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Abstract

Reliable perception is required in order for robots to operate safely in unpredictable

and complex human environments. However, reliability of perceptual inference algo-

rithms has been poorly studied so far. These algorithms capture uncertain knowledge

about the world in the form of probabilistic belief distributions. A number of Monte

Carlo and deterministic approaches have been developed, but their efficiency depends

on the degree of smoothness of the beliefs. In the real world, the smoothness assump-

tion often fails, leading to unreliable perceptual inference results.

Motivated by concrete robotics problems, we propose two novel perceptual infer-

ence algorithms that explicitly consider local non-smoothness of beliefs and adapt

to it. Both of these algorithms fall into the category of iterative divide-and-conquer

methods and hence scale logarithmically with desired accuracy. The first algorithm is

termed Scaling Series. It is an iterative Monte Carlo technique coupled with anneal-

ing. Local non-smoothness is accounted for by sampling strategy and by annealing

schedule. The second algorithm is termed GRAB, which stands for Guaranteed Re-

cursive Adaptive Bounding. GRAB is an iterative adaptive grid algorithm, which

relies on bounds. In this case, local non-smoothness is captured in terms of local

bounds and grid resolution. Scaling Series works well for beliefs with sharp transi-

tions, but without many discontinuities. GRAB is most appropriate for beliefs with

many discontinuities. Both of these algorithms far outperform the prior art in terms

of reliability, efficiency, and accuracy. GRAB is also able to guarantee that a quality

approximation of the belief is produced.

The proposed algorithms are evaluated on a diverse set of real robotics prob-

lems: tactile perception, autonomous driving, and mobile manipulation. In tactile
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perception, we localize objects in 3D starting with very high initial uncertainty and

estimating all 6 degrees of freedom. The localization is performed based on tactile

sensory data. Using Scaling Series, we obtain highly accurate and reliable results in

under 1 second. Improved tactile object localization contributes to manufacturing

applications, where tactile perception is widely used for workpiece localization. It

also enables robotic applications in situations where vision can be obstructed, such

as rescue robotics and underwater robotics.

In autonomous driving, we detect and track vehicles in the vicinity of the robot

based on 2D and 3D laser range finders. In addition to estimating position and

velocity of vehicles, we also model and estimate their geometric shape. The geometric

model leads to highly accurate estimates of pose and velocity for each vehicle. It

also greatly simplifies association of data, which are often split up into separate

clusters due to occlusion. The proposed Scaling Series algorithm greatly improves

reliability and ensures that the problem is solved within tight real time constraints

of autonomous driving.

In mobile manipulation, we achieve highly accurate robot localization based on

commonly used 2D laser range finders using the GRAB algorithm. We show that

the high accuracy allows robots to navigate in tight spaces and manipulate objects

without having to sense them directly. We demonstrate our approach on the example

of simultaneous building navigation, door handle manipulation, and door opening.

We also propose hybrid environment models, which combine high resolution polygons

for objects of interest with low resolution occupancy grid representations for the

rest of the environment. High accuracy indoor localization contributes directly to

home/office mobile robotics as well as to future robotics applications in construction,

inspection, and maintenance of buildings.

Based on the success of the proposed perceptual inference algorithms in the con-

crete robotics problems, it is our hope that this thesis will serve as a starting point

for further development of highly reliable perceptual inference methods.
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Laugier, Philippe Martinet, Aurélie Clodic, Antonio Morales, Antonio Frisoli, Nicola

Dioliati, Sung-Chul Kang, Chungmook Chun, and many others. Your friendship and

stimulating discussions make me always look forward to seeing you at one of the

international or local events.

Finally, thanks to my parents: Tatiana and Vladimir Petrovsky, who have raised

me to have a keen interest in science and research. Thanks to my husband Peter

Varvak for his unconditional love and enthusiasm. Thanks to my daughter Sophia,

who had to endure many nights and weekends away from her mother. And thanks to

our nanny Alla Salova, without whom my progress would not be possible.

viii



to Peter and Sophia

ix



x



Contents

Abstract v

Acknowledgements vii

List of Tables xvii

List of Figures xxi

List of Algorithms xxiii

1 Introduction 1

1.1 Perception and Challenges Therein . . . . . . . . . . . . . . . . . . . 2

1.1.1 Making Perception Robust . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Challenges In Perceptual Inference . . . . . . . . . . . . . . . 3

1.1.3 Goals of this Work . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Parametric Inference Methods . . . . . . . . . . . . . . . . . . 8

1.2.2 Non-Parametric Inference Methods . . . . . . . . . . . . . . . 9

1.2.3 Techniques for High Dimensional Problems . . . . . . . . . . . 9

1.2.4 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . 10

1.2.5 High Roughness Problems . . . . . . . . . . . . . . . . . . . . 10

1.3 Contributions and Thesis Organization . . . . . . . . . . . . . . . . . 11

1.3.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

xi



1.4 Summary of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Tactile Perception 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Single Hypothesis Methods . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Bayesian Methods in Tactile Perception . . . . . . . . . . . . . 21

2.2.3 Bayesian Methods in Other Applications . . . . . . . . . . . . 22

2.3 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Bayesian Problem Statement and Definitions . . . . . . . . . . 24

2.3.2 Problem Statement for Tactile Localization . . . . . . . . . . . 26

2.3.3 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Concepts and Intuition . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 The Scaling Series Algorithm . . . . . . . . . . . . . . . . . . 33

2.4.3 Discussion of Algorithm Features and Settings . . . . . . . . . 34

2.4.4 Algorithm Variations . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.5 Tracking Dynamic Objects . . . . . . . . . . . . . . . . . . . . 40

2.4.6 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.1 Experiments with Cash Register, Guitar, and Toaster . . . . . 45

2.5.2 Manipulating a Box . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.3 Door Handle Operation . . . . . . . . . . . . . . . . . . . . . 50

2.5.4 Free Standing Objects . . . . . . . . . . . . . . . . . . . . . . 52

2.5.5 Algorithm Evaluation . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Whole Body Contacts 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Related Work in Perception . . . . . . . . . . . . . . . . . . . 65

xii



3.2.2 Related Work in Control . . . . . . . . . . . . . . . . . . . . . 66

3.2.3 Overview of Control Approach . . . . . . . . . . . . . . . . . . 66

3.3 Contact Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Active Sensing Strategy for Data Collection . . . . . . . . . . 67

3.3.2 Model and Notation . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.3 Probabilistic Inference with Known Robot Geometry . . . . . 67

3.3.4 Simultaneous Estimation of Robot Geometry and Contact . . 70

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Experiments on Contact Estimation . . . . . . . . . . . . . . . 72

3.4.2 Control Using Estimated Contacts . . . . . . . . . . . . . . . 73

3.4.3 Multi-Contact with Estimated Contacts . . . . . . . . . . . . 74

3.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 76

4 Vehicle Detection and Tracking 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Probabilistic Model and Notation . . . . . . . . . . . . . . . . 85

4.3.2 Vehicle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Vehicle Dynamics Model . . . . . . . . . . . . . . . . . . . . . 87

4.3.4 Sensor Data Representation . . . . . . . . . . . . . . . . . . . 88

4.3.5 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Vehicle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Derivation of Update Equations . . . . . . . . . . . . . . . . . 96

4.4.2 Motion Inference . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.3 Shape Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.4 Initializing and Discontinuing Tracks . . . . . . . . . . . . . . 99

4.5 Vehicle Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 The Basic Detection Algorithm . . . . . . . . . . . . . . . . . 101

4.5.2 Challenges in Vehicle Detection . . . . . . . . . . . . . . . . . 101

4.5.3 Motion Evidence . . . . . . . . . . . . . . . . . . . . . . . . . 102

xiii



4.5.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Working with 3D Range Data . . . . . . . . . . . . . . . . . . . . . . 105

4.6.1 Detection of Black Obstacles . . . . . . . . . . . . . . . . . . . 108

4.7 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7.1 Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7.2 Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Mobile Manipulation 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 Probabilistic Model and Notation . . . . . . . . . . . . . . . . 122

5.2.2 Representation of Environment . . . . . . . . . . . . . . . . . 123

5.2.3 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.1 Rao-Blackwellization . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.2 Robot Trajectory Estimation . . . . . . . . . . . . . . . . . . 128

5.3.3 Object State Estimation . . . . . . . . . . . . . . . . . . . . . 128

5.3.4 Computing Importance Weights . . . . . . . . . . . . . . . . . 129

5.3.5 Using Scaling Series to Increase Precision . . . . . . . . . . . . 130

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 134

6 Guaranteed Inference 137

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.1 Problem Statement and Notation . . . . . . . . . . . . . . . . 142

6.3.2 Insight into the Measurement Model . . . . . . . . . . . . . . 143

6.3.3 Relaxations and Strengthenings for Tactile Manipulation . . . 145

6.3.4 Relaxations and Strengthenings for Robot Localization . . . . 146

6.4 Belief Approximation Algorithm and Analysis . . . . . . . . . . . . . 147

xiv



6.4.1 Algorithm Detail . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.2 Approximation Analysis . . . . . . . . . . . . . . . . . . . . . 151

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5.1 Indoor Robot Localization . . . . . . . . . . . . . . . . . . . . 152

6.5.2 Tactile Manipulation . . . . . . . . . . . . . . . . . . . . . . . 158

6.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 159

7 Conclusion 163

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2.1 From Application Perspective . . . . . . . . . . . . . . . . . . 165

7.2.2 From Theoretical Perspective . . . . . . . . . . . . . . . . . . 167

7.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A Lipschitz Constants for Tactile Perception 171

B Math Notes for Vehicle Shape Estimation 175

B.1 Laplace’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.2 Importance Weight Computation . . . . . . . . . . . . . . . . . . . . 176

B.2.1 Product of Gaussians . . . . . . . . . . . . . . . . . . . . . . . 177

B.2.2 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C Proofs for GRAB 179

Bibliography 181

Index 197

xv



xvi



List of Tables

2.1 Results of nine tactile localization experiments . . . . . . . . . . . . . 46

4.1 Vehicle tracking performance . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Vehicle detection performance . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Comparison of indoor localization algorithms . . . . . . . . . . . . . . 133

xvii



xviii



List of Figures

1.1 The inner workings of perception . . . . . . . . . . . . . . . . . . . . 2

1.2 Plots of a real belief distribution in robotics . . . . . . . . . . . . . . 4

1.3 Illustration of sensing discontinuities . . . . . . . . . . . . . . . . . . 5

1.4 Beliefs for relative vs. global sensors . . . . . . . . . . . . . . . . . . . 6

1.5 Classification of perceptual inference methods in robotics. . . . . . . 8

2.1 Robot performing tactile object localization . . . . . . . . . . . . . . 18

2.2 Objects used in tactile localization experiments . . . . . . . . . . . . 26

2.3 Peak width and annealing . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Belief evolution during exploration . . . . . . . . . . . . . . . . . . . 36

2.5 Nine poses used during tactile localization experiments . . . . . . . . 45

2.6 Stages of box manipulation . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Under-constrained solution estimation . . . . . . . . . . . . . . . . . 51

2.8 Harmonic Arm robot and accuracy of object tracking . . . . . . . . . 51

2.9 Progression of Scaling Series over iterations . . . . . . . . . . . . . . . 56

2.10 Comparison of algorithms for uni-modal case . . . . . . . . . . . . . . 57

2.11 Multi-modal case and impact of neighborhood shape . . . . . . . . . 58

2.12 Impact of δ∗ and M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.13 Impact of zoom and pruning strategies . . . . . . . . . . . . . . . . . 60

3.1 Applications of whole body contacts . . . . . . . . . . . . . . . . . . . 64

3.2 Contact control framework . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Active sensing strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Experimental setup for contact estimation . . . . . . . . . . . . . . . 71

xix



3.5 Plot of PUMA’s link edge during active sensing . . . . . . . . . . . . 72

3.6 Impact of contact estimation on control . . . . . . . . . . . . . . . . . 74

3.7 Multi-contact control with estimated contacts . . . . . . . . . . . . . 75

4.1 Stanford’s autonomous vehicle Junior . . . . . . . . . . . . . . . . . . 81

4.2 Data association with and without geometric vehicle model . . . . . . 82

4.3 Impact of vehicle shape estimation on dynamics estimation . . . . . . 83

4.4 Dynamic Bayesian network for vehicle tracking . . . . . . . . . . . . . 86

4.5 Affect of vantage point shift on perceived vehicle motion . . . . . . . 87

4.6 Anatomy of a virtual scan . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Measurement model for vehicle tracking . . . . . . . . . . . . . . . . 93

4.8 Motion evidence for a moving bus . . . . . . . . . . . . . . . . . . . . 102

4.9 Ground filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10 Classification of points in Velodyne data . . . . . . . . . . . . . . . . 107

4.11 Detection of black vehicles . . . . . . . . . . . . . . . . . . . . . . . . 109

4.12 Test conditions on course A at the Urban Grand Challenge . . . . . . 110

4.13 Tracking results on course A at the UGC . . . . . . . . . . . . . . . . 111

4.14 Shape estimation results on Stanford campus . . . . . . . . . . . . . . 112

4.15 Shape and velocity estimation on the example of a passing bus . . . . 112

4.16 Impact of Scaling Series on vehicle detection . . . . . . . . . . . . . . 115

5.1 STAIR robot manipulating a door . . . . . . . . . . . . . . . . . . . . 120

5.2 Dynamic Bayesian network for mobile manipulation . . . . . . . . . . 122

5.3 Hybrid representation of the environment . . . . . . . . . . . . . . . . 124

5.4 Example of a laser ray traveling through grid cells. . . . . . . . . . . 125

5.5 Robot localization with estimation of door state . . . . . . . . . . . . 131

6.1 Computations of min and max range for a grid cell . . . . . . . . . . 147

6.2 GRAB evolution for indoor localization . . . . . . . . . . . . . . . . . 149

6.3 Smoothing improves reliability of MCL . . . . . . . . . . . . . . . . . 154

6.4 Smoothing increases ambiguity of localization . . . . . . . . . . . . . 154

6.5 Dependence of reliability on initial uncertainty . . . . . . . . . . . . . 155

xx



6.6 Accuracy of pose and belief estimation . . . . . . . . . . . . . . . . . 156

6.7 Decision safety results . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.8 GRAB performance on tactile object localization . . . . . . . . . . . 158

7.1 3D shape inference for vehicle tracking . . . . . . . . . . . . . . . . . 166

7.2 Object tracking with Kinect . . . . . . . . . . . . . . . . . . . . . . . 167

xxi



xxii



List of Algorithms

2.1 Scaling Series algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Even Density Cover procedure . . . . . . . . . . . . . . . . . . . . . . 35

2.3 SS-DYN3 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 GRAB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xxiii



xxiv



Chapter 1

Introduction

Clouds are not spheres, mountains are not
cones, coastlines are not circles, and bark is
not smooth, nor does lightning travel in a
straight line.

B. Mandelbrot,
The Fractal Geometry of Nature.

In uncertain environments, robots need to understand the world around them

based on sensory inputs. Robots achieve this via a process known as perception,

which transforms sensory data into useful information. Clearly, in order for robots to

operate reliably in unstructured settings, perception needs to be dependable. How-

ever, to improve efficiency, many perceptual algorithms make simplifying smoothness

assumptions about the world. Since the real world is anything but smooth, this

discrepancy makes it challenging to achieve reliable perception. In this thesis, we

consider these challenges and propose two novel inference algorithms, which address

the issues without requiring the use of more complex models. Further, we illustrate

the algorithms on a number of real robotics problems from a diverse set of domains:

tactile perception, autonomous driving, and mobile manipulation.

1
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Figure 1.1: The inner workings of perception.

1.1 Perception and Challenges Therein

The basic building blocks of perception are shown in Fig. 1.1. Perception relies on

physical sensors (e.g., a stereo camera or a tactile array), which provide the robot

with sensory data (block A). The robot interprets this data based on models of the

environment and the measurement process (block B). Since the data are noisy and

the models are imprecise, it is not possible to extract exact information: e.g., the

object is located exactly 50cm ahead. Instead the information is captured using

Bayesian statistics in the form of a probability distribution (block C), often referred

to as the belief or the posterior distribution. This distribution represents uncertain

information: e.g., the object is most likely located 50cm ahead, but could also be a

little closer or further away.

Once models and data are given, the belief distribution is uniquely defined. To

emphasize this fact, we will often refer to this distribution as the true belief . Although

the true belief is uniquely defined, it is in general not known to us or the robot.

Hence, we need to estimate this distribution using approximate inference algorithms

(block D). The result is an estimated belief (block E), which can be used by decision

algorithms: e.g., if the most likely position of the object is 50cm ahead, then the

robot may decide to move its arm to this position in an attempt to grasp the object.

1.1.1 Making Perception Robust

In order to make perception robust, we first need to examine which parts of the

diagram in Fig. 1.1 could fail and under what conditions. In principle, blocks A, B,
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and D could fail. Block A fails when there is a failure within the physical sensor

or communications with the sensor, which lead to faulty sensory data. Block B

could fail, if the environment or the measurement process are not modeled correctly.

Since it is not possible to make exact models of the physical world, there are always

discrepancies between models and reality. Finally, even if there are no failures in

models or data, block D could still fail when the approximate inference algorithm

fails to produce an accurate enough estimate of the belief.

A lot of work in robotics goes into improving the physical sensors and into devising

better models. However, in this thesis, we are primarily focused on eliminating failures

in block D (approximate inference). In the next subsection, we examine the challenges

that arise within this block.

1.1.2 Challenges In Perceptual Inference

The goal of approximate inference is to produce an estimate of the belief. The pro-

cess can be viewed as numerical estimation of a real-valued function over a multi-

dimensional space. However, it turns out that the functions that arise in robotics are

among some of the most challenging functions for numerical estimation. The beliefs

in robotics are characterized by multiple very narrow peaks with many discontinuities

(see Fig. 1.2). Moreover, the peaks can form ridges of complex shape. We will refer

to beliefs with these properties as high roughness beliefs, due to their similarity to

rough terrain with frequent sharp transitions. We use the term roughness here in a

sense very similar to the notion used in fractal geometry by Mandelbrot [1982]. As

Mandelbrot points out, roughness is a very natural property of the world we live in:

tree bark, mountain ranges, and coastlines are all non-smooth. In robotics, roughness

of belief distributions is a direct consequence of the properties of the physical world

and physical sensors.

Causes of High Roughness

Consider the example of sensing an object with a laser range finder in Fig. 1.3. For

simplicity, we will assume that the laser range finder only has one ray. As long as
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(a) linear scale, full map (b) log scale, full map

(c) log scale, zoom to 10m (d) log scale, zoom to 1m

Figure 1.2: An example of a real belief in robotics: indoor localization with laser range
finders. Linear scale plot of the belief shows a single dominant peak, which is very narrow.
Log scale plots reveal local structure. Note the high roughness persists even as we zoom in.
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Figure 1.3: Sensing an object with a laser range finder — an illustration of sensing
discontinuity. Note that even a small change in the observer’s position can cause a large
and abrupt change in the measured range.

the laser ray hits the surface of the object, we read a short range. However, if the

observer shifts so that the ray just misses the object’s surface — even by a very tiny

amount — then we read a long range. So there is a discontinuity in the range we

read based on the pose of the observer relative to the object. This discontinuity leads

directly to a discontinuity in the belief distribution: i.e., for a short reading, poses

in which the ray hits the object are likely, whereas poses in which the ray misses the

object are very unlikely. This simple example carries over to other sensors and other

objects. Hence, discontinuities in the belief are caused by occlusion boundaries in the

physical world.

Multiple peaks and ridges result from ambiguities (or symmetries) in the envi-

ronment. Since we are not able to distinguish between these states based on sensory

data, all of these states are equally likely. The width of the peaks depends directly on

the accuracy of the sensors. The more accurate the sensors, the narrower the peaks.

Relative vs. Global Sensors

An additional challenge comes from the fact that most sensors we use in robotics

are relative sensors rather than global sensors . Global sensors give a direct (but

usually noisy) reading of the state. One obvious example is localization with the
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Figure 1.4: Beliefs for relative (right) vs. global (left) sensors. Note the higher complexity
for relative sensors.

Global Positioning System (GPS ), which gives us coordinates on a map. In contrast,

relative sensors give readings that depend on the state, but do not directly give the

state itself. In most situations, vision, laser range finders, and tactile sensors are

relative sensors. For example, a laser range finder is a relative sensor, when used

to determine a robot’s location on a map. Similarly, vision and tactile are relative

sensors, when trying to localize an object.

So why are relative sensors more challenging than global ones? The reason is

simple, with a global sensor we immediately know where the peak of the belief dis-

tribution is located (see Fig. 1.4). However, if we use a relative sensor, then we do

not know where the peak is. In fact, there are likely to be multiple peaks. Hence, we

need to search the state space to find the peaks, which makes the problem challenging

especially when the peaks are very narrow compared to the width of the state space.

The more accurate the (relative) sensor, the more difficult it is to estimate the belief

because the peaks become narrower and therefore more difficult to find. This leads to

a situation non-obvious at first: more accurate sensors make perception more difficult.

Sensor Accuracy vs. Estimation Efficiency

Due to high roughness of the beliefs, parametric methods (such as Kalman filters) are

not well suited for inference in many robotics problems. Therefore, we are forced to

rely on point-wise estimation methods, where the function is estimated by its values

at a set of points. These points are either deterministically placed (as in grids or

histogram filters), or randomly sampled from across the state space (as in importance

sampling and particle filters). However, all of these methods have the same drawback:
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they can miss peaks of the belief, thereby producing entirely inaccurate estimates.

Of course, the narrower the peaks, the more likely they are to be missed during

estimation. In order to find the narrower peaks reliably, the point-wise estimation

methods need more points. Hence, efficiency of these methods actually falls with

increased sensor accuracy. In the extreme, for a perfectly accurate sensor, these

methods completely break mathematically.

On the other hand, it is not like we want noisier sensors! More accurate sensors

provide more information than less accurate sensors. Hence, the estimation difficul-

ties are not the fault of the sensors, but rather the estimation algorithms. Moreover,

robots in real life applications need to make the most of their existing sensors, because

each additional sensor costs money, consumes energy, requires additional computa-

tional power, and increases overall system complexity. From the point of view of

perceptual inference, this means that we need to devise optimal algorithms, which

extract as much information as possible within the time and resource constraints.

1.1.3 Goals of this Work

To summarize the above discussion, our goal is to develop perceptual inference algo-

rithms that:

(a) extract as much information as possible,

(b) can cope with high roughness of robotics beliefs,

(c) work for relative sensors,

(d) can handle arbitrarily accurate sensors,

(e) do not require us to compromise models.

1.2 Related Work

In this section, we give an overview of perceptual inference methods used in robotics.

Application specific related work is discussed in later chapters. We shall differentiate

robotics problems along two axes (Fig. 1.5): dimensionality and roughness. Dimen-

sionality of a problem is the number of parameters that need to be estimated. For
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Figure 1.5: Classification of perceptual inference methods in robotics.

example, localizing a rigid object in 3D space requires estimation of 6 parameters:

3 for position and 3 for orientation. Roughness measures how rough the resulting

belief is for a given problem. For problems in which the location of the main peak is

known a priori, we will assume that roughness is zero. This tends to be the case for

state estimation with global sensors, e.g., localization with a GPS. When the main

peak location is unknown, we can compute roughness as the ratio of initial uncer-

tainty width to the main peak width. Below we describe inference methods based

on where the particular robotics problem fits into in the dimensionality/roughness

classification. We illustrate each category of problems with examples.

1.2.1 Parametric Inference Methods

State estimation based on global sensors can typically be solved using parametric

inference methods , e.g., Kalman filter (KF ) or extended Kalman filter (EKF ). A

good example is localization based on GPS sensor [Agrawal and Konolige, 2006,
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Rezaei and Sengupta, 2007]. In these problems, the location of the main peak of

the belief is known based on the sensor readings. Thus, the problem is reduced to

approximating the peak with a parametric function. The main limitation of these

methods is that they can not represent arbitrary functions (and in particular rough

functions).

1.2.2 Non-Parametric Inference Methods

Non-parametric methods approximate the belief by its value at a number of points.

In grid based methods , these points are placed deterministically. In Monte Carlo

methods , these points are placed randomly and usually called particles . Examples of

deterministic methods are grids and histogram filters [Thrun et al., 2005, Hsiao et al.,

2010]. Examples of Monte Carlo methods are particle filters , importance sampling ,

and Markov Chain Monte Carlo (MCMC ) [Fishman, 1996, Doucet and De Freitas,

2001]. Although these methods can in principle represent arbitrary functions, the

number of points required for accurate representation depends on roughness of the

function. Hence, these methods perform reasonably well for low-to-medium roughness

problems, e.g., robot pose tracking with a relative sensor (laser or vision) or refinement

of a rigid object pose based on tactile sensors (with initial pose estimate already

available). However, as roughness increases these methods perform poorly.

1.2.3 Techniques for High Dimensional Problems

Many robotics problems are relatively low dimensional because positioning a rigid

object in space requires at most 6 parameters. However, high dimensional problems

arise when dealing with deformable, articulated or multiple objects, or whenever

other properties need to be estimated (e.g., object shape). Since computational com-

plexity of non-parametric methods goes up exponentially with dimensionality (and

polynomially for parametric methods), usually high dimensional problems are solved

by decomposing them into several lower dimensional sub-problems. A variety of de-

composition techniques exist, including Rao-Blackwellization [Doucet et al., 2000,
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Murphy and Russell, 2001], belief propagation [Yedidia et al., 2003], partitioned sam-

pling [MacCormick and Blake, 2000], and direct splitting into sub-problems. Rao-

Blackwellization is customary in SLAM problems [Montemerlo, 2003, Grisetti et al.,

2007]. Whereas the other decomposition techniques are commonly used in articu-

lated object tracking [Sudderth et al., 2003, MacCormick and Isard, 2000]. Direct

splitting is common in multi-target tracking applications [Dellaert and Thorpe, 1998,

Dietmayer et al., 2001, Leonard et al., 2008].

1.2.4 Optimization Techniques

In situations where only the most likely state needs to be estimated, the goal is to

estimate the location of the main peak. In this case optimization search techniques

are used. Linear least squares problems can be solved in closed form, e.g., by use of

singular value decomposition (SVD) [Yeung et al., 2002]. For non-linear but convex

problems, convex optimization methods can be used [Boyd and Vandenberghe, 2004].

However, as roughness increases, the problems become non-convex, in which case

general non-linear optimization techniques are used [Chu, 1999, Sidky et al., 2007].

Still, when roughness is very high, the state space is saturated with local optima

making application of optimization techniques very difficult.

1.2.5 High Roughness Problems

High roughness problems arise when global state estimation has to be performed

based on relative sensors. In this case, the main peak is very hard to find in the

large state space. These problems usually have to be solved in order to initialize

tracking methods. State estimation methods that are not capable of solving global

uncertainty problems are thought of as ”fragile” [Lepetit and Fua, 2005], because

they are unable to recover from localization failures. However, due to high rough-

ness of global uncertainty problems, most state-of-the-art methods do not perform

well. Current methods for coping with high roughness include (a) limiting initial

uncertainty and (b) smoothing the belief. Method (a) means limiting problems to

tracking rather than global localization. The initialization has to be done manually
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or semi-manually, e.g., in indoor localization, the initial robot pose may be set by

hand and, in human posture tracking, the human is asked to assume a specific pose

before the tracking can begin. Method (b) means that information is being discarded

by smoothing out the sharp transitions in the belief. A number of methods have been

developed from simplistic — e.g., sub-sample the data [Thrun et al., 2005]— to more

sophisticated — e.g., using Gaussian processes [Plagemann, 2008]. However, since

any type of smoothing discards information, the amount of smoothing that can be

applied is limited and leads to increased ambiguity and lower accuracy.

1.3 Contributions and Thesis Organization

In this thesis, we propose two perceptual inference algorithms for dealing with high

roughness problems: Scaling Series and GRAB . We illustrate these algorithms on

global localization of objects by touch, high accuracy global indoor localization for

mobile manipulation, and vehicle detection and tracking for autonomous driving. We

also consider the problem of whole body contact estimation. In addition, we propose

and evaluate application specific models for each of the applications.

1.3.1 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 introduces the Scaling Series algorithm and illustrates it on the example

of global localization of objects by touch. The approach relies on geometric object

models and proposes an efficient model of the measurement process.

Chapter 3 covers estimation of whole-body contacts for robots that do not possess

sensory skin, introduces environment and robot models suitable for this application,

and solves simple cases using optimization search.

Chapter 4 covers vehicle detection and tracking for autonomous driving. This is

a high dimensional problem, which is solved via a combination of direct splitting,

Rao-Blackwellization, and Scaling Series.

Chapter 5 deals with high accuracy indoor localization for mobile manipulation.
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It is illustrated with operation of door handles and doors for autonomous building

navigation. The approach relies on Scaling Series and introduces a combined articu-

lated model of objects and environment. A hybrid representation is used to combine

high resolution and low resolution regions.

Chapter 6 introduces a guaranteed inference algorithm, GRAB, which is particu-

larly well suited for discontinuous beliefs. It is illustrated on tactile object manipu-

lation and high accuracy indoor localization and compared with Scaling Series.

Chapter 7 concludes with a summary, discussion of applications, and thoughts

about future directions of research.

1.3.2 Publications

The research comprising this thesis has been presented at a number of international

conferences and workshops as well as published in international journals. The relevant

publications are listed below grouped by application.

Touch Based Perception

• Petrovskaya, A. and O. Khatib (2011). Global localization of objects via touch.

IEEE Transactions on Robotics 27 (3), (forthcoming).

• Petrovskaya, A., J. Park, and O. Khatib (2007, April). Probabilistic estimation

of whole body contacts for multi-contact robot control. In IEEE International

Conference on Robotics and Automation (ICRA), Rome, Italy, pp. 568–573.

• Petrovskaya, A., O. Khatib, S. Thrun, and A.Y. Ng (2007, June). Touch based

perception for object manipulation. In Robotics: Science and Systems (RSS),

Robot Manipulation Workshop, Atlanta, GA, USA.

• Petrovskaya, A., O. Khatib, S. Thrun, and A.Y. Ng (2006, May). Bayesian

estimation for autonomous object manipulation based on tactile sensors. In

IEEE International Conference on Robotics and Automation (ICRA), Orlando,

Florida, USA, pp. 707–714.
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Vehicle Tracking

• Petrovskaya, A. and S. Thrun (2009a, April). Model based vehicle detection and

tracking for autonomous urban driving. Autonomous Robots 26 (2), 123–139.

• Petrovskaya, A. and S. Thrun (2009b, May). Model based vehicle tracking

in urban environments. In IEEE International Conference on Robotics and

Automation (ICRA), Workshop on Safe Navigation, Volume 1, Kobe, Japan,

pp. 1–8.

• Montemerlo, M., J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,

D. Hähnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp,

D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen,

I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and

S. Thrun (2008). Junior: The stanford entry in the urban challenge. Journal

of Field Robotics 25 (9), 569–597.

• Petrovskaya, A. and S. Thrun (2008a, July). Efficient techniques for dy-

namic vehicle detection. In International Symposium on Experimental Robotics

(ISER), Athens, Greece.

• Petrovskaya, A. and S. Thrun (2008b, June). Model based vehicle tracking for

autonomous driving in urban environments. In Robotics: Science and Systems

(RSS), Zurich, Switzerland.

Mobile Manipulation

• Petrovskaya, A., S. Thrun, D. Koller, and O. Khatib (2010a, June). Guaranteed

Inference for Global State Estimation in Human Environments. In Robotics:

Science and Systems (RSS), Mobile Manipulation Workshop, Zargoza, Spain.

• Petrovskaya, A., S. Thrun, D. Koller, and O. Khatib (2010b, June). Towards de-

pendable perception: Guaranteed inference for global localization. In Depend-

able Robots in Human Environments (DRHE), 7th IARP Workshop, Toulouse,

France.
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• Petrovskaya, A. and A.Y. Ng (2007, January). Probabilistic mobile manipula-

tion in dynamic environments, with application to opening doors. In Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India.

1.4 Summary of Notation

Generic notation

Notation Descripton

R(·) radius

V ol(·) volume

d(·, ·) Euclidean distance metric or generic distance metric

dM(·, ·) Mahalonobis distance

const a constant

N (µ, σ2) normal distribution

Bayesian notation

bel Bayesian belief distribution (posterior)

bel prior belief distribution

π data probability

D data set

Dk data point

K number of data points in data set

t time step

D1:t or Dt data for t steps

dimX dimensionality of state space

dimD dimensionality of measurement space

u measurement error

φ energy potential

η normalization constant

Z partition function
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Scaling Series and GRAB

Notation Descripton

V0, Vn uncertainty region (initial and at iteration n)

n,N index and number of iterations (refinements)

δ∗ desired final radius of δ-neighborhood for Scaling Series or

grid resolution for GRAB

Sδ δ-neighborhood

M number of particles per δ-neighborhood

τ temperature

r, s relaxation and strengthening

X particle set

w,W particle weight, set of particle weights

zoom zoom factor

ri δ-neighborhood shape parameters

λπ, λu,x Lipschitz constants

ξ pruning parameter, ξ-mode

G,Ga, Gc grid cells

G,Gnprune,Gnkeep collections of grid cells

mk(G),Mk(G) min and max range for a grid cell

Lni , U
n
i lower and upper bounds on π

π̂, b̂el approximations of distributions

ε, εprune, εkeep errors

% peak to uncertainty ratio

Whole body contacts

q, qT joint angles, joint angles from time 1 to time T

s environment parameters

r robot parameters

dist(r, s|q) distance between environment and robot in configuration q

belgeo, belenv robot geometry and environment beliefs
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Tactile localization

Notation Descripton

X = (x, y, z, α, β, γ) object pose

O, Ô object and its representation in measurement space

ô = (ôpos, ônor) object point in measurement space consisting of position

and normal components

D = (Dpos, Dnor) tactile measurement consisting of position and normal com-

ponents

σpos, σnor, σmet, σang variance

rpos, rori δ-neighborhood shape parameters

Vehicle tracking

X = (x, y, θ) vehicle pose

v vehicle forward velocity

Ω = (W,L,Cx, Cy) vehicle geometry

cocc, cb, cs, cp measurement model costs

ρmin, ρmax min and max range measurements

dfree width of free space region

dsur width of vehicle surface region

Rt, R̄t vehicle motion belief, motion prediction distribution

St vehicle geometry belief

Xt collection of particles

Mobile manipulation

M map of a building

X = (x, y, θ) robot pose

Dk := (ρk, αk) range measurement consisting of range and bearing compo-

nents

ctlt robot control

Ω door opening angle (or object parameters)

ζ, A0, . . . , AN opacity, transition points

Rt, St robot trajectory belief and object state belief



Chapter 2

Tactile Perception

2.1 Introduction

In order to carry out manipulation tasks in real world environments, robots need

to perceive objects around them based on sensory information. Although for robots

the use of vision has been studied in more depth [Kragic and Christensen, 2002],

humans rely heavily on the sense of touch for manipulation tasks [Flanagan et al.,

2006]. In fact humans are capable of manipulating objects based solely on the sense

of touch. Working towards this ability in robots, we consider global localization of

solid objects via touch (Fig. 2.1). Gaining this ability would allow robots to operate

in environments where vision is not available, such as smoke filled rooms or muddy

water, or it could be used in combination with vision to improve overall perception.

Early tactile perception algorithms date back to the 1980s (e.g., Grimson and

Lozano-Perez [1983], Faugeras and Hebert [1983], Shekhar et al. [1986]) as we dis-

cuss in the next section. Recent work has focused on tactile perception in uncertain

environments. However, in uncertain conditions object localization requires the esti-

mation of a probability distribution over the space of all 6DOF(1) poses of the object.

When initial uncertainty is high, this estimation is very expensive computationally.

For this reason, most approaches limit the DOFs and/or initial uncertainty [Gadeyne

and Bruyninckx, 2001, Chhatpar and Branicky, 2005, Hsiao et al., 2010].

(1)6DOF stands for six degrees of freedom.

17
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Figure 2.1: In our experiments robots manipulate objects based solely on the sense of
touch. Global initial uncertainty is assumed in 6DOF. The photo shows the robot interacting
with one of the five objects used in our experiments: the cash register.

To overcome the computational challenge, we propose a principled approach —

termed Scaling Series (SS ) — that solves the full global 6DOF localization problem

efficiently (∼ 1 second) and reliably (≥ 99%). The approach is a Bayesian Monte

Carlo technique coupled with annealing. It performs multiple iterations over the

data, gradually scaling the precision from low to high. For each iteration, the number

of particles is selected automatically based on the complexity of the annealed belief.

We show that Scaling Series works in both fully-constrained uni-modal scenarios

and under-constrained multi-modal scenarios. The latter arise at early stages of tactile

exploration, when insufficient data have been collected to fully constrain the problem.

We also consider free-standing objects, which can move during tactile exploration. To

our knowledge, full 6DOF Bayesian estimation for this case has not been addressed

in prior art.

In addition, we present an analytical measurement model for tactile perception

that can be used for any object represented as a polygonal mesh. Unlike sampling
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based models, this model can be computed quickly at run time and does not require

training ahead of time. Due to its differentiability, the presented model allows for

efficient estimation.

Our approach is easily applicable to any object represented as a polygonal mesh.

We demonstrate its portability on five common rigid objects (Fig. 2.2). High initial

uncertainty is assumed in the experiments: 400mm in position with unrestricted ori-

entation. The presented approach produces highly accurate results (∼ 1mm) quickly

and reliably, enabling the robots to safely manipulate the objects. We also provide

extensive empirical evaluation of Scaling Series properties and provide comparisons

to other methods, including particle filters, importance sampling, and APF.

The chapter is organized as follows. The next section discusses related work.

Sect. 2.3 provides the necessary mathematical background. Sect. 2.4 presents the al-

gorithm together with its discussion and analysis. Experimental results are presented

in Sect. 2.5. We conclude in Sect. 2.6. Mathematical derivations are provided in the

Appendix.

2.2 Related Work

Touch based perception has not been studied in as much depth as vision because

standardized touch sensors are not as easily available. In many situations tactile sen-

sors have to be hand crafted specifically for the robot and the task. This complicates

comparisons between methods and slows progress in tactile perception. However,

recently there has been a surge of interest in the field due to the necessity of touch

based perception in service applications [Kemp et al., 2007, Jain and Kemp, 2009,

Hsiao et al., 2010, Prats et al., 2010].

2.2.1 Single Hypothesis Methods

Early methods for tactile object localization generally ignore the sensing process

uncertainties and focus on finding a single hypothesis that best fits the measurements.

For example, Gaston and Lozano-Perez [1983] used interpretation trees to efficiently
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find the best match for 3DOF object localization. Grimson and Lozano-Perez [1983]

extended the approach to 6DOF. Faugeras and Hebert [1983] used least squares to

perform geometrical matching between primitive surfaces. Shekhar et al. [1986] solved

systems of weighted linear equations to localize an object held in a robotic hand.

Single hypothesis methods are also widely used to solve the workpiece localization

problem in manufacturing applications for dimensional inspection [Yau and Menq,

1992], machining [Gunnarsson and Prinz, 1987], and robotic assembly [Gunnarsson,

1987]. In these applications, the measurements are taken by a coordinate measurement

machine (CMM ) [Pahk and Ahn, 1996] or by on-machine sensors [Cho and Seo,

2002]. Workpiece localization makes a number of restrictive assumptions, which make

it inapplicable to autonomous robot operation in unstructured environments. One

important restriction is that there is a known correspondence between each measured

data point and a point or patch on the object surface (called home point or home

surface respectively) [Xiong, 2002]. In semi-automated settings the correspondence

assumption is satisfied by having a human direct the robot to specific locations on

the object. In fully-automated settings the object is placed on the measurement table

with low uncertainty to make sure each data point lands near the corresponding home

point.

Further restrictions include assumptions that the data are sufficient to fully con-

strain the object, the object does not move, and there are no unmodeled effects

(e.g., vibration, deformation, or temperature variation). All of these parameters are

carefully controlled for in the structured manufacturing environments.

The workpiece localization problem is usually solved in least squares form using it-

erative optimization methods, including the Hong-Tan method [Hong and Tan, 1993],

the Variational method [Horn, 1987], and the Menq method [Menq et al., 1992]. Since

these methods are prone to getting trapped in local minima, low initial uncertainty

is usually assumed to make sure the optimization algorithm is initialized near the

solution. Some attempts have been made to solve the global localization problem by

re-running the optimization algorithm multiple times from pre-specified and random

initial points [Chu, 1999]. Recent work has focused on careful selection of the home

points to improve localization results [Xiong et al., 2004, Huang and Qian, 2008, Zhu
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et al., 2009] and on improving localization efficiency for complex home surfaces [Zhu

et al., 2004, Sun et al., 2009].

2.2.2 Bayesian Methods in Tactile Perception

In the last decade, there has been increased interest in Bayesian state estimation for

the tactile object localization problem [Gadeyne and Bruyninckx, 2001, Chhatpar and

Branicky, 2005, Corcoran and Platt, 2010, Hsiao et al., 2010]. These methods estimate

the probability distribution over all possible states (the belief), which captures the

uncertainty resulting from noisy sensors, inaccurate object models, and other effects

present during the sensing process. Thus, estimation of the belief enables planning

algorithms that are resilient to the uncertainties of the real world. Unlike workpiece

localization, these methods do not assume known correspondences. In contrast to sin-

gle hypothesis methods, belief estimation methods can handle the under-constrained

scenario, in which the data are insufficient to fully localize the object. These methods

can also work with moving objects and answer important questions, such as:“have we

localized the object completely?” and “where is the best place to sense next?”.

The main challenge faced by belief estimation approaches is computational com-

plexity, which goes up exponentially with the number of DOFs and the size of the

initial uncertainty region. For this reason, all of the approaches in this category

(except our work) restrict the number of DOFs and/or initial uncertainty.

The earliest known work in this category was Gadeyne and Bruyninckx [2001], who

considered localization of a rectangular box based on measurements taken by a force

controlled robot. The localization was performed in 3DOF with initial uncertainty

of 300mm in position and 360◦ in orientation. They used a sampled measurement

model that was stored in a look-up table.

Chhatpar and Branicky [2005] used particle filters for contact based object local-

ization during peg-in-hole assembly tasks. They considered 20mm initial uncertainty

in 3DOF and utilized a measurement model based on sampling the object in advance.

Chhatpar and Branicky also considered active localization, where the most optimal

next sensing action is chosen based on information from prior steps.
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The earliest version of our work was published in 2006 [Petrovskaya et al., 2006].

We considered 6DOF localization with large uncertainty: 400mm in position and 360◦

in orientation. We also introduced an analytical measurement model and proposed

the Scaling Series method.

Corcoran and Platt [2010] used the annealed particle filter (APF) to estimate

4DOF pose and radius of cylindrical objects. Initial uncertainty of up to 250mm in

position with unrestricted orientation was considered. They also extended the ana-

lytical measurement model we proposed in 2006 to include some negative information

and to integrate over object surface. Later in 2010, Platt Jr et al. [2010] introduced

sample based models suitable for localization of deformable objects.

Most recently, Hsiao et al. [2010] used grids to estimate the belief in 3DOF with

low-to-medium initial uncertainty (up to 50mm Gaussian). The contribution of their

approach was in optimizing data collection strategies and considering free standing

objects that could potentially move during data collection. The measurement model

used in their work is similar to the one we proposed in 2006, except that it also takes

negative information into account.

We should also mention the rich literature on object shape reconstruction using

tactile sensors [Charlebois et al., 1996, Bicchi et al., 1999, Kaneko and Tsuji, 2001,

Moll, 2002]. Although this work does not address localization of known objects, some

authors explicitly consider sensor uncertainties using Bayesian methods [Slaets et al.,

2004, Schaeffer and Okamura, 2003].

2.2.3 Bayesian Methods in Other Applications

Bayesian methods have been used in a variety of robotic applications with great suc-

cess. For example a recent book on practical applications includes analysis of plan-

etary ring structure, shape estimation, and target tracking to name a few [Doucet

and De Freitas, 2001]. A recent textbook by Thrun et al. [2005] provides an in-

depth study of indoor robot localization and mapping, which bear some resemblance

to the problems considered in this chapter. However, the global localization prob-

lems considered in the textbook are relatively low dimensional: 3DOF. The only
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high dimensional problem considered in the textbook is simultaneous localization

and mapping (SLAM), where global uncertainty does not need to be resolved. More-

over, many SLAM methods effectively reduce dimensionality by utilizing problem

structure [Montemerlo, 2003]. These techniques do not apply to the 6DOF object

state estimation problem, where this structure is not present.

There has been a lot of work on 6DOF object localization in the vision community.

See [Lepetit and Fua, 2005] for a recent survey. The most popular methods have been

least-squares minimization [Harris, 1993, Drummond and Cipolla, 2002], RANSAC

[Fischler and Bolles, 1981], Kalman filter variants [Rahimi and Darrell, 2002, Davison,

2003], and particle filters [Isard and Blake, 1998]. These approaches tend to rely on

manual initialization and assume small initial uncertainty. As Lepetit and Fua point

out, methods incapable of dealing with global uncertainty tend to be inherently fragile

because they can not recover from tracking failures.

One of the most successful variants of particle filters, the annealed particle filter

(APF), has been introduced by Deutscher et al. in the context of articulated body

tracking using vision [Deutscher et al., 2000, Deutscher and Reid, 2005]. As we

already mentioned above in Sect. 2.2.2, this method has also been applied to the

tactile localization problem [Corcoran and Platt, 2010]. Articulated object tracking

is a very high dimensional problem (up to 30DOF). However, usually low initial

uncertainty is assumed in these applications, due to the use of manual initialization.

Also these approaches do not run in real time. APF tends to outperform the standard

particle filter in single-mode scenarios. However, it has been shown to be unstable in

multi-modal situations by Balan et al. [2005]. In fact Balan et al. argue for the use

of standard particle filters instead of APF for this very reason.

2.3 Mathematical Background

We start out with a quick intuitive summary of the problem: tactile object localization

requires estimation of state parameters based on a set of data obtained by touching

the object. As we shall see in Sect. 2.3.3 this entails fitting the data to the object

model using Mahalonobis distance in the 6D measurement space. In the case of
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moving objects, the estimation is performed via recursive filtering from one time step

to the next.

Instead of producing a single set of parameter values, Bayesian approaches repre-

sent the uncertain knowledge by a probability distribution, which records how likely

each state is based on sensor measurements. Estimating the entire probability dis-

tribution over all the states is important because initially the data are insufficient to

disambiguate the object’s position. In fact, the shape of the probability distribution

(specifically the high likelihood regions, called modes) allows us to determine when

enough data has been collected in order to manipulate the object safely. The proba-

bility distribution is represented numerically by weighted points, called particles .(2)

In the remainder of this section we formalize the above intuitive description and

introduce the required notation.

2.3.1 Bayesian Problem Statement and Definitions

We consider the class of problems where the state X has to be inferred from a set of

sensor measurements D = {Dk}. Our goal is to estimate the probability distribution

of the state given the measurements, bel(X) := p(X|D), known as the posterior

distribution, which represents our uncertain belief about the state X.

For the general algorithm, we will assume that the state X is a vector of dimension-

ality dimX in the state space RdimX . The measurements are modeled as K random

variablesDk, which are drawn independently from conditional probability distributions

p(Dk|X) with domains in the measurement space RdimD. The conditional probability

distributions (CPDs) encode the measurement model , which is a probabilistic law that

represents the measurement process . The measurement model depends non-linearly

on the state X. In many applications, the CPDs are naturally given in the log-linear

form via measurement energy potentials φk : RdimX × RdimD 7→ R+. Then the CPD

for Dk can be written as

p(Dk|X) = η exp
(
−φk(X,Dk)

)
. (2.1)

(2)See [MacKay, 1998] for further information on particle based Bayesian methods.
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In the above equation and throughout the chapter η denotes the normalization con-

stant, whose value is such that the expression integrates to 1. We also define the total

measurement energy

φ(X) :=
∑
k

φk(X,Dk). (2.2)

Via Bayes rule the belief bel(X) can be shown to be proportional to p(D|X)p(X).

The first factor is the data probability , which can be shown to be proportionate to

π(X) := exp(−φ(X)). The second factor, bel(X) := p(X), is called the prior , which

represents our belief about X before obtaining measurements D. Hence with this

notation we can write

bel(X) = ηπ(X)bel(X). (2.3)

Stationary systems

In stationary systems with global initial uncertainty the prior bel(X) is uniform.

Hence, the belief is proportional to the data probability: bel(X) = ηπ(X).

Dynamic systems

In dynamic systems the state changes over time. In this case, Xt and Dt denote the

state and the set of sensor measurements for a time step t. The belief, belt, is defined

as the probability of the current state given all measurements obtained up until this

point:

belt (Xt) := p (Xt|D1, · · · ,Dt) . (2.4)

Measurement CPDs for step t are defined analogously to (2.1). Similarly define

πt(Xt) := exp(−φt(Xt)). Also let belt(Xt) be the prior at time t. For brevity we

will drop the argument Xt and write belt, πt, and belt to denote the values of these

functions at time t.

In dynamic systems, the prior is the prediction distribution,

belt := p (Xt|D1, · · · ,Dt−1) , (2.5)

which predicts the current state Xt before taking into account the most recent sensor
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Figure 2.2: The five objects used in our experiments: cash register, toy guitar, toaster,
box, and door handle. Bottom row shows polygonal mesh models of the objects. Model
complexity ranges from 6 faces (for the box) to over 100 faces (for the toaster).

data Dt. Hence the prior is computed as

belt =

∫
p (Xt|Xt−1) belt−1 dXt−1. (2.6)

Here p (Xt|Xt−1) encodes the dynamics of the system. This probability is called the

motion model . Combining (2.3) and (2.6) we obtain the Bayesian recursion equation:

belt = η πt

∫
p (Xt|Xt−1) belt−1 dXt−1. (2.7)

2.3.2 Problem Statement for Tactile Localization

Bayesian tactile localization is an instance of the general Bayesian problem defined in

the previous section. Here the robot needs to determine the pose X of a known object

O based on a set of tactile measurements D . The object is typically represented as

a polygonal mesh (Fig. 2.2). The state X := (x, y, z, α, β, γ) is the 6DOF pose of

the object — including position (x, y, z) and orientation angles (α, β, γ) — in the

manipulator coordinate frame. The measurements D are obtained by touching the

object with the robot’s end effector. Each measurement Dk := (Dpos
k , Dnor

k ) consists

of the measured cartesian position of the contact point Dpos
k and the measured surface

normal Dnor
k .

Note that unlike in the workpiece localization problem, here we do not assume

known correspondence between measurements and points on the surface of the object.

Hence the resulting problem is more complex than workpiece localization.
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2.3.3 Measurement Model

To interpret the tactile measurements, we use the proximity measurement model ,

which has been used in stereo vision by Olson [2000] and is known as likelihood

fields in mobile robotics [Thrun et al., 2005]. In this model, the measurements are

considered independent of each other with both position and normal components

corrupted by Gaussian noise. For each measurement, the potential depends on the

distance between the measurement and the object (hence the name “proximity”).

Since the measurements contain both contact coordinates and surface normals,

this distance is taken in the 6D space of coordinates and normals (i.e., in the mea-

surement space). Let Ô be a representation of the object in this 6D space. Let

ô := (ôpos, ônor) be a point on the object surface, and D be a measurement. Define

dM(ô, D) to be the Mahalonobis distance between ô and D:

dM(ô, D) :=

√
||ôpos −Dpos||2

σ2
pos

+
||ônor −Dnor||2

σ2
nor

, (2.8)

where σ2
pos and σ2

nor are Gaussian noise variances of position and normal measurement

components respectively. Then the distance between a measurement D and the object

is dM(Ô, D) := minô dM(ô, D).

Let ÔX denote the object in state X. For a measurement Dk, define the measure-

ment error to be

uk(X) := dM(ÔX , Dk). (2.9)

Then the measurement potential is computed as

φk(X,Dk) :=
1

2
u2
k(X). (2.10)

Similarly to total measurement energy, we also define the total measurement error to

be

u(X) :=

√∑
k

d2
M(ÔX , Dk). (2.11)
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Then, we can re-write π as

π(X) = exp

(
−1

2
u2(X)

)
. (2.12)

While early Bayesian tactile localization work used sampled measurement models

[Gadeyne and Bruyninckx, 2001, Chhatpar and Branicky, 2005], the model described

here is analytical. Hence it can be computed efficiently on the fly and without the

need for prior training. As all proximity models, the model assumes that the closest

point on the object caused the measurement. This is often referred to as a hard

assignment meaning that the point causing the measurement is assigned to be the

closest point. Alternatively with a soft assignment , one considers the contribution

from all points to the probability of the measurement. Although the soft assignment

model has been used for tactile object localization by Corcoran and Platt [2010], we

specifically chose to use the hard assignment model for two reasons. First, the hard

assignment model can be efficiently computed explicitly unlike the soft assignment

model. Second, for an unbiased application of the soft assignment model, one needs

to compute a prior over all surface points, i.e. how likely each surface point is to cause

a measurement. However, this prior is usually non-uniform and highly dependent on

the object shape, the manipulator shape, and the probing motions.

Like all proximity models, the model described here does not take negative in-

formation into account. In other words it does not incorporate information that the

robot was able to move through some parts of space without making contact with the

object. Negative information has been taken into account by Hsiao et al. [2010] and

Corcoran and Platt [2010]. However, incorporation of negative information leads to

more complex measurement models and complicates inference. The proposed model

is continuous and almost everywhere differentiable. Both of these properties would be

lost with incorporation of negative information. Although we did not see a significant

impact of negative information on accuracy and reliability of localization, it can be

useful for active exploration strategies as in [Hsiao et al., 2010]. In these cases, the

negative information can be superimposed on top of the belief computed using the

proximity model.
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2.3.4 Motion Model

Since free standing objects can move during probing, we need to define a motion model

for this dynamic process. We assume the state of the object evolves via addition of

Gaussian noise. Hence, p(Xt|Xt−1) is a Gaussian with mean at Xt−1 and variances

σ2
met and σ2

ang along metric and angular axes respectively.

2.4 Inference Algorithm

We start by introducing the required concepts and providing an intuitive description

of the algorithm. A formal description is given in Sect. 2.4.2. Sects. 2.4.3 through

2.4.6 provide detailed analysis of the algorithm’s features and properties.

2.4.1 Concepts and Intuition

As we have seen in Sect. 2.2 prior approaches have struggled to solve the full 6DOF

object localization problem with global uncertainty. The main challenge is computa-

tional complexity, which is proportional to the number of particles used. As we will

see below, the number of particles required to solve the problem reliably is exponential

in the dimensionality of the problem.

Required number of particles

As an example consider a 1D space [0,1]. We want to find the peak of the belief by

sampling particles from the space randomly(3) (see Fig. 2.3 top left). When we sample

a particle from the entire space, the probability of it hitting the support of the peak

is equal to the ratio between the width of the peak and the width of the entire space.

Let’s denote this ratio by 1/%. Hence in expectation we need to sample % particles

from the entire space in order to get a particle from the support of the peak.

The same is true for higher dimensional problems: the ratio between the width

of the peak and the width of the initial uncertainty dictates the necessary number of

(3)More precisely: we want to sample the particles uniformly and independently.
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Figure 2.3: Top row: two plots of a simple belief over [0, 1]. Top left: true belief. Top
right: annealed belief. Note that annealing increases peak width, and therefore improves
the ratio of peak width to space width. Bottom row: true (left) and annealed (right) belief
for localization of cash register. The cash register model is shown as a wire frame. The
small colored squares represent high likelihood particles. Note that annealing makes the
problem more ambiguous.
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particles required for reliable state estimation.(4)

Unfortunately % goes up exponentially with problem dimensionality. For the

3DOF tactile object localization with 400mm initial uncertainty(5) and sensor ac-

curacy of 1mm, % comes out to be around 6× 106, whereas for the 6DOF problem it

is approximately 3×1015. To put the exponential blowup in perspective, if we assume

that the 3DOF problem takes 1 second to solve, then the 6DOF problem would take

approximately 1.5 years.

Thinking in terms of peak width also helps understand the following surprising

fact about belief estimation: the problem actually becomes harder with more accurate

sensors. The reason is simple, more accurate sensors produce more narrow peaks,

and therefore % increases. In the extreme, when the sensors are perfectly accurate,

most Bayesian methods break mathematically.

Smoothing

In order to improve the peak width to uncertainty ratio, many modern methods utilize

smoothing (also known as relaxation) [Thrun et al., 2005]. Smoothing broadens the

peaks (Fig. 2.3 top right), and therefore reduces the number of particles required to

find it reliably. One of the most common smoothing techniques is annealing , which

is obtained by exponentiating the measurement model to the power 1/τ , where τ is

the temperature. Thus for τ = 1 the true measurement model is obtained and for

τ > 1 the measurement model is “heated-up”. The higher the temperature, τ , the

broader the peaks. However, annealing (and any other type of smoothing) comes

at a price. The estimates become less accurate and the state estimation becomes

more ambiguous (Fig. 2.3 bottom row). Intuitively smoothing is analogous to blurred

vision: the more blurry the vision, the harder it is to determine an object’s position

or to disambiguate objects.

(4)Of course, in 2D the term “width” should be replaced by “area”, and in 3D and higher by
“volume” of the supporting regions.

(5)Unrestricted orientation uncertainty is assumed.
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Broad particles

Estimation of a belief by particles would be impossible without some sort of local

smoothness. Indeed, if the value of the belief at one point was completely unrelated

to its value at the neighboring points, then no number of particles would be sufficient

for accurate estimation. Most particle based methods do not make this assumption

explicit and define each particle as a single point. However, we use broad particles ,

which represent regions of space around them. We will call them δ-neighborhoods (6),

where δ is the radius(7) of the neighborhood. Of course the value of δ depends directly

on the smoothness of the belief: the smoother the belief the larger the δ. “Heating-

up” the measurement model increases δ as it makes the belief smoother. Thus δ

depends on the temperature during annealing.

Intuitive algorithm description

The main idea is to have the whole uncertainty region covered with δ-neighborhoods.

This way we are sure that we have a good approximation of the belief. At high tem-

perature this can be easily done with just a few particles because δ is large. Of course

this will not produce accurate estimates, so we use an iterative refinement approach.

First we solve the problem with a few very broad particles at high temperature. Prune

out the low probability regions and keep the peaks. Then refine the estimates at a

lower temperature. Prune again and repeat until the temperature reaches τ = 1.

This way the final estimates will be as accurate as the data and the model allow.

Both the uncertainty region and the peak width change during refinements. The

uncertainty region changes due to pruning. The peak width changes due to annealing.

Therefore the ratio of peak width to uncertainty width also changes. Hence no single

fixed number of particles will work well for all refinement stages. Instead of using

a fixed number of particles, we specify the desired particle density by setting the

number of particles to maintain per δ-neighborhood. This way the algorithm can

compute the appropriate number of particles to use at each refinement stage.

(6)In earlier versions of the work, δ-neighborhoods were called δ-spheres.
(7)Radius of a region can be defined as half the diameter, where the diameter is the largest distance

between two points contained in the region.
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2.4.2 The Scaling Series Algorithm

The goal of the algorithm is to compute an approximation of the belief bel by weighted

particles. The initial uncertainty is assumed to be uniform over the starting region.

In this case, the belief is proportional to the data probability (see Sect. 2.3.1). Hence

the weights can be computed via π.

The formal algorithm listing is given in Alg. 2.1. The algorithm takes as input

the initial uncertainty region, V0, the data set, D, and two user-specified parameters:

M and δ∗. M specifies the number of particles to maintain per δ-neighborhood. δ∗

specifies the terminal value of δ. The refinements stop once the algorithm reaches

this value. Selection of appropriate values for the two user-specified parameters is

discussed in Sect. 2.4.3.

Lines 1 – 3 set initial values. δ0 is selected so that one δ0-neighborhood contains the

entire initial uncertainty region. The scaling factor zoom is set so that the volume

of each δ-neighborhood is halved during scaling. The number of iterations N is

computed based on the ratio of initial to final volume. Sδ denotes a δ-neighborhood,

R(·) denotes the radius and V ol(·) denotes the volume of a region.

The initialization is followed by a loop that performs the refinement iterations in

lines 4 – 11. At each iteration n, δn is computed by applying the scaling factor to

δn−1. The corresponding temperature, τn, is computed based on the assumption that

δ∗ corresponds to the temperature of τ = 1. Line 7 draws a particle set X̄n uniformly

from Vn−1 ensuring the required density of M particles per δ-neighborhood. A list-

ing of this procedure is provided in Alg. 2.2. In line 8 Compute Normalized Weights

procedure weighs the particles by the annealed data probability, π(X)1/τn , at tem-

perature τn. This procedure also normalizes the weights so that they add up to 1.

Line 9 prunes low probability regions. A detailed discussion of this step is provided

in Sect. 2.4.3. Line 10 computes the resulting subregion Vn for this iteration. After

completion of the refinement steps, lines 12 and 13 draw the final particle set and

compute weights at temperature τ = 1.

The algorithm returns an approximation of the belief represented by a weighted

particle set X , where the weights W are set to the data probability at temperature

τ = 1.
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Alg. 2.1 Scaling Series algorithm for belief estimation.

Input: V0 - initial uncertainty region, D - data set, M - number of particles per
δ-neighborhood, δ∗ - terminal value of δ.

1: δ0 ← R(V0)
2: zoom← 2−1/dimX

3: N ← log2(V ol(Sδ0)/V ol(Sδ∗))
4: for n = 1 to N do
5: δn ← zoom · δn−1

6: τn ← (δn/δ∗)
2

7: X̄n ← Even Density Cover(Vt−1,M)
8: Wn ← Compute Normalized Weights(X̄n, τn,D)
9: Xn ← Prune(X̄n)

10: Vn ← Union Delta Neighborhoods(Xn, δn)
11: end for
12: X ← Even Density Cover(VN ,M)
13: W ← Compute Normalized Weights(X , 1,D)
Output: (X ,W) - a weighted particle set approximating the belief.

For line 7, we need a procedure to sample uniformly from Vn−1, which is repre-

sented as a union of δ-neighborhoods. During sampling we need to ensure that we

draw M particles from each δ-neighborhood. Thus in effect this is very similar to

stratified sampling, except the sets comprising Vn−1 are not necessarily disjoint. One

of the simplest implementations is based on rejection sampling (Alg. 2.2)(8).

2.4.3 Discussion of Algorithm Features and Settings

Even density cover

Although this is one of the most crucial features of Scaling Series, at first it may

seem counter-intuitive to call the Even Density Cover procedure (line 7 of Alg. 2.1).

Indeed the particle set comprising Vn−1 is already weighted by the annealed data

probability. Why not perform a weighted resample? The weights already resemble

the belief distribution, so why should we discard them and sample particles uniformly

instead?

(8)A historical note: the original implementation of this step was more complicated. The use of
rejection sampling for this purpose was proposed by an anonymous reviewer at ICRA 2006.
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Alg. 2.2 Even Density Cover: procedure for uniform sampling from a region repre-
sented as a union of δ-neighborhoods with density M per δ-neighborhood.

Input: V - sampling region represented as a union of δ-neighborhoods {Si}, M -
number of particles to sample per δ-neighborhood.

1: X ← {}
2: for i = 1 to |{Si}| do
3: for m = 1 to M do
4: sample a point X from Si
5: reject X if it is in S1 ∪ . . . ∪ Si−1

6: otherwise add X to X
7: end for
8: end for

Output: X - a set of particles that evenly cover V .

It turns out this step is critical for reliable handling of multi-modal beliefs. This

is easiest to understand by considering a simple example. Suppose we have a belief

with two modes of even height. We draw two particles: one near each mode. If

one of the particles is slightly closer to a mode than the other, the weights will be

uneven. Hence during weighted resampling we will favor one mode over the other. If

we perform several iterations, this error compounds and hence we are quite likely to

discard one of the two modes. Even Density Cover avoids this problem. If a particle

survived the pruning step, it will be given full consideration at the next iteration.

The multi-modal case is important for two reasons. First, multi-modal beliefs

arise naturally during tactile object exploration because at early stages the number

of measurements is insufficient to determine the object’s location unambiguously. In

fact the belief can even have entire regions of high probability (see Fig. 2.4). Estimat-

ing the multi-modal belief at early stages of exploration is important for making safe

and informed decisions about future sensing actions. Second, note that most itera-

tions of Alg. 2.1 compute the annealed belief. The higher the temperature the more

ambiguous the belief becomes (see bottom row of Fig. 2.3). Hence multiple modes

are often present during early iterations of Scaling Series as we show in Sect. 2.5.5

experimentally.

One other important reason for the Even Density Cover step is that without it
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(a) after 1 measurement (b) after 2 measurements (c) after 3 measurements

Figure 2.4: During exploration the belief evolves as additional measurements arrive. The
particles in this figure approximate high likelihood regions of the evolving belief. Each
particle is shown by a small square at the hypothesized position of the first data point on
the surface of the object. The normal of each square corresponds to the sensed normal
transformed to the object coordinate frame based on the hypothesized object pose.

we would be double-counting the data and hence the estimate would not converge to

the true belief.

Pruning

The purpose of the pruning step (line 9 of Alg. 2.1) is to remove low probability regions

from consideration. This way the computational resources can be focused on the

more interesting high probability regions. This step removes particles with relatively

low weights from the particle set. This is achieved via weighted resampling. See

[Arulampalam et al., 2002] for a listing of a weighted resampling algorithm. During

this step the value of M is ignored. Instead this procedure draws the same number

of particles as there were prior to this step. The weights are set to be uniform after

the resampling operation. Although weighted resampling is likely to discard low

probability particles, from theoretical viewpoint the resulting particle set encodes the

same probability distribution as the weighted particle set prior to resampling.

Selecting δ∗

The value for δ∗ should be selected so that the belief changes only a small amount

within a δ-neighborhood of any particle. This can be done using the Lipschitz
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constant .(9) For the global localization case, the belief is proportional to π(X) =

exp(−1
2
u2(X)) (see (2.12)), so we set

δ∗ :=
1

λπ
, (2.13)

where λπ is the Lipschitz constant of π. It can be easily shown that λπ is bounded by

λu/
√
e (see Appendix A), and so (2.13) relates δ∗ to λu. Thinking in terms of u gives δ∗

a physical meaning: it is the largest radius, within which the total measurement error

can change by at most
√
e. Lipschitz constant computations for the measurement

model described in Sect. 2.3.3 are provided in Appendix A.(10)

The measurement model described in Sect. 2.3.3 is continuous with bounded

derivatives almost everywhere. Thus it is guaranteed to have a Lipschitz constant.

However, for some measurement models the Lipschitz constant may not exist or be

cumbersome to compute. In these cases, one can set the value of δ∗ to a good guess,

which works well in most areas of state space. Increasing the value of M will help

compensate for an imperfect setting of δ∗, as these two parameters complement each

other.

Shape of δ-neighborhood

So far we have not specified what shape a δ-neighborhood takes. In early versions

of our work [Petrovskaya et al., 2006], we termed the neighborhoods δ-spheres and

defined them to be hyper-spheres of radius δ. However, we also mentioned that when

coordinates are not homogenous (e.g. position vs. orientation), scaling factors may be

needed. Hence, the obtained shape is actually a hyper-ellipsoid. The scaling factors

can have a significant impact on performance. Analogously to using the Lipschitz

constant of π, the neighborhood dimensions along each axis can be set based on the

partial Lipschitz constants of π, which are defined as the maximum partial derivatives.

(9)For a function f(X), the Lipschitz constant , λf , is defined to be the maximum slope between
any two points.
(10)These derivations provide upper bounds that hold for all objects and data sets. Although these

values are not necessarily optimal for a specific object and data set, they serve as a good guide and
can be further optimized experimentally (see Sect. 2.5.5).
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If λπ,i := sup | ∂π
∂xi
|, then we set the radius of the neighborhood along i-th axis to be

ri := 1/λπ,i. (2.14)

In this case we assume that δ∗ := r1 to avoid ambiguity. See Appendix A for a

derivation of the partial Lipschitz constants for the model described in Sect. 2.3.3.

Annealing schedule

During iterations we compute the annealed data probability

π1/τ (X) = exp(−u2(X)/τ), (2.15)

and so τ acts on u2(X). Since δ∗ is proportional to change in u(X), τ should be

adjusted in proportion to δ2 rather than linearly with δ. This computation takes

place in line 6 of Alg. 2.1.

Selecting M

The number of particles to maintain per δ-neighborhood is a user-specified param-

eter, which affects reliability, efficiency, and accuracy. As we already mentioned it

complements the value of δ∗. The higher the value of M , the higher the accuracy and

reliability, and also the higher the computational cost. In practice, if δ∗ is chosen as

described above, M values between 3 and 6 tend to give good results, although in

rare cases M can be set as low as 2. A higher value of M is needed if the Lipschitz

constants have been underestimated or if these constants do not exist. An empirical

evaluation of dependence on M is provided in Sect. 2.5.5.

Comparison with APF

At a first glance Scaling Series may seem very similar to APF, which also uses iterative

annealing. However there are three important distinctions. First, while APF has a

fixed number of particles to use at each iteration, Scaling Series selects the number

of particles automatically and dynamically for each refinement stage. The selection
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takes into account the smoothness of the belief, the total uncertainty volume, and the

width of the neighborhood each particle can represent. Thus, the optimal number of

particles is used at each iteration for efficient and accurate representation.

Second, while APF is known to handle poorly in multi-modal scenarios [Balan

et al., 2005], Scaling Series handles these very well due to the use of Even Density

Cover. For this reason APF does not converge to the true belief, whereas Scaling

Series does as we show in Sect. 2.4.6.

Third, the Scaling Series annealing schedule is derived from the mathematical

properties of the belief. This allows for much more efficient and straightforward

annealing than APF, which relies on survival rate. Scaling Series also derives the

relationship between temperature and δ, which is analogous to the APF diffusion rate.

In APF, the diffusion rate is disassociated from the temperature, which can lead to

non-optimal diffusion. Empirical comparison to APF is provided in Sects. 2.5.5, 2.5.5,

and 2.5.4.

2.4.4 Algorithm Variations

Zoom factor

The standard version of Scaling Series algorithm sets zoom, so that the volume of a

δ-neighborhood is halved at each iteration. However, it is possible to zoom faster or

slower, reducing the volume for example to 10% or 90% each time. Note that if zoom

factor is changed, the number of iterations also needs to be changed in line 3, where

the base of the log is the factor, by which the volume is reduced per iteration. Faster

zooming will require fewer iterations, slower will require more. Empirical evaluation

in Sect. 2.5.5 shows that zoom factor of the original algorithm is optimal.

Alternative pruning strategies

One alternative strategy for pruning is thresholding based on a preset percentage of

the top weight in the particle set. Unlike weighted resampling, thresholding can be

carried out based on log of the weights (i.e. directly on φ). This can significantly

improve numerical stability in situations where the data does not match the model
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very well — a common scenario in the presence of unmodeled effects.(11) A threshold

of ξ corresponds to ln ξ in terms of φ. Thus any particle whose φ exceeds the minimum

φ in the particle set by more than ln ξ can be pruned. A reasonable choice is to prune

out everything that is further than one standard deviation away from the solution.

Since π is Gaussian in u, this results in ξ = 1√
e
≈ 60%. Empirical evaluation in

Sect. 2.5.5 shows that this is indeed the optimal setting.

Time limit

One practical approach is to limit the amount of time allotted for estimation based

on a single data set. This is especially helpful at early stages of exploration, when

the belief is highly ambiguous (Fig. 2.4). See Sect. 2.5.2 for an example.

Compensating for object symmetries

Many man-made objects have symmetries that can not be resolved no matter how

much data is collected. These objects always produce multi-modal beliefs. In order

to reduce the number of particles to represent the modes, a simple strategy is to take

each state X modulo the symmetries.

2.4.5 Tracking Dynamic Objects

So far we have only considered estimation of beliefs with a uniform prior. This works

well for stationary objects. However, free standing objects can shift during tactile

probing. Hence we need a method for tracking the state of dynamic objects. In these

cases the prior is not uniform as it encodes the information from prior sensing actions

and possible motions of the object. Hence we need a way to extend Scaling Series to

tracking of dynamic objects.

First let us consider how a standard particle filter (PF) solves this problem (see

[Thrun et al., 2005] for details). At each time step t, PF performs a motion update

(11)Although thresholding in log space does not change the mathematical outcome of the operation
in principle, in practice when the probability of the data is extremely low, the weights come out to
be zero due to limited floating point exponent range.
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followed by a measurement update. The motion update performs a resample followed

by application of the motion model. The measurement update incorporates the most

recent data by setting importance weights proportional to πt. Note, that the mea-

surement update is similar to Scaling Series, except the prior is non-uniform in this

case.

We consider three possible ways of extending Scaling Series to the tracking prob-

lem. The first algorithm, SS-DYN1, simply runs Scaling Series during the first time

step (when the prior is uniform), and then follows by standard particle filter updates

for the rest of the time steps.

The second algorithm, SS-DYN2, is the same as SS-DYN1, except that it uses

Scaling Series during each measurement update. To do so, it uses the particle set

generated by the motion update of the previous step and sets δ0 broad enough to

encompass motion noise. Of course, this does not fully take the prior into account,

so we end up “forgetting” some information from prior time steps.

The third algorithm, SS-DYN3, runs Scaling Series on each data set using a uni-

form prior, and then adjusts the weights to capture the motion model via the Bayesian

recursion equation (2.7). This way it does not “forget” any information from prior

steps. Formal listing of SS-DYN3 is provided in Alg. 2.3. The algorithm takes as in-

put the belief from the prior time step represented as a set of weighted particles. The

rest of the parameters are analogous to Alg. 2.1. In line 1 the algorithm approximates

πt with a set of weighted particles using Scaling Series (Alg. 2.1). Lines 4 – 6 compute

the integral that appears in (2.7). Line 7 multiplies the weights by the integral. The

weights are then normalized in line 9. The algorithm outputs the resulting weighted

particle set, which approximates the belief at time step t.

Note that due to efficiency of Scaling Series, SS-DYN3 algorithm is tractable as

is. However, two efficiency improvements can be implemented. First, if the prior

state is too far away from the proposed current state, the probability of the object

transitioning from one state to the other is very low. Thus the contribution of this

term to the integral in line 5 is negligible. Hence, the loop in lines 4 – 6 can be

restricted to particles Xt−1 that are close enough to Xt.

Second, we can initialize Vt to the high probability regions of the prior belt. In
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Alg. 2.3 SS-DYN3: algorithm for tracking a dynamic state with Scaling Series.

Input: (Xt−1,Wt−1) - weighted particle set from prior time step, Vt - initial un-
certainty region, Dt - data set for time step t, M - number of particles per δ-
neighborhood, δ∗ - terminal value of δ.

1: (Xt,Wt)← Scaling Series(Vt,Dt,M, δ∗)
2: for each (Xt, wt) ∈ (Xt,Wt) do
3: s← 0
4: for each (Xt−1, wt−1) ∈ (Xt−1,Wt−1) do
5: s← s+ p(Xt|Xt−1)wt−1

6: end for
7: wt ← wts
8: end for
9: normalize weights Wt

Output: (Xt,Wt) - a weighted particle set approximating the belief at time step t.

other words, we can focus on areas, where the object is likely to move based on prior

information. We can compute the prior using the motion update step of standard

particle filters. Hence we perform a weighed resampling from (Xt−1,Wt−1) followed

by application of the motion model with randomly sampled noise parameters. The

result is an unweighted particle set representing belt. Then Vt can be set to the union

of δ-neighborhoods centered at the obtained particles, where δ should be set broad

enough to accommodate for the error due to having a finite number of particles. In

line 1 of Scaling Series, δ0 should be set to the value of δ used for Vt. Note that

this efficiency improvement does not double-count the prior, due to the Even Density

Cover step at the beginning of Scaling Series.

2.4.6 Algorithm Analysis

In this section we analyze convergence of the proposed algorithms. In short, we show

that Scaling Series, SS-DYN1 and SS-DYN3 converge to the true belief. However,

SS-DYN2 does not converge.

Scaling Series estimates of the belief converge as M tends to∞. The convergence

is understood in the same sense as for importance sampling. Namely, we want to

estimate the expected value Ebel [f ] of some function of interest f(X) with respect to
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the belief distribution. Let the estimate produced by importance sampling be denoted

by

ISJ(f) :=
∑
j

f(Xj)wj, (2.16)

where Xj are particles and wj are normalized importance weights. Then we know

that ISJ(f)→ Ebel [f ] almost surely (a.s.) as J →∞ [Geweke, 1989].

Similarly, let the estimate produced by Scaling Series with M particles per δ-

neighborhood be denoted by

SSM(f) :=
∑
j

f(Xj)wj, (2.17)

where Xj are particles in the final set X with normalized weights wj. Then analo-

gously to importance sampling we have the following convergence result.

Theorem 2.1. SSM → Ebel [f ] a.s. as M →∞.

Proof. Let us consider the first iteration of Scaling Series (Alg. 2.1). Particles in X̄1

a.s. completely cover V0 as M → ∞, and so particles in X1 also a.s. completely(12)

cover V0. The same reasoning can be applied to all N iterations. Hence, VN a.s.

completely covers V0 because N does not depend on M . When VN covers V0, lines

12 & 13 of Scaling Series are equivalent to importance sampling with a uniform prior

and with J > M particles. Thus by convergence of importance sampling we get the

desired convergence result for Scaling Series.

Similarly we can derive convergence of SS-DYN1 and SS-DYN3 from the conver-

gence of particle filters (PF) [Gordon, 1993]. However, SS-DYN2 does not converge

to the true belief because the Even Density Cover step after propagating the particles

discards some information from the prior, and SS-DYN2 does not compensate for this

information loss. This is similar to the behavior of APF, which also does not converge

to the true belief due to information loss caused by annealing. In practice, however,

these algorithms can be very useful (as we show in Sect. 2.5.4).

(12)This statement is true as long as bel(X) > 0 for all X. Without loss of generality we can assume
that this is the case. Otherwise, we can simply exclude from V0 points at which bel(X) = 0 as these
points do not contribute to the expectation of f .



44 CHAPTER 2. TACTILE PERCEPTION

Theorem 2.2. SS-DYN1M converges a.s. as M →∞.

Proof. SS-DYN1 consists of SS followed by PF, so the result follows from their con-

vergence.

Theorem 2.3. SS-DYN3M converges a.s. as M →∞.

Proof. In SS-DYN3, line 1 computes πt and lines 4 – 6 compute the prior belt using

(2.6). Line 7 multiplies the weights by the prior, and hence by Bayesian recursion the

resulting weights are proportional to the belief belt.

2.5 Experimental Results

We performed extensive evaluation of Scaling Series with both real and simulated

data. Two implementations were used: the old and the new one. The old implemen-

tation was in Java running on a 1.2GHz laptop computer. The new implementation

is in C++ running on a 2GHz laptop computer.

We constructed polygonal mesh models of five everyday objects: cash register,

guitar, toaster, box, and door handle (Fig. 2.2). The mesh models of the first three

objects were constructed based on measurements taken with the robot’s end effector.

Models for the last two objects were constructed from ruler measurements. The

accuracy of models ranges from 5mm for the first three objects to 1mm for the last

two objects. Accuracy of surface normals is quite poor near edges, corners, and other

non-flat parts of the objects.

Each object model included feature points: buttons, levers, grasp points, etc.

Once localization is performed, the features are transformed into robot coordinates

so that the manipulation scenarios could be carried out. Videos of the experiments,

code and other supplemental materials are available on our website [Petrovskaya,

2011b].

The remainder of this section is organized as follows. Sects. 2.5.1, 2.5.2, and 2.5.3

cover real robot experiments with the five objects mentioned above. Sects. 2.5.4 and

2.5.5 cover experiments performed in simulation. Sect. 2.5.4 considers tracking of a
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Figure 2.5: The nine poses used during localization experiments (three poses per object).
These poses where selected randomly from the uncertainty region. The poses in the top row
were also used to run object manipulation scenarios (see videos). All pictures were taken
from the same vantage point.

free standing box that moves during tactile exploration. Sect. 2.5.5 provides extensive

empirical evaluation of Scaling Series features and parameters.

2.5.1 Experiments with Cash Register, Guitar, and Toaster

In this set of experiments we evaluated the algorithm on three common objects:

cash register, guitar, and toaster. The manipulator used was a 6DOF PUMA robot,

equipped with a 6D JR3 force/torque sensor at the wrist. In these experiments

we used a long end effector of 300mm length and 6mm diameter. Since the initial

uncertainty was large, the long end effector was necessary to ensure that the robot

always made contact with the tip of the end effector and not some other non-sensing

part of the robot. The end effector had a semi-spherical tip of 5mm radius.

The sources of error included: mesh model inaccuracies, object deformation (es-

pecially noticeable for the guitar), robot positioning error, end effector deformation

(significant due to the long length), and error due to unknown position of the contact

on the tip of the end effector. Although it is difficult to determine exact amount of



46 CHAPTER 2. TACTILE PERCEPTION

Table 2.1: Results of the nine experiments with cash register, guitar, and toaster. Carte-
sian coordinates and errors are listed in millimeters. Orientation angles and errors are listed
in degrees. Localization errors are reported with respect to ground truth poses obtained
from the Kuka robot. NP denotes the number of probes, ND denotes the number of data
points.

Pose xyz αβγ
Object x y z α β γ NP ND error error δ∗

1 Register 393 542 -285 -60◦ 22◦ 16◦ 24 12 2.9 3.5◦ 2.4
2 Register 131 635 -350 128◦ 67◦ 41◦ 24 11 6.8 4.3◦ 2.5
3 Register 364 520 -275 -18◦ 8◦ -33◦ 26 14 2.1 1.7◦ 2.2
4 Guitar 468 500 -255 -34◦ -32◦ -30◦ 27 10 5.6 2.3◦ 2.6
5 Guitar 219 528 -335 -166◦ -4◦ 31◦ 36 11 9.2 5.2◦ 2.5
6 Guitar 273 678 -186 76◦ 70◦ -68◦ 60 17 4.8 3.0◦ 2.0
7 Toaster 380 445 -310 127◦ 161◦ -11◦ 20 11 4.2 2.4◦ 2.5
8 Toaster 576 271 -286 -25◦ 1◦ -7◦ 23 11 6.1 1.2◦ 2.5
9 Toaster 180 614 -204 85◦ 101◦ 39◦ 22 14 5.5 3.3◦ 2.2

Min 131 271 -350 -166◦ -32◦ -68◦ 20 10 2.1 1.2◦ 2.0
Average — — — — — — 29 12 5.2 3.0◦ 2.1
Max 576 678 -186 128◦ 161◦ 41◦ 60 17 9.2 5.2◦ 2.6
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noise produced by all of these errors, we estimated the contact position noise to be

roughly σpos = 5mm. Sensed normals were extremely noisy due to polygonal model

inaccuracy and long end effector length. We used σnor = 50◦. The experiments were

carried out using our C++ implementation of Scaling Series with thresholding. We

set the threshold to ξ = 60% and used M = 6 particles per neighborhood. The

rest of the parameters were set in accordance with the derivations in Sect. 2.4.3 and

Appendix A. Specifically, we set δ∗, rpos, and rori so that:

δ∗ = σpos

√
e/K,

rpos = δ∗,

rpos/rori =
√
R2(O) + σ2

pos/σ
2
nor.

(2.18)

The initial uncertainty for all objects was 400mm along x, y, z with unrestricted

orientation. We randomly selected nine poses from this uncertainty region: three

poses per object (Fig. 2.5). The objects were held in place by a Kuka LWR robot.

We used the joint angles of the Kuka robot to generate ground truth for all nine

poses.

Prior to experiments we generated a set of safe probing trajectories, which took

joint limits and collisions with the environment into account. During experiments,

data collection procedure randomly selected probing trajectories from the pre-gene-

rated set. All probing trajectories moved the robot along the direction of the end

effector, so that the end effector tip was the first part to make contact. Each probe

took approximately 10s. The Scaling Series algorithm was run on all data points

collected up to that time step. The algorithm was allowed to compute until the

next measurement arrived. Once the algorithm determined that the belief had a

single mode and all particles were within 10mm of each other, the probing procedure

stopped and the mean pose was used as the estimated pose. In experiments 1, 4, and

7, the localization procedure was followed by a manipulation scenario: using the cash

register, playing the guitar, and toasting bagels respectively. Videos are available on

our website [Petrovskaya, 2011b].

Localization results for the nine experiments are summarized in Tbl. 2.1. Overall,

localization was quite accurate: the average localization error was 5.2mm and 3◦.
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We believe this was an important factor in the success of the manipulation scenarios.

Localization was the most accurate for the cash register (3.9mm average error) because

its shape consists of planar surfaces that are easy to model accurately. The toaster has

many curved surfaces, which are more difficult to model and hence the localization

error is slightly higher: 5.3mm on average. Localization was the least accurate for

the guitar (6.5mm average error) because this object deformed significantly during

probing as can be seen in the videos.

2.5.2 Manipulating a Box

In the second set of experiments, we applied the Java implementation of our approach

to the task of localizing, grasping and picking up a rectangular box (see Fig. 2.6). As

in the previous set of experiments, we used the PUMA robot with the JR3 sensor.

This time the robot’s end-effector included a gripper and robotic finger combination,

so that the robot could perform both probing and grasping tasks. The finger was

much shorter and thicker (75mm length, 25mm diameter) with a spherical end of

15mm radius. This configuration resulted in much more accurate data because the

end effector did not deform. Shorter length of the finger also resulted in more accurate

measured normals. The rectangular box was 56mm x 159mm x 238mm in size. The

size of the mesh model was inflated by the radius of the spherical end-effector, so

that the end-effector tip could be reduced to a single point in computations. Due to

higher accuracy of the measurements, we set σpos = 1mm and σnor = 5◦. The rest of

the parameters were set as before.

We used the same initial uncertainty region: 400mm in x, y, z with unrestricted

orientation. This time the probe was too short to safely explore the large uncertainty

region without touching the object with non-sensing surfaces. Therefore for data

collection we developed a custom active sensing procedure specific to the box object.

Although the procedure restricted the set of poses in which the data collection could

be successful, localization was still performed on the full uncertainty region without

taking the restrictions into account. The box was fixed using brackets so that it

remained relatively stationary during the experiments, although it still shifted and
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(a) sensing (b) grasping (c) manipulating

Figure 2.6: The stages of the box manipulation experiment. (a) Sensing the box with a
robotic finger. (b) Grasping the box. The position and orientation of the box were estimated
from the data obtained during sensing stage. The grasping configuration is defined as part
of the box model. Note the precise fit required to perform the grasp. (c) The last stage is
manipulation of the box.

deformed during probing as can be seen in the videos.

Fully-constrained case

In fully-constrained experiments, we collected five measurements using the above

probing procedure. These five points were used to perform localization of the box

using Scaling Series. Two grasp points were manually defined on the box model,

each consisting of 3 points: one for each side of the gripper and one for the wrist

position. Thus each grasp point fully defined position and orientation of the gripper.

After localization, the grasp point with the highest z-coordinate was selected(13). The

gripper orientation, position and approach vector were derived from the selected grasp

point and estimated parameters. Note the precise fit required for grasping in Fig. 2.6.

We performed 30 trials of fully-constrained experiments on the real robot. The

sensing procedure took 30 seconds. Localization was performed in less than 1 second.

Out of the 30 trials, the data collection procedure failed in 9 trials(14). These trials

were aborted. In all of the remaining 21 trials, the robot successfully localized,

(13)z-coordinates increase vertically upwards
(14)During these experiments the PUMA robot was experiencing intermittent sudden jolts possibly

due to faulty encoders. These jolts resulted in large force measurements registered on the JR3
sensor and hence were interpreted as phantom contact readings. Trials during which these jolts were
experienced were aborted.
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grasped, and manipulated the box.

Early stages of exploration

To evaluate the algorithm performance at early stages of exploration, we took data

sets consisting of 2 - 3 measurements from different sides of the box. These data

sets do not fully constrain the problem, and so the modes of the resulting belief form

ridges in the state space (Fig. 2.7). For real robot experiments, we took subsets of

measurements from our completed real robot trials. We verified that the estimated

region included the true state of the object, as it was estimated from complete data

sets. We also examined the estimated region visually to make sure it corresponded

to the correct solution region in each under-constrained scenario. In addition, we

performed 100 simulated trials where ground truth was available. The true state was

included in the resulting solution set in all 100 trials.

Since the number of solutions is infinite, high precision settings result in large

numbers of particles. However, it is possible to exit out of iterations early based on a

time limit setting as discussed in Sect. 2.4.4. For example for a data set consisting of

two measurements, Scaling Series generated 4,000 particles for δ =11mm and 29,000

particles for δ =1mm (Fig. 2.7). The running time increases with the number of

particles generated. For our Java implementation, operations with a few thousand

particles take a few seconds, but 29,000 particles take 40-50 seconds to process. Thus

it is possible to trade off precision of estimation for running time. As more measure-

ments arrive, the solution region shrinks and higher precision can be achieved with

fewer particles.

2.5.3 Door Handle Operation

In the third set of real robot experiments, we performed door handle manipulation

with a mobile manipulator consisting of a Segway platform and a 5DOF Harmonic

Arm 6M manipulator (see Fig. 2.8a). Once the robot navigates to the area in front of

a door (using its laser sensors for approximate localization), we use tactile feedback

to accurately estimate the position and orientation of the door and the door handle.
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Figure 2.7: Examples of under-constrained solution estimation for data sets consisting of
2 measurements (includes symmetry compensation). Left: With δ =11mm, 4,000 particles
were generated by Scaling Series. Right: With δ =1mm 29,000 particles were generated.
As before each particle is shown by a square indicating the location of the first data point
on object surface. The size of each square is δ.

(a) door handle experiments (b) free standing objects

Figure 2.8: (a) Harmonic Arm robot operating the door handle in one of the experiments.
(b) Accuracy of object tracking over 10 time steps starting with global uncertainty. Each
algorithm was given 1s of computation time per step. Dashed lines show how the tracking
improves if 60s per step are allotted for algorithms of the corresponding color. The results
are averaged over 100 runs.
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The Harmonic Arm manipulator used in these experiments has about 1mm end-

effector positioning precision. Since all door handles in the building are mounted at

the same height and always in horizontal position, the height of the handle as well

as two orientation angles were fixed, which reduced the localization task to a 3DOF

problem. Our algorithm used a 2D model of the door that was constructed by hand

using ruler measurements. Specifically, we took door handle depth measurements

every 10mm along its length in a horizontal plane through the center of the handle.

This resulted in a 2D model consisting of line segments (Fig. 2.2). The grasping point

was defined near the tip of the door handle. The sensing used in this experiment gave

only position measurements, and did not include surface normals.

For each experimental trial, the robot took 6 measurements in a 30◦ span (at

0◦, 6◦, . . . , 30◦). Each data point thus consisted of range to the contact point and an

orientation angle. The sensing procedure took between 1 and 2 minutes. Using these

six measurements, our algorithm was able to localize the door and the door handle

in a fraction of a second using our Java implementation. In these experiments, we

restricted the dimensions of the state space (to 60mm x 60mm x 30◦) because of

the limited operational range of the manipulator. Out of 100 independent trials, our

algorithm successfully completed the sensing in 98 trials. In all of these 98 trials,

our algorithm then successfully localized, grasped, and turned the door handle, and

opened the door. The two failures during sensing were caused by a hardware glitch

in communication with the robot.

2.5.4 Free Standing Objects

When estimating the state of a dynamic system, it is important that the information

gained via measurements exceeds the information lost due to noisy motion at each

time step. Otherwise the state will only become more uncertain over time making

localization impossible. Since in our hardware setup the robot only has one finger,

little information is obtained at each time step placing a very tight restriction on

the amount of motion allowed. Hence to evaluate tracking of moving objects, we

assume that the robot possesses a multi-fingered hand capable of measuring at least
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three data points per time step(15). We evaluated this scenario in simulation by

sampling three contacts randomly from the surface of the box using the same box

model as in Sect. 2.5.2. The object was tracked over ten time steps, starting with

global 6DOF uncertainty (400mm in position, 360◦ in orientation). We simulated

measurement noise of σpos = 1mm and σnor = 5◦ as well as considerable motion noise:

σmet = 20mm and σang = 10◦. The rest of the parameters for Scaling Series were set

as follows: δ∗ = 1mm, rpos = 1mm, rori = 1◦, M = 6, ξ = 60%.

Using the C++ implementation, we compared SS-DYN1, SS-DYN2, SS-DYN3,

two variants of APF, and PF (Fig. 2.8b). The two APF variants were: APF and SS-

APF. The standard APF used 100 layers and survival rate α = 90% with annealing

schedule selected as in [Deutscher et al., 2000]. These settings performed the best for

APF. SS-APF used 20 layers and its annealing schedule was selected using Scaling

Series methodology. Hence, SS-APF is in between SS and APF algorithms. It uses

the same annealing schedule as SS, but like APF it is missing the Even Density Cover

step of SS. All algorithms were given 1s of computation time per time step. Dashed

lines show how the performance improves with 60s per time step. The results are

averaged over 100 runs.

Note, that with three measurements per data set, the belief is multi-modal during

the first several time steps. Hence it is not possible to fully localize the object initially.

The ambiguity is gradually resolved as additional measurements arrive. Also, note

that the average error is to a large extent a function of reliability. In other words

whether or not a particular algorithm found the object at each time step. The lower

the reliability, the higher the average error. Thus, even if an algorithm has high

average error, it may have accurately localized on some of the runs.

PF was unable to locate and/or track the object as the average error is over 140mm

even with 60s per update. Still, the average error improves from 1s to 60s, so with

more time per update, PF is likely to perform even better. APF converges to 68mm

(15)One possibility is a hand with three fingers, each consisting of three phalanges with a tactile
sensor on each phalange. Thus in principle this hand is capable of making nine contacts during a
single grasp of the object. If the hand is operated compliantly (either in software or hardware), then
it can close around the object without knowing its exact location. As it closes it will make multiple
contacts. Since the blind grasp may not be very good, we assume that only three out of possible
nine contacts are sensed.
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error, which improves to 53mm if 60s per update are allotted. SS-APF ends up with

27mm average error, which improves to 7mm with 60s per update. SS-DYN1 starts

off well due to initialization via SS at first time step, however over time SS-DYN1

diverges and approaches APF error. These results are in line with Balan et al. [2005],

where APF was compared to well initialized PF.

Both SS-DYN2 and SS-DYN3 performed very well, quickly converging to 1.5mm

average error. There was no significant difference in performance of these two algo-

rithms. This is likely because in our case little is known about how the object moves.

It is possible that in applications with more informed motion models, SS-DYN3 will

show an improvement over SS-DYN2. The difference in performance between SS-

DYN3 and SS-APF clearly underscores the importance of the Even Density Cover

step for estimation of multi-modal beliefs.

2.5.5 Algorithm Evaluation

In this section we evaluate the impact of Scaling Series features and parameters on

performance, as well as compare Scaling Series to other algorithms. These experi-

ments are carried out on simulated data for the box localization problem. The same

box model was used as in the real data experiments (Sect. 2.5.2). Unless otherwise

noted we used the following settings: target resolution δ∗ = 1mm, hyper-ellipsoid

neighborhoods with rpos = 1mm and rori = 1◦, M = 6 particles per neighborhood,

zoom = 1/ 6
√

2, measurement noise σpos = 1mm and σnor = 5◦. Fully-constrained data

sets (with 5 measurements) were used, unless stated otherwise. Results shown are

averages over 100 runs of the algorithms. Most experiments were carried out with

our C++ implementation and used Scaling Series with thresholding on ξ = 60%.

In experiments we compare several algorithms, including: Scaling Series (SS),

importance sampling (IS), annealed particle filter (APF), and a variant of APF with

Scaling Series annealing schedule (SS-APF).
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Scaling Series evolution over iterations

First we evaluate how the search space and estimation error change during iterations

of Scaling Series (Fig. 2.9). In the plots, the progression of the series is from left

to right, with corresponding δ values noted in meters on the horizontal axis (in log

scale). The plots clearly show that the volume of the search space shrinks drastically

with iterations. At the same time estimation error falls. The number of particles

remained small throughout all of the experiments, with the absolute maximum being

below 600. The number of particles is highest for δ values between 30 and 100mm.

At these settings the distribution is multi-modal, corresponding to 6 possible sides

of the box. As these possibilities are ruled out, the number of particles goes down.

The multi-modality is particularly noticeable on the orientation error plot (Fig. 2.9d).

These experiments used our Java implementation.

Single mode estimation

In this set of experiments we used fully-constraining data sets (5 measurements from

different sides of the box), so that the resulting belief was uni-modal. We compared

reliability and accuracy of SS, IS, APF, and SS-APF (Fig. 2.10). For SS-APF, we

show performance with 20 layers, which worked the best. For APF, we used 100

layers and survival rate α = 90%, which was optimal. For IS the computation time

is controlled by the total number of particles. For SS-APF and APF it is controlled

by number of particles per layer. For SS the running time is controlled via setting of

M between 3 and 6. Reliability is the percentage of experiments that localized the

box successfully, i.e. had at least one particle within 1mm and 1◦ of the true pose.

IS was unable to localize the box even after several minutes of computation. SS and

SS-APF were able to localize the box within several seconds (0.3s and 5s respectively),

with SS being approximately 15 times faster than SS-APF. APF localized the box

within 100 seconds, which is approximately 300 times slower than SS and 20 times

slower than SS-APF. These comparisons underline the impact of the Even Density

Cover step (SS vs. SS-APF) and annealing schedule methodology (SS-APF vs. APF).
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(a) search space volume (b) number of particles

(c) position error (d) orientation error

Figure 2.9: Performance of Scaling Series on simulated data set during 100 experiments.
Each graph shows progression of the series from left to right. Corresponding value of δ is
noted on the horizontal axis in meters, log scale. Vertical bars represent absolute min/max
values during all 100 runs.



2.5. EXPERIMENTAL RESULTS 57

Figure 2.10: Comparison of SS, SS-APF, APF, and IS on single mode beliefs. Left:
reliability vs. computation time. Right: accuracy vs. computation time.

Multi-mode estimation

In this set of experiments we used data sets with 3 measurements from three adja-

cent sides of the box. Such data sets do not fully constrain the problem and the

resulting belief has four modes. We evaluated reliability of SS, SS-APF, APF, and IS

(Fig. 2.11a). An experiment was considered successful if the approximation had at

least one particle within 1mm and 1◦ of each of the four modes. For SS, the running

time was varied by setting M = 5 to 7. Again, IS was unable to find all the modes

even after several minutes. SS and SS-APF both were able to find all the modes,

with SS-APF taking 20s, and SS being approximately 15 times faster (1.5s). APF

was not completely reliable even after 10 minutes of computation, but it did reach

reliability of 88%. APF was approximately 100 times slower than SS-APF and 1500

times slower than SS. We suspect the difference in performance would be even greater

with more modes or whenever multiple modes need to be tracked over time.

Neighborhood size and shape

We evaluated the effect of δ∗ and hyper-ellipse shape on the performance of Scaling

Series. The hyper-ellipse shape is controlled by the position radius, rpos, and the

orientation radius, rori. We kept rpos = δ∗ in all experiments. Fig. 2.11b shows
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(a) multi-modal (b) neighborhood shape

Figure 2.11: (a) Comparison of SS, SS-APF, APF, and IS on multi-modal beliefs. The
plot shows percentage of successful runs, in which each algorithm found all modes. (b)
Impact of changing δ-neighborhood shape on reliability of Scaling Series. Hyper-ellipse
radius along orientation angles, rori, was changed during these experiments, while we kept
δ∗ = rpos = 1mm. The legend shows rori values in degrees. Computation time was varied
by changing M .

the effect of changing rori. The value computed via the Lipschitz constant (from

Appendix A) was 0.5◦ (bright red line), with performance close to optimal. Optimal

performance was achieved with rori = 1◦ (bright blue line). This is likely due to the

fact that measurements tend to land in the interior of box faces, hence the effective

radius for Lipschitz constant computations is smaller than the actual box radius.

Fig. 2.12 shows the impact of δ∗ and M on accuracy. In the left plot, each curve

keeps δ∗ constant, and varies running time by changing M . The performance with

the predicted δ∗ = 0.7mm is optimal and remains optimal with δ∗ in the 0.7 to 1.5mm

range.

In the right plot, each curve keeps M constant and varies δ∗. M = 6 was optimal

converging to the minimum average error of 1.5mm with δ∗ = 1mm in 0.3s.

Zoom factor

The plot in Fig. 2.13a shows reliability vs. time for varying settings of zoom. The

results are reported in terms of V ol(Vn)/V ol(Vn−1) ratio, which is easier to understand
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Figure 2.12: Impact of δ∗ (left) and M (right) on accuracy of SS.

than zoom itself. Ratio of 50% was optimal, which corresponds to zoom setting shown

in Alg. 2.1. However, ratios of 12.5% to 80% worked well.

Pruning

We compared the performance of Scaling Series with resampling and thresholding

pruning strategies (Fig. 2.13b). For thresholding the legend shows values of ξ. Al-

though not visible in the figure, different settings of M result in the same running time

for the two different strategies. SS with resampling needs somewhere between M = 2

and M = 3 particles per δ-neighborhood. It is possible to extend Even Density Cover

to work with non-integer values of M , which would allow for better performance with

resampling pruning strategy. SS with thresholding on ξ = 30% to 70% needs M = 3

to 14 respectively. The optimal threshold was ξ = 60% (with M = 6) as predicted in

Sect. 2.4.4.

2.6 Conclusions

We have considered the problem of global object localization via touch. Bayesian

belief estimation for objects in 6DOF has been known to be computationally expen-

sive for this problem [Gadeyne and Bruyninckx, 2001]. We have proposed an efficient
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(a) zoom factor (b) pruning strategies

Figure 2.13: (a) Effect of zoom factor on reliability. Legend shows V ol(Vn)/V ol(Vn−1)
ratio. (b) Reliability for two different pruning strategies: resampling and thresholding. For
thresholding, the legend shows the threshold ξ.

approach, termed Scaling Series, that approximates the belief by particles. It per-

forms the estimation by successively refining the high probability region and scaling

granularity of estimation from low to high. Our approach does not utilize any special

properties of the manipulated objects and can be easily applied to any object repre-

sented as a polygonal mesh. We have demonstrated its portability by applying it to

five different everyday objects on two robotic platforms.

For fully-constraining data sets, our approach performs the estimation in real time

(under 1s) with very high reliability (≥ 99%). At early stages of exploration, when

the data set does not fully constrain the object, the resulting belief is multi-modal.

Running time in these cases depends on the precision desired and the size of the

high probability region. However, our approach allows us to trade off precision of

estimation for running time. Coarse estimates can be obtained quickly. As additional

measurements arrive, the ambiguities are resolved and so more precise estimates can

be obtained in a timely fashion.

We have provided analysis of convergence of the proposed algorithm along with

strategies for parameter selection. We have also compared Scaling Series to a number

of prior approaches. The results show that the proposed method outperforms prior
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art and is much more stable in multi-modal cases.

Similarly to Grimson and Lozano-Perez [1983], we expect that our approach can

be extended to perform object identification from a set of known objects. Also, due

to its stable performance with multi-modal beliefs that arise during exploration, we

expect our approach to be particularly well suited for active exploration strategies

that derive the optimal next sensing action based on prior data as in [Chhatpar and

Branicky, 2005, Hsiao et al., 2010].

The Scaling Series algorithm can be used with other applications and sensors.

For example in Chapter 5, we use Scaling Series for mobile manipulation during

building navigation based on 2D laser range finders. In Chapter 4, we use Scaling

Series for vehicle tracking based on 3D range data. In both cases, Scaling Series

provides a significant improvement over state-of-the-art inference methods. In both

of these examples, we include additional parameters in the Scaling Series filter. In

Chapter 5, we use an articulated model of a door and estimate its opening angle along

with robot’s position. In Chapter 4, we estimate the number of moving vehicles in a

previously unknown environment, as well as estimate vehicles’ shape, position, and

velocity. Similar techniques can be applied to touch based object localization when

less information about the object shape is available a priori or when working with

articulated objects.

Although in this chapter we focused on the sense of touch exclusively, the presented

approach can be naturally combined with other sensing modalities. For example, if

a prior pose estimate is available from a vision system, it can be used to initialize

samples of Scaling Series. If several sensing modalities are to be used simultaneously,

one can perform sensor updates for each sensor within the same Scaling Series filter.

A number of aspects of the presented approach can be improved upon in future

work. The running time of the algorithm depends linearly on the complexity of ob-

jects (i.e., number of faces in the mesh model). However, it is possible to implement

efficiency improvements that only consider a small subset of faces during each mea-

surement evaluation. So far experiments with moving objects have only been carried

out in simulation, and so this aspect warrants further attention, although better hard-

ware is likely to be required. Additional considerations will be needed if the object to
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be localized is placed into a cluttered environment, where the correspondence problem

of measurements to objects will need to be solved. More work can go into devising

better sensing procedures in order to reduce sensing time. In particular, it is pos-

sible to use compliant motions during exploration to reduce the time the robot has

to travel to and from the object. However, more sophisticated sensor configuration

will be required to make sure the robot does not contact the object with non-sensing

surfaces during exploration.



Chapter 3

Whole Body Contacts

3.1 Introduction

Today robots prefer to avoid contact with the environment along body or links. They

strive to interact with the surroundings only by their end effectors. In contrast humans

are able to do a great deal by using contact along their limbs and torso. For example,

we brace against a desk while handwriting. When stumbling in the dark, we stretch

our arms forward to feel the environment. We support ourselves with our knees and

forearms while climbing into a tight space.

By learning to utilize contact along manipulator links, robots gain the same ad-

vantages as humans (see Fig. 3.1 for illustration). For example, it has been shown

by Lew and Book [1994] that bracing increases manipulator precision, and thus, it is

desirable to brace for fine manipulation tasks. During exploration, it is much easier

to bump into objects if we utilize the entire robot surface as opposed to just the end

effector tip. Just like humans, human-like robots also need to be able to support

themselves with arms and knees when climbing.

Recently, approaches to control for whole body contact have been proposed in

the literature [Liu et al., 1999, Park and Khatib, 2005, Schutter et al., 2005] (see

Sect. 3.2.2 for a brief overview). However, absence of contact estimation is a major

obstacle holding robots back from using whole body contacts. To our knowledge,

there has been no work on estimating contact points along manipulator links, yet this

63
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(a) (b) (c)

Figure 3.1: Applications of whole body contacts: (a) Humans use bracing to increase
precision during fine manipulation tasks such as handwriting. (b) PUMA manipulator
in a similar bracing configuration. It has been shown that bracing improves manipulator
precision as well. (c) Human-like robots utilize multiple link contacts for bracing and
support.

Figure 3.2: A block diagram of the contact control framework for a manipulator, where
the Active Observer (AOB) design is implemented for force control. The observer in the
AOB design includes a state for input disturbance and the estimate of this state will be
directly compensated for in addition to the full state feedback.
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information is clearly required for control algorithms.

Estimation of whole body contact points is more difficult for robots than for

humans, because most robots today do not possess skin capable of sensing. Human

skin is a complex sensor and creation of comparable robotic skin is currently an area

of active research (see for example [Someya et al., 2004]). Even once robotic skin is

widely available, its complexity and cost may be prohibitive for many applications.

In this chapter, we propose an active sensing strategy that robots can use to estimate

whole body contacts even without skin.

Since probabilistic techniques have been hugely successful in other areas of robotics

(e.g., see a recent book on mobile robotics [Thrun et al., 2005]), we focus on a prob-

abilistic approach to contact point estimation. Our approach results in an efficient

online technique that we utilize during our experiments. As exact robot geometry is

often unknown, we also provide an offline algorithm for estimating geometric param-

eters of robot links simultaneously with contact point estimation. Our experimental

results demonstrate that estimation of contact points is crucial for control perfor-

mance.

3.2 Background

3.2.1 Related Work in Perception

To operate in environments built for humans, robots need to estimate environment

parameters from sensory information. One popular sensor used for manipulation

perception tasks is vision (see [Kragic and Christensen, 2002] for a recent survey).

However, due to high precision of manipulators, perception via contact offers very

high precision, which is difficult to attain with other sensors. High precision is often

required for fine manipulation tasks and for balance control tasks. Traditionally, ma-

nipulation approaches do not have probabilistic basis, e.g., [Shekhar et al., 1986, Moll

and Erdmann, 2003]. Recently, several groups explored probabilistic techniques. For

example, Slaets et al. [2004] used a variant of Kalman filters to estimate environment

parameters for cube-in-corner assembly tasks. In Chapter 2, we used a particle filter
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variant to localize objects by probing them with the end effector.

3.2.2 Related Work in Control

Research on motion and force control strategies has begun with contact at the end-

effector level [Siciliano and Villani, 1999, Chiaverini et al., 1999, Yoshikawa, 2000]

using compliant frame selection matrices [Raibert and Craig, 1981, Khatib, 1987] to

describe the decomposition of the end-effector space in the contact frame. Later,

more general kinematic contact models were presented by Featherstone et al. [1999],

Bruynincks et al. [1995], Lipkin and Duffy [1988], West and Asada [1985], and Park

et al. [2004] for non-orthogonal decomposition of motion and force directions.

Control strategies for multiple contact over multiple links were presented by Liu

et al. [1999], Park and Khatib [2005], and Schutter et al. [2005]. Liu et al. [1999]

present an adaptive control approach for multiple geometric constraints using joint-

space orthogonalization and Schutter et al. [2005] propose a constraint-based approach

dealing with multiple contacts.

3.2.3 Overview of Control Approach

The control framework in this chapter uses the approach of Park and Khatib [2005],

Park [2006] (see Fig. 3.2 for an illustration). This approach defines the operational

space coordinates using contact force space, which spans all contacts over the links.

The dynamics of the contact forces are composed by projecting the robot dynamics

into the operational space and using an environment model. Control torques are

chosen to compensate for the dynamics, resulting in linearized second order systems

for each contact force [Freund, 1975, Khatib, 1987]. This framework allows for the use

of any linear controller at the decoupled level of control. The Active Observer (AOB)

method of Cortesão [2002] is used to deal with unknown disturbances, unmodeled

friction, and parameter errors in the environment model. Motion control is composed

in the null-space using task consistent dynamics [Khatib et al., 2004], resulting in

dynamically decoupled motion and force control structure .
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3.3 Contact Estimation

3.3.1 Active Sensing Strategy for Data Collection

To collect data for link contact estimation, we perform compliant motions of the link

(see Fig. 3.3 for an illustration). The goal is to maintain contact with the environment

throughout the sensing procedure. This way geometric shape of the robot allows us

to estimate the environment. To ensure that contact is always maintained, we pick

an arbitrary point on the link and initiate force control towards the environment

object. We then perform motion control in direction perpendicular to the force control

direction.

3.3.2 Model and Notation

Our measurements consist of joint angles q of the manipulator. We will denote by qT

the set of all measurements collected from time 1 to time T , i.e., qT = {q1,q2, . . . ,qT}.
Since we want to estimate contact along the surface of manipulator links, we need a

representation of robot’s geometric shape. 3D shapes are usually represented by either

polygonal meshes or parametric surfaces (e.g., super-quadrics). Since our PUMA

manipulator has polygonal shape, we chose the mesh representation. We denote the

set of parameters encoding robot’s shape by r. We denote by s the set of parameters

encoding the shape of the environment object and its position in robot’s coordinate

system.

3.3.3 Probabilistic Inference with Known Robot Geometry

Let us first consider the problem of estimating environment parameters s, when robot

geometric parameters r are known. In probabilistic terms, it means finding values of

environment parameters s that maximize the following probability:

belenv := p(s|qT , r) (3.1)
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Figure 3.3: Active sensing strategy used to collect data for link contact estimation. Force
control is applied towards the environment object to maintain contact. Motion control is
applied in perpendicular direction.

Using the Bayes rule, we can re-write the above equation as

belenv = p(s|qT , r) = p(qT |r, s)
p(s|r)

p(qT |r)
. (3.2)

Here, p(s|r) and p(qT |r) are prior beliefs about object shape and robot configuration

given robot shape. Since s does not appear in p(qT |r), this prior is constant with

respect to s. The object shape prior, p(s|r), encodes many factors, e.g., that it is

not possible for the object to overlap with non-movable parts of the robot or that

symmetric objects are more likely than asymmetric in human-made environments.

Since it is difficult to obtain an exact representation of this prior, it is convenient to

let the robot be unaware of these effects and assume the prior to be uniform. Under

this assumption, belenv becomes proportionate to p(qT |r, s). It is also common to

assume separate measurements to be independent of each other, which allows us to
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factor the belief as follows:

belenv ∝ p(qT |r, s) =
T∏
t=1

p(qt|r, s) (3.3)

Here, p(qt|r, s) is the probability of the measurement at time t given state parameters.

This probability is called the measurement likelihood. We model this probability as

a Gaussian distribution of the distance dist(r, s|q) between the robot and the surface

of the environment with variance σ2. We define this distance as follows. If the robot

and the environment object do not overlap, it is the minimum Euclidean distance

between the surface of the robot in configuration q and the surface of the object. If

the robot and the object overlap, then it is the minimum distance the object has to

be moved in order to not overlap with the robot. Then the measurement likelihood

can be written as

p(qt|r, s) = η exp

(
−dist(r, s|qt)

2

2σ2

)
, (3.4)

where η is a normalization constant. Intuitively, this makes sense because our active

sensing strategy specifically collects data when the robot is in contact with the object.

Thus, configurations, in which the distance between the robot and the object is very

small, are likely, while configurations, for which the distance is large, are very unlikely.

Using (3.4) for measurement likelihood, allows us to transform the belief estima-

tion into a least squares problem. By taking log of the belief, we obtain

log belenv = log
T∏
t=1

p(qt|r, s) + const

=
T∑
t=1

log p(qt|r, s) + const

=
T∑
t=1

log

(
η exp

(
−dist(r, s|qt)

2

2σ2

))
+ const

= − 1

2σ2

t∑
i=1

dist(r, s|qt)2 + const,

(3.5)

where const denotes a generic constant. In the last line of (3.5), we collect all constant
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terms into a new constant. Thus, maximizing belenv with respect to s is equivalent to

minimizing
∑T

t=1 dist(r, s|qt)2, which is a least squares problem. In general, this prob-

lem is non-linear in the unknowns. Thus, non-linear optimization search techniques

can be applied to obtain a solution.

3.3.4 Simultaneous Estimation of Robot Geometry and Con-

tact

In the most general case, both robot’s shape parameters and object parameters can

be unknown. Thus, we need to estimate both r and s (collectively, state parameters)

based on the collected data qT . In probabilistic terms, it means finding values of

state parameters that maximize the following probability:

belgeo := p(r, s|qT ). (3.6)

Repeating similar derivations for belgeo as for belenv, we reduce it to least squares

form:

log belgeo = − 1

2σ2

T∑
t=1

dist(r, s|qt)2 + const. (3.7)

The only difference from belenv is that here the robot’s shape r is unknown. Greater

number of unknown parameters requires longer computation times. Luckily, robot

shape parameters only need to be estimated once, as the robot’s geometry does not

change from one experiment to another.

3.4 Experimental Results

In our experiments, we used a PUMA robotic manipulator equipped with a JR3 force

and torque sensor at the wrist (Fig. 3.4). No additional sensors were placed at the

manipulator joints or links. To evaluate performance of control strategies, we placed

a second JR3 sensor in the environment. It is important to note that this sensor is

not required for operation of our method. Its readings are not used within control or

estimation algorithms.
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Figure 3.4: We used this 6DOF PUMA robotic manipulator in our link contact estimation
experiments. The manipulator is equipped with (a) 6D JR3 force/torque sensor at the wrist,
and (b) a robotic finger with a spherical end. For evaluation purposes only, we placed a
force/torque sensor in the environment (c). This sensor is not required for operation of our
method. We use it solely to evaluate performance.
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Figure 3.5: Plot of all positions of PUMA’s third link edge during active sensing procedure.
The estimated contact point is shown as a red circle.

3.4.1 Experiments on Contact Estimation

In our experiments, the third link of the PUMA robot comes in contact with an edge

of an armrest (Fig. 3.3). Due to the shape of the robot, this creates a single point

contact against one of the edges of the third link.

Once the robot comes in contact with the environment, the active sensing pro-

cedure described in Sect. 3.3.1 is initiated. The manipulator motion during this

procedure is constrained within one plane. Therefore, the contact point in the envi-

ronment remains the same throughout the procedure, while the contact point on the

link moves.

Since the contact is a single stationary point within the environment, we can

reduce our environment representation s to single point coordinates in the global

frame. Thus for our experimental setup, the distance between the robot and the

environment is simply the distance between a point and a line. Moreover, when

robot geometry is known, the squared distance is a second degree polynomial in the

unknown parameters. Thus, the least squares problem (derived in (3.5)) is linear in
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this case and can be solved in constant time using the eigenvalue method. Fig. 3.5

plots motion of the third link during active sensing and the resulting estimated contact

point.

Our initial estimates of the robot’s geometry came from measuring the robot with

a ruler. However, it turned out that the shape of the link is unobviously asymmetric

and, thus, our initial estimates were several centimeters off. For comparison, we mea-

sured the environment contact point with the end-effector of the PUMA manipulator.

The error resulting from our estimation algorithm was 3.4cm. This is in part due to

incorrect geometry of the link and in part to imprecise measurement of the contact

point with the spherical end of the end-effector.

To obtain better estimates, we solve the full estimation problem that simultane-

ously considers the robot’s shape r and the environment contact point s. In this case,

the distance between the robot and the environment is non-linear in the unknown

parameters. This problem can be solved using a variety of non-linear optimization

techniques. We used a Matlab implementation based on the method described by

Coleman and Li [1996].

As it is widely known, optimization search for non-linear least squares is prone

to getting stuck in local minima. To overcome this problem, we first obtain initial

estimate of the contact point with the ruler-measured geometry of the robot using

linear least squares as described above (known robot geometry case). Then, we use the

obtained contact point estimate together with the ruler-measured robot geometry as a

starting point for non-linear optimization search to estimate r and s. Obtaining robot

geometric parameters in this fashion improved contact point estimation precision from

3.4cm to 0.4cm.

3.4.2 Control Using Estimated Contacts

Intuitively, accurately estimated contact parameters should be important for control

performance. To verify the significance in practice, we performed a series of com-

parison experiments. In these experiments, we performed open loop force control

with and without link contact estimation. As before, the robot maintained a point
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Figure 3.6: Comparison of response to step force command with and without link con-
tact estimation. For the experiments without estimation, the assumed contact point was
offset from actual position by 20cm. In the experiment shown, a 20N step command was
commanded to the robot. The target response is denoted by the solid red line.

contact between the third link and the armrest. For the experiments without contact

estimation, the assumed the contact point was displaced by 20cm along the link edge

from the actual contact point. We performed a series of experiments with force step

commands ranging from 20 to 50N. Fig. 3.6 shows comparison of force response in

one of the step command experiments with and without link contact estimation. To

measure these results, we placed a JR3 force sensor under the armrest. This sensor

is not needed for the estimation and control algorithms, only for evaluation of the

results. Overall, in our experiments with contact estimation, the error was less than

20% and without contact estimation it was over 50%.

3.4.3 Multi-Contact with Estimated Contacts

We also conducted multi-contact environment interaction experiments to demonstrate

capabilities similar to human handwriting behavior. These experiments are illustrated

in Fig. 3.7. During these experiments, the robot moves and makes contact with

the third link against the armrest. It then initiates the active sensing procedure to
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Figure 3.7: Performance of multi-contact control using the estimated environment contact
point. Two point contacts are maintained during these experiments: third link contact with
the armrest and end-effector contact with the desk. The robot maintains both contact forces
and moves at the same time.

estimate the contact point. Once the point is estimated, the PUMA moves to make

contact with its end-effector against the desk, while still maintaining contact of the

third link with the armrest. In this multi-contact configuration, the robot performs

the task of force control and motion control simultaneously. For force control, we

command the normal direction forces at the third link contact and the end-effector

contact. The normal contact force at the end-effector is feedback controlled using

the measured force information from the wrist mounted force sensor. However, the

contact force on the third link is controlled in an open loop and there is no feedback

from a force sensor.

Using the remaining degrees of freedom of the robot, the third link was controlled

to move in a tangential direction, which created a motion toward and away from the

robot in a sinusoidal form. Note that even though we chose to estimate link contact

point prior to making a second contact with the end effector, the motion of the robot

after making the second contact could be used to estimate the link contact. Thus,
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the experiment demonstrates the possibility of estimating link contacts using this

procedure while maintaining a multi-contact configuration.

Videos of our experiments are available at the website

http://cs.stanford.edu/people/petrovsk/manips.html

3.5 Discussion and Conclusions

Perception of link contact enables a wide range of applications including bracing

to improve manipulation precision, exploration of environment, and support during

climbing. For robots that do not have skin, we proposed a probabilistic approach

for approximation of whole body contacts based on an active sensing strategy. Since

robot shape is often known only approximately, we have also proposed an approach for

simultaneously estimating the robot shape and the contact point. Our experiments

clearly demonstrate the impact of contact estimation on control accuracy.

It is worth noting that estimation of whole body contacts is only possible, when

the robot has sufficient degrees of freedom to carry out motion around each contact

point. For example, estimation via motion is theoretically impossible for the second

link of the PUMA manipulator. In these cases, artificial skin or some other type of

sensor is necessary to estimate the contact. However, when degrees of freedom are

sufficient, the proposed active sensing strategy provides estimates with good accuracy.

Although the described approach considers one contact at a time, it applies even if

the robot maintains multiple contacts with the environment. Moreover, the approach

can be easily extended to estimate multiple contacts simultaneously, provided the

robot has the freedom to carry out simultaneous exploratory motions around all of

the contacts. On the other hand, estimation of multiple contact points on the same

link is unlikely to be possible using this method, because the link will be unable to

move around each contact point independently.

There is ample room for future work on whole body contact estimation. In our

experiments, we considered only simple robot and environment geometries. For more

complex geometries (including complex polygonal mesh and curved representations),

more sophisticated active exploration strategies will likely be needed. While the

http://cs.stanford.edu/people/petrovsk/manips.html
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derivations of this algorithm apply to arbitrarily complex geometries, in practice

these geometries will entail significantly higher numbers of parameters and lead to

non-linear estimation problems. Hence, better search algorithms will be required. In

addition, distance computation is more difficult for complex objects and, in fact, the

notion of distance may need to be redefined depending on the representation.
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Chapter 4

Vehicle Detection and Tracking

4.1 Introduction

Autonomously driving cars have been a long-lasting dream of robotics researchers

and enthusiasts. Self-driving cars promise to bring a number of benefits to society,

including prevention of road accidents, optimal fuel usage, comfort, and convenience.

In recent years the Defense Advanced Research Projects Agency (DARPA) has taken

a lead on encouraging research in this area and organized a series of competitions for

autonomous vehicles. In 2005, autonomous vehicles were able to complete a 131 mile

course in the desert [Buehler et al., 2007]. In the 2007 competition, the Urban Grand

Challenge (UGC ), the robots were presented with an even more difficult task: safe

autonomous navigation in urban environments. In this competition, the robots had to

drive safely with respect to other robots, human-driven vehicles, and the environment.

They also had to obey the rules of the road as described in the California rulebook (see

[DARPA, 2007] for a detailed description of the rules). One of the most significant

changes from the 2005 competition is the need for situational awareness of both static

and dynamic parts of the environment. Several successful approaches have been

developed in parallel by the UGC participants [Leonard et al., 2008, Urmson et al.,

2008]. Our robot, Junior , won second prize in the 2007 competition. An overview

of Junior’s software and hardware architecture is given in [Montemerlo et al., 2008].

In this chapter, we describe the approach we developed for detection and tracking of

79
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moving vehicles.

Vehicle tracking has been studied for several decades. A number of approaches

focused on the use of vision exclusively [Zielke et al., 1993, Dickmanns, 1998, Dellaert

and Thorpe, 1998], whereas others utilized laser range finders [Zhao and Thorpe,

1998, Streller et al., 2002, Wang et al., 2007] sometimes in combination with vision

[Wender and Dietmayer, 2008]. We give an overview of prior art in Sect. 4.2.

For our application, we are concerned with laser based vehicle tracking from the

autonomous robotic platform Junior, to which we will also refer as the ego-vehicle

(see Fig. 4.1). In contrast to prior art, we propose a model based approach, which

encompasses both geometric and dynamic properties of the tracked vehicle in a single

Bayes filter. The approach eliminates the need for separate data segmentation and

association steps. We show how to properly model the dependence between geometric

and dynamic vehicle properties using anchor point coordinates . The geometric model

allows us to naturally handle the disjoint point clusters that often result from partial

occlusion of vehicles (see Fig. 4.2). Moreover, the estimation of geometric shape leads

to accurate prediction of dynamic parameters (see Fig. 4.3).

Further, we introduce an abstract sensor representation, called the virtual scan,

which allows for efficient computation and can be used for a wide variety of laser

sensors. We present techniques for building consistent virtual scans from 3D range

data and show how to detect poorly visible black vehicles in laser scans. To battle

the low signal-to-noise ratio during rapid detection of vehicles in noisy urban settings,

we introduce the notion of motion evidence, which allows us to quickly prune false

positives caused by noise. Our approach runs in real time with an average update

rate of 40Hz, which is 4 times faster than the common sensor frame rate of 10Hz.

The results show that our approach is reliable and efficient even in the challenging

traffic situations presented at the UGC.

4.2 Background

A number of vehicle tracking approaches have been developed over the past few

decades (e.g., Zhao and Thorpe [1998], Streller et al. [2002], Wang [2004], Wender
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(a)

(b)

Figure 4.1: (a) Our robot Junior (blue) negotiates an intersection with human-driven
vehicles at the qualification event for the Urban Grand Challenge in November 2007. (b)
Junior, is equipped with five different laser measurement systems, a multi-radar assembly,
and a multi-signal inertial navigation system.
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(a) without geometric model (b) with geometric model

Figure 4.2: Scans from vehicles are often split up into separate clusters by occlusion.
Geometric vehicle model helps interpret the data properly. In (a), purple ovals group
together points that have been associated together. In (b), the purple rectangle denotes the
geometric vehicle model. Gray areas are objects. Gray dotted lines represent laser rays.
Black dots denote laser data points.

and Dietmayer [2008]) including most recent developments by the UGC participants

[Darms et al., 2008, Leonard et al., 2008]. Typically, these approaches proceed in three

stages: data segmentation, data association, and Bayesian filter update. During

data segmentation, the sensor data are divided into meaningful pieces — usually

line features [Zhao and Thorpe, 1998, Darms et al., 2008] or clusters [Wender and

Dietmayer, 2008, Leonard et al., 2008]. During data association, these pieces are

assigned to tracked vehicles. Next, a Bayesian filter update is performed to track the

centroids of the targets.

The second stage — data association — is generally considered the most chal-

lenging stage of the vehicle detection and tracking problem because of the association

ambiguities that arise. Typically this stage is carried out using variants of the mul-

tiple hypothesis tracking (MHT ) algorithm (e.g., Streller et al. [2002], Wang et al.

[2007]).

In the third stage, the filter update is usually carried out using variants of Kalman

filter (KF ), which is augmented by the interacting multiple model method in some
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(a) without shape estimation

(b) with shape estimation

Figure 4.3: Vehicles come in different sizes. Accurate estimation of geometric shape
helps obtain a more precise estimate of the vehicle dynamics. Solid arrows show the actual
distance the vehicle moved. Dashed arrows show the estimated motion. Purple rectangles
denote the geometric vehicle models. Black dots denote laser data points.
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cases [Zhao and Thorpe, 1998, Wang et al., 2007].

Although vehicle tracking literature primarily relies on variants of KF, there is a

great body of multiple target tracking (MTT ) literature for other applications, where

parametric, sample-based, and hybrid filters are used. Blackman et al. [2004] provides

a summary. For example, Särkkä et al. [2007] uses a Rao-Blackwellized particle filter

(RBPF ) for multiple target tracking on simulated data. A popular alternative to

MHT for data association is the joint probabilistic data association (JPDA) method,

which was used by Schulz et al. [2001] to track multiple targets from an indoor mobile

robot platform.

Vehicle detection is a pre-requisite for vehicle tracking. One of the challenges in

vehicle detection is poor signal-to-noise ratio due to the fact that a vehicle moves

only a small amount between consecutive frames. In prior art, the detection problem

has been solved by addition of vision sensors (e.g., Wender and Dietmayer [2008]), al-

though visual classification does not help distinguish moving vehicles from stationary.

Another approach is to sample frames at lower rates to overcome the low signal-to-

noise ratio [Wang et al., 2007], although this approach increases the time it takes

to detect a new moving vehicle. Other described approaches detect vehicles by scan

shape [Zhao and Thorpe, 1998, Streller et al., 2002] or by location [Wang et al., 2007].

Due to possible ambiguities in the range data, these approaches tend to have lower

detection accuracy.

4.3 Representation

In this chapter, we shall assume that a reasonably precise pose of the ego-vehicle is

always available. On our robot, the pose estimates are provided by the localization

module, which is described in detail in [Montemerlo et al., 2008]. Here we provide

a brief summary. The robot is outfitted with an Applanix POS LV 420 inertial

navigation system (INS ), which provides pose localization with 1m accuracy. Due to

periodic GPS measurement updates, the INS pose estimate can suddenly shift by up

to 1m. The sudden shifts are very undesirable for vehicle tracking as they greatly

increase tracking uncertainty. For the purposes of vehicle tracking, the ego-vehicle
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pose estimate should evolve smoothly over time. For this reason, we implemented

smooth coordinates , which provide a locally consistent estimate of the ego-vehicle

motion by integrating the velocity estimates from the INS. Although the smooth

pose estimate can drift over time, it does not experience sudden shifts. To map from

smooth coordinates to globally consistent GPS coordinates, one simply needs to add

an offset, which is periodically updated to reflect the mismatch between the smooth

and GPS coordinate systems. A similar smooth coordinate system was independently

developed by the MIT UGC team [Leonard et al., 2008]. In the remainder of this

chapter, all operations will be carried out in the smooth coordinate frame, which we

will also call the world frame. The transformation from smooth to GPS coordinates

will only be needed when dealing with global features, such as the digital road map.

Following the common practice in vehicle tracking [Dellaert and Thorpe, 1998,

Dietmayer et al., 2001, Leonard et al., 2008], we will represent each vehicle by a

separate Bayesian filter, and represent dependencies between vehicles via a set of

local spatial constraints. Specifically, we will assume that no two vehicles overlap,

that all vehicles are spatially separated by some free space, and that all vehicles of

interest are located on or near the road.

4.3.1 Probabilistic Model and Notation

For each vehicle, we estimate its 2D position and orientation Xt = (xt, yt, θt) at

time t, its forward velocity vt, and its geometry Ω (further defined in Sect. 4.3.2).

Also, at each time step, we obtain a new set of measurements Dt. A dynamic Bayes

network representation of the resulting probabilistic model is shown in Fig. 4.4. The

dependencies between the parameters involved are modeled via probabilistic laws

discussed in detail in Sects. 4.3.3 and 4.3.5. For now, we briefly note that the velocity

evolves over time according to

p(vt|vt−1). (4.1)

The vehicle moves based on the evolved velocity according to a dynamics model

p(Xt|Xt−1, vt). (4.2)
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Figure 4.4: Dynamic Bayesian network model of the tracked vehicle pose Xt, forward
velocity vt, geometry Ω, and measurements Dt.

The measurements are governed by a measurement model

p(Dt|Xt,Ω). (4.3)

For convenience, we will write X t = (X1, X2, ..., Xt) for the vehicle’s trajectory up to

time t. Similarly, vt and Dt will denote all velocities and measurements up to time t.

4.3.2 Vehicle Geometry

The exact geometric shape of a vehicle can be complex and difficult to model precisely.

For simplicity, we approximate it by a rectangular shape of width W and length

L. The 2D representation is sufficient because the height of tracked vehicles is not

important for driving applications.

During vehicle tracking, the state variable Xt usually represents the position of

the vehicle’s center in the world coordinate frame. However, there is an interesting

dependence between our belief about the vehicle’s shape and its position. As we

observe the object from a different vantage point, we change not only our belief of its
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(a) without geometric model (b) with geometric model

Figure 4.5: As we move to observe a different side of a stationary bus, our belief of
its shape changes and so does the belief about position of the vehicle’s center point. (a)
Without geometric vehicle model, the geometric mean of observed points shifts resulting
in phantom motion (red arrow) of Xt. (b) With geometric model, we compensate for the
effect by introducing local anchor point coordinates C = (Cx, Cy) so that we can keep the
anchor point Xt stationary in the world coordinates.

shape, but also our belief of the position of its center point. Allowing Xt to denote

the center point can lead to the undesired effect of obtaining a non-zero velocity for

a stationary vehicle, simply because we refine our knowledge of its shape as Fig. 4.5

illustrates.

To overcome this problem, we view Xt as the pose of an anchor point , whose

position with respect to the vehicle’s center can change over time. Initially, we set

the anchor point to be the center of what we believe to be the vehicle’s shape and

thus its coordinates in the vehicle’s local coordinate system are C = (0, 0). We

assume that the vehicle’s local coordinate system is tied to its center with the x-

axis pointing directly forward. As we revise our knowledge of the vehicle’s shape,

the local coordinates of the anchor point will also need to be revised accordingly to

C = (Cx, Cy). Thus, the complete set of geometric parameters is Ω = (W,L,Cx, Cy).

4.3.3 Vehicle Dynamics Model

In vehicle tracking literature, it is common to use a constant velocity model [Del-

laert and Thorpe, 1998], a constant acceleration model [Dietmayer et al., 2001], or
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a switching dynamics model [Wang, 2004, Darms et al., 2008]. We use the constant

velocity model and assume that velocity of each tracked vehicle stays constant for

the duration of each time interval from t − 1 to t. It also instantaneously evolves

at each time step t via addition of random bounded noise based on the maximum

allowed acceleration amax and the time delay ∆t from the previous time step t − 1.

Specifically, we sample ∆v uniformly from [−amax∆t, amax∆t].
The pose evolves via linear motion [Thrun et al., 2005, Sec. 5.4] — a motion

law that is often utilized when exact dynamics of the object are unknown. The

motion consists of perturbing orientation by ∆θ1, then moving forward according to

the current velocity by vt∆t, and making a final adjustment to orientation by ∆θ2.

Again we sample ∆θ1 and ∆θ2 uniformly from [−dθmax∆t, dθmax∆t] for a maximum

allowed orientation change dθmax.

4.3.4 Sensor Data Representation

In this chapter, we focus on laser range finders for sensing the environment. Recently,

these sensors have evolved to be more suitable for driving applications. For exam-

ple, IBEO Alasca sensors allow for easy ground filtering by collecting four parallel

horizontal scan lines and marking which of the readings are likely to come from the

ground [Ibeo Automobile Sensor GmbH, 2008]. Velodyne HDL-64E sensors do not

provide ground filtering, however, they take a 3D scan of the environment at high

frame rates (10Hz) producing 1,000,000 readings per second [Velodyne Lidar, Inc.,

2008]. Given such rich data, the challenge has become to process the readings in real

time as vehicle tracking at 10 - 20Hz is desirable for driving decision making.

A number of factors make the use of raw sensor data inefficient. As the sensor

rotates to collect the data, each new reading is made from a new vantage point due

to ego-motion. Ignoring this effect leads to significant sensor noise. Taking this effect

into account makes it difficult to quickly access data that pertains to a specific region

of space. Much of the data come from surfaces uninteresting for the purpose of vehicle

tracking, e.g., ground readings, curbs and tree tops. Finally, the raw 3D data wastes

a lot of resources as vehicle tracking is a 2D application where the cars are restricted
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(a) anatomy of a virtual scan

(b) a virtual scan constructed from Velodyne data

Figure 4.6: In (b), yellow line segments represent virtual rays. Colored points show the
results of a scan differencing operation. Red points are new obstacles, green points are
obstacles that disappeared, and white points are obstacles that remained unchanged or
appeared in previously occluded areas.
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to move on the ground surface. Therefore, it is desirable to pre-process the data to

produce a virtual sensor representation tailored for vehicle tracking.

Virtual sensors have been employed in the past for a wide range of applications.

For example, in neuroimaging, virtual sensors have been created from fMRI data

using machine learning techniques for diagnosis of mental processes in patients with

brain injuries [Mitchell et al., 2002]. In sensor networks, virtual sensors have been im-

plemented to abstract data from multiple non-homogeneous sensors [Kabadayi et al.,

2006]. In geoscience, virtual sensors have been constructed using models trained on

spectrally rich data to “fill in” unmeasured spectral channels in spectrally poor data

for improved detection of clouds over snow and ice [Srivastava et al., 2005]. In artificial

intelligence and robotics, virtual sensors are commonplace in simulated environments,

often used as a testbed for perception, planning, and control algorithms [Thalmann

et al., 1997, Gerkey et al., 2003].

To create a virtual sensor for our application, we construct a grid in polar coor-

dinates — a virtual scan — which subdivides 360◦ around a chosen origin point into

angular grid cells (see Fig. 4.6). In each angular grid cell, we record the range to the

closest obstacle within that cell. Hence, each angular grid cell contains the following

information: the space from origin up to the recorded range is free, at the recorded

range — occupied, and beyond the recorded range — occluded. We will often refer to

the cone of an angular grid cell from the origin up to the recorded range as a virtual

ray (or simply ray) due to its similarity to a laser ray. We will also treat each angular

grid cell as a single range measurement in the virtual scan.

Virtual scans simplify data access by providing a single point of origin for the

entire data set, which allows constant time look-up for any given point in space.

As we mentioned earlier, it is important to compute correct world coordinates for

the raw sensor readings. However, once the correct positions of obstacle points have

been computed, adjusting the origin of each ray to be at the common origin for the

virtual scan produces an acceptable approximation. To minimize the error due to ap-

proximation, we select the common origin to be the average sensor pose during scan

collection. Constructed in this manner, a virtual scan provides a compact represen-

tation of the space around the ego-vehicle classified into free, occupied and occluded.
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The classification helps us properly reason about what parts of an object should be

visible as we describe in Sect. 4.3.5.

One important parameter of a virtual scan is the angular resolution. Although

coarser resolutions can speed up computations because fewer rays need to be exam-

ined, it is desirable to set the resolution as fine as possible in order to capture more

detail about objects at long range.(1) For this reason, we set the resolution as fine as

possible in our implementation. For the IBEO lasers, we set the resolution to 0.5◦,

which is the highest resolution the sensor provides.

For the purpose of vehicle tracking, it is crucial to determine what changes take

place in the environment over time. With virtual scans, these changes can be easily

computed in spite of the fact that ego-motion can cause two consecutive virtual scans

to have different origins. The changes are computed by checking which obstacles in

the old scan are cleared by rays in the new scan and vice versa. This computation

takes time linear in the size of the virtual scan and only needs to be carried out

once per frame. Fig. 4.6b shows results of a virtual scan differencing operation with

red points denoting new obstacles, green points denoting obstacles that disappeared,

and white points denoting obstacles that remained in place or appeared in previously

occluded areas.

Virtual scans are a suitable representation for a wide variety of laser range finders.

While this representation is easy to build for 2D sensors such as IBEO, 3D range

sensors require additional considerations to produce consistent 2D representations.

We describe these techniques in Sect. 4.6.

4.3.5 Measurement Model

This section describes the measurement model p(D|X,Ω) used in our approach. Here,

D is a virtual scan representation of a single frame of range data from a laser range

finder.

(1)In principle, it is possible to get the best of both worlds by constructing several virtual scans of
varying resolution for the same laser data. Lower resolution virtual scans can be used to examine
close range objects, while higher resolution scans can be used for long range operations.
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Prior Art on Measurement Models

To our knowledge, range scan likelihood models have not been proposed for vehicle

tracking, as most of the vehicle tracking literature is concerned with tracking point

targets — usually centers of clusters [Wang, 2004, Leonard et al., 2008] or features ex-

tracted from the range data [Streller et al., 2002, Wender and Dietmayer, 2008, Darms

et al., 2008]. In contrast to the prior art, we are able to provide a direct interpretation

of the range measurements because we model geometry of the tracked vehicles. Mea-

surement models for range finders in the presence of a geometric environment model

have been proposed in mobile robot localization and mapping literature, where the

environment is commonly represented by an occupancy grid map (see Thrun et al.

[2005, Ch. 6] for an overview). The two most common models are the independent

beam model (IB) [Moravec, 1988, Burgard et al., 1996, Fox et al., 1999] and the

likelihood field model (LF ) [Thrun, 2001].

The IB model treats each ray in the scan as an independent measurement of range

to the closest obstacle along the ray corrupted by Gaussian noise. One drawback of

the IB model is that rays are represented by lines. This assumption does not work

well at longer ranges (50 − 100m) typical in outdoor environments. Outdoors, it

is better to represent rays by cones because the laser spot light is of non-negligible

radius (20− 40cm). Another drawback is that the IB model does not leave room for

possible unmodeled occlusions of the geometric model — a very common scenario in

vehicle tracking.

The LF model also treats laser rays as independent of each other. The end point

of each ray is compared to the closest obstacle point (not necessarily on the ray itself)

under the assumption of Gaussian noise. The LF model is more appropriate for cone

representation of rays. It also handles unmodeled occlusions very well. However, the

LF model allows rays to go through obstacles without any penalty. This is undesirable

for vehicle tracking because rays going through a candidate vehicle provide strong

evidence that these points may not belong to the same physical object.
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(a)

(b)

Figure 4.7: Measurement likelihood computations. (a) shows the geometric regions in-
volved in the likelihood computations. (b) shows the costs assignment for a single ray.
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Our Measurement Model

Given a vehicle’s pose X, geometry Ω, and a virtual scan D, we compute the measure-

ment likelihood p(D|Ω, X) as follows. We position a rectangular shape representing

the vehicle according to X and Ω. Then, we build a bounding box to include all points

within a predefined distance dfree
(2) around the vehicle (see Fig. 4.7). Assuming that

there is an actual vehicle in this configuration, we would expect the points within the

rectangle to be occupied or occluded, and points in its vicinity to be free or occluded

because vehicles are spatially separated from other objects in the environment.

Like the IB and LF models for laser range finders, we consider measurements

obtained along each ray to be conditionally independent of each other given vehicle

pose and geometry. Thus, if we have a total of K rays in the virtual scan D, the

measurement likelihood factors as follows

p(D|Ω, X) =
K∏
k=1

p(Dk|Ω, X). (4.4)

Following the IB and LF models, we use a Gaussian form for each ray’s likelihood.

Specifically, we model it as a zero-mean Gaussian of variance σk computed with

respect to a cost ck selected based on the relationship between the ray and the vehicle

(ηk is a normalization constant):

p(Dk|Ω, X) = ηk exp
(
− c2

k

2σ2
k

)
. (4.5)

The costs are set to constants that depend on the region in which the ray’s end point

falls (see Fig. 4.7 for illustration). cocc is the cost for range readings that fall short

of the bounding box and thus represent situations when another object is occluding

the vehicle. cb is the cost for range readings that fall short of the vehicle but inside

of the bounding box. cs is the cost for readings on the vehicle’s visible surface which

we assume to be of non-zero depth dsur. cp is used for rays that extend beyond the

vehicle’s surface. Assigning likelihood based on the region of space in which a ray’s

(2)We used the setting of dfree = 1m in our implementation.
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end point falls bears resemblance to the LF model. It is more appropriate for cone

representation of rays than the IB model. Like the LF model, our measurement model

gives little penalty to occlusions by other objects, but unlike the LF model, we assign

a large penalty to rays passing through the candidate vehicle. We also enforce our

assumption of free space around each vehicle by assigning a large penalty to rays that

terminate in this region.

The domain for each range reading is between the minimum range ρmin and the

maximum range ρmax of the sensor. Since the costs we select are piece-wise constant, it

is easy to integrate the unnormalized likelihoods to obtain the normalization constants

ηk. Note that for the rays that do not target the vehicle or the bounding box, the

above logic automatically yields uniform distributions as these rays never hit the

bounding box.

Note that the above measurement model naturally handles partially occluded

objects, including objects that are “split up” by occlusion into several point clusters

(see Fig. 4.2). In contrast to our approach, these cases are often challenging for

approaches that utilize separate data segmentation and correspondence methods.

4.4 Vehicle Tracking

Most vehicle tracking methods described in the literature apply separate methods

for data segmentation and correspondence matching before filtering via an extended

Kalman filter (EKF ). In contrast, we use a single Bayesian filter to fit model param-

eters from the start. This is possible because we model both geometric and dynamic

properties of the vehicles and because our measurement model interprets the range

data directly. Since EKF does not work well when relative sensors are interpreted

directly(3), we use a particle filter for Bayesian estimation.

(3)The laser range finders are relative sensors for the vehicle tracking problem because the in-
formation about vehicles is contained in the data implicitly. The data consist of individual range
measurements, which can belong to the same or different targets. Hence, the positions and velocities
of moving vehicles can not be easily determined directly from the data. See the discussion on relative
vs. global sensors in Sect. 1.1.2 and on parametric inference methods in Sect. 1.2.1.
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Unlike the MHT method commonly used in the literature, the computational com-

plexity for our method grows linearly with the number of vehicles in the environment

because vehicle dynamics dictates that vehicles can only be matched to data points

in their immediate vicinity. The downside, of course, is that two targets can in prin-

ciple merge into one. In practice, we have found that this happens very rarely and

only in situations where one of the targets is lost due to complete occlusion. In these

situations, target merging is acceptable for our application.

We have a total of eight parameters to estimate for each vehicle: X = (x, y, θ), v,

Ω = (W,L,Cx, Cy). Computational complexity grows exponentially with the number

of parameters for particle filters. Thus, to keep computational complexity low, we

turn to RBPFs [Doucet et al., 2000]. We estimate X and v by particles and keep

Gaussian estimates for Ω within each particle. Below we give a brief derivation of the

required update equations.

4.4.1 Derivation of Update Equations

At each time step t, we produce an estimate of a Bayesian belief about the tracked

vehicle’s trajectory, velocity, and geometry based on a set of measurements

belt := p(X t, vt,Ω|Dt). (4.6)

The derivation provided below is similar to the one used by Montemerlo [2003]. We

split the belief into two conditional factors:

belt = p(X t, vt|Dt) p(Ω|X t, vt,Dt). (4.7)

The first factor represents the belief about vehicle’s motion,

Rt := p(X t, vt|Dt). (4.8)
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The second factor represents the belief about vehicle’s geometry, conditioned on its

motion,

St := p(Ω|X t, vt,Dt). (4.9)

The factor Rt is approximated using a set of particles; the factor St is approximated

using a Gaussian distribution (one Gaussian per particle).

Updating Vehicle’s Motion Belief

Let Xt denote the set of particles at time t. We compute Xt recursively from Xt−1.

Suppose that at time t − 1, particles in Xt−1 are distributed according to Rt−1. We

compute an intermediate set of particles X̄t by sampling a guess of the vehicle’s pose

and velocity at time t from the dynamics model (described in detail in Sect. 4.3.3).

Thus, particles in X̄t are distributed according to the vehicle motion prediction dis-

tribution

R̄t := p(X t, vt|Dt−1). (4.10)

To ensure that particles in Xt are distributed according toRt (asymptotically), we gen-

erate Xt by sampling from X̄t with replacement in proportion to importance weights

given by wt = Rt/R̄t. We compute the weights later in this section, but first, we need

to derive the update equations for the geometry belief.

Updating Vehicle’s Geometry Belief

We use a Gaussian approximation for the geometry belief St. Thus, we keep track

of the mean µt and the co-variance matrix Σt of the approximating Gaussian in each

particle. We have

St = p(Ω|X t, vt,Dt)

∝ p(Dt|Ω, X t, vt,Dt−1) p(Ω|X t, vt,Dt−1)

= p(Dt|Ω, Xt) p(Ω|X t−1, vt−1,Dt−1). (4.11)

The first step above follows from the Bayes’ rule; the second step follows from the

conditional independence assumptions of our model (Fig. 4.4). The expression in
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(4.11) is a product of the measurement likelihood and the geometry prior St−1. To

obtain a Gaussian approximation for St, we linearize the measurement likelihood as

will be explained in Sect. 4.4.3. Once the linearization is performed, the mean and

the co-variance matrix for St can be computed in closed form because St−1 is already

approximated by a Gaussian (represented by a Rao-Blackwellized particle from the

previous time step).

Computing Importance Weights

Now we are ready to compute the importance weights. Briefly, following the derivation

by Montemerlo [2003], it is straightforward to show that the importance weights wt

should be:

wt = Rt/R̄t =
p(X t, vt|Dt)
p(X t, vt|Dt−1)

= ESt−1

[
p(Dt|Ω, Xt)

]
. (4.12)

In words, the importance weights are the expected value (with respect to the vehicle

geometry prior) of the measurement likelihood. Using Gaussian approximations of

St−1 and p(Dt|Ω, Xt), this expectation can be expressed as an integral over a product

of two Gaussians, and can thus be carried out in closed form. See Appendix B for

details.

4.4.2 Motion Inference

As we mentioned in Sect. 4.3.1, a vehicle’s motion is governed by two probabilistic

laws: p(vt|vt−1) and p(Xt|Xt−1, vt). These laws are related to the motion prediction

distribution as follows:

R̄t = p(X t, vt|Dt−1)

= p(Xt, vt|X t−1, vt−1,Dt−1) p(X t−1, vt−1|Dt−1)

= p(Xt|X t−1, vt,Dt−1) p(vt|X t−1, vt−1,Dt−1) Rt−1

= p(Xt|Xt−1, vt) p(vt|vt−1) Rt−1. (4.13)
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The first and second steps above are simple conditional factorizations; the third step

follows from the conditional independence assumptions of our model (Fig. 4.4).

Note that since only the latest vehicle pose and velocity are used in the update

equations, we do not need to actually store entire trajectories in each particle. Thus

memory storage requirements per particle do not grow with t.

4.4.3 Shape Inference

In order to maintain the vehicle’s geometry belief in a Gaussian form, we need to

linearize the measurement likelihood p(Dt|Ω, Xt) with respect to Ω. Clearly, the

measurement likelihood does not lend itself to differentiation in closed form. Thus,

we turn to Laplace’s method to obtain a suitable Gaussian approximation. We pro-

vide details in Appendix B. In short, the method involves fitting a Gaussian at the

global maximum of a function. Since the global maximum is not readily available, we

search for it via local optimization starting at the current best estimate of geometry

parameters. Due to construction of our measurement model (Sect. 4.3.5), the search

is inexpensive as we only need to recompute the costs for the rays directly affected

by a local change in Ω.

The dependence between our belief of the vehicle’s shape and its position (dis-

cussed in Sect. 4.3.2) manifests itself in a dependence between the local anchor point

coordinates C and the vehicle’s width and length. The vehicle’s corner closest to the

vantage point is a very prominent feature that impacts how the sides of the vehicle

match the data. When revising the belief of the vehicle’s width and length, we keep

the closest corner in place. Thus, a change in the width or the length leads to a

change in the global coordinates of the vehicle’s center point, for which we compen-

sate with an adjustment in C to keep the anchor point in place. This way, a change

in geometry does not create phantom motion of the vehicle.

4.4.4 Initializing and Discontinuing Tracks

New tracks are initialized in areas where scan differencing detects a change in data

that is not already explained by existing tracks. New tracks are fitted using the
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same measurement and motion models that we use for vehicle tracking (Sects. 4.3.5

and 4.3.3). The candidates are vetted for three frames before they can become “real

tracks”. Detection of new vehicles is the most computationally expensive part of

vehicle tracking. In Sect. 4.5, we describe the techniques we used to achieve reliable

vehicle detection in real time.

We discontinue tracks if the target vehicle gets out of sensor range or moves too

far away from the road.(4) We also discontinue tracks if the unnormalized weights

have been low for several turns. Low unnormalized weights signal that the sensor

data is insufficient to track the target, or that our estimate is too far away from the

actual vehicle. This logic keeps the resource cost of tracking occluded objects low,

yet it still allows for a tracked vehicle to survive bad data or complete occlusion for

several turns. Since new track acquisition only takes three frames, it does not make

sense to continue tracking objects that are occluded for significantly longer periods

of time.

4.5 Vehicle Detection

Accurate moving vehicle detection in laser range data requires three frames. The first

two frames are required to detect motion of an object. The third frame is required to

check that the motion is consistent over time and follows the vehicle dynamics law.

Thus, for a 10Hz sensor the minimum vehicle detection time is 0.3 seconds.

Note that detection based on three frames allows for accurate results because we

can observe two consecutive motion updates and verify that the observed motion is

consistent with a moving vehicle. For some applications, it may be acceptable to

sacrifice accuracy in favor of faster detection based on just one or two frames. For

example, Wang et al. [2007] detects as “moving” all objects that appear in areas

previously seen as empty. Often, this approach is adopted when the intention is to

filter out moving obstacles to build a static map. However, for vehicle tracking, this

approach leads to many false positives.

(4)A digital street map was available for our application in the Road Network Definition Format
(RNDF ).
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4.5.1 The Basic Detection Algorithm

Our vehicle detection method proceeds in three stages:

1 First, a vehicle is fitted using importance sampling in an area where a change

in the environment has been detected by scan differencing. The scoring is

performed using the measurement model described in Sect. 4.3.5.

2 Next, the vehicle’s velocity is estimated by performing a particle filter update

step and scoring using the measurement model in the next frame.

3 During the last stage, another particle filter update is performed and scored

against a third frame.

4.5.2 Challenges in Vehicle Detection

The range data in outdoor urban environments contains large amounts of noise that

adds up from a number of sources. The limitations of horizontal scan resolution (0.5◦

for IBEO and 0.1◦ for Velodyne) and vertical scan resolution (0.4◦ for Velodyne)

produce 40 − 50cm noise at 60m range. Another source of noise is the laser beam

spot size, which can exceed the scan resolution [Sick Optics, 2003]. Scanning the same

vehicle at a slightly different height can result in 1−2m range discrepancy. Additional

noise comes from the virtual scan approximation (25cm at 60m range for 0.5◦ angular

resolution) and the box model approximation of the vehicle’s shape (20 − 40cm).

Internal sensor construction, circuitry, and messaging time delays also produce noise,

which is in general difficult to quantify. Studies have been performed for older sensors

[Mäkynen, 2000, Blais, 2004], but this information is not yet available for the newer

models of range finders. Finally, environmental factors such as dust and rain cause

false readings many meters off the actual target.

For the driving application, we need to detect vehicles moving at 5mph to 35mph

with a 10Hz sensor. Thus, a vehicle moves 20− 150cm per frame. This signal can be

easily overwhelmed by noise especially in the lower range of the velocities. The poor

signal-to-noise ratio makes it difficult to accurately tell a moving object apart from

noise in just three frames.
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Figure 4.8: Diagram representing forward motion of a bus. Green color represents the
position of the bus at time t. Red color represents its position at time t + 1. The green
shaded area in the back of the bus frees up as the bus moves forward. The red shaded area
in the front of the bus becomes occupied. Note that these changes are small compared to
the overall area taken up by the bus, which remains occupied in both frames.

Although the signal is easier to detect if we use more than three frames, this

solution is undesirable because it increases the detection time and takes up more

computational resources. A more efficient approach, proposed by Wang et al. [2007],

is to sample the frames at a lower rate (e.g., 1Hz), so that the signal is prevalent over

the noise. However, this method also increases the total time required for detection

of a vehicle and therefore it is unsuitable for our application.

4.5.3 Motion Evidence

To overcome the poor signal-to-noise ratio, we turn to the method used by humans

to detect moving vehicles in noisy data. Consider a long bus moving forward at

5mph (Fig. 4.8). From one frame to the next, it travels 20cm — a negligible distance

compared to the noise and overall size of the vehicle. Since the middle of the bus

appears stationary, a human trying to discern motion will focus on the front and back

of the bus, to see if there is at least a tad of motion.

To take advantage of the same method for vehicle detection, we define a score we

call motion evidence. To compute this score, we consider the regions cleared by the

vehicle as it moves. The cleared area behind the vehicle should be occupied in the
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prior frame and free in the current frame. Similarly, the area in front of the moving

vehicle should be free in the prior frame and occupied in the current frame. Often,

we can only observe the front or the back of the vehicle, thus only half of the evidence

is available due to self-occlusion. To allow for self-occlusion and partial occlusions by

other objects, we threshold the motion evidence score at 25%.

Note that the motion evidence score is different from the probabilities obtained

by fitting a vehicle using a particle filter. The particle filter computes the probability

that motion “could have” happened, whereas the motion evidence scores the motion

that “must have” happened. In the bus example given above, the motion evidence

score would ignore the entire bus except 20cm in the front and in the back.

The motion evidence score can be computed for any pair of consecutive frames.

In our approach, we compute it for the first and the second pairs of frames and filter

out vehicle candidates for which the score is below the threshold. Doing so provides

a very dramatic decrease in false positives, without affecting the false negatives rate.

4.5.4 Optimizations

Since new vehicle detection is computationally expensive, we developed several op-

timizations to achieve reliable real time performance. We describe the optimization

techniques below and evaluate their impact on the performance of vehicle detection

in Sect. 4.7.2.

Scaling Series

The first step of vehicle detection involves fitting the geometric vehicle model to a

virtual scan under conditions of large uncertainty: several meters in position and

360◦ in orientation of the vehicle. Using simple importance sampling with three state

parameters makes the problem intractable within real time constraints.

To improve performance, we turn to the Scaling Series algorithm we described

in Chapter 2. Briefly, the algorithm works by performing a series of successive re-

finements, generating an increasingly informative proposal distribution at each step

of the series. The successive refinements are performed by gradually annealing the
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measurement model from artificially relaxed to realistic.

For the vehicle detection problem, we applied the Scaling Series algorithm to

choose the proposal distribution for the initial importance sampling step. We obtained

measurement model relaxations by inflating the width, dsur, of the vehicle surface

region (see Fig. 4.7). The normal setting for dsur is 0.25m. The most relaxed model

was obtained by padding the region by 1m on the inside and outside, resulting in an

dsur setting of 2.25m. At this setting the vehicle surface region expands to consume

the free space region, and thus the penalty cb is not applied. However, even with this

coarse model, the algorithm quickly rules out vehicle candidates placed more than 1m

away from the actual vehicle location. The resulting high likelihood region includes

a region of 1m radius around the true position of the vehicle. As dsur is gradually

annealed(5) from 2.25m to 0.25m, the high likelihood region shrinks, resulting in a

more and more informed proposal distribution.

In Sect. 4.7.2, we show that using this method, we obtained a very significant

improvement in the reliability of the search and reduced the time it takes to detect a

new moving vehicle by a factor of 10.

Road Masking

Since a digital road map is available in our application, one simple optimization is

to restrict the search to the road regions. We do this by marking each data point

as “close to road” or “far from road”. Only the points near the road are considered

for new vehicle detection. This optimization greatly improves the efficiency of the

vehicle detection algorithm.

Cleared Area

As we already discussed above, a change in the data can be caused by either noise

or motion. Ultimately the motion evidence score will help disambiguate motion from

noise. However, the motion evidence score can only be used after the vehicle model

has already been fitted to data. To make the search more efficient, we would like to

(5)The annealing is done over N = 10 iterations with zoom = 2−1/3.
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distinguish between noise and motion before performing any model fittings.

When a vehicle moves forward with a minimum velocity vmin for a time interval

∆t, it clears an area of approximately vmin∆tW . Thus, we can examine each data

point to see if enough space has been cleared around it to allow for motion of a vehicle.

If the vehicle is moving away from us, the cleared area will be in the current frame

with respect to the prior frame. If the vehicle is approaching us, the cleared area

will be in the prior frame with respect to the current frame. Thus, we can find both

types of cleared area by performing a symmetric clearing operation between the two

frames.

Even though cleared area logic is not as powerful as the motion evidence score, it

provides a significant speed-up when used as a fast data pre-processing step.

Backward Search

Since vehicle detection takes three frames, the minimum detection time is 0.3 seconds

for a sensor with a frame rate of 10Hz. It turns out that if we only search forward

in time, then the minimum detection time is 0.4 seconds for approaching vehicles

because the first frame is only used to detect dynamic data points in the second

frame. However, if we fit the vehicle in the second frame and then move it backwards

in time, we can utilize the first frame as well. In this case we use frame number two

for the initial vehicle fitting and frame number one for velocity estimation. As before,

the third frame is used to check motion consistency.

4.6 Working with 3D Range Data

As we explained in Sect. 4.3.4, vehicle tracking is a 2D problem, for which compact 2D

virtual scans are sufficient. However, for 3D sensors, such as Velodyne, it is non-trivial

to build consistent 2D virtual scans. These sensors provide immense 3D data sets of

the surroundings, making computational efficiency a high priority when processing

the data. In our experience, the hard work pays off and the resulting virtual scans

carry more information than 2D sensor data.
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Figure 4.9: We determine ground readings by comparing angles between consecutive
readings. If A,B,C are ground readings, then α is close to 0 and thus cosα is close to 1.

To produce consistent 2D virtual scans, we need to understand which of the 3D

data points should be considered obstacles. From the perspective of driving appli-

cations, we are interested in the slice of space directly above the ground and up to

2m high, as this is the space that a vehicle would actually have to drive through.

Objects elevated more than 2m above ground — e.g., tree tops or overpasses — are

not obstacles. The ground itself is not an obstacle (assuming the terrain is drivable).

Moreover, for tracking applications, low obstacles such as curbs should be excluded

from virtual scans because they can prevent us from seeing more important obstacles

beyond them. The remaining objects in the 2m slice of space are obstacles for a

vehicle, even if these objects are not directly touching the ground.

In order to classify the data into the different types of objects described above,

we first build a 3D grid in spherical coordinates. Similarly to a virtual scan, it has a

single point of origin and stores actual world coordinates of the sensor readings. Just

as in the 2D case, this grid is an approximation of the sensor data set because the

actual laser readings in a scan have varying points of origin. In order to downsample

and reject outliers for each spherical grid cell we compute the median range of the

readings falling within.(6) This gives us a single obstacle point per grid cell. For each

spherical grid cell, we will refer to the cone from the grid origin to the obstacle point

as a virtual ray.

The first classification step is to determine ground points. For this purpose, we

select a single slice of vertical angles from the spherical grid (i.e., rays that all have the

same bearing angle). We cycle through the rays in the slice from the lowest vertical

(6)In our implementation, the angular grid resolution for Velodyne based virtual scans is 0.5◦,
which results in three readings per angular grid cell on average — just enough to reject outliers.
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(a) actual scene (b) Velodyne data

(c) after classification (d) generated virtual scan

Figure 4.10: In (c), Velodyne data is colored by type: orange — ground, yellow — low
obstacle, red — medium obstacle, green — high obstacle. In (d), yellow lines denote the
virtual scan. Note the truck crossing the intersection, the cars parked on a side of the road
and the white van parked on a driveway. On the virtual scan, all of these vehicles are clearly
marked as obstacles, but ground, curbs and tree tops are ignored.
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angle to the highest. For three consecutive readings A, B, and C, the slope between

AB and BC should be near zero if all three points lie on the ground (see Fig. 4.9

for illustration). If we normalize AB and BC, their dot product should be close

to 1. Hence, a simple thresholding of the dot product allows us to classify ground

readings and to obtain estimates of local ground elevation. Thus, one useful piece

of information we can obtain from 3D sensors is an estimate of ground elevation. A

similar ground estimation method was independently developed by the MIT Urban

Challenge team [Leonard et al., 2008].

Using the elevation estimates, we can classify the remaining non-ground readings

into low, medium and high obstacles, out of which we are only interested in the

medium ones (see Fig. 4.10). It turns out that there can be medium height obstacles

that are still worth filtering out: birds, insects and occasional readings from cat-eye

reflectors. These obstacles are easy to filter because the BC vector tends to be very

long (greater than 1m), which is not the case for normal vertical obstacles such as

buildings and cars. After identifying the interesting obstacles, we simply project them

on the 2D horizontal plane to obtain a virtual scan.

4.6.1 Detection of Black Obstacles

Laser range finders are widely known to have difficulty seeing black objects. Since

these objects absorb light, the sensor never gets a return. Clearly, it is desirable to

“see” black obstacles for driving applications. Other sensors could be used, but they

all have their own drawbacks. Here, we present a method for detecting black objects

in 3D laser data. Fig. 4.11 shows the returns obtained from a black car. The only

readings obtained are from the license plate and wheels of the vehicle, all of which

get filtered out as low obstacles. Instead of looking at the little data present, we can

detect the black obstacle by looking at the absent data. If no readings are obtained

along a range of vertical angles in a specific direction, we can conclude that the

space must be occupied by a black obstacle. Otherwise the rays would have hit some

obstacle or the ground. To provide a conservative estimate of the range to the black

obstacle, we place it at the last reading obtained in the vertical angles just before the
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(a) actual appearance of the vehicle (b) the vehicle gives very few laser returns

(c) virtual scan with black object detection (d) virtual scan without black object detec-
tion

Figure 4.11: Detecting black vehicles in 3D range scans. White points represent raw
Velodyne data. Yellow lines represent the generated virtual scans.
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(a) traffic density

(b) course A outline

Figure 4.12: Test conditions on course A at the Urban Grand Challenge. The test
consisted of repeated merges into dense traffic (a) on a course with an outline resembling
the Greek letter θ (b).

absent readings. We note that this method works well as long as the sensor is good

at seeing the ground. For the Velodyne sensor the range within which the ground

returns are reliable is about 25− 30m, beyond this range the black obstacle detection

logic does not work.

4.7 Experimental Validation

4.7.1 Tracking Results

The most challenging traffic situation at the Urban Grand Challenge was presented on

course A during the qualifying event (Fig. 4.12) . The test consisted of dense human
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(a) actual scene (b) virtual scan and tracking results

(c) Velodyne data (d) Velodyne scan and tracking results

Figure 4.13: Tracking results on course A at the UGC. In (b) yellow line segments rep-
resent the virtual scan and red/green/white points show results of scan differencing. The
purple boxes denote the tracked vehicles.

Table 4.1: Tracker performance on data sets from three urban environments. Max TP is
the theoretically maximum possible true positive percent for each data set. TP and FP are
the actual true positive and false positive rates attained by the algorithm.

Total Total Correctly Falsely Max TP TP FP
Data Sets Frames Vehicles Id’ed Id’ed (%) (%) (%)
UGC Area A 1,577 5,911 5,676 205 97.8 96.02 3.35
Stanford 2,140 3,581 3,530 150 99.22 98.58 4.02
Alameda 1 1,531 901 879 0 98.22 97.56 0
Overall 5,248 10,393 10,085 355 98.33 97.04 3.3
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Figure 4.14: Shape estimation results on Stanford campus. Vehicles of different sizes are
successfully estimated and tracked.

(a) without shape estimation (b) with shape estimation

Figure 4.15: Shape estimation on the example of a passing bus from a data set taken in
Alameda. Without shape estimation (a) the tracking results are poor because the geometric
model does not fit the data well. Not only is the velocity estimated incorrectly, but the
track is lost entirely when the bus is passing. With shape estimation (b) the bus is tracked
successfully and the velocity is properly estimated.
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driven traffic in both directions on a course with an outline resembling the Greek

letter θ. The robots had to merge repeatedly into the dense traffic. The merge was

performed using a left turn, so the robots had to cross one lane of traffic each time.

In these conditions, accurate estimates of positions and velocities of the vehicles are

very useful for determining a gap in traffic large enough to perform the merge safely.

Vehicles passed in close proximity to each other and to stationary obstacles (e.g.,

signs and guard rails) providing plenty of opportunity for false associations. Partial

and complete occlusions happened frequently due to traffic density. Moreover, these

occlusions often happened near merge points which complicated decision making.

During extensive testing, the performance of our vehicle tracking module has been

very reliable and efficient (see Fig. 4.13). Geometric shape of vehicles was properly

estimated (see Figs. 4.14 and 4.15), which increased tracking reliability and improved

motion estimation. The tracking approach proved capable of handling complex traffic

situations such as the one presented on course A of the UGC. The computation time

of our approach averages at 25ms per frame, which is faster than real time for most

modern laser range finders.

We also gathered empirical results of the tracking module performance on data

sets from several urban environments: course A of the UGC, Stanford campus and a

port town in Alameda, CA. In each frame of data, we labeled the vehicles a human

is able to identify in the laser range data. The vehicles had to be within 50m of the

ego-vehicle, on or near the road, and moving with a speed of at least 5mph. We

summarize how the tracker performed on the labeled data sets in Tbl. 4.1. Note that

the maximum theoretically possible true positive rate is lower than 100% because

three frames are required to detect a new vehicle. On all three data sets, the tracker

performed very close to the theoretical bound. Overall, the true positive rate was

97% compared to the theoretical maximum of 98%.

4.7.2 Detection Results

To evaluate the performance of the vehicle detection algorithm empirically, we forced

the tracking module to drop each target as soon as it was detected. We then ran
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Table 4.2: Vehicle detector performance on data sets from three urban environments. For
each car we counted how many frames it took to detect it. By construction of the algorithm,
at least three frames are required. We also counted the number of false detections. The ’%
Detected’ columns give the percentages of cars detected by frame three, four and five. ’FP
%’ is the false positive rate attained by the vehicle detection algorithm.

Total Detected in Frame False % Detected by Frame FP
Data Sets Cars 3 4 5 Det. 3 4 5 %
UGC Area A 713 596 103 14 1 83.6 98.0 100.0 0.1
Stanford 679 645 32 2 2 95.0 99.7 100.0 0.3
Alameda 2 532 485 45 2 5 91.2 99.6 100.0 0.9
Overall 1,924 1,726 180 18 8 89.7 99.1 100.0 0.4

vehicle detection on data sets from three different urban environments: Area A of

the Urban Grand Challenge qualifiers, the Stanford campus, and a port town in

Alameda, CA (see Tbl. 4.2). In each frame of data, we labeled all vehicles identifiable

by a human in the range data. The vehicles had to be within 50m of Junior, on or

near the road, and moving with a speed of at least 5mph. For each vehicle, we counted

how many frames it took to detect it. We also counted false positives. Overall, all

vehicles were detected in five frames or less and the false positive rate was 0.4%.(7)

To evaluate motion evidence contribution, we ran the algorithm with and without

motion evidence logic on labeled data sets. The use of motion evidence brought false

discovery rate from 60% down to 0.4%. At the same time the rate of false negatives

did not increase.

We used prerecorded data sets to evaluate performance gains from the optimiza-

tion techniques. We compared the computation time of the algorithm with and

without road masking. Road masking sped up the algorithm by a factor of eight. We

also ran the algorithm with and without cleared area logic. The speed up from this

optimization was approximately a factor of three. The backward search optimization

reduced the minimum detection delay for oncoming traffic by 25%.

To evaluate improvements from Scaling Series, we used a 30 second data set of our

ego-vehicle following another car. For evaluation purposes, we modified the tracker

(7)Note that the false positive rate is much lower for detection than for tracking. When a stationary
object is falsely identified as moving by the detector, the tracker may keep it for many turns because
we allow tracking of vehicles that came to a stop.
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(a) standard PF

(b) Scaling Series

Figure 4.16: Comparison of standard PF with Scaling Series for new vehicle detection.
The horizontal axis denotes time in seconds. The vertical axis has two states: 0 — target
is not tracked, 1 — target is tracked. To verify target acquisition, the code was specifically
modified to discontinue tracking a target after 1 second. By construction of the algorithm,
the minimum possible time spent in non-tracking state is 0.3 seconds. (a) standard PF has
a long target acquisition time — too dangerous for autonomous driving. (b) Scaling Series
method has nearly perfect acquisition time.

to drop each target after tracking it for 1 second. Fig. 4.16 presents comparison of

results obtained using a standard particle filter and Scaling Series. Vehicle detection

with the standard particle filter took 4.44 seconds on average and 13.7 seconds in the

worst case, which can easily result in a collision in a real life situation. In contrast

the Scaling Series algorithm took 0.32 seconds on average to detect the vehicle, with

the worst case being 0.5 seconds. Thus, the Scaling Series approach performs very

close to the theoretical minimum of 0.3 seconds.

Several videos of vehicle detection and tracking using the techniques presented in

this chapter are available at the website

http://cs.stanford.edu/people/petrovsk/uc.html

http://cs.stanford.edu/people/petrovsk/uc.html
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4.8 Conclusions

We have presented the vehicle detection and tracking module developed for Stanford’s

autonomous driving robot Junior. Tracking is performed from a high-speed moving

platform and relies on laser range finders for sensing. Our approach models both

dynamic and geometric properties of the tracked vehicles and estimates them with a

single Bayes filter per vehicle. In contrast to prior art, separate data segmentation

and association steps do not need to be carried out prior to the filtering step. The

approach has proven to be reliable, efficient and capable of handling challenging traffic

situations, such as the ones presented at the Urban Grand Challenge.

Our approach explicitly models tracked vehicle’s geometric shape, which is es-

timated simultaneously with the vehicle’s motion using an efficient RBPF method.

The introduced anchor point notion allows us to correctly model the shape vs. motion

ambiguity, previously unaddressed in vehicle tracking literature. This reduces motion

uncertainty and improves the estimation of vehicle dynamics.

Unlike prior vehicle tracking approaches, which relied on features for tracking, we

introduced a direct measurement model for range scans. This approach eliminates

the need for data segmentation and association steps. Moreover, it naturally handles

partial occlusions of the tracked vehicles, including situations where the vehicle scan

is split up into multiple disjoint clusters due to occlusion.

We presented a number of optimization techniques to improve accuracy and effi-

ciency of vehicle detection. These techniques are largely independent of each other.

To aid the design decisions of future vehicle tracking approaches, we provided an

analysis of how each technique influences the end result.

We presented techniques for efficient manipulation of 3D data clouds and con-

struction of 2D virtual sensor models. The method relies on a ground estimation

technique, which we expect to be applicable not only in urban environments but also

in off-road settings with rugged terrain. The method purposefully ignores short ob-

stacles in an effort to extract data useful specifically for vehicle tracking. As a result,

detection and tracking of vehicles is unimpeded by curbs and short foliage present in
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urban settings, or even small rocks and rough features in completely off-road environ-

ments. It also ignores overhanging obstacles — such as trees, signs, and overpasses

— if there is sufficient clearance for a vehicle to pass underneath. However, due to

the fact that short obstacles are ignored, the presented data extraction method is

not suitable for estimation of terrain drivability. For this reason, we used a separate

method for detection of small hazards as described by Montemerlo et al. [2008].

We also introduced a method for detection of poorly visible black objects in 3D

range data. This method is applicable not only for vehicle tracking but also for

static mapping and collision avoidance. Moreover it can be extended to dark object

detection using 3D range scanners in indoor settings.

There is ample room for future work in the field of perception for autonomous

urban driving. The presented approach does not model pedestrians, bicyclists, or

motorcyclists — a prerequisite for driving in populated areas. Another promising

direction for future work is fusion of different sensors, including laser, radar and

vision.
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Chapter 5

Mobile Manipulation

5.1 Introduction

Many believe that general-purpose robots will soon inhabit home/office environments

and carry out a large variety of tasks, for example, fetching items, delivering mes-

sages, or cleaning up a room. At a bare minimum, such robots must navigate in

these environments as well as interact with them. In this chapter, we present a

unified probabilistic approach to state estimation for simultaneous manipulation (of

objects in the environment) as well as global navigation. Using this approach, we

successfully enable a mobile manipulation platform to navigate from far away up to

a door, manipulate the door handle so as to open the door, and enter an office while

simultaneously continuing to manipulate the door. This work was done as part of

the STAIR (STanford Artificial Intelligence Robot) project, which has the long-term

goal of building a useful robotic assistant that can carry out home/office tasks such

as those described above.

Over the last decade, probabilistic techniques have found great success in mobile

robot navigation (e.g., Fox et al. [1999]). In much of this literature, the environment

is modeled as static (unchanging), and there is no interaction between the robot and

the environment. More recently, a number of authors have developed models for

non-static environments. For example, Biswas et al. [2002], Anguelov et al. [2004,

2002], and Hähnel et al. [2003] use an off-line EM algorithm to differentiate between

119



120 CHAPTER 5. MOBILE MANIPULATION

Figure 5.1: STAIR robot platform manipulating a door during one of our experiments.

static and non-static parts of an environment. A few algorithms also perform on-

line mapping while taking into account non-static information. Wolf and Sukhatme

[2004] use separate occupancy grids for dynamic obstacles (e.g., moving people) and

static obstacles; Stachniss and Burgard [2005] maintain clusters of local grid maps

corresponding to different observed configurations of the environment; and Biber and

Duckett [2005] model temporal changes of local maps.

Robots typically interact with the environment using manipulators. Most work on

manipulation focuses on properties of specific objects to be manipulated, rather than

on moving in or understanding the global environment (e.g., Shekhar et al. [1986],

Moll and Erdmann [2003]). With a few exceptions (e.g., Slaets et al. [2004] and our

own work), most of this literature also does not have probabilistic basis, and thus

at first glance, it appears difficult to derive a single unifying model that seamlessly

integrates navigation and manipulation.

The task of mobile manipulation combines both navigation and manipulation.

Most current work in mobile manipulation treats these as two tasks to be solved

separately: first, mobile robotics techniques are used to navigate to a specific point;

then, a separate set of techniques is used to localize objects to be manipulated.

For example, in the context of door opening, navigation and manipulation of the

door handle were considered by Rhee et al. [2004] and Petersson et al. [2000]. In

both approaches, navigation to the door was performed as a separate task. The
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door handle is then localized only after the robot is already in front of the door,

and a combination of visual servoing and tactile feedback is then used to grasp the

door handle, and finally the door is opened by having the robot follow (with some

compliance) a pre-scripted set of motions. Localization during door opening or while

entering the doorway was not considered.

In this chapter, we present a unified, real-time, algorithm that simultaneously

models the position of the robot within the environment, as well as the objects to be

manipulated. It allows us to consider manipulation of large objects, such as doors,

filing cabinets, and chairs. When the state of these objects changes, it significantly

impacts navigation tasks. Thus, our goal is to simultaneously model a dynamic envi-

ronment as well as localize ourselves within it. Because this objective is reminiscent

to that of simultaneous localization and mapping (SLAM), we will find that we can

borrow many ideas from SLAM [Thrun et al., 2005]. However, our objective is also

different in two significant ways: first, the environment changes very significantly

as we interact with (manipulate) it, and second, the precision required (1-5mm) for

manipulation is 1-2 orders of magnitude higher than is typical for most SLAM appli-

cations.

Tested successfully on multiple doors, our approach enables our robot to navigate

towards, manipulate, and move through a door (Fig. 5.1). In contrast to prior art

on door opening, we are able to estimate parameters with high precision even during

motion of the robot. Thus, no additional delay is required to locate the door handle

once the robot reaches the door. Further, using the same, seamlessly integrated

probabilistic model, the robot is able to precisely estimate the position of the door

even while the robot and/or door are in motion, so that the robot can continuously

manipulate the door even while it is passing through it.
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Figure 5.2: Dynamic Bayesian network model of the robot pose Xt, object state Ωt,
measurements Dt, and controls ctlt.

5.2 Representation

5.2.1 Probabilistic Model and Notation

One of our tasks is to determine the robot’s position and orientation within an en-

vironment. We denote the robot’s pose by X = (x, y, θ). In this chapter we will

restrict our attention to manipulation of a single dynamic object placed in the envi-

ronment. Concretely, consider an example where the position of the object is known

(a reasonable assumption for doors, filing cabinets, elevators, etc.), but whose shape is

governed by an object state parameter Ω. For example Ω could be the angle at which

a door is open, or the extent to which a drawer is pulled out of a filing cabinet.(1)

At each time step t, we give the robot a new motion command, ctlt, and obtain

a new set of measurements Dt from its sensors. The robot pose and the object state

evolve over time, and at time t are denoted by Xt and Ωt respectively. We model

Xt, Ωt, Dt, and ctlt jointly using the dynamic Bayesian network shown in Fig. 5.2.

(1)In our door-opening application, Ω ∈ R is a real number denoting the opening angle of the door.
More generally, Ω ∈ Rn could be vector-valued, when multiple parameters are needed to describe
shape, configuration, position, and orientation of the object being manipulated. Note that this is
similar to the vector-valued vehicle geometry description, which we used in Chapter 4. In fact, as
we will see in Sect. 5.3, the derivations are almost identical.
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In detail, given the robot pose and a new control, the pose evolves according to a

probabilistic motion model derived from robot kinematics:

p(Xt|Xt−1, ctlt).

The object state evolves according to:

p(Ωt|Ωt−1).

Similarly, sensor measurements are governed by a measurement model (discussed in

Sect. 5.2.3 in more detail):

p(Dt|Ωt, Xt).

We define the robot trajectory to be a vector of all robot poses up to the current

time step, written X t = (X1, X2, ..., Xt). Similarly, we write Dt and ctlt to denote all

measurements and controls up to time t.

5.2.2 Representation of Environment

Following standard practice in mobile robot navigation, we represent the environment

using an occupancy grid map (Fig. 5.3a) of the form typically constructed by mobile

robots using SLAM. These coarse maps typically use grid cells that are 10cm x 10cm,

and are thus well suited to navigation where 10cm resolution is acceptable. However,

manipulation tasks require 1-5mm precision, and constructing a 2mm grid map of an

entire building is clearly impractical—both from a memory storage point of view, and

because these maps are typically built using noisy sensors. Consequently, we choose

to use a combination of high and low resolution maps. We use a high resolution map

only for the parts of environment (i.e., the objects) we are interested in manipulat-

ing. In this chapter, we use models comprising polygonal objects (“polygon models”)

to represent these objects at high resolution. This representation is well-suited to

modeling doors, filing cabinets, straight walls, etc. Fig. 5.3c shows an example poly-

gon model of a door together with the surrounding grid map. Our polygon models

also allow us to model the changes in the shape of articulated objects (e.g., opening
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(a) (b) (c)
Figure 5.3: (a) Occupancy grid map. (b) Actual environment. (c) Our representation:
polygon model is “pasted” onto a grid map. The green box shows the bounding box of the
polygon model; and the red lines show the polygon model.

doors or filing cabinets) in a very natural and efficient manner, simply by letting the

position or orientation of some of the polygons be parameters.

Thus, a complete representation of the environment consists of a combination of

an occupancy grid map and a polygon model. Further, the polygon model’s shape is

governed by object’s state parameter Ω.

Our choice of this combination of models is motivated by our goal of having the

robot be able to open any door (and enter any office) in our office building. Since

all offices in our building are built on a common theme, all doors are essentially

identical, and thus it suffices to build only a single polygon model of a door (via

careful measurement). Wherever a door is present in the building, this same polygon

model can then be rapidly “pasted” onto a 10cm-resolution grid map that has been

built via standard SLAM techniques. This allows us to very rapidly acquire a map

of the entire building, including 0.1cm-resolution models of all the doors in it.

5.2.3 Measurement Model

This section describes the measurement model P (Dt|Xt,Ωt) used in our approach.

For this work, we focused on using a single sensor: a SICK laser scanner. Because

our map comprises both low-resolution (10cm-grid cells) and high-resolution (1-mm,

polygon model) components, we desire a measurement model that has a consistent

interpretation regardless of the resolution at which the map is represented. Specif-

ically, we know that the 10cm grid cells are inaccurate—the building walls, chairs,
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(a) (b)

Figure 5.4: Example of a laser ray traveling through grid cells.

etc., are unlikely to be aligned with the global 10cm grid—and thus, we wish to model

the 10cm grid map as probabilistically impeding the laser ray in a way that is noisier

than the more precise polygon model.

In detail, the 10cm grids are usually only partially occupied, and thus there is a

chance of the laser passing through it entirely. Thus, rather than simply modeling

each grid cell as occupied or unoccupied, we will instead associate with each grid cell

a probability that a laser ray terminates within that grid cell. Because our map has

multiple resolutions, it is insufficient to associate with each grid cell a probability of

that grid cell impeding the laser. To understand this, consider the toy map shown

in Fig. 5.4, which we can choose to represent via either a low-resolution (10cm x

10cm) grid, or a higher-resolution (5cm x 5cm) grid. If we model a grid-cell as having

a probability p of impeding a laser, then the chance of the laser being impeded by

the 10cm x 10cm region in Fig. 5.4a is p, whereas the chance for the map on the

right is p3 (since it passes through three grid-cells). Clearly, it is undesirable that the

measurement model change just because we chose to represent an object at a different

resolution.

There are a variety of solutions to this, but we consider the most natural one to

be the probabilistic interpretation of occupancy grid maps proposed by Eliazar and

Parr [2004]. Their interpretation was motivated by the observation that the more

naive model (using a fixed probability p for each grid cell) shows anomalous effects

depending on the angle at which a laser travels relative to the grid lines, even if all

the grid cells are the same resolution. However, the same interpretation turns out to

also elegantly address our problem of using multi-resolution maps.
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In this model, each cell of a grid map is associated with an opacity ζ.(2) The

probability of a laser ray being interrupted by this cell depends both on the opacity

and on the distance the ray travels within the cell. In detail, the probability of a ray

terminating (i.e., being interrupted) while traveling from point A1 to point A2 in a

medium of opacity ζ is defined as

P (terminate(ζ, A1, A2)) = 1− exp

(
−||A1 − A2||

ζ

)
. (5.1)

Immediately, we see that the probabilities of the ray terminating under the maps in

Fig. 5.4a or 5.4b are the same, since the total distance is the same in either case

(assuming that all the grid-cells have the same opacity ζ). Thus, this model allows

us to give a consistent probabilistic interpretation to multi-resolution maps.

More generally, suppose a laser travels in a direction that (if it were unimpeded)

would take it through N different regions in the map. Here, a “region” can be a grid

cell (from the low-resolution map) or a polygonal region (from the polygon map),

such as a polygon that represents the shape of a door, or one that represents part

of the door-frame. We let A0, A1, . . . , AN denote the points at which the laser ray

would transition from one region to another (if it were to pass through all regions

unimpeded), with A0 denoting the origin of the laser ray. We also let ζ1, . . . , ζN denote

the opacities of these regions. The probability of the ray terminating within the i-th

region is then

P (terminate(ζi, Ai−1, Ai))
i−1∏
k=1

(1− P (terminate(ζk, Ak−1, Ak))) (5.2)

=

(
1− exp

(
−||Ai−1 − Ai||

ζi

)) i−1∏
k=1

exp

(
−||Ak−1 − Ak||

ζk

)
. (5.3)

This allows us to define the probability that the laser terminates at any specific range

ρ. Finally, if the laser terminates at a certain range ρ, we model the actual observed

(2)The chance of a laser terminating/being interrupted is a decreasing function of ζ, so this param-
eter is perhaps better thought of as “transparency” rather than “opacity.” However, for consistency
we will use Eliazar and Parr [2004]’s terminology.
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laser measurement D to be the range corrupted by Gaussian noise:

D = ρ+ ε, (5.4)

where ε is a random variable ∼ N (0, σ2
r).

5.3 Inference

5.3.1 Rao-Blackwellization

We now describe an inference algorithm that reasons about the robot trajectory and

the object state based on a set of measurements and controls. Specifically, we compute

the following belief:

belt := p(Ωt, X
t|Dt, ctlt). (5.5)

Note that the belief includes the entire robot trajectory up to time t, but only the

latest object state. This choice turns out to be important for deriving an efficient

filter. (This is a consequence of the fact that the current belief about the state of

the door depends on the entire past trajectory. For example, this belief incorporates

information about which of the past sensor measurements were directed at the door. A

similar derivation is also used by Montemerlo [2003] and Murphy and Russell [2001].)

In detail, we apply a Rao-Blackwellized particle filter (RBPF ), where each particle

represents a guess of the entire robot trajectory and a belief about the object state

St. Thus, we split up the full belief into two conditional factors:

belt = p(X t|Dt, ctlt)p(Ωt|X t,Dt, ctlt). (5.6)

The first factor represents the robot trajectory belief:

Rt := p(X t|Dt, ctlt). (5.7)
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The second factor represents object state belief, conditioned on the robot trajectory:

St := p(Ωt|X t,Dt, ctlt). (5.8)

The factor Rt will be approximated using a set of particles; the factor St, which

estimates the angle of the door, will be approximated using a Gaussian distribution

(one Gaussian per particle).

5.3.2 Robot Trajectory Estimation

Within each particle, we record a guess of the robot trajectory X t, and a Gaussian

approximation St to the object state. Let Xt denote the collection of particles at time

t. We compute Xt recursively from Xt−1. Suppose that at time step t, particles in

Xt−1 are distributed according to Rt−1. We compute an intermediate set of particles

X̄t by sampling a guess of robot pose at time t from the motion model. Thus, particles

in X̄t are distributed according to the robot trajectory prediction distribution

R̄t := p(X t|Dt−1, ctlt). (5.9)

To ensure that particles in Xt are distributed according toRt (asymptotically), we gen-

erate Xt by sampling from X̄t with replacement in proportion to importance weights

given by wt = Rt/R̄t. Sect. 5.3.4 explains how these weights are computed. For now,

we note that since only the latest robot pose is used in the update equations, we

do not need to actually store entire trajectories in each particle. Thus the memory

storage requirements per particle do not grow with t.

5.3.3 Object State Estimation

We use a Gaussian/extended Kalman filter (EKF) approximation to estimate the

object state belief, St. Thus we keep track of the mean µt and variance σt of the

approximating Gaussian in each particle.

Since St involves only the latest object state Ωt (and not the entire object state

history Ωt), storage and computation requirements here also do not grow with t. We
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have:
St = p(Ωt|X t,Dt, ctlt)
∝ p(Dt|Ωt, X

t,Dt−1, ctlt) p(Ωt|X t,Dt−1, ctlt)

= p(Dt|Ωt, Xt) p(Ωt|X t,Dt−1, ctlt).

(5.10)

The first step above follows from the Bayes’ rule; the second step follows from the

conditional independence assumptions of our model (Fig. 5.2). The final expression in

(5.10) is a product of a measurement likelihood term and an object state (dynamical

model) prediction term, which is defined (similarly to R̄t) as

S̄t := p(Ωt|X t,Dt−1, ctlt)

=

∫
Ωt−1

p(Ωt|Ωt−1)p(Ωt−1|X t−1,Dt−1, ctlt) dΩt−1.
(5.11)

Because p(Ωt−1|X t−1,Dt−1, ctlt) is already approximated as a Gaussian (represented

by a Rao-Blackwellized particle from the previous timestep) and we use a linear-

Gaussian model for p(Ωt|Ωt−1), we can easily compute the mean and variance of

S̄t above in closed form. Similarly, by using a Laplace approximation to obtain a

Gaussian approximation to the measurement model p(Dt|Ωt, Xt) and using (5.10), we

can also compute the mean and variance of St in closed form.

5.3.4 Computing Importance Weights

Briefly, following the derivation by Montemerlo [2003], it is straightforward to show

that the importance weights wt should be

wt = Rt/R̄t =
p(X t|Dt, ctlt)
p(X t|Dt−1, ctlt)

= ES̄t
[ p(Dt|Ωt, Xt) ] . (5.12)

In words, the importance weights are the expected value (over the object state pre-

diction distribution) of the measurement likelihood. Since the two terms p(Dt|Ωt, Xt)

and S̄t are already approximated as Gaussians (as described in Sect. 5.3.3), this ex-

pectation can be expressed as an integral over a product of two Gaussians, and can

thus be carried out in closed form.
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5.3.5 Using Scaling Series to Increase Precision

For mobile robot navigation, 10cm precision is usually acceptable and gives reason-

able performance. Thus in deployed implementations, it is fairly common practice to

assume a large laser noise variance and use only a few laser rays per measurement

update, which results in an approximation to the next-state Rt that has fairly large

variance. However, to perform manipulation tasks, we require sub-centimeter preci-

sion in localization. Achieving this requires that we use most of the laser measure-

ments in every update, and assume a realistic (small) variance in the laser readings.

This results in a very peaked measurement model, in which most of the probability

mass of our robot’s position estimate is supported by a very small region (of perhaps

1-5mm diameter). A consequence of this is that it becomes difficult during the usual

importance sampling step to draw a sufficient number of particles from this region to

represent it well.

In the tactile localization application of Chapter 2, we also had the similar prob-

lem of a very sharply peaked measurement model. We proposed the Scaling Series

algorithm to efficiently produce a much more informed proposal distribution, one

that is concentrated around the areas of high probability mass. We refer the reader

to Chapter 2 for details on Scaling Series, but briefly, the algorithm works by perform-

ing a series of successive refinements, generating an increasingly informative proposal

distribution at each step of the series. The successive refinements are performed by

gradually annealing the noise variance parameter within the measurement model from

an artificially high value down to a realistic variance setting.

In the mobile manipulation setting, we applied the Scaling Series algorithm to

choose the proposal distribution on each step of importance sampling in our particle

filter. To do this, we annealed the measurement noise variance parameter σr in

(5.4) and performed a series of successive refinements. This resulted in a much more

informed proposal distribution, which allowed us to perform localization using only

about 100 particles per step.
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(a) (b) (c)

Figure 5.5: Robot localization with estimation of door state. The robot is denoted via
the small rectangle; the rays emanating from the robot show the laser range scans; and the
estimated door angle is also shown in the figures. The sequence of three images show the
robot approaching, opening, and having passed through the door.

5.4 Experimental Results

We apply our algorithm to the task of manipulating door handles and doors. The

STAIR (STanford Artificial Intelligence Robot) project is an ambitious, long-term

(10-15 year) project that seeks to build a useful home/office robotic assistant. Thus,

the ability to use doors and enter offices and conference rooms is of great practical

importance to the robot.

We obtained 10cm resolution occupancy grid map by using standard SLAM al-

gorithms with a mobile robot equipped with a laser. (See Fig. 5.3a.) Further, as

discussed in Sect. 5.2.2, because all doors in our building are essentially identical, it

is possible to build a single precise polygon model of a door, and then rapidly “paste”

the same model into the grid map at all places where a door exists. Our polygon

model includes the door itself, the door frame, and a small surrounding region, and

also encodes the position of the door hinge. (Figs. 5.3b and 5.3c show a door and its

polygon model representation.) Although not part of the polygon model, we note that

the door handle is also at a fixed (known) position relative to the surface of the door,

and can thus be straightforwardly computed if the position of the door (including the

opening angle Ω of the door) is known.

The STAIR mobile manipulation platform comprises a Segway mobile platform,

a Harmonic Arm manipulator, and a SICK laser. The arm has a fairly limited opera-

tional range (workspace), and has barely enough power to turn the door handles—it

is able to do so only from certain configurations, where the load is spread more evenly



132 CHAPTER 5. MOBILE MANIPULATION

among its motors—and thus there is only a very small 3cm x 3cm region from where

the robot is physically capable of opening the door. Even within this region, localiza-

tion accuracy of about 1-5mm is necessary to correctly grasp, turn, and manipulate

the handle.

Several videos showing results of the robot opening a door are available at the

website

http://cs.stanford.edu/people/petrovsk/stair/

The robot navigates to the door, turns the handle and opens the door slightly; then

as it is moving through the door, the arm continues to manipulate the door by con-

tinuously pushing it open in front of the robot. Our state estimation algorithm is

used in real-time to continuously estimate the position of the robot and the opening

angle of the door, and thereby control the arm to continuously push the middle of

the door. Even though the map changes drastically each time the robot opens the

door and moves through it (see Fig. 5.5), in our experiments, the proposed approach

invariably gives precise state estimates and results in successfully manipulating and

navigating through the door. Tested 12 times (3 times on each of 4 doors), the al-

gorithm succeeded each time in giving sufficiently accurate state estimates to open,

continuously manipulating, and move through the door.

Although our algorithm allowed us to solve the practical problem of going through

doors in our building, we now also present a more formal evaluation of its performance.

For the experiments presented below, we collected several minutes of laser and

odometry data of the robot’s approach towards a door in twelve distinct test situa-

tions. We considered 4 different doors (in different parts of the building); we consid-

ered each door in 3 different positions (closed, open, half-open). The purpose of this

set of experiments was to test our approach against others in identical conditions. To

ensure fairness of comparison, the same real-time computation requirements were im-

posed on all three algorithms. Since the algorithms considered are non-deterministic,

we ran each algorithm 10 times for each dataset. To give a quantitative evaluation,

we computed (for each algorithm) the root-mean-square (RMS) error with respect

to ground truth among 10 runs for each test situation, and then averaged over all

http://cs.stanford.edu/people/petrovsk/stair/
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Algorithms
Datasets AMCL RBPF RBPF-SS
1 20.158cm 1.639cm 0.239cm
2 29.557cm 0.599cm 0.392cm
3 52.167cm 1.335cm 0.272cm
4 04.582cm 1.263cm 0.115cm
5 14.956cm 1.668cm 0.446cm
6 88.873cm 2.597cm 0.550cm
7 04.653cm 1.481cm 0.253cm
8 08.925cm 1.329cm 0.102cm
9 08.993cm 1.610cm 0.172cm
10 13.589cm 3.052cm 0.499cm
11 05.921cm 1.524cm 0.273cm
12 98.063cm 1.962cm 0.560cm
Overall RMS 42.975cm 1.779cm 0.358cm

Table 5.1: Positioning RMS error comparison of three localization algorithms: Adaptive
MCL (AMCL), Rao-Blackwellized Particle Filter (RBPF), and the full proposed algorithm
(RBPF-SS). Each of the 12 experiments shown was an average over 10 runs of each algo-
rithm; the final row shows the overall RMS error.

twelve test situations (summarized in Tbl. 5.1). For the ground truth, we used the

maximum a posteriori estimate of the door and robot position using a fine (2mm)

grid within a 10cm area around the robot’s final position in each test case.

To provide a baseline comparison, we used the Adaptive MCL (AMCL) localization

algorithm implemented in Player by Gerkey et al. [2003]. This implements the KLD

MCL method proposed by Fox [2001], and uses a 10cm occupancy grid map. In

agreement with results reported by Stachniss and Burgard [2005], we noticed that if

the actual door state does not correspond to the mapped door state, the robot gets

“lost,” which manifests itself as increased positioning error. If the door state does

correspond to the map, the robot is able to localize with a RMS error of 12.6cm.

We also tested an “intermediate” algorithm that uses the polygon map and grid

map combination, also using a Rao-Blackwellized particle filter, but without the Scal-

ing Series algorithm to choose its proposal distributions. Empirically, this algorithm

is able to localize and estimate the door state fairly accurately. The RMS error of

robot pose in this scenario was 1.78cm, which is insufficient accuracy for manipulating
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the door handle.

Our full algorithm, using the Scaling Series proposal distributions (and the same

update rate as the intermediate algorithm) is able to estimate robot pose with an

RMS error of about 3mm. Using this algorithm, we were able to reliably open multiple

doors.

5.5 Discussion and Conclusions

One frequently discussed difficultly of Rao-Blackwellized algorithms, specifically of

FastSLAM, is that of extinction of particles. In FastSLAM, if a robot does not visit

part of a map for a long time, then because the map is static, through the normal

death of particles there will be very little diversity in its representation of the belief

about that part of the map. Less formally, the algorithm becomes overly confident in

its estimate of the map, which makes it difficult for the robot to accurately estimate

that part of the map if it later returns to it. (See discussion by Montemerlo [2003].)

In contrast, because we are estimating a dynamic parameter—namely the opening

angle of the door, which is modeled as a dynamic, changing, variable—this is not a

problem for our algorithm. Specifically, if the robot wanders away from the door for

a long time, then its belief of the door state will converge to its stationary (uncertain)

distribution, and thus the particle filter will correctly capture the fact that we should

be very uncertain about the state of a door that we have not seen for some time.

One possible direction for future work is consideration of highly crowded envi-

ronments. While we did have occasional passersby during our experiments (and our

algorithm was resilient to these effects), overall the amount of unmodeled effects was

low and the map provided a good representation of the environment. Unmodeled ef-

fects can be considerably more frequent in highly crowded or cluttered environments,

e.g., high traffic public areas such as a museum or a cinema theater. These environ-

ments have been considered (from a mobile robot localization perspective) by Fox

et al. [1999], who proposed a range data filtering technique to improve robustness of

localization. Similar techniques can be added to our algorithm to increase robustness

for mobile manipulation in these environments.
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While designing the algorithm, we also had in mind the applications of manipulat-

ing (opening/closing) a filing cabinet sliding drawer, and moving a piece of furniture

(e.g., a chair). Either of these fit into our framework very naturally (Ω = drawer

position; or Ω = chair position), and we believe our approach will extend straightfor-

wardly to such applications as well.

In summary, we have presented a single, unified, probabilistic model for simulta-

neously localizing a mobile manipulator robot and estimating the state of an object

being manipulated. Our algorithm uses a combination of a high- and a low-resolution

map, and was successfully applied to door manipulation, a task which requires very

precise state estimation.
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Chapter 6

Guaranteed Inference

6.1 Introduction

Accurate and reliable state estimation is required for safe and dependable robot op-

eration in human environments, where uncertainty is high due to inherent unpre-

dictability. However, reliable estimation can be challenging in this setting because

the state has to be inferred from non-linear relative sensors . These sensors include

the most common types used in robotics: laser, vision, and tactile. In these cases, the

underlying probability distribution (the belief) is highly complex with many discon-

tinuities and narrow peaks. The complexity is due to the properties of the sensors:

occlusion boundaries cause discontinuities and high sensor accuracy leads to nar-

row peaks. Since the sensors are relative, the belief estimation problem becomes

highly non-trivial whenever large initial uncertainty must be considered. In Chap-

ter 1, we termed beliefs exhibiting this type of complexity high-roughness beliefs due

to their similarity to rough terrain with many sharp transitions and narrow peaks.

Although a variety of Monte Carlo and deterministic methods have been developed

for non-linear problems [Doucet and De Freitas, 2001, Evans and Swartz, 2000], the

reliability of these methods for high-roughness beliefs degrades as initial uncertainty

increases. Methods that can provide guaranteed results for these beliefs are virtually

nonexistent.

Due to the challenge posed by high-roughness beliefs, two main paths have been

137
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pursued in order to simplify the problem. The first method is to reduce the roughness

by smoothing the measurement model. This method is popular in the indoor localiza-

tion literature [Thrun et al., 2001, Gerkey et al., 2003, Plagemann, 2008]. However,

sharp transitions in the belief actually contain very accurate information, which is

discarded by smoothing, thus, leading to inaccurate estimates and increased ambi-

guity. The second method is to reduce the initial uncertainty. This method is very

popular in visual tracking systems, where the state has to be initialized manually as

documented in a recent study of 3D visual tracking literature by Lepetit and Fua

[2005]. However, as the study concludes, methods incapable of dealing with global

uncertainty tend to be inherently fragile because they can not recover from tracking

failures.

In this chapter, we present an inference method suitable for moderately dimen-

sional problems, in which the state has to be recovered from global uncertainty based

on a set of non-linear relative sensor measurements. The method is a variation of an

adaptive grid algorithm [Genz and Kass, 1997, Burgard et al., 1998], in which esti-

mates of belief variation are used to drive the grid refinement process. Unlike [Genz

and Kass, 1997, Burgard et al., 1998], we rely on analysis of the measurement model

to produce sound bounds on the variation of the belief. As a result, our approach

guarantees that all global optima are found and provides provable approximation error

bounds. The method is capable of handling arbitrarily rough beliefs without discard-

ing information. It can even handle the extreme case of perfect sensors, known to

break most popular belief estimation methods. Thus, the method allows the robot to

make the most of its sensors by extracting maximum amount of information contained

in the sensor data.

We have termed the approach Guaranteed Recursive Adaptive Bounding (GRAB).

It is applicable to a variety of pose estimation problems with relative sensors. We

demonstrate its generality on two basic competency tasks: indoor navigation and

tactile manipulation, where it drastically outperforms state-of-the-art. In our exper-

iments, GRAB increased decision safety to 100%. Empirical evaluation shows that

the performance of GRAB scales logarithmically with the desired approximation pre-

cision, allowing for efficient high-accuracy estimation. This property is due to the
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fact that the approach falls within the class of divide-and-conquer methods .

In indoor localization experiments, the approach led to 1mm accuracy of pose

estimation based on the commonly used laser range finders. This high accuracy is

useful for accurate maneuvering in tight spaces and is sufficient for reliable manip-

ulation of stationary objects of interest within the environment (e.g., door handles,

elevator buttons, light switches, etc.) as we have demonstrated in Chapter 5. It

also opens up new potential applications during building construction, inspection

and maintenance. In the tactile manipulation setting, the method results in efficient

and reliable 6DOF object pose estimation with sub-millimeter accuracy, allowing for

reliable manipulation.

Compared to the Scaling Series algorithm presented in Chapter 2, GRAB pro-

vides guaranteed results and can handle discontinuous beliefs, which commonly arise

in indoor localization. On the other hand, Scaling Series may perform better for

differentiable beliefs, such as the tactile object localization problem. We provide

empirical comparisons between GRAB and Scaling Series in Sect. 6.5.

6.2 Related Work

Methods for belief estimation with non-linear measurements can be divided into de-

terministic and Monte Carlo classes. Deterministic methods include uniform grid

(UG) and, for problems with dynamics, histogram filter [Thrun et al., 2005]. Adap-

tive grid methods have been developed to improve efficiency by concentrating samples

near narrow modes. One of the earliest adaptive grid methods is subregion adaptive

integration (SAI ), which has been shown by Genz and Kass [1997] to outperform

Monte Carlo methods in moderate dimensions. SAI selectively subdivides regions

based on their estimated contribution to the cumulative integration error. The key

difficulty here (and in other adaptive grid methods) is estimating the variation of the

belief within a subregion. SAI estimates the variation by evaluating the function at

selected points. This method is error prone and tends to underestimate the variation.

Genz and Kass specifically warn that for functions with narrow peaks it is possible

to miss the peaks entirely. An adaptive grid algorithm has also been applied to robot
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localization with laser range finders by Burgard et al. [1998], but similarly to SAI

it did not provide any guarantees. A guaranteed adaptive grid algorithm has been

developed by Olson [2000] for robot localization based on stereo sensors in the context

of planetary exploration. However, it did not estimate the full belief — only its max-

imum. Olson’s approach restricted estimation to just x and y coordinates, obtaining

robot orientation from a compass. Moreover, it utilized a likelihood field measure-

ment model [Thrun et al., 2005], which discards negative information. This model is

smooth and induces a smooth belief, but can lead to frequent mis-localizations in the

cluttered indoor environments.

Monte Carlo methods include variants of importance sampling and, for problems

with dynamics, particle filter [Doucet and De Freitas, 2001]. In the mobile robot nav-

igation domain, these algorithms are called Monte Carlo localization (MCL) [Thrun

et al., 2005]. One of the most widely used adaptive Monte Carlo methods is Adaptive

Monte Carlo Localization (AMCL) by Fox [2003]. It has been implemented in modern

mobile navigation suites by Gerkey et al. [2003] and Willow Garage [2009]. AMCL

adapts the number of particles over time by considering the KL-divergence of the

resulting approximation. Recent work by Liu et al. [2008] has improved AMCL to

better maintain multi-modality during pose tracking by adding spatial clustering. For

reliable global localization, all variants of MCL require a large number of samples (at

least initially). For this reason, some approaches suggest injecting samples directly

from the measurement model [Lenser and Veloso, 2000, Thrun et al., 2001], although

these methods require the availability of a measurement model from which one can

easily and efficiently draw samples. A number of smoothing techniques are often

applied: e.g., inflation of the measurement noise and/or subsampling of sensor data

[Thrun et al., 2001, 2005]. Since smoothing discards information, recent approaches

improve global localization by learning more sophisticated smoothed models with

Gaussian processes [Plagemann, 2008].

The progress is much slower in tactile manipulation, due to complexity of ex-

perimental setup and relatively poor availability of tactile sensors. Belief estimation

literature for this problem relies primarily on variants of particle filters [Gadeyne and

Bruyninckx, 2001, Chhatpar and Branicky, 2005, Petrovskaya et al., 2006]. Since
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solving a global uncertainty problem in 6DOF with a particle filter is computation-

ally expensive, some authors restrict the problem to 3DOF thus reducing the initial

uncertainty [Gadeyne and Bruyninckx, 2001, Chhatpar and Branicky, 2005]. In 2006,

we introduced the Scaling Series algorithm, which is described in detail in Chapter 2.

Scaling Series is similar to the technique we describe in this chapter. It relies on

graduated annealing to eventually estimate an un-smoothed belief. Although, the

Scaling Series algorithm is not able to provide guarantees, it may work better for

differentiable problems.

Belief propagation (BP) and message passing methods have been developed to

take advantage of the factorization structure present in some belief estimation prob-

lems. These methods can often be more efficient than direct belief estimation methods

and are capable of handling high dimensional problems. Kozlov and Koller [1997] pro-

posed a non-uniform discretization BP method (NUBP), which combines BP with

adaptive gridding . Similar to SAI, NUBP estimates function variation over subre-

gions by random sampling. As for SAI, this can lead to entirely inaccurate belief

approximations. Recently, the interest in adaptive gridding has been renewed by Is-

ard et al. [2008]. Isard’s approach is similar to NUBP, but requires the integration for

BP message computation to be easily tractable, which makes the method unsuitable

for the applications we consider. Another recent promising structured method is non-

parametric BP (NBP) by Sudderth et al. [2003], combining regularization with BP.

It turns out that in the problems we consider, local beliefs have even more complex

distributions than the full belief itself. Thus, as we show, BP variants perform poorly.

6.3 Mathematical Background

In this section, we provide mathematical background and introduce the notions nec-

essary for the proposed algorithm.
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6.3.1 Problem Statement and Notation

We consider the class of problems where the state X has to be inferred from a set of

sensor measurements D = {Dk}. Our goal is to estimate the probability distribution

of the state given the measurements, p(X|D), known as the belief distribution, which

we will denote by bel(X).

For the general algorithm, we will assume that the state X is a dimX-dimensional

vector in a bounded rectangle V in RdimX . The measurements are modeled as K ran-

dom variables Dk, which are drawn independently from conditional probability distri-

butions p(Dk|X) with domains in RdimD. The conditional probability distributions

(CPDs) encode the measurement model and often depend non-linearly on the state

X. In many applications, the CPDs are naturally given in the log-linear form via

measurement energy potentials φk : RdimX ×RdimD 7→ R+. Then the CPD for Dk can

be written as

p(Dk|X) = η exp
(
−φk(X,Dk)

)
, (6.1)

where η is the normalizing constant. Let φ(X) :=
∑

k φk(X,Dk) be the total mea-

surement energy .

We will primarily focus on problems with global initial uncertainty as this is

often the more challenging case in robotics. In this case, the prior p(X) is uniform.

With this assumption, using the Bayes rule and conditional independence of Dk, the

belief can be shown to be proportionate to
∏

k p(Dk|X). Using the log-linear form

of measurement CPDs, we can express this fact as bel(X) ∝ exp(−φ(X)). Since the

normalization constant is usually unavailable directly, it is more convenient to work

with the unnormalized belief π(X) := exp(−φ(X)). Then the belief can be obtained

by normalizing: bel(X) = 1
Z
π(X), where Z is called the partition function. When

the prior is non-uniform, we will write bel(X) to denote the prior, then the belief is

bel(X) = 1
Z
bel(X)π(X).

In the indoor localization problem, the robot needs to determine its position on a

known mapM from laser range measurements D. The map is commonly represented

by an occupancy grid , which can be produced using SLAM techniques [Thrun et al.,

2005]. The state X := (x, y, θ) is the robot’s pose comprised of map coordinates
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(x, y) and orientation angle θ. The measurements D consist of a single scan from a

laser range finder. Dk := (ρk, αk) denotes a single ray in the scan and consists of

range ρk and bearing αk components. To interpret the measurements, we rely on the

most widely used independent beam (IB) measurement model for range finders [Thrun

et al., 2005]. In this model, all rays are considered as independent measurements of

range to obstacles in the environment, corrupted by Gaussian noise. The expected

range to the closest obstacle along ray k is computed by ray tracing on the map. If

µk(X) is the expected range along ray k, the measurement potential is given by

φk(X,Dk) :=
1

2σ2
(µk(X)− ρk)2, (6.2)

where σ2 is the Gaussian noise variance.

In the tactile manipulation problem, the robot needs to determine the position

X of a known stationary object O based on a set of tactile measurements D . The

object is typically represented as a polygonal mesh. The state X := (x, y, z, α, β, γ)

is the 6DOF pose of the object — including position (x, y, z) and orientation angles

(α, β, γ) — in the manipulator coordinate frame. The measurements D are obtained

by touching the object with the robot’s end effector. Each measurement Dk :=

(Dpos
k , Dnor

k ) consists of the measured cartesian position of the contact point Dpos
k

and the measured surface normal Dnor
k . To interpret the tactile measurements, we

use the proximity measurement model , which was described in detail in Chapter 2.

In this model, the measurements are considered independent of each other with both

position and normal components corrupted by Gaussian noise. For each measurement,

the potential depends on the Mahalonobis distance between the measurement and the

object. The distance is taken in the 6D measurement space.

6.3.2 Insight into the Measurement Model

Each measurement model contains a wealth of domain knowledge about the applica-

tion, the sensor, and the measurement process. In order to construct a more efficient

inference algorithm, we make two properties of the measurement model available to

the algorithm at runtime. The first property is a relaxation of the measurement
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model, representing a more optimistic interpretation of the measurements. The sec-

ond property is a strengthening , representing a more pessimistic interpretation of the

measurements. Thus we define rk to be a relaxation and sk to be a strengthening of

the measurement potential φk, if for all X in V we have

rk(X) ≤ φk(X,Dk) ≤ sk(X). (6.3)

We define r(X) :=
∑

k rk(X) and s(X) :=
∑

k sk(X). Then for all X in V

r(X) ≤ φ(X) ≤ s(X). (6.4)

From relaxations and strengthenings, we obtain bounds on the unnormalized belief

π. Let πs(X) := exp(−s(X)) and πr(X) := exp(−r(X)). Using (6.4), for all X in V

we obtain

πs(X) ≤ π(X) ≤ πr(X). (6.5)

To extend the above equation to the case of a non-uniform prior, let belr and bels be re-

laxation and strengthening of the prior, then we have bels(X)πs(X) ≤ bel(X)π(X) ≤
belr(X)πr(X).

Note that relaxations and strengthenings defined here are simply lower and upper

bounds on the measurement potentials. However, we feel it is helpful to have an

intuitive understanding of these bounds, because they are central to the proposed

algorithm. For relaxations and strengthenings to be useful, they need to be easy to

evaluate on the rectangular grid regions that arise during adaptive gridding. For this

reason, we construct relaxations and strengthenings that are piece-wise constant over

the grid regions.

In the sections that follow, we show how to build useful relaxations and strengthen-

ings for tactile manipulation and robot localization. These two applications represent

two of the most common measurement model types in robotics. Tactile manipula-

tion utilizes a proximity model, which is commonly used for many sensor types: e.g.,

for stereo [Olson, 2000] and laser range finders (under the name of likelihood fields)

[Thrun et al., 2005]. This model is smooth, almost everywhere differentiable and omits
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negative information. The indoor localization example utilizes the independent beam

model, which takes negative information into account. This is a more complex model

that results in an erratic discontinuous belief, but captures more information from

the measurement process.

6.3.3 Relaxations and Strengthenings for Tactile Manipula-

tion

From Sect. 2.3.3, we have φ(X) = 1
2
u2(X). In Appendix A, we derive partial Lipschitz

constants for u. The relaxations and strengthenings can be built straightforwardly

using these Lipschitz constants (in fact, this derivation generalizes to any other Lip-

schitz measurement model).

Let Λu be the vector of partial Lipschitz constants of u, i.e.,

Λu := (λu,x, λu,y, λu,z, λu,α, λu,β, λu,γ). (6.6)

For a grid cell G, let ∆X := (∆x,∆y,∆z,∆α,∆β,∆γ), where ∆x, . . . ,∆γ are half

the width of G along the respective axes. Let ∆u := ∆X · Λu. Then we know that u

can change by at most ∆u within G. If Xc is the center of G, then for any X ∈ G,

we can define

ur(X) := u(Xc)−∆u (6.7)

and

us(X) := u(Xc) + ∆u (6.8)

to be the relaxation and strengthening of u, respectively.(1)

Now, define r(X) := 1
2
u2
r(X) and s(X) := 1

2
u2
s(X) to be the relaxation and

strengthening of φ, respectively. Clearly, r(X) and s(X) are constant in G by con-

struction.

(1)We should take care to make sure ur does not become negative, i.e., ur(X) := max(0, u(Xc)−
∆u).
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6.3.4 Relaxations and Strengthenings for Robot Localization

Consider a grid cell G of robot’s poses X = (x, y, θ). The k-th measurement potential

is proportional to the squared error of measured range ρk with respect to expected

range µk(X) (see (6.2)). For the moment, assume that mk(G) is a lower bound on

µk(X) for X in G and Mk(G) is an upper bound (we will explain how to obtain

these values shortly). Then we can construct a relaxation rk of the k-th measurement

potential by underestimating the squared error as follows. If the range reading ρk

is within [mk(G),Mk(G)] interval, we set rk(X) := 0. Otherwise we compute the

squared error to the closest of the mk and Mk values:

rk(X) :=
1

2σ2
min{(mk(G)− ρk)2, (Mk(G)− ρk)2}. (6.9)

A strengthening of the k-th potential can be constructed by overestimating the

squared error:

sk(X) :=
1

2σ2
max{(mk(G)− ρk)2, (Mk(G)− ρk)2}. (6.10)

By construction, rk and sk are constant in G and, as one can easily check, satisfy

inequality in (6.3).

All that remains to see is how to obtain mk(G) and Mk(G). Without loss of

generality, let us assume that the range finder is mounted at the center of the robot

facing directly forward. A grid cell G of robot’s poses creates a cone of possible

k-th rays (see Fig. 6.1). We set mk(G) to the distance between the closest obstacle

within this cone and the boundary of G. An upper bound Mk(G) on the possible

range reading can be computed by walking the piece-wise linear map boundary. If a

boundary fragment starts on one side of the cone and finishes on the other, then it

completely blocks all rays in the cone from passing through. Hence Mk(G) is attained

on this boundary fragment.

For small grid cells, both mk and Mk can be computed efficiently. For larger grid

cells, these values can be propagated from the smaller grid cells comprising the larger

ones. All of mk and Mk values can be pre-computed before the robot needs to localize,
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Figure 6.1: Computations of min and max range for a cone of ray poses corresponding
to a grid cell G of robot poses. Note that the intersections of the occupied space boundary
with the cone boundaries are included as corner points.

because these values are independent of the actual sensor data.

6.4 Belief Approximation Algorithm and Analysis

We start with an intuitive description of the proposed algorithm. The algorithm

begins by partitioning the state space into large grid cells. Then it iteratively refines

grid cells until the desired final resolution is reached. At each iteration, low probability

grid cells are pruned to focus computational resources on the high likelihood areas of

the state space. The pruning step relies on relaxations and strengthenings. After the

final iteration, the result is a piece-wise constant approximation of the belief: zero in

all pruned grid cells and equal to each cell’s midpoint value in each of the remaining

grid cells. We give full algorithm listing in Alg. 6.1.(2) See Fig. 6.2 for an illustration

of the evolving grid regions during one run of the algorithm.

(2)In this section we focus on the case of the uniform prior. For the non-uniform prior case, πr(X),
π(X), and πs(X) need to be replaced by belr(X)πr(X), bel(X)π(X), and bels(X)πs(X) respectively
throughout the section.
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Alg. 6.1 Guaranteed Recursive Adaptive Bounding (GRAB): adaptive grid algo-
rithm for belief estimation.

π̂max := init pi max () (6.11)

Start with the whole region G0
keep := {V }. Until the desired resolution is reached,

repeat:

Refine: Construct Gn by splitting each grid cell in Gn−1
keep in halves along each dimen-

sion.

Bound: For each Gi in Gn compute upper bound Un
i and lower bound Lni on π

using relaxation rn and strengthening sn and compute π(Xi). Update π̂max, the
maximum value of π(Xi) observed by the algorithm thus far.

Prune: Add to Gnprune grid cells Gi with the lowest upper bounds Un
i , as long as:∑

i

Un
i V ol(Gi) ≤ ξ π̂maxV ol∗/N. (6.12)

Prune the selected grid cells by setting Gnkeep := Gn − Gnprune.

After the final iteration, estimate the unnormalized belief:

π̂(X) :=

{
π(Xi), if X ∈ Gi ∈ GNkeep
0, otherwise.

(6.13)

Estimate the partition function Ẑ :=
∫
π̂ and the normalized belief b̂el(X) := 1bZ π̂(X).

Compute approximation error bounds:

εprune :=
N∑
n=1

∑
Gi∈Gn

prune

Un
i V ol(Gi). (6.14)

εkeep :=
∑

Gi∈GN
keep

(UN
i − LNi ) V ol∗. (6.15)

ε := εprune + εkeep. (6.16)

Outputs: π̂, Ẑ, b̂el - estimated unnormalized belief, partition function, normalized
belief, ε - approximation error bound.
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Figure 6.2: GRAB evolution for indoor localization. The top left plot shows the laser
scan (green lines) at the true robot pose. The remaining plots show the first 11 iterations of
GRAB. Red squares show the remaining grid cells, red arrows show the angular components
of the grid cells.



150 CHAPTER 6. GUARANTEED INFERENCE

6.4.1 Algorithm Detail

Notation

Let δ∗ be the desired final resolution — a user specified parameter, which directly

controls the degree of refinement. Then the total number of refinement iterations

required is N = log Len1

δ∗
, where Len1 is the size of region V along the first axis.

A finer resolution δ∗ will increase overall running time and improve accuracy of the

resulting approximation. Let V ol(·) denote the volume of a region and V ol∗ denote

the volume of a grid cell at the final resolution δ∗.

For each iteration n, the current set of grid cells will be denoted by Gn := {Gi}.
All grid cells in Gn have the same resolution δn. During pruning step, we will prune

some grid cells Gnprune ⊂ Gn and keep the rest Gnkeep. We will denote the center of a

grid cell Gi by Xi.

The pruning of low-likelihood grid cells is controlled by a mode sensitivity param-

eter ξ. It is a user specified parameter, which is the smallest fraction of the maximum

value of π that is still considered significant. In other words, if ξ is set to 1%, then

all regions where π is at least 1% of its maximum value are considered significant.

Initialization

The initialization of π̂max in (6.11) has an effect on the efficiency of the algorithm. The

better the estimate the more can be pruned from the very beginning in (6.12). The

simplest implementations can set π̂max := 0 or π̂max := π(X) for some X ∈ V . A more

sophisticated strategy is to run a greedy version of Alg. 6.1, where Un
max := maxi U

n
i

can be used instead of π̂max in (6.12). Then set π̂max := maxi π̂(Xi) based on the

belief estimate produced by the greedy run. The greedy run can not guarantee that

a mode will be found, but it tends to provide a good initial estimate for πmax very

quickly.

Bounding Step

Note that we adaptively change the relaxations and strengthenings from one refine-

ment to the next. In practice, rn and sn are chosen so that the bounds on πnr and πns
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are easy to compute. If Lni is a lower bound on πns in a grid cell Gi and Un
i is an upper

bound on πnr in Gi, then due to (6.5) Lni and Un
i are also bounds on the variation of

π within Gi:

Lni ≤ π(X) ≤ Un
i . (6.17)

Pruning Step

Inequality (6.12) ensures that the total probability mass discarded after all N re-

finements is at most ξ portion of the estimated mass of the “heaviest” grid cell. In

practice, for peaked beliefs the value of ξ can be set quite low, because π is virtually

zero everywhere except in the vicinity of the peak.

Error Computations

We have two sources of approximation error in our algorithm. εprune upper-bounds

the error due to the probability mass of grid cells we pruned. εkeep upper-bounds the

error due to the variation of π in the grid cells kept at the final refinement stage.

Thus, ε upper-bounds the total L1 error between π and its approximation π̂.

6.4.2 Approximation Analysis

Two important properties of the algorithm can be proven:

1 GRAB will find all modes of the belief.

2 We can compute a sound bound on the L1 distance between the true belief and

its approximation.

Hence, we can be absolutely sure that the algorithm did not miss any global

optima and we know how good of an approximation was produced.

First, we define what we mean by a mode. Let belmax be the maximum value of

the belief bel, then we will consider any point X in V to be a ξ-mode of the belief if

bel(X) ≥ ξ belmax for some user-specified parameter ξ.
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Theorem 6.1. Let ξ be the mode sensitivity setting of GRAB. Let X be a ξ-mode of

the belief bel. Then X is in one of the grid cells kept at the final iteration of GRAB.

Proof. We argue by contradiction. If X is not in the final set of grid cells, then at

some iteration n a grid cell Gi containing X has been pruned. However, as one can

easily check, this assumption violates the condition in (6.12).

Theorem 6.2. Let Ẑ, π̂ and b̂el be the partition function, unnormalized belief and

normalized belief estimates respectively produced by GRAB. Let ε be the error bound

computed by GRAB at runtime. Then

|Z − Ẑ| ≤ ‖π − π̂‖L1 ≤ ε (6.18)

and

‖bel − b̂el‖L1 ≤
2ε

Ẑ − ε
. (6.19)

The proof follows from the bounds carefully constructed at runtime. We provide

details in Appendix C.

6.5 Experimental Results

6.5.1 Indoor Robot Localization

Indoor environments contain a variety of obstacles invisible to robot’s sensors — glass

doors, mirrors, staircases — as has been noted in several field studies [Burgard et al.,

1998, Montemerlo et al., 2002]. Therefore, for safety, it is important for the robot

to localize itself on a known map denoting invisible hazards prior to moving in the

environment. For this reason, we evaluate the ability of modern algorithms to reliably

estimate the global localization belief prior to moving.

We performed several sets of experiments with real and simulated robot data in

several different environments.(3) In each experiment, the localization was performed

(3)In our experiments, we used publicly available maps produced by Cyrill Stachniss (Fig. 6.3),
Mike Montemerlo (Fig. 6.4), and Ashley Tews (Fig. 6.5). We thank the map authors for making
these maps available to the public.
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from a single scan of laser data. The real data was produced by a SICK LMS laser

range finder. In the experiments, the results are averaged over 100 runs. The error

bars in plots represent 95% confidence intervals. For GRAB, the different running

times are obtained by varying the desired resolution δ∗ with ξ = 1%.

We compared the performance of the proposed algorithm (GRAB), uniform grid

(UG), uniform discretization belief propagation (UBP), non-deterministic belief prop-

agation (NBP, proposed by Sudderth et al. [2003]), subregion adaptive integration

(SAI, proposed by Genz and Kass [1997]), Scaling Series (SS), and several variants of

Monte Carlo localization. Although for Monte Carlo localization with a single scan

of laser data it is more correct to perform a single importance sampling update, in

some situations multiple updates can perform better. For completeness, we provide

both versions: single-update (IS) and 10-update (MCL). For the latter, we injected

50cm position noise between updates.

For GRAB, we pre-computed the min-max ranges for grid cells sized 10cm and

greater as described in Sect. 6.3.4. The pre-computation only needs to be carried

out once for each map as it is independent of actual sensor measurements. For a

70m x 70m map, the pre-computation takes 3 minutes. For GRAB, UG, and UBP,

we also pre-computed expected range scans for grid cells sized 10cm and greater.

This optimization allows grid based methods to be more efficient than Monte Carlo

approaches, for which such pre-computations are unsuitable.

The BP algorithms were implemented on a cluster graph satisfying the running

intersection property. We assigned X CPD and D1 CPD factors to the first cluster,

and each of the remaining Dk CPDs to the other k−1 clusters. For UBP, the evidence

was applied to the factors prior to propagation. For efficiency reasons, operations

during propagation were carried out only on the rows supporting the evidence. Since

the evidence was applied prior to propagation, the method is equivalent to integrating

measurements one at a time. BP variants performed rather poorly because the belief

in this problem is unstructured. While this may seem obvious in retrospect, we still

provide the empirical evaluations.
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Figure 6.3: Smoothing improves reliability of MCL because it decreases roughness of the
belief. Here the reliability of MCL and S-MCL is tested on the 20m x 14m map (left). Red
triangle denotes the robot’s pose.

Figure 6.4: Smoothing increases ambiguity of localization. Left: without smoothing the
resulting belief has a unique mode (circled). Right: with significant smoothing (50cm noise,
7 rays) the result is highly multi-modal.

Impact of Smoothing

In indoor localization, the most common smoothing techniques are to increase the

measurement noise and to decrease the number of rays considered. To evaluate

smoothed MCL (S-MCL), we use 20cm noise and 61 rays per scan. In this and

later experiments, we consider the localization successful if the mean pose is within

1m and 30◦ of the true pose. Figure 6.3 shows the reliability of global localization on

a 20m x 14m map, where S-MCL exhibits very similar performance to prior art with

similar settings [Thrun et al., 2001, Plagemann, 2008]. MCL without smoothing (i.e.,

1cm noise, 361 rays) fails to solve the problem. Thus, smoothing has been vital for

solving the global localization problem because MCL is unable to solve the problem

without it.

On the other hand, smoothing can have a number of negative effects as it discards
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Figure 6.5: Dependence of reliability on initial uncertainty (right). Experiments were
performed on sub-maps of the 80m x 80m library map (left). Red triangle denotes the
robot’s pose.

information contained in the data. Not only can the accuracy go down, but the

produced belief estimate is much more ambiguous than without smoothing (Fig. 6.4).

Under these conditions, the robot has to travel to resolve the ambiguity. In addition

to being unsafe with respect to invisible hazards, this strategy risks losing the robot’s

location because MCL does not track multiple modes very well. Moreover, from

theoretical perspective smoothed belief estimates do not converge to the true belief

even as the number of particles tends to infinity.

Dependence on Initial Uncertainty

Even with smoothing, reliability of MCL drops quickly as map size increases (Fig. 6.5).

These experiments were performed in simulation by taking sub-maps of a larger map.

We show results for S-MCL with 1,000, 10,000, and 100,000 particles (with compu-

tation time of 1.7s, 17s, and 170s respectively). For comparison, GRAB solves the

problem in under 1s (with δ∗= 5cm) and provides guaranteed results.

Localization Accuracy

To evaluate the accuracy of localization, we performed two sets of experiments on the

70m x 70m map depicted in Fig. 6.4. In the first set, the robot has to localize after

being placed in a random position on the map. These experiments used simulated data

with 1cm noise, so that exact reference pose is available for evaluation purposes. The
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Figure 6.6: Accuracy of pose estimation (left) and belief estimation (right) for global
robot localization on the map depicted in Fig. 6.4. The right plot shows 0.5L1 error, which
represents dissimilarity percentage of the approximated belief vs. ground truth belief.

results are shown in Fig. 6.6 (left), where we plotted the distance of the estimated pose

from the reference pose vs. computation time.(4) GRAB demonstrated logarithmic

dependence on localization precision, whereas the other algorithms behaved roughly

linearly. GRAB was able to recover the reference pose with 1mm accuracy(5) and

outperformed other approaches by several orders of magnitude.

In these experiments, we also evaluated the performance of Scaling Series (SS),

which we discussed in detail in Chapter 2 and first proposed in [Petrovskaya et al.,

2006]. Scaling Series relies on annealing, which works well for problems with differ-

entiable beliefs. However, in this case, the belief has many discontinuities due to the

use of negative information in the IB measurement model. Hence, Scaling Series is at

a disadvantage compared to GRAB (see the cyan line in the left plot of Fig. 6.6), but

it still performs significantly better than prior art approaches. To obtain the SS line

in the plot, we varied M between 3 and 100, while keeping δ∗ = 1cm and threshold

ξ = 10%. Horizontal bars show 95% confidence in running time for the same setting

of M .

The second set of experiments evaluates the accuracy with which the entire global

localization belief can be estimated. These experiments were carried out with a

(4)Horizontal error bars for GRAB show 95% confidence in running time for the same setting of
δ∗.

(5)Although GRAB was able to recover the pose to within 1mm, one should keep in mind that
these experiments were carried out in simulation. To achieve comparable accuracy with real data,
accurate environment models are required (see Chapter 5 for one such example).
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Figure 6.7: Decision safety results (right). On the map (left), the blue triangle denotes
the robot’s pose in one of the experiments. The green circles denote multiple modes of the
belief. Safety zones are shaded in red.

single scan of real robot data. The robot’s pose is circled in Fig. 6.4. The reference

distribution was obtained using a fine mesh. Prior art approaches were unable to

estimate the un-smoothed belief with any degree of accuracy within reasonable time.

The right plot in Fig. 6.6 shows the results using a smoothed model (25 rays and 10cm

noise) for all algorithms and reference distribution. GRAB dramatically outperformed

other approaches. The experiments demonstrate that accurate estimation of the belief

takes significantly longer than estimation of only the robot’s pose.

Safety During Exploration

This set of experiments evaluates whether a robot is able to make safe decisions

during navigation under conditions of multi-modality. The experiments were carried

out in a 70m x 70m simulated museum environment (Fig. 6.7). The red shaded

areas denote safety zones containing glass encased exhibits. The robot was placed

randomly in front of the safety zones and had to plan an exploration route using

safe maneuvers. Note that this environment has several look-alike areas leading to

multi-modal localization beliefs.

First, the robot estimates a global localization belief. Then it evaluates the pro-

posed action of moving forward by 1m based on the estimated belief. To make a fair

comparison of all algorithms, the robot’s planner treats all belief estimates the same.
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Figure 6.8: Tactile sensing for object localization. Left: experimental setup. Center: pose
estimation accuracy vs. computation time. Right: reliability vs. initial uncertainty (with
unrestricted orientation).

For each experiment, it draws 100,000 samples from the belief approximation and ap-

plies the robot’s dynamics model to the samples obtaining a prediction distribution.

The prediction distribution is used to compute the expected risk of the maneuver.

The risk function is 1 in the safety zones and 0 everywhere else. If the expected risk is

higher than 0.01%, the maneuver is considered unsafe. Since the robot is positioned

facing safety zones, this maneuver should be identified as unsafe in all experiments.

As expected, GRAB correctly identified all modes of the belief and thus lead to

safe decisions in all experiments. Other algorithms often lead to unsafe decisions.

6.5.2 Tactile Manipulation

In these experiments, a stationary object is localized by a robot that explores the

object by touching it with its end-effector. The experimental setup consisted of a

PUMA manipulator robot equipped with 6D JR3 force/torque sensor at the wrist

(see Fig. 6.8). The sensed object was a rectangular box, for which we constructed

a polygonal model using careful ruler measurements. The data sets consisted of five

data points taken from different sides of the box.

For un-smoothed versions of the algorithms, we used σp = 1mm and σn = 2◦.

We compared the proposed algorithm (GRAB), Scaling Series (SS), importance sam-

pling (IS), and particle filter (PF). For PF, we performed 10 updates with the same

data injecting 1cm noise between updates. We also evaluated S-IS and S-PF using

smoothing parameters shown to be optimal in [Petrovskaya et al., 2006]: σp = 1cm
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and σn = 10◦.

Object Localization Accuracy

First, we evaluated how accurately the object could be localized in the robot’s

workspace. The initial uncertainty in these experiments was 40cm x 40cm x 40cm

with unrestricted orientation. The results shown in Fig. 6.8 (center) are averaged

over 100 runs with simulated data, although the algorithms exhibited similar perfor-

mance with real data. GRAB was able to localize the object to 1mm within about

1s. Scaling Series was approximately three times faster than GRAB for this problem.

Other algorithms were unable to get average accuracy better than 1cm even after 3

minutes. It should be noted that sub-centimeter accuracy is often required for suc-

cessful manipulation as we saw in Chapter 5. GRAB quickly achieves sub-millimeter

accuracy, which we have shown in Chapter 2 to be sufficient for reliable manipulation

of objects.

Reliability vs. Initial Uncertainty

To evaluate how reliability depends on initial uncertainty, we varied the uncertainty

from 5cm cube to 40cm cube. Unrestricted orientation was used in all experiments.

The localization was considered successful if the pose was recovered within 5mm and

5◦. The results of 100 runs with simulated data are shown in Fig. 6.8 (right). GRAB

solves the problem in 1s (with δ∗ = 2mm) with guaranteed results. We also show

results for S-PF with 10,000 to 1,000,000 particles (2.1s to 210s running time) and

S-IS with 100,000 to 1,000,000 particles (2.1s to 21s running time). For S-IS and

S-PF, the reliability degrades quickly with uncertainty. IS and PF performed even

worse.

6.6 Discussion and Conclusions

We have presented a belief estimation algorithm that relies on a simple adaptive grid-

ding technique. Yet, in contrast to state-of-the-art, it is able to solve high-roughness
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problems with guaranteed results. The reason for the superior performance is that

our algorithm utilizes additional domain knowledge, whereas the other algorithms

treat the belief as a ”black box” function. The downside is that GRAB is less gen-

eral than ”black box” approaches and requires additional work to extract the domain

knowledge. However, in situations where ”black box” algorithms are insufficient, the

extra work is very worthwhile. The domain knowledge is captured in a general way

in the form of measurement model bounds, which we have given intuitive names of

relaxations and strengthenings. Thus, our algorithm is applicable to problems where

such bounds can be constructed. We have demonstrated the algorithm on indoor

navigation and tactile manipulation. We expect that it will extend to other robotic

applications with accurate relative sensors (laser, vision and tactile), although clearly

application-specific relaxations and strengthenings will need to be built in each case.

Since the class of domain knowledge algorithms is in principle stronger than the class

of ”black box” algorithms, we hope the demonstrated success will encourage devel-

opment of algorithms utilizing domain knowledge in a general way.

A number of extensions of the algorithm can be made. For high dimensional

problems, the approach can be combined with belief propagation [Kozlov and Koller,

1997, Isard et al., 2008] or Rao-Blackwellization [Murphy and Russell, 2001, Monte-

merlo, 2003] — a very promising direction for future work. The refinement strategy

could also be tuned to obtain different properties. For example, SAI-like refinement

strategy could be beneficial when the belief has regions of similar probability or when-

ever a better representation of low probability regions is desired. In this chapter, we

have only shown that non-uniform priors could be used in principle, but have not

performed any empirical evaluation of such scenarios. The non-uniform priors could

carry information about prior measurements and dynamic updates. There are several

possible methods for using GRAB to solve dynamic problems. One method is an

adaptive histogram filter [Burgard et al., 1998]. This could be implemented similarly

to SS-DYN3 of Chapter 2, resulting in the same convergence properties. Analogues

of SS-DYN1 and SS-DYN2 could also be implemented. Another method is to use

GRAB to obtain a representation of the measurement probability distribution for al-

gorithms that sample directly from this distribution [Lenser and Veloso, 2000, Thrun
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et al., 2001]. Thus, evaluation of how GRAB can be used with non-uniform priors in

dynamic applications represents an interesting direction for future work.

Our focus has been solely on belief estimation and we have left many application

aspects outside the scope. For indoor localization, combining the presented algorithm

with existing methods for handling high traffic areas, doors and other dynamic en-

vironment changes, could provide the community with one of the most reliable and

accurate global localization solutions to date.(6)

We have shown that GRAB is able to achieve 1mm localization accuracy very

quickly even in large buildings. In prior art, it has been shown that laser scans con-

tain sufficient information to achieve such accuracy [Censi, 2009]. In Chapter 5, we

have shown that 3mm pose estimation accuracy has allowed the robot to reliably

manipulate stationary objects not directly observed by its sensors (e.g., door handles,

elevator buttons, switches). Moreover, high localization accuracy is useful for maneu-

vering in tight spaces (e.g., when passing through a doorway). Of course, accuracy

of localization depends on accuracy of the environment model. To achieve high accu-

racy, Censi [2009] matched laser scans directly to each other. In Chapter 5, a highly

accurate polygonal model of a door was used in conjunction with a less accurate grid

map. Thus, further work on high-accuracy modeling of the environment and sensors

will lead to high-accuracy localization, which will open up a host of new applications.

In the past, 1mm accuracy has been reserved for stationary manipulators. With

high-accuracy localization, mobile robots will be able to aid in building construction,

inspection, and maintenance. They will be able to precisely place fixtures in the en-

vironment, accurately drill and paint walls, provide accurate distance measurements,

etc. Moreover, high-accuracy localization can easily provide an accurate coordinate

transformation between a robot and an off-board sensor (e.g., a ceiling mounted cam-

era or another robot’s sensor). Hence, robots will potentially be able to manipulate

even dynamic objects invisible to their own sensors.

In summary, we have presented an adaptive grid method suitable for estimat-

ing high-roughness beliefs that result from non-linear relative sensors. The method

(6)Development of GRAB library is currently underway. Once complete, the library will be made
available at Petrovskaya [2011a].
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guarantees that all modes will be found and provides provable approximation error

bounds. The strength of the approach comes from utilizing domain knowledge about

the measurement process to construct bounds in a general way. We demonstrated

the approach on the examples of indoor navigation and tactile manipulation, where

it performs significantly better than state-of-the-art and opens up new potential ap-

plications.



Chapter 7

Conclusion

7.1 Summary

This thesis has considered the problem of making perceptual inference robust. We

identified the weak point of existing methods to be inability to cope with sharp tran-

sitions (termed “roughness”) in belief distributions. Since roughness of beliefs in

robotics is caused by real world phenomena (e.g., range discontinuities), it is impor-

tant to develop methods capable of handling rough beliefs. To this end, we proposed

two novel algorithms: Scaling Series and GRAB. Both of these methods use iterative

divide-and-conquer techniques. Scaling Series is a Monte Carlo approach utilizing an-

nealing and GRAB is an adaptive grid approach, which relies on measurement model

bounds. Both of these approaches drastically outperform state-of-the-art. GRAB

is particularly well suited for problems with discontinuous beliefs, whereas Scaling

Series works best for problems with beliefs that are differentiable.

We demonstrated usefulness of the proposed algorithms on a wide range of real

robotics problems: touch based perception (Chapter 2), vehicle tracking (Chapter 4),

and mobile manipulation (Chapters 5 and 6). In all of these applications, the proposed

algorithms outperformed existing methods by several orders of magnitude. In touch

based perception, we are able to quickly localize objects in 6DOFs with very large

initial uncertainty. This problem has received considerable attention in the literature

due to the use of tactile perception for workpiece localization in manufacturing [Chu,

163
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1999, Zhu et al., 2004, Sun et al., 2009]. However, to date, no other method for

solving this problem in general form has been proposed.

In vehicle tracking, we demonstrated how the proposed methods can be used to

solve high dimensional problems when combined with problem decomposition tech-

niques. Early vehicle tracking approaches date back to the late 1980s and virtually

all approaches since then have concentrated on tracking of blobs (clusters of points or

features) [Zhao and Thorpe, 1998, Wender and Dietmayer, 2008, Darms et al., 2008].

Unlike the prior art, along with detection and tracking of vehicles, we also estimate

their geometric shape, which allows us to accurately estimate each vehicle’s motion.

The use of geometric models greatly simplifies association of data, which are often

split up into separate clusters due to occlusion. Vehicle tracking for autonomous

driving is a demanding application, where the results have to be reliably available

in a fraction of a second for autonomous decision making. Large amounts of data

have to be processed quickly and the processing hardware is limited onboard of the

autonomous vehicle. The Scaling Series algorithm has been instrumental in making

this approach run in real time with high reliability and accuracy.

In indoor localization, the proposed methods allow for fast and highly accurate

(up to a few millimeters) global robot localization in large buildings based on the

commonly used laser range finders. Although the field of probabilistic robot local-

ization is over a decade old, to our knowledge we are the first ones to achieve high

accuracy global localization. Among other things, the high accuracy allows robots

to manipulate objects without having to sense them directly as we demonstrated on

the example of navigation with door opening in Chapter 5. We expect that high

accuracy localization will find applications in building construction, where accurate

measurements are of great importance.

7.2 Directions for Future Work

The presented algorithms are best suited for moderately dimensional problems, where

up to 10 parameters need to be inferred. This covers most basic robotics problems

such as object or robot localization. However, higher dimensional problems arise
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when additional properties need to be inferred including object shape, localization of

multiple objects, and estimation of state for articulated objects. In these problems,

the number of parameters can be very large: 100 or more. As we demonstrated in

Chapter 4, the proposed algorithms can be extended to high dimensional problems

by combining with decomposition techniques, such as Rao-Blackwellization and pa-

rameter splitting. Further exploring the use of proposed algorithms in combination

with decomposition techniques is a promising direction for future work as it could po-

tentially address the most difficult problems in robotics: high dimensional problems

with global uncertainty.

7.2.1 From Application Perspective

In tactile perception, along with object localization it would be interesting to esti-

mate shape, stiffness, surface friction, and deformations of objects. The whole body

contact estimation problem considered in Chapter 3 is another challenging and po-

tentially high dimensional problem that could be addressed by combing proposed

algorithms with decomposition techniques. In this problem, shape of the robot and

the environment could be estimated along with contact positions on robot links. So

far, we have only considered the simplest robot and object shapes. In Chapter 2,

we have proposed algorithms for tracking of moving objects. However, so far this

approach has only been validated in simulation and warrants additional investigation

with real robots. Further, it would be interesting to consider localization and recogni-

tion of multiple objects, which can be located in cluttered scenes. In these situations

data association becomes an important part of the problem. In addition, the use

of multi-fingered hands equipped with multiple tactile pads should be investigated

along with planning techniques for optimal sensing actions and contact placement.

Promising planning approaches have been proposed in the past for 3DOF problems

[Hsiao et al., 2010] and our proposed inference algorithms should help extend these

planning approaches to 6DOF problems.

In vehicle tracking (Chapter 4), we have only estimated 2D shape of vehicles so

far. However, the proposed anchor point coordinates help track the motion of the
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Figure 7.1: 3D shape inference for vehicle tracking. The green points show the accumu-
lated Velodyne points assigned to each vehicle over multiple frames. Tracking with anchor
point coordinates allows us to align the points from different frames on per-vehicle basis.

shapes accurately. Hence, full 3D models of the vehicles can be built (see Fig. 7.1

for preliminary results). 3D models will in turn allow for even more accurate motion

estimation. This can be particularly useful at intersections with stop signs, where it

is crucial to distinguish between a vehicle standing completely still and a vehicle that

is moving forward slightly. In addition, the model based approach can be extended

to motorcyclists, pedestrians, and other road scene participants. This has been con-

sidered by Vu [2009], but with our proposed approach much more accurate models

of these participants can be built. Incorporating data from other sensing modalities

should also prove useful, especially from omni-directional cameras and radars, which

can help detect and track vehicles at a greater range.

In mobile manipulation (Chapters 5 and 6), we have shown that high accuracy

global localization can be achieved with commonly used 2D laser range finders. How-

ever, high accuracy localization requires highly accurate maps. In Chapter 5, we

proposed a hybrid representation, which combines high resolution polygons with low

resolution occupancy grid maps built by SLAM techniques. The high resolution poly-

gons were built using hand measurements. Hence, it would be interesting to develop
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Figure 7.2: Object tracking with Kinect. Left to right: scene, range data, tracking results.
The tracking results were obtained using the object, model, and method from Chapter 2.

an approach, which allows robots to build such representations autonomously. High

accuracy of pose estimation produced by the proposed algorithms should help build

these accurate representations, which could include articulated objects and semantic

information. Another interesting direction is to extend the approach to 3D as more

and more 3D sensors become available.

Finally, in this thesis, we obtained data from contact sensors, robot joints, or laser

range finders. However, the proposed algorithms could be applied to other types of

range and non-range sensors. In particular, the recently released Kinect sensor is

inexpensive and widely available. It is an RGBD camera that produces a range

data cloud, which is in many ways similar to the 3D range finder data we used in

Chapter 4. Other RGBD cameras are surely to follow, making applications of the

proposed algorithms to these sensors a promising direction for future work. Fig. 7.2

shows preliminary results of applying Scaling Series method to range data generated

by Kinect sensor. Using the method, object, and model from Chapter 2, resulted in

fast and accurate tracking with Kinect data.

7.2.2 From Theoretical Perspective

We have provided some convergence results for both algorithms. For Scaling Series,

we have shown that the estimates converge to the true belief in Sect. 2.4.6. For GRAB,

we have shown that the estimates converge, derived the L1 error between estimated

and true belief, and provided best/worst case running time analysis in Sect. 6.4.2.

However, it would be interesting to derive more detailed convergence results.

In particular, due to their divide-and-conquer nature, both algorithms can run
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in log time (in the best case) compared to naive approaches, such as importance

sampling or uniform grid. On the other hand, in the worst case, both algorithms can

take as long as naive approaches. Intuitively, the worst case is achieved, when the

algorithms are unable to prune out any part of space. In the practical problems we

have considered, both algorithms perform close to the best case. To better understand

applicability, it would be interesting to characterize the types of problems on which

the algorithms perform particularly well or particularly poorly. For these problems,

we could then prove tighter convergence rate results, which would be useful when

deciding what method should be used for a particular problem and what performance

is to be expected.

The proposed algorithms have the advantage while searching for modes of the

belief, because at this stage large parts of space can be pruned. However, for some

problems, sub-mode refinement may be desirable (e.g., for high accuracy numerical

integration). Once refinement goes sub-mode, no additional space can be pruned

and so from this point on the proposed algorithms are equivalent to naive estimation

within the supporting regions of the modes. In these cases, both algorithms allow for

a trade-off between running time and accuracy: the iterations can be stopped after

a preset amount of time, at which point the estimates are more coarse compared to

the final resolution. This is also useful for under-constrained problems, where modes

cover large regions of space and obtaining coarse estimates quickly helps plan further

sensing actions. Still, performance of both algorithms in these situations warrants

further investigation.

One interesting point is that both algorithms provide some notion of accuracy

at each refinement stage. Hence, when iterations are stopped early, the user has a

useful measure of how good the obtained estimates are. GRAB goes even further

and computes L1 error between the estimated and true beliefs. Thus, it is possible to

perform refinements until an acceptable level of L1 error is reached. In this case, the

running time is unknown in advance, but the level of accuracy is guaranteed. This is

in direct contrast to naive approaches, where the running time is known in advance

(dictated by the number of samples), but the accuracy remains unknown even after

the algorithm terminates.
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7.3 Applications

The aim of this thesis has been to provide practical algorithms, which enable real

world robotics applications and help speed up adoption of robotics in complex un-

structured environments. Development of software libraries is currently underway.

Once released these libraries will provide the robotics community with access to this

new technology.

Tactile object localization is already used in manufacturing for inspection and

machining of parts. However, existing approaches require that each contact point is

sensed in a specific location on the object. This means that either a human has to

be in the loop or the initial uncertainty about the object pose has to be very small.

Tasks dependent on humans can lead to human error, whereas fully automated tasks

currently require accurate part positioning, which is expensive and makes manufactur-

ing process inflexible. The approach presented in Chapter 2 does not place restrictive

assumptions on where each contact has to be sensed. Hence, in fully automated man-

ufacturing lines, the parts no longer have to be accurately positioned as the proposed

localization algorithm can provide an accurate estimate of each part’s pose. The parts

can simply be rolling down the manufacturing line and be accurately localized at each

station for processing. Since the proposed algorithm only needs a CAD model of the

part, each part produced on a manufacturing line can be custom. Tasks dependent

on humans can now be fully automated to reduce training requirements and human

error. With all of these improvements, the manufacturing costs will be lower and the

manufacturing process will be much more flexible.

Tactile object localization can also extend the reach of robots to situations where

vision is obstructed. Such situations often arise in rescue operations, where the envi-

ronment can be filled with smoke. These situations are also common in underwater

applications, where the water can be mixed with mud, oil, or debris.

The field of intelligent vehicles is developing rapidly. More powerful sensors are

being developed and deployed on vehicles. The vehicle tracking algorithm proposed in

Chapter 4 can be immediately useful on intelligent vehicles to provide advanced driver

assistance and can aid in development and adoption of fully autonomous vehicles.
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High accuracy localization (Chapters 5 and 6) is important for mobile manip-

ulation applications in service robotics. With highly accurate localization, robots

can be maneuvering in tight spaces, manipulating doors, light switches, elevator but-

tons, even using sensors from other robotic platforms or environment. This opens up

a number of applications and opportunities. Robots will be able to build accurate

maps and to navigate safely around visible and invisible obstacles and in tight spaces.

In addition to in-home service applications, robots will be able to aid in construction,

inspection, and maintenance of buildings and other structures.



Appendix A

Lipschitz Constants for Tactile

Perception

In this section we provide bounds on Lipschitz constants of π and u. These bounds

are used as explained in Sect. 2.4.3 to set the shape of δ-neighborhoods. Theorem A.1

relates the Lipschitz constants of π and u. Theorem A.2 computes bounds on partial

Lipschitz constants of u. It relies on a helper Lemma A.1, which is a variant of triangle

inequality for sets of points. The statement and proof of Lemma A.1 are provided at

the end of the section.

Theorem A.1. If λπ and λu are Lipschitz constants of π and u respectively, then

λπ ≤ λu/
√
e. The same relationship holds for partial Lipschitz constants of π and u.

Proof. We have π(X) = exp(−u2(X)/2). Hence π can be expressed as a composition:

π = g◦u, where g(u) := exp(−u2/2). Using chain rule, all partial derivatives of π can

be written as ∂π
∂xi

= g′(u(X)) ∂u
∂xi

. The (partial) Lipschitz constant can be computed

as maximum (partial) derivative. For g(u) we have λg = supu |g′(u)|. As one can

easily compute, this works out to 1/
√
e. Thus using chain rule we obtain the desired

result.

For the next theorem, we restate the definition of dM from (2.8) more generally for

171



172 APPENDIX A. LIPSCHITZ CONSTANTS FOR TACTILE PERCEPTION

any two points ô1 and ô2 in the 6D space of contact coordinates and surface normals:

dM(ô1, ô2) :=

√
||ôpos

1 − ôpos
2 ||2

σ2
pos

+
||ônor

1 − ônor
2 ||2

σ2
nor

. (A.1)

For a vector ∆ô, we can compute the corresponding norm || · ||dM by setting ô1 = ∆ô

and ô2 = 0 in the above equation:

||∆ô||dM :=

√
||∆ôpos||2
σ2

pos

+
||∆ônor||2
σ2

nor

. (A.2)

Theorem A.2. The partial Lipschitz constants of u(X) are bounded by:

λu,x, λu,y, λu,z ≤
√
K 1

σpos

λu,α, λu,β, λu,γ ≤
√
K
√
R2(O)
σ2
pos

+ 1
σ2
nor
.

(A.3)

Proof. We split the proof into two parts: differentiating w.r.t. the metric coordinates,

and differentiating w.r.t. the angular coordinates.

Compute bounds on ∂u
∂x

, ∂u
∂y

and ∂u
∂z

:

Let ∆xuk denote the most uk can change when x changes by at most ∆x. When the

object is moved by at most ∆x, each point ô in Ô moves by a vector ∆ô = (∆ôpos, 0),

with ||∆ô||dM = ||∆ôpos||/σpos ≤ ∆x/σpos. Hence by Lemma A.1, ∆xuk ≤ ∆x/σpos

for all k.

By definition (2.11), we have u(X) =
√∑

k u
2
k(X). Using triangle inequality we

get

∆xu ≤ ||(∆xu1, ...,∆xuK)|| =
√∑

k

∆x2/σ2
pos. (A.4)

Hence ∆xu ≤
√
K∆x/σpos, and so ∂u

∂x
≤
√
K/σpos. The same derivation applies for

∂u
∂y

and ∂u
∂z

, giving us the top line of (A.3).

Compute bounds on ∂u
∂α

, ∂u
∂β

and ∂u
∂γ

:

When we consider partial derivative w.r.t. α, the logic is similar to the above,
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except that ∆α acts on all components of ô. ∆α rotation changes the normal ônor

by ∆ônor with ||∆ônor|| = 2 sin ∆α
2

. It also moves ôpos by ∆ôpos with ||∆ôpos|| ≤
2R(O) sin ∆α

2
, where R(O) is the radius of the object. Since 2 sin ∆α

2
≤ ∆α, we get

||∆ôpos|| ≤ R(O)∆α (A.5)

and

||∆ônor|| ≤ ∆α. (A.6)

Combining the definition (A.2) of || · ||dM with (A.5) and (A.6), we get

||∆ô||dM ≤ ∆α
√

(R(O))2 /σ2
pos + 1/σ2

nor. (A.7)

Again by Lemma A.1, we have ∆αuk ≤ ||∆ô||dM , and so for all k we have

∆αuk ≤ ∆α
√

(R(O))2 /σ2
pos + 1/σ2

nor. (A.8)

Analogous to the derivation for x, we get

∂u

∂α
≤
√
K
√

(R(O))2 /σ2
pos + 1/σ2

nor. (A.9)

The same derivation applies for ∂u
∂β

and ∂u
∂γ

, giving us the bottom line of (A.3).

Lemma A.1. Let A be a point and S be a set of points in RdimA. Let d(·, ·) be a

measure of distance and ||·||d the corresponding norm. Let ∆s ≥ 0 be a fixed constant.

Let S ′ be a set of points obtained by displacing each point B of S to a point B′ such

that ||B −B′||d ≤ ∆s. Then

d(A, S ′) ≤ d(A, S) + ∆s, (A.10)

d(A, S) ≤ d(A, S ′) + ∆s, (A.11)

and

|d(A, S ′)− d(A, S)| ≤ ∆s. (A.12)
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Proof. Let B be a point in S. By triangle inequality

||A−B′||d ≤ ||A−B||d + ||B −B′||d. (A.13)

Since

||B −B′||d ≤ ∆s (A.14)

and

d(A, S ′) := min
B′∈S′

||A−B′||d, (A.15)

we have

d(A, S ′) ≤ ||A−B||d + ∆s. (A.16)

Minimizing the above inequality over B, we obtain (A.10). Inequality (A.11) is ob-

tained by swapping B with B′ and S with S ′ in the above proof. Inequality (A.12)

follows from (A.10) and (A.11).



Appendix B

Math Notes for Vehicle Shape

Estimation

For RBPF, the measurement function has to be approximated by a Gaussian. This is

done using Laplace’s method . Then the computations for the weights and geometry

belief (in Sect. 4.4.1) can be carried out in closed form. Details are provided below.

B.1 Laplace’s Method

First, a quick description of Laplace’s method taken from MacKay [2003]. A function

P ∗(x) is approximated by an unnormalized Gaussian Q∗(x) around a (hopefully)

maximum point x0. The variance of the Gaussian is usually computed via second

derivatives, i.e.,
1

σ2
= − ∂2

∂x2
lnP ∗(x)|x=x0 . (B.1)

Then the approximation is made with an unnormalized Gaussian, so that the value

at the maximum point remains the same:

Q∗(x) = P ∗(x0) exp

(
−(x− x0)2

σ2

)
. (B.2)

In our case, we need to approximate the measurement function Mt := p(Dt|Ω, Xt)
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by a Gaussian as a function of Ω. Since it is not a probability distribution over

Ω there is no requirement that it integrate to 1 over the domain of Ω. We fit the

Gaussian at the maximum point Ω∗ = µ1. In order to find this maximum point, we

perform a greedy search in both directions from the prior estimate of geometry. The

search can be done very efficiently due to the construction of the measurement model,

as only the new rays need to be analyzed and the rest of the measurement function

can be re-used.

Note: using second derivative to estimate the variance of the Gaussian did not

work well. Instead, the variance is set to 1m for a “good” observation or 100m

otherwise. The observation is considered to be “good” if we are able to see some free

space immediately after the end of the vehicle.

B.2 Importance Weight Computation

The importance weights can be shown to be (see Sect. B.2.2 for a derivation):

wt = ESt−1

[
p(Dt|Ω, Xt)

]
=

∫
MtSt−1 dΩ

= Mt(µ1)
σ

σ2

exp

(
− (µ1 − µ2)2

2(σ2
1 + σ2

2)

)
,

(B.3)

where Mt is the measurement function, µ1 is the “observed” geometry (i.e., geometry

that maximizes the measurement function), σ2
1 is the variance of the Gaussian ap-

proximating the measurement function, St−1 is the geometry prior, σ2
2 is the variance

of the geometry prior, and σ2 is the variance of the geometry belief St computed as

a product of two Gaussians:

St = ηMtSt−1. (B.4)
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B.2.1 Product of Gaussians

Formulas for a product of two Gaussians from Smith [2008]:

µ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

,

σ2 =
σ2

1σ
2
2

σ2
1 + σ2

2

.
(B.5)

B.2.2 Derivations

First, let’s figure out what constant remains when we replace a product of two Gaus-

sians by a single Gaussian:
eAeB

eC
. (B.6)

Taking logarithm, we can concentrate just on the exponents:

A+B − C =

= −(x− µ1)2

2σ2
1

− (x− µ2)2

2σ2
2

+
(x− µ)2

2σ2

= −(x− µ1)2

2σ2
1

− (x− µ2)2

2σ2
2

+

(
x− µ1σ2

2+µ2σ2
1

σ2
1+σ2

2

)2

2
σ2
1σ

2
2

σ2
1+σ2

2

= −σ
2
2x

2 − 2σ2
2µ1x+ σ2

2µ
2
1 + σ2

1x
2 − 2σ2

1µ2x+ σ2
1µ

2
2

2σ2
1σ

2
2

+
(σ2

1 + σ2
2)x2 − 2(µ1σ

2
2 + µ2σ

2
1)x+

(µ1σ2
2+µ2σ2

1)
2

σ2
1+σ2

2

2σ2
1σ

2
2

=
(−µ2

1σ
2
2 − µ2

2σ
2
1)(σ2

1 + σ2
2) + (µ1σ

2
2 + µ2σ

2
1)

2

2σ2
1σ

2
2(σ2

1 + σ2
2)

=
µ2

1σ
4
2 + µ2

2σ
4
1 + 2µ1µ2σ

2
1σ

2
2 − µ2

1σ
4
2 − µ2

2σ
4
1 − µ2

1σ
2
1σ

2
2 − µ2

2σ
2
1σ

2
2

2σ2
1σ

2
2(σ2

1 + σ2
2)

= −2µ1µ2 − µ2
1 − µ2

2

2(σ2
1 + σ2

2)

= − (µ1 − µ2)2

2(σ2
1 + σ2

2)
. (B.7)
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Now we are ready to derive the weights:

wt =

∫
MtSt−1 dΩ

=

∫
Mt(µ1) exp

(
−(Ω− µ1)2

2σ2
1

)
1

σ2

√
2π

exp

(
−(Ω− µ2)2

2σ2
2

)
dΩ

=

∫
Mt(µ1)

1

σ2

√
2π

exp

(
− (µ1 − µ2)2

2(σ2
1 + σ2

2)

)
exp

(
−(Ω− µ)2

2σ2

)
dΩ

= Mt(µ1)
1

σ2

√
2π

exp

(
− (µ1 − µ2)2

2(σ2
1 + σ2

2)

)∫
exp

(
−(Ω− µ)2

2σ2

)
dΩ

= Mt(µ1)
1

σ2

√
2π

exp

(
− (µ1 − µ2)2

2(σ2
1 + σ2

2)

)
σ
√

2π

= Mt(µ1)
σ

σ2

exp

(
− (µ1 − µ2)2

2(σ2
1 + σ2

2)

)
. (B.8)

In second line, we substitute the Gaussian approximations for Mt and St−1. In third

line, we replace a product of two unnormalized Gaussians by a single Gaussian, which

results in the extra constant derived in (B.7). In the forth line, we take constants

outside of the integral sign. In the fifth line, integration of the unnormalized Gaussian

results in its normalization constant. The sixth line gives the final cleaned up result.

Note: the derivations have been shown for a single real variable Ω. In our case,

Ω has two real variables: W and L. However, these variables are independent, so

we can simply factor it down to the single variable case. The final expression for the

weights used in our implementation is:

wt = Mt(µL1 , µW1)
σL
σL2

σW
σW2

exp

(
−(µL1 − µL2)

2

2(σ2
L1

+ σ2
L2

)

)
exp

(
−(µW1 − µW2)

2

2(σ2
W1

+ σ2
W2

)

)
. (B.9)
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Proofs for GRAB

Proof of Theorem 6.2. To see the left hand side of (6.18), consider that |Z − Ẑ| =

|
∫
π − π̂| and ‖π − π̂‖L1 =

∫
|π − π̂|. Since |

∫
f | ≤

∫
|f | for any integrable function

f , we can obtain the inequality by setting f := π − π̂.

To see the right hand side of (6.18), let Vprune be the union of all grid cells we

pruned and Vkeep be the union of grid cells we kept at the last iteration. By definition

‖π − π̂‖L1 =
∫
|π − π̂|. We can split up this integral into a sum of two terms: an

integral over Vprune and an integral over Vkeep. Since π̂ is zero everywhere in Vprune,

the first term is simply
∫
Vprune

π, which is bounded from above by εprune.

To bound the integral over Vkeep, consider one of the grid cells Gi kept at the last

iteration. Everywhere in Gi, both π and π̂ are bounded by the variation bounds U
(N)
i

and L
(N)
i . Hence, |π− π̂| ≤ U

(N)
i −L(N)

i everywhere in Gi. Integrating this inequality

over all grid cells kept at the last iteration and taking into account (6.15), we obtain∫
Vkeep
|π − π̂| ≤ εkeep. Thus

∫
|π − π̂| ≤ εprune + εkeep = ε.

Lastly, to obtain inequality ((6.19)), we have the following derivation:

|bel − b̂el| =
∣∣∣ 1
Z
π − 1bZ π̂

∣∣∣ =
∣∣∣( 1
Z
π − 1

Z
π̂) + ( 1

Z
π̂ − 1bZ π̂)

∣∣∣
=

∣∣∣ 1
Z

(π − π̂) + ( 1
Z
− 1bZ )π̂

∣∣∣
≤ 1

Z

∣∣∣π − π̂∣∣∣+
∣∣∣ 1
Z
− 1bZ

∣∣∣π̂
= 1

Z

∣∣∣π − π̂∣∣∣+ |Z− bZ|
Z bZ π̂.

(C.1)
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Integrating the obtained inequality over V , we have

∫
|bel − b̂el| ≤

∫
1
Z

∣∣∣π − π̂∣∣∣+
∫ |Z− bZ|

Z bZ π̂

≤ 1
Z
ε+ 1

Z
|Z − Ẑ| ≤ 2ε

Z
≤ 2εbZ−ε .

(C.2)

The last step follows from the fact that Ẑ − ε ≤ Z and thus 1/Z ≤ 1/(Ẑ − ε) as long

as Ẑ − ε > 0.
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