(Pvi+°vi)xu

u-(*v; —°vy)

The orientation parameters are completely determined by
equation (6) when expressed in a frame where (*v; +°v;)
is a non-zero vector. Such a frame can always be selected
by simple examination of *v; and °v;. The system (5)
can then be solved by (6) which can be expressed as a
linear system '

A,-u = uob;; (8)

where A; is the cross product operator of (*v; + °v;), the
sum vector, and b; is the difference vector (°v; — *v;).
The system of equations for multiple estimates is

Au = ygb; 9)

where r
A =[AT AT, AT];

T

b=[bl,bL,. ., bl]".

The weighting matrix for each estimate is defined as
W, = wfi_I; (10)

where )
w,, = 1/(1+60,76®;)";
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and I designates the 3x3 identity matrix. The weighted
system of equations is

W, Au = uo W, B; (11)

where

W, = diag(Wr;).

Using the normality condition of Euler parameters, the
solution of the system is given by

u=1/v/1+gTg_

u = upg

(12)

where

g = Gb; (13)

and G represents the weighted left inverse matrix

G=(ATW,A) 'ATW,. (14)

The rotation matrix R corresponding to the solution q =
(ug, u) of equations (12) is given [Khatib 1980] by,

R =
2(up? + w1 ?) =1

2(v u2 + uou3)
2("1“3 - uouz)

2(uluz - uous)
2(up? + up?) — 1
2(upu3 + uouy)

2(uyu3 + uouy)
2(“2“3 - uou,)
2(1102 + u32) -1

(15)

Orientation Error Vector

We have determined the estimate of the orientation of the

_object in a weighted least square sense. The estimate q

lies within q £ 6q. The 8q can be determined by consid-
ering the contribution of §q;’s from each measurement in
the same weighted least square sense as

6q = (Siw,,8q))/(Ziw?). (16)
The uncertainty of each measurement has been character-
ized by the elementary rotation vector §®; (see equation
4). To an elementary rotation vector §®; corresponds an
elementary variation 6q given by [Khatib 1980]:

1
bq; = 5515{%; (17)
where
—Uuy —Usy —ug
. _ | Uo uz U
= —usg Ug uy (18)
us —uy Ug
The equation (16) becomes
1
5q = 5(’;(2,-11;,,5@;)/(2;103_.). (19)



Position Parameters

The position parameters are linear functions of distance
measurements as defined in equation (3). For multiple
measurements, cquation (3) becomes,

C h=d; (20)
where
C= [‘nlr‘n2s "~1‘n2]T;
d = [dy,ds,...,dn]".

The weighted system of equations with weights defined
for cach distance measurement as w,, = 6d; becomes

w, Ch=w,d. (21)
The solution is
h = Xd; (22)
where . r
T =(CTwlw,C) (Cw,) w,.

The uncertainty in the estimate of the position h due to
uncertainty in measurement of *d; is given by

§h = ¥6d; (17)

where

d = [6dy, 6dy,..,6d,)";

3. Sensor Description

A matrix tactile sensor and two centroid sensors has been
selected for instrumentation of the end-eflector. We in-
clude a review of the sensor’s working principles and char-
acteristics. A more detailed description can be found in
[Ishikawa and Shimojo 1982] and [Shimojo and Ishikawa
1985]. (

Matrix Tactile Sensor

The matrix tactile sensor has 8 x8 elements each of 5mm
square dimension. It outputs pressure distribution infor-
mation on a grey scale. In addition, it has one output
each from a proximity sensor and a thermal sensor.

Working Principle and characteristics

Pressure measurement is based on change in resistivity
of a thin pressure conductive rubber mounted on the sur-
face. The change in resistivity is measured through a gold
plated electrode pattern as shown in figure 2 etched on
the surface of the circuit board. The change in resistivity
as a function of pressure is shown in figure 3. The sensor
has custom designed hybrid IC’s mounted at the back for
multiplexing the 66 analog outputs of the array over a
single channel in frequency modulated form.
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Centroid Sensor

The centroid sensor outputs the center of pressure of a
two dimensional pressure distribution and the total force
applied. As the sensor is made of thin material, it is
pliable and has sheet like form. The center of pressure
and total force output are direct and do not require any
computational effort.
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Fig. 2. Structure of the Tactile Sensor.
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Fig. 3. Pressure Response of Conductive Rubber.

Working Principle and Characteristics

As shown in figure 4, the sensor has a three-layered struc-
ture.The layers A and B are made of electrically conduc-
tive material coated film. The layer S is made of pres-
sure conductive rubber. The resistance r,(z,y) of the
rubber along the thickness varies according to the pres-
sure distribution. The boundary of the sensor divided
into Sy.S.53. Sy is surrounded by electrodes that con-
tact with layer A or b and connect to constant voltage
sources 1y via resistor R.



The drop in resistance r,(z,y) of the rubber due to a
pressure distribution causes a current distribution i(z, y)
proportional to the resistance drop. The current density
induces a voltage distribution v(z, y) on the surface of lay-
ers A and B. The current density and the induced voltage
are related through Poisson’s equation

82 §?

) (23)

2, g 2
VU—T!, (V—g;;'f‘g—y—

where r is surface resistance in the layer. The first or-
der moments of the current density distribution in the
cartesian coordinates and the total current are given by

I, = //Dzi(z,y)dzdy;
I, //Dyi(:r:,y)d::dy;
//Di(z,y)dzdy;

With rectangular boundary conditions on equation (23),
the following expressions are obtained:

I

I

L= (g + Doals, ~balsi ()
I, = a(g + lvsls, ~ onls); (29)
1=2W’-h“§1_h“h3. (26)

The total force is derived from equation (26) and with
known relation between current distribution and the pres-
sure distribution, the equations (24),(25) and (26) give
the center of pressure.

4. Experimental Results

In this section, we present an application of this method in
locating a grasped object. The mechanical uncertainty in
the position and orientation of objects in the workspace,
their dimensional tolerance and the error in commanding
the gripper to a specified location makes the position of
the object uncertain with respect to the gripper. Since
such uncertainties can not be determined ahead of time, &
robust assembly program will use the sensory information
at real-time to update the position and orientation of the
object.

We mounted on a two-degree-of-freedom parallel jaw grip-
per the tactile sensor on one finger, a centroid sensor on
the other finger and a centroid sensor on the palm (see fig.
4). An example of a grasped object is shown in fig. 5. A
partial estimate of the object’s orientation was obtained
from 8x8 tactile sensor (see fig 6). The two centroid
sensors provided another partial estimate of the orienta-
tion. The error on the final estimate obtained from the
weighted least square solution was £0.2 degrees.
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Fig. 4. Gripper with Tactile and Centroid Sensors.

Fig. 5. The Instrumented End-Effector.

Fig. 6. Matrix Tactile Sensor Output.



4. Conclusion

In this paper, a framework for the integration of multi-
ple sensors to determine the position and orientation of
an object has been proposed. We defined good measure-
ments in the sense of determining best estimate of these
parameters. The best estimate is obtained as the solu-
tion of weighted linear system of equations. This leads
to a computationally efficient algorithm for real-time ap-
plications. An end-effector has been instrumented with
centroid and matrix tactile sensors, and an example of
object location has been presented.
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Appendix: Quaternions

Let (uo, u1, u2, u3) be the components of the quaternion

q= UO+iU1 +jll2+kﬂ3. (Al)

A convenient representation of quaternions uses a scalar
uo and a vector u = iuy + juz + kus,

q = (u0,u). (A2)

Operations of quaterniofxs addition and product are de-

fined by,

q+9q" = (uo + uo') +i(wm +ur')
+ j(ug + ua') + k(ug + u3’;)
qq' = (uouo' —u-u',uxu' + uou' + up'u).

(A3)

The conjugate or inverse of a quaternion is defined as

q" = (uo, —u). (A4)
Quaternions represent rigid body rotation if the compo-
nents of quaternion q are the set of four Euler symmetric
parameters corrosponding to a rigid body rotation defined
by transformation R. The set of Euler parameters for ro-
tation about unit axis r of an angle § or about unit axis
—r of an angle —0 are:

uo = cos(6/2);
u = sin(4/2)r. (45)
with

uo? +url 4 w2+ uzt=1 (A6)

The transformation of °v to *v as in equation (2) is ef-
fected in quaternion algebra by the operation

‘vi =q°viq"; (A7)

where °v; and °v; are equivalent to the quaternions
(O,OV,') and (0,‘ V,').



