Haptic Display for Human
Interaction with Virtual
Dynamic Environments

Diego Ruspini* and Oussama Khatib
Robotics Laboratory

Department of Computer Science
Stanford University

Stanford, CA 94305-9010

Received 16 August 2001; accepted 16 August 2001

Haptics is an emerging technology that permits direct “hands-on” interaction with a
virtual environment. A haptic device uses mechanical actuators to physically push a
user’s finger or hand to give the sensation that he or she would have when interacting
with a real physical environment. These force feedback systems have many applications,
from training a surgeon to perform an operation, to assisting a child in understanding the
behavior of a lever or pulley. In this paper we discuss methods and techniques to allow
realistic and robust haptic interactions between a human and a complex dynamic virtual
environment. Beyond modeling object penetration constraints, this work demonstrates
how shading, friction, texture, and dynamics can be generated to create compelling and

realistic virtual worlds.
1. INTRODUCTION

Haptic systems have been around for a number of
years. Early haptic rendering systems modeled sur-
face contacts by generating a repulsive force propor-
tional to the amount of penetration into an obstacle.
While these penalty-based methods worked well to
model simple obstacles, such as planes or spheres,
a number of difficulties are encountered when try-
ing to extend these models to display more complex
environments.

*To whom all correspondence should be addressed; e-mail:
ruspini@cs.stanford.edu.

©2001 John Wiley & Sons, Inc.

When multiple primitives touch or are allowed to
intersect it is often difficult to determine what the ap-
propriate restoration force should be. Simply adding
the penetration force from each object can result in the
creation of large forces that could potentially cause
damage to the haptic device or injury to the user. In
addition, the penetration distance and direction into
an obstacle is not always uniquely defined. As a user
presses into an obstacle, at some point the user’s posi-
tion will be nearer to a surface other than the surface
of original penetration. When this “pop-through” oc-
curs, the user will be actively pushed through the ob-
ject, resulting in an unrealistic and usually undesirable

Journal of Robotic Systems 18(12), 769-783 (2001)
© 2001 by John Wiley & Sons, Inc.

770 . Journal of Robotic Systems—2001

sensation. Lastly, small or thin objects may not have
a sufficient internal volume to create the constraint
forces required to prevent the probe from passing
through the obstacle.

To be useful in building real-world applications, a
haptic rendering system must be capable of displaying
the models found in common graphic applications.
Typical graphic models consist of a large number of
points, lines, and polygons that define the bound-
ary surface of the object. Often described as “polygon
soups,” these representations often contain intersect-
ing primitives and gaps between polygons that are in-
tended to represent a connected topological surface.
Penalty-based methods appear to be ill-suited in mod-
eling these types of environments.

We propose an alternative method for computing
the restoring forces required to simulate contact with
virtual models, which does not depend on determin-
ing the penetration distance into an obstacle. In our
method, a representative object, a “proxy,” substitutes
in the virtual environment for the physical finger or
probe. This “virtual proxy” can be viewed as if con-
nected to the user’s real finger by a stiff spring. As
the user moves their finger in the workspace of the
haptic device, they may pass into or through one or
more of the virtual obstacles. The proxy, however, is
stopped by the obstacles and quickly moves to a po-
sition that minimizes its distance to the user’s finger
position (Figure 1). The haptic device is used to gen-
erate the forces of the virtual spring, which appear
to the user as the constraint forces caused by contact
with a real environment. This approach is similar to
the method first proposed by Zilles and Salisbury,®
but does not require that the topology of the surface

Figure 1.

be computed a priori, making it more applicable to
graphical environments and scene graphs containing
moving or intersecting obstacles. In addition, we ex-
tend the constraint-based approach to correctly and
robustly utilize additional graphical information such
as shading normals, friction, and texture.

The remainder of this paper is organized as fol-
lows: In Section 2, the update procedure for the proxy
position is presented. In Section 3, a method for sim-
ulated smooth curved surfaces is discussed. Meth-
ods to render static, dynamic, and viscous friction
are described in Section 4. Texture is introduced in
Section 4.3. Section 5 describes the performance of fast
collision detection to maintain the high update rates
required for haptic display. A short summary of how
dynamic models are introduced into the haptic sim-
ulation, and an overview of the system, are given in
Sections 6 and 7. The stability and control of the haptic
system is detailed in Section 8. Lastly, Sections 9 and
10 describe some of the potential applications, show
some examples, and present the conclusion.

2. UPDATING THE PROXY POSITION

From an algorithmic point of view, it can be easily seen
that the motion of the proxy is very similar to that of
a robot reactively moving towards a goal (the user’s
finger) under the influence of an artificial potential
field.'® When unobstructed, the proxy moves directly
towards the goal. If the proxy encounters an obstacle,
direct motion is not possible, but the proxy may still
be able to reduce the distance to the goal by moving
along one or more of the contact surfaces. When the

me -
Proxy
Finger

b)

Proxy = finger

Obstacle

Proxy c

O

(a) A user is haptically interacting with a dynamic virtual environment. The sensation of contact is created by

applying forces through the haptic device to move the user’s finger to the location of the constrained representative object
(the proxy). (b) The virtual proxy moves to locally minimize the distance to the user’s finger position subject to the constraints

in the environment.

Ruspini and Khatib: Haptic Display for Human Interaction with Virtual Dynamic Environments « TT1

proxy is unable to further decrease its distance to the
goal, it stops at the local minimum configuration.

As we will see, many of the algorithms and meth-
ods developed for this haptic rendering method are
derivatives of methods originally proposed for robotic
applications. For this discussion, we will model the
proxy as a smooth massless sphere. The radius of the
proxy is selected to be large enough to be easily visi-
ble for graphic display, and to prevent it from falling
through small gaps that may exist between the polyg-
onal patches representing the surface of the obstacle.
These gaps are common in graphic models, and re-
pairing a model to eliminate such “leaks” is, in gen-
eral, prohibitively expensive, especially for interactive
applications.

An iterative solution is used to find the local mini-
mum energy configuration of the proxy. Each iteration
is divided into two stages: move and update.

2.1. Moving the Proxy

In the move stage, the volume swept by the virtual
proxy, as it moves along a linear path towards its goal,
is checked to see if it penetrates any of the primitives
in the environment. The initial goal configuration is
the user’s finger position, but this will change as dic-
tated in the update stage on subsequent interactions.
If the proxy’s path does not collide with any obstacles,
the proxy is moved directly to the goal. Otherwise, the
proxy is moved until it makes contact with the first
primitive or primitives along the path.

A naive comparison of the proxy’s path with each
primitive in the environment would be unable to
achieve a sufficiently high update rate (for haptic dis-
play) on any but the most simple models. A common
technique to reduce the number of low-level compar-
isons that must be made is to surround each obstacle
with a hierarchy of bounding volumes. In our sys-
tem, a bounding sphere hierarchy is used (described
in detail in Section 5). Many other methods of high-
level collision detection have also been proposed.!*
All these techniques exploit spatial or temporal co-
herence to quickly eliminate from the environment
primitives that lie too far from the proxy’s path to
affect its motion. Primitives that are not eliminated
by the high-level pruning technique must be checked
individually to see if they intersect the proxy’s path.
This can be accomplished efficiently with algorithm’s
such as Gilbert’s'? or Lin-Canny,?! which can quickly
compute the distance between two convex polyhedra.
The low-level test is also similar to the ray intersec-
tion test used in ray-tracing applications for graphics.
The Gilbert algorithm? finds the distance between the

convex hull of two sets of points P = {py, ..., p,} and
Q=1{q1,...,q9u}. On completion, the algorithm will
return a set of weights w = {wy, ..., Wmax(,m} such
that

piwi,

i1
)
wi=1,
i=1

Prearest = (nearest = qiwi,

i=1

w;i >0 1

Gilbert’s algorithm was selected for our implementa-
tion because it requires little preprocessing compared
to other methods and can be used in other parts of the
haptic rendering process (as will be shown).

Once the point of contact has been found, the
proxy’s position is updated to this new configuration.
At this point, direct movement to the goal is no longer
possible, but it may still be possible to reduce the dis-
tance to the user’s finger position. In the update phase
this new goal configuration is found.

2.2. Updating the Goal Position

If the proxy is currently at the user’s finger position,
no further work is required. In general, however, the
proxy will not be exactly at the goal configuration and
a new direction, constrained by the contact surfaces,
must be found to further decrease the distance to the
goal. The available free space around the proxy can
be effectively modeled by examining its configura-
tion space.?’ In this space, the proxy is represented
as a point identifying the center of the proxy. The
primitives in contact with the proxy are mapped to
configuration space obstacles (C-obstacles), consisting of
all points within one proxy radius of the original ob-
stacles. For each primitive, a unique constraint plane
tangent to the configuration space surface and going
through the proxy position can be defined. Locally,
each constraint plane limits the potential motion of
the proxy to the half-space above the plane.

The intersection of all such half-spaces defines
a convex, unbounded polyhedron that represents lo-
cally all points reachable by direct linear motion from
the current proxy position. The new goal configura-
tion is the point in the free-space polyhedron nearest
to the user’s finger position. The user’s finger posi-
tion will always be situated beneath all the constraint
planes. An example of the configuration space,
C-obstacles, and proxy constraint planes is shown in
Figure 2.

772 . Journal of Robotic Systems—2001

Proxy e

(@)

Figure 2.

The problem is to find the desired goal configura-
tion x:

minimize D(x) = ||[x—ul| such that

ﬁ,Tx >d

ﬁsz >d,)
Alx > dy

where u is the current position of the user’s finger, and
ﬁ,-Tx =d;, 0 <i <m are the equations for the m con-
straint planes in contact with the proxy. Here we will
assume that all 77; are unit normals.

The solution can be seen as finding the point x on
the free-space polyhedron nearest to the user’s posi-
tion u. While the user’s position can be treated as a de-
generate polyhedron consisting of only one point, the
specification of our free-space polyhedron is not in a
form that can be directly exploited by the Gilbert algo-
rithm. The free-space polyhedron is unbounded and
the limits of its extent are defined by the intersection
of all the constraint planes, not vertices. There does
exist, however, a dual relationship between this free-
space polyhedron and another polyhedron that does
satisfy the requirements for the use of the algorithm.

Without loss of generality, we will assume that
the proxy is centered at the origin and that the user’s
finger position is located at a point one unit away
from the proxy position. The frame of reference and
unit of measure can be changed if this is not the
case. All the constraint planes go through a common
point (the proxy position = the origin) and can there-

(a) Actual and (b) configuration space obstacles.

fore be defined uniquely by their surface normals
Alx=0,0<i<m.

In the 3D case, the proxy’s position can be locally
constrained by, at most, three constraint surfaces; all
other contact surfaces can be considered redundant.
The planes associated with these constraint surfaces
will be referred to as the set of active planes. All other
constraint planes will be considered inactive. At first,
we will assume that an oracle has identified, out of
all the original planes, which planes will belong to
the active set. We will designate these planes by their
surface normals 7,,, 0 <i <m’ < 3. Later we will see
that the oracle is not required.

Considering only the active planes and rewriting
equation 2 in matrix notation, the constraint problem
can be written as

1
inimize D(x) = ~(x—u)T(x—u h that
minimize (x) 2(x u) (x) suc al 3

N'x =0

where N = [, ...f,,],0 <m’ <3 is the matrix con-
taining normals of the active constraint planes.
Introducing the m’ multipliers 1 =1[x;...A,], the
Lagrangian for Eq. 3 becomes

L= %(x—u)T(x—u)JrAT(NTx) @)

The minimum configuration is found where the deri-
vatives of L are zero. Taking the partial with respect
to x, we obtain

dL/dx=(x—u)+Nr=0)

Ruspini and Khatib: Haptic Display for Human Interaction with Virtual Dynamic Environments « T13

Solving for x, we obtain a relation between the
solution x and the Lagrange multipliers A.

x=u— N\ 6)

Substituting for x in Eq. 4, we obtain a dual for our
original constraint equation 3:

maximize
—P'(x)
1
= E(—NA)T(—NA)+ATNT(u— Ni)
1
= EATNTNAJr)LTNTu—ATNTNA
1
:AEATNTN1+XTN”u
1 1
= —E(ATNTN)LfZATNTMJruTu)JrEuTu
1 1
:—E(N)L—u)T(NA—Ll)+EuT14. 7)

Rewriting Eq. 7 as a minimization, and noting that u
is a unit normal (uTu = 1), the dual solution can be
found to be equivalent to the solution of

minimize P(x)=||NiA—ul (8)

In this equation, P(x) can be thought of as repre-
senting the potential energy of the system. The solu-
tion x (that minimizes the distance to the user’s posi-
tion) is the configuration that minimizes the potential
energy stored in the virtual spring that exists between
the user and the proxy.

To solve this equation using Gilbert’s algorithm,
we will at first make the following substitutions. First
we will define a space S’ such that

§ = 0]co, | -+ [a,, P, ©
0

where ¢,,, 0 <i <m’ is a constant, such that

(10)

an

where A;,0 <i <m’ are the terms from the vector A
and wy is a new constraint variable whose value we
define later.

Recalling that N = [#,, . .. 71,], itis trivial to show

that S'w’ = N2, and Eq. 8 can now be rewritten as
minimize P(x)=|Sw —ul (12)

The solution to Eq. 12 is the point nearest to u
in the space spanned by S'w’. If the solution we de-
sire is contained in the convex hull created by the
columns of ', then the solution can be found by in-
voking Gilbert’s algorithm. To prove that the solution
lies in this space, we must show that Y ,_;_,, wi =1
and w; > 0, Vi, 0 <i < m’ where w; is the ith term of
vector w.

From the original problem statement, x, =
[0 0 0]” satisfies the constraints of the system (itis the
current valid proxy position) with D(x,) = 1. Given
that the solution x must be nearer or at least the
same distance as the current configuration, we see that
(u—x)T(u—=x) < |lu—x| < |lu—=x,| < 1. Noting from
Eq. 6 that u—x = N, and our original requirement
that planes on the active set satisfy n;x =0, we see
that

(u—x)T(u—x)
= u—x)"(Nx)
= (ufx)cs’w’)
=(u—x)T Owo-%—%ﬁa‘wl-%—m
U Hg,

1

—Tlg,, Wiy
HTVIRW, \\ \\

<+
_ Tz _ Tg
:< (u—x) naf Wit (u—x) ﬂa,,,/) w

A P m'
ulfy, \ u'fly,,

L
= T wy+---
uTf, N
uTﬁ"uv’ - xTﬁ“m'
+ T I
ul,,, \

=Dwy+- -+ Dwy
=wi+- Wy <1 13)

Thus, the first constraint is satisfied by setting the un-
constrained variable w, equal to

>
wy=1— w; (14)

i=1
While it is trivial to show that wy > 0, proving
nonnegativity for the other elements of w is more

774 . Journal of Robotic Systems—2001

problematic. The normals of the constraint planes may
be redundant, permitting an infinite number of so-
lutions, some of which may have negative weights.
However, only the minimal set of planes for which all
the weights are positive will be considered as candi-
date active sets. To see the reason for this distinction,
note that the force exerted by the virtual spring on the
proxy is given by the equation:

f=ks(u—2x)=ks(NL) (15)

where k; is some positive spring constant. The indi-
vidual force applied by a given constraint plane to
oppose the motion of the proxy is given by

fi = —ks(@idi) (16)

Each constraint surface can only push, not pull, on
the proxy. Therefore, the force normal to the sur-
face must be nonnegative (n] fi = —ksA; = —kscijw; >
0). As u'n; <0 (the user’s position is below the con-
straint plane by definition), we see that ¢; <0 and
therefore w; > 0.

Having shown that the desired solution lies in the
convex hull of the space defined by columns of S, itis
now possible to extend the result so that we no longer
require prior knowledge of which constraint planes
belong to the active set. The intersection of all the half-
spaces defined by the constraint planes of the original
problem is represented in the dual by the union of the
convex hull for all possible sets of planes. The active
set is defined by the polytope whose distance is the
smallest to the user’s position.

We now have a means to find the new goal po-
sition efficiently. Eliminating our assumption that the

finger position is a unit length away from the cur-
rent proxy position, let i = u/||u|l. We use Gilbert’s
algorithm to find the nearest point between il and a
polyhedra defined by the m+1 points that form the
columns of the dual space:

0
S=-0|cifu| - |cmitm (17)
0

The goal displacement can be found by
x = [lull(u — Sw) (18)

where w is the vector of weights that are returned by
the distance algorithm. The nonzero elements of w de-
fine that set of active constraints. The displacement x
can be added to the current proxy position to define
the next goal configuration. In addition, the force ap-
plied by the user on each constraint plane can be found
by Eq. 16, after scaling, to be

fi = (ksllullciw;); (19)

An example of this dual relation is illustrated in
Figure 3. In this example configuration, the proxy po-
sition is constrained by two constraint planes 71; and
1. These constraints map to a dual-space triangle de-
fined by the origin and the points along the negative
normal directions of 7 and 7. As can be see in the il-
lustration, the distance P closest to the finger position
direction #1 is proportional to the distance that the goal
configuration is away from the current proxy position.
As the finger is moved around the proxy position, the

Figure 3.

(a) The new goal configuration is selected as the point in the free-space nearest the user’s finger position. (b) Its

equivalent dual-space representation represents the change in potential caused by moving from the current configuration.

Ruspini and Khatib: Haptic Display for Human Interaction with Virtual Dynamic Environments « T15

relationship is maintained. When the user’s finger is
inside the triangle, the distance to the hull is zero and
corresponding to the configurations where the proxy
is completely constrained.

3. HAPTIC SHADING

As described, the proxy’s position is selected to mini-
mize its distance to the user’s finger position, subject
to the constraints in the environment. In many cases,
however, the movement of the proxy can be altered to
create a variety of other useful haptic effects. An al-
ternative minimization is to use information found in
many graphic models to allow regular polygonal sur-
faces to be perceived as if they were constructed out of
curved continuous surfaces. As illustrated in Figure 4,
surface normals are defined at the vertices of a polygo-
nal mesh that correspond to the surface normals of an
underlying curved surface. To draw a given polygon,
the graphics hardware interpolates the normals® or a
corresponding color value!® for each pixel on the sur-
face. The lighting calculations are performed using
the interpolated surface normal information instead
of the surface normal of the polygon. This has the
effect of eliminating abrupt surface color changes be-
tween polygon boundaries and giving the appearance
of a curved continuous surface. The drawn surface is
however still composed of individual polygonal sur-
faces allowing fast graphic rendering on dedicated
hardware.

For haptics, these given vertex surface normals
can be used to give the sensation that the user is
touching a continuous, nonfaceted surface. This mod-
eling makes use of a haptic illusion first described by
Minsky,* who was able to haptically display three-

”

(a) (b) (©

Figure 4. (a) In most graphic systems, curved objects are
modeled as a set of flat polygonal patches. (b) To achieve
the appearance of a continuous surface, surface normals are
defined on the vertices of each patch. (c) The color or light-
ing models are interpolated over the surface to produce a
continuously shaded surface.

dimensional height fields on a two-degree-of-freedom
planar haptic display. While unable to apply forces
in the z (height) direction, the illusion of a three-
dimensional surface was created by applying tangen-
tial forces proportional to the slope of the field. The
basis for the illusion derives from the disparity be-
tween human force and position differentiation capa-
bilities. While humans are able to distinguish small
force changes, they are relatively incapable of notic-
ing small position disparities. By combining gener-
ated tangential forces with the normal force created
by the physical constraints (in z) of the 2D haptic de-
vice, an appropriate contact force can be applied to
the user’s finger. The position of the user’s hand in z,
however, remains fixed.

Morgenbesser? and Srinivasan® were the first to
try to use this illusion to shade virtual models. In their
solution, the direction of the normal force is changed
while retaining the magnitude caused by the penetra-
tion of the original object. Their work, however, re-
quired that the topology of the surface be known, lim-
iting applicability when the environment contained
intersecting or moving obstacles. In addition, con-
tact with multiple constraint surfaces was not consid-
ered. Such a case would occur if a user, for example,
were following the crevasse created around the con-
tact region of two side-by-side shaded cylinders. In
our approach, rather than directly adding or altering
forces applied to the user, an alternative minimiza-
tion is used to determine the best goal position for the
proxy. Since the approach only alters the position of
the proxy, and not directly the forces applied to the
user, stable performance is much easier to guarantee.

When contact occurs with a polygonal surface
containing vertex-defined normals, a new local sur-
face normal is calculated by interpolating the normals
from the vertices of the polygon. This process is very
similar to the interpolation done in graphics, but has a
few caveats (which are discussed in Section 3.1). Once
the interpolated normal is known, it can be used to
define a constraint plane going through the current
proxy position.

The haptic shading method proceeds in two
passes. In the first pass, the new goal solution is found
as in the update phase described in Section 2.2. In
this pass, however, the interpolated constraint plane
is used instead of the original for any contact surface
containing user-supplied normals. This new subgoal
can be thought of as the desired goal configuration
of the underlying curved model. This goal position
may, however, violate the constraints of the original
polygonal geometry since it may lie above or below
the true object surface. Instead, the update procedure

776 - Journal of Robotic Systems—2001

Interpolated normal

Surface normal

New proxy goal
y Constraint plane

Figure 5. Two pass haptic shading with specified normals.

is called again but with the original (noninterpolated)
constraint planes, and substituting the goal configu-
ration generated in the first pass for the user’s fin-
ger position. This two-pass approach has the effect of
finding the nearest valid configuration to the minimal
configuration as defined by the interpolated surface
normals.

An example of this approach is shown in Figure 5.
Note that after the first pass the goal position lies be-
low the surface of the object. After the second pass a

0)

Faceted cylinder
(@)

fForce discontinuity
oYoloYoYoraarey

valid proxy goal on the surface of the original obstacle
is found. This goal is to the right of the goal position
that would have been found if shading were not ap-
plied. If during the next move phase no obstacle is
encountered, the proxy will move to this configura-
tion and a force pulling the user’s finger to the right
will be applied, as would be expected from an object
having the surface normal illustrated.

If the subgoal configuration after the first pass is
above all the true constraint planes, the subgoal is first
projected back onto the nearest true constraint plane.
This ensures that the new subgoal will always be on
the object surface, and that surface effects like friction
and texture will be handled correctly.

The difference between a haptically shaded sur-
face, a flat surface, and the true curved surface is il-
lustrated in Figure 6. In all the figures, the differences
between the user’s positions and the positions of the
proxy are shown as the user’s finger follows a circu-
lar counterclockwise path around the object. As seen
in Figure 6(a), a strong discontinuity occurs when the
proxy reaches each edge of this ten-sided polygonal
approximation of a circular obstacle. This results in a
force discontinuity that gives the user the impression
of crossing over an edge. In Figure 6(b), surface nor-
mals have been specified on vertices of the obstacle.
The resulting movement of the proxy shows that the
resultant force is always perpendicular to the interpo-
lated surface just as in the case of a true circular ob-
ject. The effect of this minimization is to eliminate the
large instantaneous changes in force that normally

Shaded cylinder
(b)

Figure 6. Haptic shading (b) eliminates the force discontinuities associated with moving along a faceted cylindrical surface
(a). Although the path of the finger and proxy differ from that of a true cylinder (c), human position discrimination ability
is insufficient to distinguish the tactile differences between the two displays.

Ruspini and Khatib: Haptic Display for Human Interaction with Virtual Dynamic Environments « 717

occur at polygon boundaries, resulting in a surface
that feels smooth and continuous. The discrimination
abilities of humans are insufficient to detect the small
positional differences between the polygonal and un-
derlying curved surface.

3.1. Determining Shaded Surface Normals

For the previously described shading algorithm, the
desired surface normal for the shading constraint
plane must be found by interpolating its value from
the normals defined on the vertices of the primi-
tive. When the contact point is on the surface of the
polygon, the weights used for the interpolation can
be obtained from the collision-detection algorithm.
Gilbert’s distance algorithm returns the nearest point
on the surface as a weighed sum of a set of vertices
on the polygon. These same weights can be used to
find the shading normal; see ref. 12 for more informa-
tion. As the contact point may lie on either side of the
polygonal primitive, a check should be made to en-
sure that the interpolated surface normal points away
from the obstacle. The interpolated normal 7 should
be inverted if it’ - i1 > 0, where i1 is the outward normal
of the original primitive.

While finding the interpolated normal for surface
contact is fairly straightforward, special consideration
must be given if the proxy is in contact with one of the
edges or vertices of the polygon. As is illustrated in
Figure 7, the shaded constraint surface is found on
the configuration space obstacle and not on the orig-
inal primitive. On the surface, the interpolated sur-
face normal can be mapped to the top and bottom
surfaces of the configuration space obstacles, as illus-
trated in Figure 7(b). It is unclear, however, what map-

Vertex normal

ping should be used for points on the surface outside
this region. Extrapolating the surface normals will re-
sultin boundary values that depend on all the vertices
of the polygon, making it difficult to create patches
that will form a single continuous surface when placed
together. Using the same surface values as the near-
est edge or vertex will lead to large differences be-
tween the interpolated and true surface normal, and
will have a singularity where the top and bottom sur-
face meet. Interpolating around the angle formed by
the edge will also result in interfering shading planes
if the edge is shared by two shaded polygons repre-
senting a continuous surface.

In our approach, if contact is made with the
boundary of a configuration space obstacle, a hypo-
thetical configuration space surface is created that is
tilted so that its upper and lower surface match those
of the nearest interpolated edge or vertex normals.
An example of this is illustrated in Figure 7(a). The
configuration space normals of this hypothetical sur-
face are projected onto the actual configuration space
boundary to define the shaded surface normals for
the configuration space obstacle. Some example con-
figurations of shaded normals are illustrated in Fig-
ure 7(c). This mapping has an important property in
that patches, which share a common edge and have
identical surface normals defined on the vertices of
this edge, will feel smooth to the user.

4. SURFACE PROPERTIES

Several researchers have proposed methods to sim-
ulate static, dynamic, and viscous friction, and tex-
ture.>6223233 These methods worked by introducing
additional force to simulate the forces of friction from

Interpolated normals. 5

o

el COOUaIOn say
o ac
o

we'

Figure 7. The surface normals of a hypothetical configuration space obstacle are projected onto the true configuration space
surface, to define the shading normals used to simulate a curved surface.

778 . Journal of Robotic Systems—2001

the contact surface, and often depended on estimates
of the finger’s velocity that made stability of the solu-
tion very difficult to guarantee. All these effects, how-
ever, can be created by restricting or changing the mo-
tion of the proxy. This results in a haptic controller that
is much more stable and easier to control.

4.1. Static Friction

Static friction (stiction) is particularly simple to model
within the virtual proxy framework. The force exerted
on the proxy by the user can be estimated by the equa-
tion f = k,(p —v), where p is the position of the proxy,
vis the position of the finger, and k), is the proportional
gain of the haptic controller. For a given constraint
plane, let f, and f; be the components of the force
on the proxy normal and tangential to the constraint
plane, respectively. If the given constraint surface has
astatic friction parameter 1, then the proxy is in static
contact if || f|| < |l full, that is, the user’s position is in
the friction cone of the surface. An example of such
a configuration is shown in Figure 8(a). When any
constraint surface is in static contact with the proxy,
the proxy’s position is prevented from changing by
making the new subgoal position equal to the current
proxy position.

4.2. Viscous and Dynamic Friction

Viscous and dynamic friction can be modeled by look-
ing at a simplified set of equations for the motion of
the proxy. As illustrated in Figure 8(b) the equations
of motion for the proxy can be written as:

m¥ 4 bx = feinger + fn — 1fN (20)

where x is the position of the proxy, m is its mass, b is
the viscous damping term, and fanger, fn, and —pufn
are the force on the proxy created by the user’s fin-
ger, the surface constraint, and the drag caused by dy-
namic friction, respectively. Because the mass of the

@ Proxy

proxy can be considered as being very small, Eq. 20
canbe observed as n — 0. When the mass of the proxy
is zero, the body quickly reaches its saturation veloc-
ity. In dynamic equilibrium, the velocity of the proxy
is given by

_ fiinger + fN— 1N

b 1)

This limit can be used to bound the amount that the
proxy can travel in one clock cycle. When multiple
constraint surfaces exist, the lowest-velocity bound is
taken as the limit of the proxy’s movement. In the
event that the maximum velocity is negative, then the
dynamic friction term is sufficient to resist all move-
ment and the proxy’s position is not changed. If b = 0,
no viscous term exists and the maximum velocity is
not bounded. Since this approach does not require the
estimation of the user’s finger velocity from a finite set
of encoder values, this approach is not susceptible to
the errors found in other approaches.

4.3. Texture

Image-mapped texture is often used in graphics to cre-
atericher, more realistic environments. As with graph-
ics, texture can be applied to create higher-fidelity
scenes than can be realistically created using polyg-
onal surfaces alone. In our system, an image-based
texture map can be used to modulate any of the sur-
face properties described in Section 4. In addition,
the force-shaded constraint planes can be modified
in a manner similar to the bump mapping introduced
by Blinn® for computer graphics. The contact-point
weights, used for shading, are used to interpolate a
texture coordinate from coordinates defined on the
vertices of the polygon. The texture coordinates map
to an image-based texture, and are converted to dis-
placements to the surface original or shaded normal
as in Blinn. Once the texture normal is found, it can
be used as in the case of shading in Section 3. An

Ky
fm.lmn P?’OXY

Friction cone
Finger
(@)
Figure 8.

/‘fmg&4
Finger

(a) Static friction can be simulated by not permitting proxy movement if the user’s finger is in a given friction cone.

(b) Viscous and dynamic friction can be modeled by constraining the motion of the proxy subject to the forces applied to it.

Ruspini and Khatib: Haptic Display for Human Interaction with Virtual Dynamic Environments « 779

L pan®
Proxy, 00“5\(3\\'\\ o
Finger

Figure 9. An image-based texture is used to alter the con-
straint plane to create the sensation of bumps on the virtual
surface.

example of this is illustrated in Figure 9. As with shad-
ing, the texture does not lift the proxy off the surface of
the original obstacle but displaces the goal tangential
to the configuration space surface.

Unlike bump mapping for computer graphics, it
may be desirable to allow multiple constraint planes
to be specified at a given location. An example would
be a grooved or craggy surface where the proxy is in
contact with multiple surfaces at the same time. In our
current implementation, we allow the user to define
multiple texture images for a given surface. One con-
straint plane is created for each image. The selection
of appropriate textures to model a given surface is left
to the user.

5. COLLISION DETECTION

Because the environment is normally constructed
from a large number of primitives, a naive test that
checked whether each primitive was in the path of
the proxy would be prohibitively expensive. Instead,
a hierarchical bounding representation for the object
is constructed to take advantage of the spatial coher-
ence inherent in the environment. The bounding rep-
resentation, based on spheres, is similar to that first
proposed by Quinlan.2® This hierarchy of bounding
spheres is constructed by first covering each polygon
with small spheres in a manner similar to scan con-
version in computer graphics. These spheres are the
leaves of an approximately balanced binary tree. Each
node of this tree represents a single sphere that com-
pletely contains all the leaves of its descendants.
After covering the object, a divide-and-conquer
strategy is used to build the interior nodes of the tree.
This algorithm works in a manner similar to quick-
sort. First, an axis-aligned bounding box that contains
all the leaf spheres is found. The leaf spheres are then
divided along the plane through the midpoint of the

longest axis of the bounding box. Each of the result-
ing two subsets should be compact and contain an
approximately equal number of leaf spheres. The
bounding tree is constructed by recursively invoking
the algorithm on each subset, and then creating a new
node with the two subtrees as children. A cut-away
view showing the leaf nodes and bounding sphere hi-
erarchy for a typical model is illustrated in Figure 10.
Note that a node is not required to fully contain all
the descendant internal nodes, only the descendant
leaf nodes.

Two heuristics are used to compute the bounding
sphere of a given node. The first heuristic finds the
smallest bounding sphere that contains the spheres of
its two children. The second method directly examines
the leaf spheres. The center is taken as the midpoint
of the bounding box already computed. The radius
is taken to be just large enough to contain all the de-
scendant leaf nodes. The method that generates the
sphere with the smallest radius is used for the given
node. The first heuristic tends to work better near the
leaves of the tree, while the second method produces
better results closer to the root. This algorithm has
an expected O(nlogn) execution time, where 7 is the
number of leaf spheres. Once constructed, the time re-
quired to determine which primitives may lie in the
proxy’s path is only O(log).

The sphere hierarchy is used to prune the num-
ber of low-level checks that must be performed but is
not used to determine the exact contact point. If the
proxy’s path intersects one of the leaf nodes of the
hierarchy, then the primitive attached to that leaf is
checked to see if it intersects the path of the proxy.
In our system, we currently use a very fast distance
algorithm by Gilbert, Johnson, and Keerthi.!? The

Figure 10. Bounding sphere hierarchy of a cat model.

780 . Journal of Robotic Systems—2001

algorithm can quickly find the nearest point between
two arbitrary bounded convex polyhedra. No prepro-
cessing of the polyhedra is required. Each primitive is
defined by the set of vertices whose convex hull de-
fines the interior of the polyhedron. The nearest point
between two polyhedra is returned as the weighted
sum of a set of vertices in the polyhedra. These weights
are used when shading or texture effects are required.

A cache is maintained to avoid calling the low-
level check multiple times for the same primitive dur-
ing the same iteration. This is possible since several
leaf nodes may cover a single primitive. In addi-
tion, some spatial coherence information used by the
Gilbert algorithm is kept in the cache to reduce the
computation time between successive calls to the dis-
tance algorithm. The low-level distance check runs in
linear time with the number of vertices in the two
polyhedra. Since the proxy path is a line segment and
the number of vertices in a polygon is typically small
(3 or 4), this low-level check can be said to take O(1)
constant time.

6. DYNAMICS

Our previous discussion has been limited to the ren-
dering of static environments. To create an engaging
virtual world, the user must be able to manipulate and
dynamically interact with the virtual objects. In gen-
eral, a mechanical system can be described by a con-
figuration space vector g = [q; ...q,]", where 1 is the
number of dof of the system. The forward-dynamics
equations of motion of such a system can be used to
obtained the configuration space accelerations of the
system. These equations have a general from that can
be written as:

§=M@g)""(I"'=b(q,q)—8@) (2

where M(q) is the mass matrix, b(q, q) the centrifugal
coriolis vector, g(q) the gravity force vector, and I the
vector representing the internal and external torques
applied to the system through either internal actua-
tion or external forces applied by the environment. A
simplified set of equations that neglects the centrifugal
coriolis and some dynamic coupling terms is used in
our current system. We are in the process of converting
the system to make use of an extremely fast variation
of Featherstone’s articulated body solution® to permit
the simulation of very complex dynamic models at
real-time rates.”

When a collision occurs between the proxy and
one or more objects in the environment, a force is

applied to the user simulating a contact with the sur-
face. In a dynamic environment, an equal and oppo-
site force f. is applied at the contact point(s), which
may induce accelerations on the virtual system. The
corresponding joint torque vector is given by

Tea=]!fe (23)

where] is the Jacobian of the contact point ¢, such that
the velocity v of the contact point is given by v =] ©.
For a simple PD controller, the force applied to the
environment can be given by

fe =kp(Pproxy = Pringer) (24)

where k, is the positional gain, and pproxy and pringer
are the current positions of the proxy and finger, re-
spectively. Note that this force is in general not suf-
ficient to prevent penetration between the proxy and
objects in the environment, as this equation does not
incorporate the internal constraints of the proxy or
other objects. A more complete solution to comput-
ing the contact forces for rigid body simulation can
be found in ref. 31. This simplified model, however,
is sufficient for simulating the interactions found in
most haptic environments. Once the joint-space accel-
erations are known, the equations of motion for the
system can be integrated, from a given initial joint-
space configuration and velocity, to obtain the motion
for the entire system over time.

7. SYSTEM OVERVIEW

Our current system runs on two computers: the hap-
tic server and the application client. The separation
of the haptic and application/graphic processes was
first proposed by Adachi, Kumano, and Ogino? to en-
sure the real-time performance of the haptic control
loop. This is important since the haptic servo loop
must run at a very high rate, typically greater than
1000 Hz, to achieve a high-fidelity force display. Most
application programs typically run at a much slower
rate (30 Hz).

The application program communicates to the
haptic server through a network interface library HL.
The current library supports a limited set of the func-
tions provided for graphics by the GL library for SGI
IRIX machines. The bulk of the haptic rendering effort
is accomplished by the haptic server, freeing the client
machine to perform the tasks required of the user’s ap-
plication. High-level models sent by the client are re-
organized, and a bounding sphere hierarchy for each

Ruspini and Khatib: Haptic Display for Human Interaction with Virtual Dynamic Environments « 781

Graphic //
display .
Haptic
[] interface
I#I —
]
T
User Low-level control
application Proxy update
L 1 [Etheret| T -
‘ HL library I {Model cnnslructmn‘
Client Server
Figure 11. System architecture.

object is constructed. An old model is not replaced
until the new model has been sent and is ready for
display. Independent of the model construction, the
proxy update loop continues to attempt to move the
proxy toits minimal configuration. At the lowestlevel,
a real-time controller is used to attempt to move the
user’s finger to the current proxy position. A diagram
of the system is illustrated in Figure 11.

In tests, and in the following examples, the client
computer was an SGI Indigo2 running IRIX 6.2.
The server was a 200 MHz Pentium Pro running
Linux 2.0.2. Communication between computers was
made through a standard TCP/IP ethernet connec-
tion. The haptic device employed was a ground-based
PHANToM manipulator. The server produced stable
results with position gains over 1800 Newtons/meter
on models containing as many as 24,000 polygonal
primitives. The proxy update loop computation time
was approximately O(logn), with n the number of
polygons in the model.

8. STABILITY AND CONTROL

All the effects presented in the Section 6 were created
solely by changing the proxy configuration. This re-
duces the job of the haptic controller to attempting to
reduce the error between the proxy position and the
haptic device. Position control of a mechanical sys-
tem is a task that has been discussed extensively in
the robotics literature. In our current implementation,
we rely on a simple operational space proportional
derivative (PD) controller.”” As all the modeling ef-
fects are achieved by the movement of the proxy, con-
troller gains and other parameters can be set solely by
considering the mechanical properties of the haptic

device. The stability properties of such controllers are
well known and can be made quite robust if a suffi-
ciently high update rate can be maintained.

A major advance of our approach is that the low-
level control loop can be separated from the con-
tact/proxy update loop to ensure that a high servo
control rate can be maintained. As the position of the
proxy depends on the models in the environment,
which are supplied by the user application, it is not
possible to guarantee real-time performance. If the
control and update loops are separated, the haptic
controller can be commanded at a fixed rate to use
the last computed proxy position. Thus, the stability
of the controller is maintained while the fidelity of the
haptic display degrades gracefully as the complexity
of the environment is increased.

It remains to show that the movement of the proxy
is stable. As seen in Section 2, the basic move/update
loop can only decrease the distance to the user’s fin-
ger. It can therefore be shown that the update loop
will add no energy to the user/haptic system. Like-
wise the static, dynamic, and viscous friction prop-
erties only restrict the motion of the proxy and are
thus inherently stable. Shading and texture can in-
crease the distance between the user’s finger and the
proxy. This increase implies that the surface is ac-
tive and can add energy to the user/haptic system.
In most graphic models, the interpolated and true
surface normals typically differ by less than 30°. In
these cases, the added energy is very small, and is
not noticed by the user. In our test on typical mod-
els, the motion was always stable, although there do
exist contrived examples in which unstable behavior
is possible. Lastly, energy stored in a virtual dynamic
system can be transferred to the user through con-
tact. If the system being modeled is inherently stable
then the entire system will be stable. Nevertheless the
masses and inertias of the simulated system should
be selected small enough that they cannot damage
the haptic device or the user, and care should be taken
to ensure that the motion of the simulated system is
bounded.

9. APPLICATIONS

The intuitive nature of haptic interaction makes it well
suited for a wide range of applications. For instance,
haptics can be used to train a surgeon to perform an
operation without the cost and difficulties of training
on animals or cadavers. In another area, a haptic sys-
tem can be used to allow an animator to specify the
movement of a 3D model. The animator can feel the

782 . Journal of Robotic Systems—2001

Figure 12.

Many types of haptics environments can be modeled by our system, from the simulation of a small microsensor

to a large roller-coaster. Other models include a windmill, a crank, a rocket carousel, and the famous Cadwell teapot.

joint limits of the model and feel the penetration con-
straints imposed by the environment. In mechanical
design, an engineer can apply force and interact with
a model in a physically intuitive manner. Other ap-
plications are as yet unimagined, but it is hoped that
their development will be spurred by the low-level
work presented here.

Figure 12 illustrates some of the virtual environ-
ments that can be modeled by our system. On the up-
per left, a micromechanical sensor is modeled. The
user is free to push on the test mass to see how the
system responds to his/her input. The user can also
use the probe to check clearances and ensure that the
system will behave as expected. The size, mass, and
time parameters of the system are scaled to allow
intuitive interactions with the model. In other mod-
els in the figure, such as the windmill, roller-coaster,
or carousel, the size and mass of the system is re-
duced so that the user can easily interact with an ob-

ject that would be difficult to interact with in reality.
Other objects like the crank and the teapot are ren-
dered full size. These models illustrate the numerous
possibilities for using haptics to interact with virtual
systems.

10. CONCLUSION

The techniques we have described were used to model
a variety of virtual models. As computational power
continues to increase, the size and complexity of the
models that can be simulated will continue to grow.
By allowing a user to interact intuitively with a model,
haptics can greatly improve efficiency in designing
and evaluating new systems and designs. We are
currently investigating methods to allow more com-
plex systems to be modeled, and to allow interaction
through more complex articulated effectors.

Ruspini and Khatib: Haptic Display for Human Interaction with Virtual Dynamic Environments «

REFERENCES

1.

IS

o - w

o

N

®

ISV

11.

14.

15.

16.

17.

18.

R. Avila and S. Sobierajski, A haptic interaction method
for volume visualization, Visualization '96 Proc, Octo-
ber 1996.

. Y. Adachi, T. Kumano, and K. Ogino, Intermediate rep-

resentation for stiff virtual objects, Proc IEEE Virtual
Reality Annual Int Symp ‘95, March 1995, pp. 203—
210.

. D. Baraff, Analytical methods for dynamic simulation

of non-penetrating rigid bodies, SSIGGRAPH 89 Proc,
August 1989, pp. 223-232.

. D. Baraff, Fast contact force computation for nonpene-

trating rigid bodies, SSIGGRAPH 94 Proc, August 1994,
pp. 23-34.

. J. Blinn, Simulation of wrinkled surfaces, SIGGRAPH

89 Proc, August 1978, pp. 286-292.

. P. Buttolo, D. Kung, and B. Hannaford, Manipulation

in real virtual and remote environments, Proc IEEE
Conf on Systems, Man and Cybernetics, August 1990,
pp. 177-185.

K. Chang, Efficient dynamic control and simulation of
robotic mechanisms, internal report.

. J. Craig, Introduction to robotics mechanics and control,

Addison-Wesley, 1989.

. R. Featherstone, Robot Dyn Algorithms, Kluwer, 1987.
. M. Finch, et al., Surface modification tools in a virtual

environment interface to a scanning probe microscope,
Proc 1995 Symp on Interactive 3D Graphics, April 1995,
pp. 13-18.

H. Goldstein, Classical mechanics, Addison-Wesley,
1980.

. E.G. Gilbert, D.W. Johnson, and S.S. Keerthi, A fast pro-

cedure for computing the distance between complex ob-
jects in three-dimensional space, IEEE] Robot Automat
4:(2) (1988).

. P. Gill, S. Hannarling, W. Murray, M. Saunders, and

M. Wright, User’s guide to LLSOL, Stanford University
Technical Report SOL86-1, January 1986.

S. Gottschalk, M.C. Lin, and D. Manocha, OBBTree: A
hierarchical structure for rapid interference detection,
SIGGRAPH 96 Proc, August 1996, pp. 171-180.

H. Gouraud, Continuous shading of curved surfaces,
IEEE Trans Comput C-20:(6) (1971), 623-629.

H. Iwata and H. Noma, Volume haptization, IEEE 1993
Symp on Research Frontiers in Virtual Reality, October
1993, pp. 16-23.

T. Kane, Dynamics: Theory and applications, McGraw-
Hill, 1985.

O. Khatib, Real-time obstacle avoidance for manipu-
lators and mobile robot, Int] Robot Res 5:(1) (1986),
90-98.

. O. Khatib, A unified approach to motion and force con-

trol of robotic manipulators: The operational space for-
mulation, IEEE] Robot Automat 3:(1) (1987).

20.

21.

=

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

783

J.-C. Latombe, Robot motion planning, Kluwer, 1991,
pp- 58-152.

M. Lin and J.F. Canny, A fast algorithm for incremental
distance calculation, Int Conf on Robotics and Automa-
tion, May 1991, pp. 1008-1014.

W.R.Mark, S.C. Randolph, M. Finch,].M. Van Verth, and
R.M. Taylor, II, Adding force feedback to graphics sys-
tems: Issues and solutions, SIGGRAPH 96 Proc, August
1996, pp. 447-452.

T.M. Massie and J.K. Salisbury, The PHANToM haptic
interface: A device for probing virtual objects. Dynamic
Systems and Control 1994, Chicago, November 6-11,
vol. 1, pp. 295-301.

M.D.R. Minsky, Computational haptics: The sandpaper
system for synthesizing texture for a force-feedback dis-
play, Ph.D. dissertation, MIT, June 1995.

H.B. Morgenbesser, Force shading for haptic shape per-
ception in haptic virtual environments. M. Eng. thesis,
MIT, September 1995.

M. Ouh-Young, Force display in molecular docking,
Ph.D. dissertation, University of North Carolina at
Chapel Hill, UNC-CH CS TR90-004, Ferbuary 1990.
B.T. Phong, Illumination for computer generated pic-
tures, Communications ACM 18:(6) (1975), 311-317.
S.Quinlan, Efficient distance computation between non-
convex objects, Int Conf on Robotics and Automation,
April 1994.

D. Ruspini, K. Kolarov, and O. Khatib, Graphical and
haptic manipulation of 3D objects, 1st PHANToM user’s
group workshop, September 27-30, 1996.

D. Ruspini, K. Kolarov, and O. Khatib, The haptic dis-
play of complex graphical environments, SSIGGRAPH
97 Proc, August 1997, pp. 345-352.

D. Ruspini and O. Khatib, Collision/contact models
for the dynamic simulation of complex environments,
Workshop on Dynamic Simulation, IEEE/RS] Int Conf
on Intelligent Robots and Systems, IROS 97, Genoble,
France, 1997.

S.E. Salcudean and T.D. Vlaar, On the emulation of stiff
walls and static friction with a magnetically levitated
input/output device, Dyn Syst Contr (1995), 123-130.
K. Salisbury, D. Brock, T. Massie, N. Swarup, and
C. Zilles, Haptic rendering: Programming touch interac-
tion with virtual objects, Proc 1995 Symp on Interactive
3D Graphics, April 1995, pp. 123-130.

M.A. Srinivasan, G.L. Beauregard, and D.L. Brock, The
impact of visual information of the haptic perception of
stiffness in virtual environments, ASME Winter Annual
Meeting, November 1996.

R. Taylor, et al., The nanomanipulator: A virtual-reality
interface for a scanning tunneling microscope, Proc
SIGGRAPH 93, August 1993.

C. Zilles and J. Salisbury, Constraint-based god-object
method for haptic display. Dyn Syst Contr 1 (1994),
146-150.

