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Global Localization of Objects via Touch

Anna Petrovskaya and Oussama Khatib

Abstract—Humans are capable of manipulating objects based
solely on the sense of touch. For robots to achieve the same
feat in unstructured environments, global localization of objects
via touch is required. Bayesian approaches provide means for
coping with uncertainties of the real world, but estimation of the
Bayesian posterior for the full 6DOF global localization problem
is computationally prohibitive. We propose an efficient Bayesian
approach termed Scaling Series. It is capable of solving the full
problem reliably in real time. This is a Monte Carlo approach,
that performs a series of successive refinements coupled with
annealing. We also propose an analytical measurement model,
which can be computed efficiently at run time for any object
represented as a polygonal mesh. Extensive empirical evaluation
shows that Scaling Series drastically outperforms prior ap-
proaches. We demonstrate general applicability of the approach
on five common solid objects, which are rigidly fixed during the
experiments. We also consider 6DOF localization and tracking
of free standing objects that can move during tactile exploration.

Index Terms—force and tactile sensing, localization, Bayesian
state estimation

I. INTRODUCTION

N ORDER to carry out manipulation tasks in real world

environments, robots need to perceive objects around them
based on sensory information. Although for robots the use
of vision has been studied in more depth [1], humans rely
heavily on the sense of touch for manipulation tasks [2].
In fact humans are capable of manipulating objects based
solely on the sense of touch. Working towards this ability in
robots, we consider global localization of solid objects via
touch (Fig. 1). Gaining this ability would allow robots to
operate in environments where vision is not available, such
as smoke filled rooms or muddy water, or it could be used in
combination with vision to improve overall perception.

Early tactile perception algorithms date back to the 1980s
(e.g. [3]-[5]) as we discuss in the next section. Recent work
has focused on tactile perception in uncertain environments.
However, in uncertain conditions object localization requires
the estimation of a probability distribution over the space of
all 6DOF' poses of the object. When initial uncertainty is
high, this estimation is very expensive computationally. For
this reason, most approaches limit the DOFs and/or initial
uncertainty [6]-[8].

To overcome the computational challenge, we propose a
principled approach — termed Scaling Series (SS) — that
solves the full global 6DOF localization problem efficiently
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'6DOF stands for six degrees of freedom.

Fig. 1. In our experiments robots manipulate objects based solely on
the sense of touch. Global initial uncertainty is assumed in 6DOF.
The photo shows the robot interacting with one of the five objects
used in our experiments: the cash register.

(~ 1 second) and reliably (> 99%). The approach is a
Bayesian Monte Carlo technique coupled with annealing. It
performs multiple iterations over the data, gradually scaling
the precision from low to high. For each iteration, the number
of particles is selected automatically based on the complexity
of the annealed posterior. >

We show that Scaling Series works in both fully-constrained
uni-modal scenarios and under-constrained multi-modal sce-
narios. The latter arise at early stages of tactile exploration,
when insufficient data have been collected to fully constrain
the problem. We also consider free-standing objects, which can
move during tactile exploration. To our knowledge, full 6DOF
Bayesian estimation for this case has not been addressed in
prior art.

In addition, we present an analytical measurement model for
tactile perception that can be used for any object represented
as a polygonal mesh. Unlike sampling based models, this
model can be computed quickly at run time and does not
require training ahead of time. Due to its differentiability, the
presented model allows for efficient estimation.

Our approach is easily applicable to any object represented
as a polygonal mesh. We demonstrate its portability on five
common rigid objects (Fig. 2). High initial uncertainty is
assumed in the experiments: 400mm in position with unre-

Earlier versions of this paper appeared at ICRA 2006 [9] and at an
RSS workshop in 2007 [10]. In addition to the material presented in earlier
versions, we provide a sound theoretical foundation for the approach including
proofs of convergence and considerations for parameter selection. We also
provide an in-depth evaluation of the algorithm features and significantly
expand comparisons to prior art. Moreover, we include results for three new
complex objects and consider moving objects for the first time.
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stricted orientation. The presented approach produces highly
accurate results (~ Imm) quickly and reliably, enabling the
robots to safely manipulate the objects. We also provide
extensive empirical evaluation of Scaling Series properties
and provide comparisons to other methods, including particle
filters, importance sampling, and APF.

The paper is organized as follows. The next section dis-
cusses related work. Sect. III provides the necessary mathemat-
ical background. Sect. IV presents the algorithm together with
its discussion and analysis. Experimental results are presented
in Sect. V. We conclude in Sect. VI. Mathematical derivations
are provided in the Appendix.

II. RELATED WORK

Touch based perception has not been studied in as much
depth as vision because standardized touch sensors are not
as easily available. In many situations tactile sensors have to
be hand crafted specifically for the robot and the task. This
complicates comparisons between methods and slows progress
in tactile perception. However, recently there has been a surge
of interest in the field due to the necessity of touch based
perception in service applications [8], [11]-[13].

A. Single Hypothesis Methods

Early methods for tactile object localization generally ignore
the sensing process uncertainties and focus on finding a single
hypothesis that best fits the measurements. For example, in
1983 Gaston et al. used interpretation trees to efficiently find
the best match for 3DOF object localization [14]. Grimson
et al. extended the approach to 6DOF [3]. Faugeras et al.
used least squares to perform geometrical matching between
primitive surfaces [4]. In 1986 Shekhar et al. solved systems
of weighted linear equations to localize an object held in a
robotic hand [5].

Single hypothesis methods are also widely used to solve
the workpiece localization problem in manufacturing appli-
cations for dimensional inspection [15], machining [16], and
robotic assembly [17]. In these applications the measurements
are taken by a coordinate measurement machine (CMM)
[18] or by on-machine sensors [19]. Workpiece localization
makes a number of restrictive assumptions, which make it
inapplicable to autonomous robot operation in unstructured
environments. One important restriction is that there is a
known correspondence between each measured data point and
a point or patch on the object surface (called home point or
home surface respectively) [20]. In semi-automated settings
the correspondence assumption is satisfied by having a human
direct the robot to specific locations on the object. In fully-
automated settings the object is placed on the measurement
table with low uncertainty to make sure each data point lands
near the corresponding home point.

Further restrictions include assumptions that the data are
sufficient to fully constrain the object, the object does not
move, and there are no unmodeled effects (e.g. vibration,
deformation, or temperature variation). All of these parameters
are carefully controlled for in the structured manufacturing
environments.

The workpiece localization problem is usually solved in
least squares form using iterative optimization methods, in-
cluding Hong-Tan method [21], Variational method [22], and
Menq method [23]. Since these methods are prone to getting
trapped in local minima, low initial uncertainty is usually
assumed to make sure the optimization algorithm is initialized
near the solution. Some attempts have been made to solve
the global localization problem by re-running the optimization
algorithm multiple times from pre-specified and random initial
points [24]. Recent work has focused on careful selection
of the home points to improve localization results [25]-[27]
and on improving localization efficiently with complex home
surfaces [28], [29].

B. Bayesian Methods in Tactile Perception

In the last decade there has been increased interest in
Bayesian state estimation for the tactile object localization
problem [6]-[8], [30]. These methods estimate the probability
distribution over all possible states (the posterior), which cap-
tures the uncertainty resulting from noisy sensors, inaccurate
object models, and other effects present during the sensing
process. Thus estimation of the posterior enables planning
algorithms that are resilient to the uncertainties of the real
world. Unlike workpiece localization, these methods do not
assume known correspondence. In contrast to single hypoth-
esis methods, posterior estimation methods can handle the
under constrained scenario, in which the data are insufficient
to fully localize the object. These methods can also work with
moving objects and answer important questions, such as:“have
we localized the object completely?” and “where is the best
place to sense next?”.

The main challenge faced by posterior estimation ap-
proaches is computational complexity, which goes up expo-
nentially with the number of DOFs and the size of the initial
uncertainty region. For this reason all of the approaches in this
category (except an earlier version of this paper [9]) restrict
the number of DOFs and/or initial uncertainty.

The earliest known work in this category was in 2001 by
Gadeyne et al., who considered localization of a rectangular
box based on measurements taken by a force controlled robot
[6]. The localization was performed in 3DOF with initial
uncertainty of 300mm in position and 360° in orientation.
They used a sampled measurement model that was stored in
a look-up table.

In 2005 Chatpar et al. used particle filters for contact
based object localization during peg-in-hole assembly tasks
[7]. They considered 20mm initial uncertainty in 3DOF and
utilized a measurement model based on sampling the object
in advance. Chatpar et al. also considered active localization,
where the most optimal next sensing action is chosen based
on information from prior steps.

An earlier version of this paper was published in 2006
[9]. We considered 6DOF localization with large uncertainty:
400mm in position and 360° in orientation. We also introduced
an analytical measurement model and proposed the Scaling
Series method.

In 2010 Corcoran et al. used the annealed particle filter
(APF) to estimate 4DOF pose and radius of cylindrical objects
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[30]. Initial uncertainty of up to 250mm in position with
unrestricted orientation was considered. They also extended
the analytical measurement model we proposed in 2006 to
include some negative information and to integrate over object
surface. Later in 2010, Platt ef al. introduced sample based
models suitable for localization of deformable objects [31].

Most recently Hsiao er al. used grids to estimate the
posterior in 3DOF with low-to-medium initial uncertainty (up
to 5S0mm Gaussian) [8]. The contribution of their approach
was in optimizing data collection strategies and considering
free standing objects that could potentially move during data
collection. The measurement model used in their work is
similar to the one we proposed in 2006, except that it also
takes negative information into account.

We should also mention the rich literature on object shape
reconstruction using tactile sensors [32]-[35]. Although this
work does not address localization of known objects, some
authors explicitly consider sensor uncertainties using Bayesian
methods [36], [37].

C. Bayesian Methods in Other Applications

Bayesian methods have been used in a variety of robotic
applications with great success. For example a recent book on
practical applications includes analysis of planetary ring struc-
ture, shape estimation, and target tracking to name a few [38].
A recent textbook [39] provides an in-depth study of indoor
robot localization and mapping, which bear some resemblance
to the problems considered in this paper. However, the global
localization problems considered in the textbook are relatively
low dimensional: 3DOF. The only high dimensional problem
considered in the textbook is simultaneous localization and
mapping (SLAM), where global uncertainty does not need
to be resolved. Moreover many SLAM methods effectively
reduce dimensionality by utilizing problem structure [40].
These techniques do not apply to the 6DOF object state
estimation problem, where this structure is not present.

There has been a lot of work on 6DOF object localization
in the vision community. See [41] for a recent survey by
Lepetit and Fua. The most popular methods have been least-
squares minimization [42], [43], RANSAC [44], Kalman filter
variants [45], [46], and particle filters [47]. These approaches
tend to rely on manual initialization and assume small initial
uncertainty. As Lepetit and Fua point out, methods incapable
of dealing with global uncertainty tend to be inherently fragile
because they can not recover from tracking failures.

One of the most successful variants of particle filters,
the annealed particle filter (APF), has been introduced by
Deutscher e al. in the context of articulated body tracking
using vision [48], [49]. As we already mentioned above in
Sect. II-B, this method has also been applied to the tactile
localization problem [30]. Articulated object tracking is a very
high dimensional problem (up to 30DOF). However, usually
low initial uncertainty is assumed in these applications, due to
the use of manual initialization. Also these approaches do not
run in real time. APF tends to outperform the standard particle
filter in single-mode scenarios. However, it has been shown to
be unstable in multi-modal situations by Balan ez al. [50]. In

fact Balan ef al. argue for the use of standard particle filters
instead of APF for this very reason.

III. MATHEMATICAL BACKGROUND

We start out with a quick intuitive summary of the prob-
lem: tactile object localization requires estimation of state
parameters based on a set of data obtained by touching the
object. As we shall see in Sect. III-C this entails fitting the
data to the object model using Mahalonobis distance in the
6-D measurement space. In the case of moving objects, the
estimation is performed via recursive filtering from one time
step to the next.

Instead of producing a single set of parameter values,
Bayesian approaches represent the uncertain knowledge by
a probability distribution, which records how likely each
state is based on sensor measurements. Estimating the entire
probability distribution over all the states is important because
initially the data are insufficient to disambiguate the object’s
position. In fact, the shape of the probability distribution
(specifically the high likelihood regions, called modes) allows
us to determine when enough data has been collected in order
to manipulate the object safely. The probability distribution is
represented numerically by weighted points, called particles.?

In the remainder of this section we formalize the above
intuitive description and introduce the required notation.

A. Bayesian Problem Statement and Definitions

We consider the class of problems where the state X has
to be inferred from a set of sensor measurements D = {Y}}.
Our goal is to estimate the probability distribution of the state
given the measurements, bel(X) := p(X|D), known as the
posterior distribution, which represents our uncertain belief
about the state X.

For the general algorithm, we will assume that the state
X is a vector of dimensionality dimX in R*™X The mea-
surements are modeled as K random variables Y}, which are
drawn independently from conditional probability distributions
p(Y%|X) with domains in R¥™Y" The conditional probability
distributions (CPDs) encode the measurement model, which is
a probabilistic law that represents the measurement process.
The measurement model depends non-linearly on the state
X. In many applications, the CPDs are naturally given in
the log-linear form via measurement energy potentials vy, :
R4mX o R4mY , R+ Then the CPD for Y}, can be written
as

P(YelX) = nexp (—un(X,12) ). M

In the above equation and throughout the paper 7 denotes the
normalization constant, whose value is such that the expression
integrates to 1. We also define the total measurement energy

v(X) = or(X, V). 2)
k

Via Bayes rule the posterior bel(X) can be shown to be
proportional to p(D|X)p(X). The first factor is the data
probability, which can be shown to be proportionate to

3See [51] for further information on particle based Bayesian methods.
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7(X) := exp(—v(X)). The second factor, bel(X) := p(X),
is called the prior, which represents our belief about X before
obtaining measurements D. Hence with this notation we can
write

bel(X) = nm(X)bel(X). 3)

1) Stationary systems: In stationary systems with global
initial uncertainty the prior bel(X) is uniform. Hence, the pos-
terior is proportional to the data probability: bel(X) = nm(X).

2) Dynamic systems: In dynamic systems the state changes
over time. In this case, X; and D; denote the state and the
set of sensor measurements for a time step ¢. The posterior,
bel;, is defined as the probability of the current state given all
measurements obtained up until this point:

bely (Xi) :==p (X¢|Dy, -+, Dy). “4)

Measurement CPDs for step ¢ are defined analogously to
Eqn. 1. Similarly define 7:(X;) := exp(—v¢(X+)). Also let
bel;(X;) be the prior at time ¢. For brevity we will drop the
argument X, and write bel;, m;, and bel; to denote the values
of these functions at time ¢.

In dynamic systems, the prior is the prediction distribution,
bel; := p(X¢|Dy,---,Ds_1), which predicts the current state
X, before taking into account the most recent sensor data D;.
Hence the prior is computed as

bel, = / P (Xe|Xo 1) bely 1 dX, 1. 5)

Here p (X;|X;_1) encodes the dynamics of the system. This
probability is called the motion model. Combining Eqns. 3 and
5 we obtain the Bayesian recursion equation:

belt =1 T /p (Xt‘Xt—l) belt_l dXt_l. (6)

B. Problem Statement for Tactile Localization

Bayesian tactile localization is an instance of the general
Bayesian problem defined in the previous section. Here the
robot needs to determine the pose X of a known object O
based on a set of tactile measurements D . The object is
typically represented as a polygonal mesh (Fig. 2). The state
X = (z,y,2,,0,7) is the 6DOF pose of the object —
including position (x,y,z) and orientation angles (a,(,7)
— in the manipulator coordinate frame. The measurements
D are obtained by touching the object with the robot’s end
effector. Each measurement Y}, := (Y,"°°,Y;*°") consists of
the measured cartesian position of the contact point ¥,”** and
the measured surface normal Y,]'°".

Note that unlike in the workpiece localization problem, here
we do not assume known correspondence between measure-
ments and points on the surface of the object. Hence the re-
sulting problem is more complex than workpiece localization.

C. Measurement Model

To interpret the tactile measurements we use the proximity
measurement model, which has been used in stereo vision [52]
and is known as “likelihood fields” in mobile robotics [39].
In this model the measurements are considered independent

of each other with both position and normal components
corrupted by Gaussian noise. For each measurement, the
potential depends on the distance between the measurement
and the object (hence the name “proximity”).

Since the measurements contain both contact coordinates
and surface normals, this distance is taken in the 6-D space
of coordinates and normals (i.e. in the measurement space).
Let O be a representation of the object in this 6-D space.
Let 6 := (6P°%,6"°") be a point on the object surface, and YV
be a measurement. Define Dp(6,Y") to be the Mahalonobis
distance between 6 and Y':

HPOS _ Y pos 2 pnor __ 'y nor 2
Dp(6,Y) = \/"’ 2 1o o

2 2
Upos O or

2 2 . . . .

where o7, and oy, are Gaussian noise variances of posi-

tion and normal measurement components respectively. Then
the distance between a measurement Y and the object is
Da(O,Y) :=ming Dy (6,Y).

Let Ox denote the object in state X. For a measurement
Y., define the measurement error to be

uk(X) :== Dp(Ox, Yi). ®)

Then the measurement potential is computed as
1
(X, YY) = 5uﬁ(X). )

Similarly to total measurement energy, we also define the rotal
measurement error to be

u(X) = \/Z D3, (Ox,Yy).
k

Then, we can re-write 7 as
1
m(X) =exp (—QuQ(X)) .

While early Bayesian tactile localization work used sampled
measurement models [6], [7], the model described here is
analytical. Hence it can be computed efficiently on the fly and
without the need for prior training. As all proximity models,
the model assumes that the closest point on the object caused
the measurement. This is often referred to as a hard assignment
meaning that the point causing the measurement is assigned to
be the closest point. Alternatively with a soft assignment, one
considers the contribution from all points to the probability
of the measurement. Although the soft assignment model has
been used for tactile object localization [30], we specifically
chose to use the hard assignment model for two reasons.
First, the hard assignment model can be efficiently computed
explicitly unlike the soft assignment model. Second, for an
unbiased application of the soft assignment model, one needs
to compute a prior over all surface points, i.e. how likely each
surface point is to cause a measurement. However, this prior
is usually non-uniform and highly dependent on the object
shape, the manipulator shape, and the probing motions.

Like all proximity models, the model described here does
not take negative information into account. In other words it
does not incorporate information that the robot was able to
move through some parts of space without making contact

(10)

(In
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Fig. 2. The five objects used in our experiments: cash register, toy guitar, toaster, box, and door handle. Bottom row shows polygonal mesh models of the
objects. Model complexity ranges from 6 faces (for the box) to over 100 faces (for the toaster).

with the object. Negative information has been taken into
account in [8] and [30]. However, incorporation of negative
information leads to more complex measurement models and
complicates inference. The proposed model is continuous and
almost everywhere differentiable. Both of these properties
would be lost with incorporation of negative information.
Although we did not see a significant impact of negative
information on accuracy and reliability of localization, it can
be useful for active exploration strategies as in [8]. In these
cases, the negative information can be superimposed on top
of the posterior computed using the proximity model.

D. Motion Model

Since free standing objects can move during probing, we
need to define a motion model for this dynamic process. We
assume the state of the object evolves via addition of Gaussian
noise. Hence, p(X;|X;_1) is a Gaussian with mean at X;_;
and variances o2, and oing along metric and angular axes
respectively.

IV. INFERENCE ALGORITHM

We start by introducing the required concepts and providing
an intuitive description of the algorithm. A formal description
is given in Sect. IV-B. Sects. IV-C through IV-F provide
detailed analysis of the algorithm’s features and properties.

A. Concepts and Intuition

As we have seen in Sect. II prior approaches have struggled
to solve the full 6DOF object localization problem with global
uncertainty. The main challenge is computational complexity,
which is proportional to the number of particles used. As we
will see below, the number of particles required to solve the
problem reliably is exponential in the dimensionality of the
problem.

1) Required number of particles: As an example consider
a 1-D space [0,1]. We want to find the peak of the posterior by
sampling particles from the space randomly* (see Fig. 3 top
left). When we sample a particle from the entire space, the
probability of it hitting the support of the peak is equal to the
ratio between the width of the peak and the width of the entire

4More precisely: we want to sample the particles uniformly and indepen-
dently.
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Fig. 3. Top row: two plots of a simple posterior over [0, 1]. Top left: true
posterior. Top right: annealed posterior. Note that annealing increases peak
width, and therefore improves the ratio of peak width to space width. Bottom
row: true (left) and annealed (right) posterior for localization of cash register.
The cash register model is shown as a wire frame. The small colored squares
represent high likelihood particles. Note that annealing makes the problem
more ambiguous.

space. Let’s denote this ratio by 1/p. Hence in expectation we
need to sample p particles from the entire space in order to
get a particle from the support of the peak.

The same is true for higher dimensional problems: the ratio
between the width of the peak and the width of the initial
uncertainty dictates the necessary number of particles required
for reliable state estimation.’

Unfortunately p goes up exponentially with problem di-
mensionality. For the 3DOF tactile object localization with
400mm initial uncertainty® and sensor accuracy of Imm, p
comes out to be around 6 x 109, whereas for the 6DOF
problem it is approximately 3 x 10'°. To put the exponential
blowup in perspective, if we assume that the 3DOF problem
takes 1 second to solve, then the 6DOF problem would take
approximately 1.5 years.

Thinking in terms of peak width also helps understand
the following surprising fact about posterior estimation: the

S0f course, in 2-D the term “width” should be replaced by “area”, and in
3-D and higher by “volume” of the supporting regions.
SUnrestricted orientation uncertainty is assumed.
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problem actually becomes harder with more accurate sensors.
The reason is simple, more accurate sensors produce more
narrow peaks, and therefore p increases. In the extreme, when
the sensors are perfectly accurate, most Bayesian methods
break mathematically.

2) Smoothing: In order to improve the peak width to
uncertainty ratio, many modern methods utilize smoothing
(also known as relaxation) [39]. Smoothing broadens the peaks
(Fig. 3 top right), and therefore reduces the number of particles
required to find it reliably. One of the most common smoothing
techniques is annealing, which is obtained by exponentiating
the measurement model to the power 1/7, where 7 is the
temperature. Thus for 7 = 1 the true measurement model is
obtained and for 7 > 1 the measurement model is “heated-up”.
The higher the temperature, 7, the broader the peaks. However,
annealing (and any other type of smoothing) comes at a price.
The estimates become less accurate and the state estimation
becomes more ambiguous (Fig. 3 bottom row). Intuitively
smoothing is analogous to blurred vision: the more blurry the
vision, the harder it is to determine an object’s position or to
disambiguate objects.

3) Broad particles: Estimation of a posterior by particles
would be impossible without some sort of local smoothness.
Indeed, if the value of the posterior at one point was com-
pletely unrelated to its value at the neighboring points, then no
number of particles would be sufficient for accurate estimation.
Most particle based methods do not make this assumption
explicit and define each particle as a single point. However, we
use broad particles, which represent regions of space around
them. We will call them 6&-neighborhoods’, where § is the
radius® of the neighborhood. Of course the value of § depends
directly on the smoothness of the posterior: the smoother
the posterior the larger the §. “Heating-up” the measurement
model increases d as it makes the posterior smoother. Thus ¢
depends on the temperature during annealing.

4) Intuitive algorithm description: The main idea is to have
the whole uncertainty region covered with §-neighborhoods.
This way we are sure that we have a good approximation
of the posterior. At high temperature this can be easily done
with just a few particles because ¢ is large. Of course this
will not produce accurate estimates, so we use an iterative
refinement approach. First we solve the problem with a
few very broad particles at high temperature. Prune out the
low probability regions and keep the peaks. Then refine the
estimates at a lower temperature. Prune again and repeat until
the temperature reaches 7 = 1. This way the final estimates
will be as accurate as the data and the model allow.

Both the uncertainty region and the peak width change
during refinements. The uncertainty region changes due to
pruning. The peak width changes due to annealing. Therefore
the ratio of peak width to uncertainty width also changes.
Hence no single fixed number of particles will work well
for all refinement stages. Instead of using a fixed number of
particles, we specify the desired particle density by setting the
number of particles to maintain per J-neighborhood. This way

7In earlier versions of the paper, §-neighborhoods were called §-spheres.
8Radius of a region can be defined as half the diameter, where the diameter
is the largest distance between two points contained in the region.

the algorithm can compute the appropriate number of particles
to use at each refinement stage.

B. The Scaling Series Algorithm

The goal of the algorithm is to compute an approximation of
the posterior bel by weighted particles. The initial uncertainty
is assumed to be uniform over the starting region. In this
case, the posterior is proportional to the data probability (see
Sect. III-A1). Hence the weights can be computed via 7.

The formal algorithm listing is given in Alg. 1. The algo-
rithm takes as input the initial uncertainty region, Vj, the data
set, D, and two user-specified parameters: M and d,.. M spec-
ifies the number of particles to maintain per d-neighborhood.
0. specifies the terminal value of 4. The refinements stop
once the algorithm reaches this value. Selection of appropriate
values for the two user-specified parameters is discussed in
Sect. IV-C.

Lines 1 — 3 set initial values. §p is selected so that one
do-neighborhood contains the entire initial uncertainty region.
The scaling factor zoom is set so that the volume of each
d-neighborhood is halved during scaling. The number of
iterations /N is computed based on the ratio of initial to final
volume. S5 denotes a §-neighborhood, R (- ) denotes the radius
and Vol(-) denotes the volume of a region.

The initialization is followed by a loop that performs the
refinement iterations in lines 4 — 11. At each iteration n,
0, is computed by applying the scaling factor to §,,—1. The
corresponding temperature, T,, is computed based on the
assumption that §, corresponds to the temperature of 7 = 1.
Line 7 draws a particle set X,, uniformly from V;,_; ensuring
the required density of M particles per §-neighborhood. A
listing of this procedure is provided in Alg. 2. In line 8
Compute_Normalized_Weights procedure weighs the particles
by the annealed data probability, (X )/ ™, at temperature 7,,.
This procedure also normalizes the weights so that they add
up to 1. Line 9 prunes low probability regions. A detailed
discussion of this step is provided in Sect. IV-C. Line 10
computes the resulting subregion V,, for this iteration. After
completion of the refinement steps, lines 12 and 13 draw the
final particle set and compute weights at temperature 7 = 1.

The algorithm returns an approximation of the posterior
represented by a weighted particle set X', where the weights
W are set to the data probability at temperature 7 = 1.

For line 7, we need a procedure to sample uniformly from
Vi—1, which is represented as a union of J-neighborhoods.
During sampling we need to ensure that we draw M particles
from each d-neighborhood. Thus in effect this is very similar
to stratified sampling, except the sets comprising V,,_; are
not necessarily disjoint. One of the simplest implementations
is based on rejection sampling (Alg. 2)°.

C. Discussion of Algorithm Features and Settings

1) Even density cover: Although this is one of the most
crucial features of Scaling Series, at first it may seem counter-
intuitive to call the Even_Density_Cover procedure (line 7 of

9A historical note: the original implementation of this step was more
complicated. The use of rejection sampling for this purpose was proposed
by an anonymous reviewer at ICRA 2006.
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Input: V[ - initial uncertainty region, D - data set, M -
number of particles per d-neighborhood, J. - terminal
value of 9.
50 — R(Vo)
zoom «— 27
N —loga(Vol(Ss,)/Vol(Ss,))
for n=1to N do

Oy < zoom - 0p_1

Tn — (61/64)?

X,, — Even_Density_Cover(V;_1, M)

Wy, — Compute_Normalized_Weights()En, Tn, D)

X,, < Prune(X,,)

V., < Union_Delta_Neighborhoods(X,,, ,,)
end for
12: X « Even_Density_Cover(Vy, M)
13: W « Compute_Normalized_Weights(X, 1, D)
Output: (X, W) - a weighted particle set approximating the

posterior.

1/dimX

R e A A S ol S

—_—
- O

Alg. 1: Scaling Series algorithm for posterior estimation.

Input: V - sampling region represented as a union of J-
neighborhoods {S;}, M - number of particles to sample
per d-neighborhood.

1 X — {}

2: for i =1 to [{S;}| do

33 form=1to M do

4 sample a point X from S;

5: reject X ifitisin S;U...US;_1
6 otherwise add X to X

7. end for

8: end for

Output: X - a set of particles that evenly cover V.

Alg. 2: Even_Density_Cover: procedure for uniform sampling
from a region represented as a union of J-neighborhoods with
density M per d-neighborhood.

Alg. 1). Indeed the particle set comprising V,,_; is already
weighted by the annealed data probability. Why not perform a
weighted resample? The weights already resemble the poste-
rior distribution, so why should we discard them and sample
particles uniformly instead?

It turns out this step is critical for reliable handling of multi-
modal posteriors. This is easiest to understand by considering a
simple example. Suppose we have a posterior with two modes
of even height. We draw two particles: one near each mode. If
one of the particles is slightly closer to a mode than the other,
the weights will be uneven. Hence during weighted resampling
we will favor one mode over the other. If we perform several
iterations, this error compounds and hence we are quite likely
to discard one of the two modes. Even_Density_Cover avoids
this problem. If a particle survived the pruning step, it will be
given full consideration at the next iteration.

The multi-modal case is important for two reasons. First,
multi-modal posteriors arise naturally during tactile object ex-
ploration because at early stages the number of measurements
is insufficient to determine the object’s location unambigu-

ously. In fact the posterior can even have entire regions of high
probability (see Fig. 4). Estimating the multi-modal posterior
at early stages of exploration is important for making safe and
informed decisions about future sensing actions. Second, note
that most iterations of Alg. 1 compute the annealed posterior.
The higher the temperature the more ambiguous the posterior
becomes (see bottom row of Fig. 3). Hence multiple modes
are often present during early iterations of Scaling Series as
we show in Sect. V-E1 experimentally.

One other important reason for the Even_Density_Cover
step is that without it we would be double-counting the
data and hence the estimate would not converge to the true
posterior.

2) Pruning: The purpose of the pruning step (line 9 of
Alg. 1) is to remove low probability regions from consider-
ation. This way the computational resources can be focused
on the more interesting high probability regions. This step
removes particles with relatively low weights from the particle
set. This is achieved via weighted resampling. See [53] for a
listing of a weighted resampling algorithm. During this step
the value of M is ignored. Instead this procedure draws the
same number of particles as there were prior to this step.
The weights are set to be uniform after the resampling oper-
ation. Although weighted resampling is likely to discard low
probability particles, from theoretical viewpoint the resulting
particle set encodes the same probability distribution as the
weighted particle set prior to resampling.

3) Selecting d,: The value for §, should be selected so
that the posterior changes only a small amount within a §-
neighborhood of any particle. This can be done using the
Lipschitz constant.'® For the global localization case, the
posterior is proportional to 7(X) = exp(—3u?(X)) (see
Eqn. 11), so we set

(12)

where A, is the Lipschitz constant of 7. It can be easily
shown that A, is bounded by A, /+/e (see Appendix A), and
so Eqn. 12 relates J, to A,. Thinking in terms of u gives d,
a physical meaning: it is the largest radius, within which the
total measurement error can change by at most /e. Lipschitz
constant computations for the measurement model described
in Sect. I1I-C are provided in Appendix A.!!

The measurement model described in Sect. III-C is con-
tinuous with bounded derivatives almost everywhere. Thus
it is guaranteed to have a Lipschitz constant. However, for
some measurement models the Lipschitz constant may not
exist or be cumbersome to compute. In these cases, one can
set the value of 0, to a good guess, which works well in
most areas of state space. Increasing the value of M will
help compensate for an imperfect setting of J., as these two
parameters complement each other.

10For a function f(X), the Lipschitz constant, A fa is defined to be the
maximum slope between any two points.

IThese derivations provide upper bounds that hold for all objects and
data sets. Although these values are not necessarily optimal for a specific
object and data set, they serve as a good guide and can be further optimized
experimentally (see Sect. V-E4).
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(a) after 1 measurement

(b) after 2 measurements

(c) after 3 measurements

Fig. 4. During exploration the posterior evolves as additional measurements arrive. The particles in this figure approximate high likelihood regions of the
evolving posterior. Each particle is shown by a small square at the hypothesized position of the first data point on the surface of the object. The normal of
each square corresponds to the sensed normal transformed to the object coordinate frame based on the hypothesized object pose.

4) Shape of §-neighborhood: So far we have not specified
what shape a d-neighborhood takes. In early versions of
the paper [9], we termed the neighborhoods §-spheres and
defined them to be hyper-spheres of radius §. However, we
also mentioned that when coordinates are not homogenous
(e.g. position vs. orientation), scaling factors may be needed.
Hence, the obtained shape is actually a hyper-ellipsoid. The
scaling factors can have a significant impact on performance.
Analogously to using the Lipschitz constant of 7, the neigh-
borhood dimensions along each axis can be set based on the
partial Lipschitz constants of m, which are defined as the

maximum partial derivatives. If A\, = sup|% , then we
set the radius of the neighborhood along i-th axis to be
Ty = I/Aﬂ-’i. (13)

In this case we assume that J, := r; to avoid ambiguity. See
Appendix A for a derivation of the partial Lipschitz constants
for the model described in Sect. III-C.

5) Annealing schedule: During iterations we compute the
annealed data probability: 7/7(X) = exp(—u?(X)/7), and
so 7 acts on u?(X). Since &, is proportional to change in
u(X), 7 should be adjusted in proportion to §2 rather than
linearly with 6. This computation takes place in line 6 of
Alg. 1.

6) Selecting M: The number of particles to maintain per
d-neighborhood is a user-specified parameter, which affects
reliability, efficiency, and accuracy. As we already mentioned
it complements the value of d,. The higher the value of M,
the higher the accuracy and reliability, and also the higher the
computational cost. In practice, if §, is chosen as described
above, M values between 3 and 6 tend to give good results,
although in rare cases M can be set as low as 2. A higher
value of M is needed if the Lipschitz constants have been
underestimated or if these constants do not exist. An empirical
evaluation of dependence on M is provided in Sect. V-E4.

7) Comparison to APF: At a first glance Scaling Series
may seem very similar to APF, which also uses iterative
annealing. However there are three important distinctions.
First, while APF has a fixed number of particles to use at
each iteration, Scaling Series selects the number of particles
automatically and dynamically for each refinement stage. The
selection takes into account the smoothness of the posterior,
the total uncertainty volume, and the width of the neighbor-
hood each particle can represent. Thus, the optimal number
of particles is used at each iteration for efficient and accurate
representation.

Second, while APF is known to handle poorly in multi-
modal scenarios [50], Scaling Series handles these very well
due to the use of Even_Density_Cover. For this reason APF
does not converge to the true posterior, whereas Scaling Series
does as we show in Sect. IV-F.

Third, the Scaling Series annealing schedule is derived from
the mathematical properties of the posterior. This allows for
much more efficient and straightforward annealing than APF,
which relies on survival rate. Scaling Series also derives the
relationship between temperature and §, which is analogous
to the APF diffusion rate. In APF, the diffusion rate is
disassociated from the temperature, which can lead to non-
optimal diffusion. Empirical comparison to APF is provided
in Sects. V-E2, V-E3, and V-D.

D. Algorithm Variations

1) Zoom factor: The standard version of Scaling Series
algorithm sets zoom, so that the volume of a J-neighborhood
is halved at each iteration. However, it is possible to zoom
faster or slower, reducing the volume for example to 10%
or 90% each time. Note that if zoom factor is changed, the
number of iterations also needs to be changed in line 3,
where the base of the log is the factor, by which the volume
is reduced per iteration. Faster zooming will require fewer
iterations, slower will require more. Empirical evaluation in
Sect. V-ES shows that zoom factor of the original algorithm
is optimal.

2) Alternative pruning strategies: One alternative strategy
for pruning is thresholding based on a preset percentage of
the top weight in the particle set. Unlike weighted resampling,
thresholding can be carried out based on log of the weights
(i.e. directly on v). This can significantly improve numerical
stability in situations where the data does not match the model
very well — a common scenario in the presence of unmodeled
effects.!> A threshold of ¢ corresponds to In¢ in terms of v.
Thus any particle whose v exceeds the minimum v in the
particle set by more than In€ can be pruned. A reasonable
choice is to prune out everything that is further than one
standard deviation away from the solution. Since 7 is Gaussian
in wu, this results in & = % ~ 60%. Empirical evaluation in
Sect. V-E6 shows that this is indeed the optimal setting.

12 Although thresholding in log space does not change the mathematical
outcome of the operation in principle, in practice when the probability of the
data is extremely low, the weights come out to be zero due to limited floating
point exponent range.
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3) Time limit: One practical approach is to limit the amount
of time allotted for estimation based on a single data set. This
is especially helpful at early stages of exploration, when the
posterior is highly ambiguous (Fig. 4). See Sect. V-B2 for an
example.

4) Compensating for object symmetries: Many man-made
objects have symmetries that can not be resolved no matter
how much data is collected. These objects always produce
multi-modal posteriors. In order to reduce the number of
particles to represent the modes, a simple strategy is to take
each state X modulo the symmetries.

E. Tracking Dynamic Objects

So far we have only considered estimation of posteriors
with a uniform prior. This works well for stationary objects.
However, free standing objects can shift during tactile probing.
Hence we need a method for tracking the state of dynamic
objects. In these cases the prior is not uniform as it encodes the
information from prior sensing actions and possible motions
of the object. Hence we need a way to extend Scaling Series
to tracking of dynamic objects.

First let us consider how a standard particle filter (PF) solves
this problem (see [39] for details). At each time step ¢, PF per-
forms a motion update followed by a measurement update. The
motion update performs a resample followed by application of
the motion model. The measurement update incorporates the
most recent data by setting importance weights proportional
to ;. Note, that the measurement update is similar to Scaling
Series, except the prior is non-uniform in this case.

We consider three possible ways of extending Scaling Series
to the tracking problem. The first algorithm, SS-DYN1, simply
runs Scaling Series during the first time step (when the prior is
uniform), and then follows by standard particle filter updates
for the rest of the time steps.

The second algorithm, SS-DYN?2, is the same as SS-DYNI,
except that it uses Scaling Series during each measurement
update. To do so, it uses the particle set generated by the
motion update of the previous step and sets dg broad enough
to encompass motion noise. Of course, this does not fully
take the prior into account, so we end up “forgetting” some
information from prior time steps.

The third algorithm, SS-DYN3, runs Scaling Series on each
data set using a uniform prior, and then adjusts the weights to
capture the motion model via the Bayesian recursion equation
(Eqn. 6). This way it does not “forget” any information from
prior steps. Formal listing of SS-DYN3 is provided in Alg. 3.
The algorithm takes as input the posterior from the prior time
step represented as a set of weighted particles. The rest of the
parameters are analogous to Alg. 1. In line 1 the algorithm
approximates 7; with a set of weighted particles using Scaling
Series (Alg. 1). Lines 4 — 6 compute the integral that appears
in Eqn. 6. Line 7 multiplies the weights by the integral. The
weights are then normalized in line 9. The algorithm outputs
the resulting weighted particle set, which approximates the
posterior at time step t.

Note that due to efficiency of Scaling Series, SS-DYN3
algorithm is tractable as is. However, two efficiency improve-
ments can be implemented. First, if the prior state is too far

Input: (X;_1,W;_1) - weighted particle set from prior time
step, V; - initial uncertainty region, D, - data set for time
step ¢, M - number of particles per J-neighborhood, ¢, -
terminal value of 4.

1: (X, W) « Scaling_Series(V;, Dy, M, 6.)
2: for each (X;,w;) € (X, W) do

3: s«<—0

4:  for each (X;_1,wi_1) € (X—1,Wi_1) do
5: S« S +p(Xt‘Xt_1)’LUt_1

6: end for

7: Wi < WS

8: end for

9: normalize weights W,
Output: (X;, W;) - a weighted particle set approximating
the posterior at time step t.

Alg. 3: SS-DYN3: algorithm for tracking a dynamic state with
Scaling Series.

away from the proposed current state, the probability of the
object transitioning from one state to the other is very low.
Thus the contribution of this term to the integral in line 5 is
negligible. Hence, the loop in lines 4 — 6 can be restricted to
particles X;_; that are close enough to X;.

Second, we can initialize V; to the high probability regions
of the prior bel,. In other words, we can focus on areas, where
the object is likely to move based on prior information. We
can compute the prior using the motion update step of standard
particle filters. Hence we perform a weighed resampling from
(Xi—1,W;_1) followed by application of the motion model
with randomly sampled noise parameters. The result is an
unweighted particle set representing bel,. Then V; can be
set to the union of d-neighborhoods centered at the obtained
particles, where § should be set broad enough to accommodate
for the error due to having a finite number of particles. In line
1 of Scaling Series, dg should be set to the value of § used for
Vi. Note that this efficiency improvement does not double-
count the prior, due to the Even_Density_Cover step at the
beginning of Scaling Series.

F. Algorithm Analysis

In this section we analyze convergence of the proposed
algorithms. In short, we show that Scaling Series, SS-DYNI1
and SS-DYN3 converge to the true posterior. However, SS-
DYN?2 does not converge.

Scaling Series estimates of the posterior converge as M
tends to co. The convergence is understood in the same sense
as for importance sampling. Namely, we want to estimate the
expected value E[f;bel] of some function of interest f(X)
with respect to the posterior distribution. Let the estimate
produced by importance sampling be denoted by

IS,(f) =Y f(X;)wj, (14)
J

where X; are particles and w; are normalized importance
weights. Then we know that IS ;(f) — E|[f; bel] almost surely
(a.s.) as J — oo [54].
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Similarly, let the estimate produced by Scaling Series with
M particles per d-neighborhood be denoted by

SSu(f) = F(Xj)wj, (15)
J

where X are particles in the final set X with normalized
weights w;. Then analogously to importance sampling we have
the following convergence result.
Theorem 1: SS,; — E[f;bel] a.s. as M — oc.
Proof: Let us consider the first iteration of Scaling Series
(Alg. 1). Particles in X; a.s. completely cover Vj as M — oo,
and so particles in X} also a.s. completely'® cover Vj. The
same reasoning can be applied to all NV iterations. Hence, Vy
a.s. completely covers 1} because N does not depend on M.
When Vi covers Vp, lines 12 & 13 of Scaling Series are
equivalent to importance sampling with a uniform prior and
with J > M particles. Thus by convergence of importance
sampling we get the desired convergence result for Scaling
Series. ]
Similarly we can derive convergence of SS-DYN1 and SS-
DYN3 from the convergence of particle filters (PF) [55].
However, SS-DYN2 does not converge to the true posterior
because the Even_Density_Cover step after propagating the
particles discards some information from the prior, and SS-
DYN2 does not compensate for this information loss. This is
similar to the behavior of APF, which also does not converge to
the true posterior due to information loss caused by annealing.
In practice, however, these algorithms can be very useful (as
we show in Sect. V-D).
Theorem 2: SS-DYN1,, converges a.s. as M — oc.
Proof: SS-DYNI consists of SS followed by PF, so the result
follows from their convergence. O
Theorem 3: SS-DYN3); converges a.s. as M — oc.
Proof: In SS-DYN3, line 1 computes 7; and lines 4 — 6
compute the prior bel, using Eqn. 5. Line 7 multiplies the
weights by the prior, and hence by Bayesian recursion the
resulting weights are proportional to the posterior bel;. (]

V. EXPERIMENTAL RESULTS

We performed extensive evaluation of Scaling Series with
both real and simulated data. Two implementations were
used: the old and the new one. The old implementation was
in Java running on a 1.2GHz laptop computer. The new
implementation is in C++ running on a 2GHz laptop computer.

We constructed polygonal mesh models of five everyday
objects: cash register, guitar, toaster, box, and door handle
(Fig. 2). The mesh models of the first three objects were
constructed based on measurements taken with the robot’s
end effector. Models for the last two objects were constructed
from ruler measurements. The accuracy of models ranges from
Smm for the first three objects to Imm for the last two objects.
Accuracy of surface normals is quite poor near edges, corners,
and other non-flat parts of the objects.

3This statement is true as long as bel(X) > 0 for all X. Without loss
of generality we can assume that this is the case. Otherwise, we can simply
exclude from Vj points at which bel(X) = 0 as these points do not contribute
to the expectation of f.

10

Fig. 5. The nine poses used during localization experiments (three poses per
object). These poses where selected randomly from the uncertainty region.
The poses in the top row were also used to run object manipulation scenarios
(see videos). All pictures were taken from the same vantage point.

Each object model included feature points: buttons, levers,
grasp points, etc. Once localization is performed, the features
are transformed into robot coordinates so that the manipulation
scenarios could be carried out. Videos of the experiments, code
and other supplemental materials are available on our website
[56].

The remainder of this section is organized as follows.
Sects. V-A, V-B, and V-C cover real robot experiments with
the five objects mentioned above. Sects. V-D and V-E cover
experiments performed in simulation. Sect. V-D considers
tracking of a free standing box that moves during tactile
exploration. Sect. V-E provides extensive empirical evaluation
of Scaling Series features and parameters.

A. Experiments with Cash Register, Guitar, and Toaster

In this set of experiments we evaluated the algorithm on
three common objects: cash register, guitar, and toaster. The
manipulator used was a 6DOF PUMA robot, equipped with a
6-D JR3 force/torque sensor at the wrist. In these experiments
we used a long end effector of 300mm length and 6mm
diameter. Since the initial uncertainty was large, the long end
effector was necessary to ensure that the robot always made
contact with the tip of the end effector and not some other
non-sensing part of the robot. The end effector had a semi-
spherical tip of Smm radius.

The sources of error included: mesh model inaccuracies,
object deformation (especially noticeable for the guitar), robot
positioning error, end effector deformation (significant due to
the long length), and error due to unknown position of the
contact on the tip of the end effector. Although it is difficult
to determine exact amount of noise produced by all of these
errors, we estimated the contact position noise to be roughly
Opos = dmm. Sensed normals were extremely noisy due to
polygonal model inaccuracy and long end effector length. We
used onor = 50°. The experiments were carried out using
our C++ implementation of Scaling Series with thresholding.
We set the threshold to & = 60% and used M = 6 particles
per neighborhood. The rest of the parameters were set in
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RESULTS OF THE NINE EXPERIMENTS WITH CASH REGISTER, GUITAR, AND TOASTER. CARTESIAN COORDINATES AND ERRORS ARE LISTED IN
MILLIMETERS. ORIENTATION ANGLES AND ERRORS ARE LISTED IN DEGREES. LOCALIZATION ERRORS ARE REPORTED WITH RESPECT TO GROUND

TABL!

E1

TRUTH POSES OBTAINED FROM THE KUKA ROBOT.

Pose No Data TYz aly

No. | Object T Y z « 153 ol Probes | Points | Error | Error | s«
1 | Register | 393 | 542 | -285 | -60° 22° 16° 24 12 29 35° | 24
2 | Register | 131 | 635 | -350 | 128° 67° 41° 24 11 6.8 43° | 25
3 | Register | 364 | 520 | -275 | -18° 8° -33° 26 14 2.1 1.7° | 22
4 | Guitar 468 | 500 | -255 | -34° -32° | -30° 27 10 5.6 2.3° | 26
5 | Guitar 219 | 528 | -335 | -166° -4° 31° 36 11 9.2 52° | 25
6 | Guitar 273 | 678 | -186 76° 70° | -68° 60 17 4.8 3.0° | 2.0
7 | Toaster 380 | 445 | -310 | 127° 161° | -11° 20 11 4.2 24° | 25
8 | Toaster 576 | 271 | -286 | -25° 1° -7° 23 11 6.1 1.2° | 25
9 | Toaster 180 | 614 | -204 85° 101° | 39° 22 14 5.5 33° | 22
Min 131 | 271 | -350 | -166° | -32° | -68° 20 10 2.1 1.2° | 2.0
Average | — — — — — — 29 12.3 5.2 3.0 | 2.1
Max 576 | 678 | -186 | 128° 161° | 41° 60 17 9.2 52° | 2.6

accordance with the derivations in Sect. IV-C and Appendix A.
Specifically, we set d, pos, and 7o, so that:

0 = oposve/K,
Tpos = 5*7 (16)
Tpos/rori = \/RQ(O) + Ugos/arzlor'

The initial uncertainty for all objects was 400mm along
x,y,z with unrestricted orientation. We randomly selected
nine poses from this uncertainty region: three poses per object
(Fig. 5). The objects were held in place by a Kuka LWR robot.
We used the joint angles of the Kuka robot to generate ground
truth for all nine poses.

Prior to experiments we generated a set of safe probing
trajectories, which took joint limits and collisions with the
environment into account. During experiments, data collection
procedure randomly selected probing trajectories from the pre-
generated set. All probing trajectories moved the robot along
the direction of the end effector, so that the end effector tip was
the first part to make contact. Each probe took approximately
10s. The Scaling Series algorithm was run on all data points
collected up to that time step. The algorithm was allowed
to compute until the next measurement arrived. Once the
algorithm determined that the posterior had a single mode and
all particles were within 10mm of each other, the probing pro-
cedure stopped and the mean pose was used as the estimated
pose. In experiments 1, 4, and 7, the localization procedure
was followed by a manipulation scenario: using the cash
register, playing the guitar, and toasting bagels respectively.
Videos are available on our website [56].

Localization results for the nine experiments are summa-
rized in Tbl. I. Overall, localization was quite accurate: the
average localization error was 5.2mm and 3°. We believe this
was an important factor in the success of the manipulation
scenarios. Localization was the most accurate for the cash
register (3.9mm average error) because its shape consists
of planar surfaces that are easy to model accurately. The
toaster has many curved surfaces, which are more difficult
to model and hence the localization error is slightly higher:
5.3mm on average. Localization was the least accurate for the
guitar (6.5mm average error) because this object deformed
significantly during probing as can be seen in the videos.

B. Manipulating a Box

In the second set of experiments, we applied the Java
implementation of our approach to the task of localizing,
grasping and picking up a rectangular box (see Fig. 6). As in
the previous set of experiments, we used the PUMA robot with
the JR3 sensor. This time the robot’s end-effector included a
gripper and robotic finger combination, so that the robot could
perform both probing and grasping tasks. The finger was much
shorter and thicker (75mm length, 25mm diameter) with a
spherical end of 15mm radius. This configuration resulted in
much more accurate data because the end effector did not
deform. Shorter length of the finger also resulted in more
accurate measured normals. The rectangular box was 56mm
X 159mm x 238mm in size. The size of the mesh model was
inflated by the radius of the spherical end-effector, so that
the end-effector tip could be reduced to a single point in
computations. Due to higher accuracy of the measurements,
we set 0pos = 1lmm and oy, = 5°. The rest of the parameters
were set as before.

We used the same initial uncertainty region: 400mm in
x,y, z with unrestricted orientation. This time the probe was
too short to safely explore the large uncertainty region without
touching the object with non-sensing surfaces. Therefore for
data collection we developed a custom active sensing pro-
cedure specific to the box object. Although the procedure
restricted the set of poses in which the data collection could
be successful, localization was still performed on the full
uncertainty region without taking the restrictions into account.
The box was fixed using brackets so that it remained relatively
stationary during the experiments, although it still shifted and
deformed during probing as can be seen in the videos.

1) Fully-constrained case: In fully-constrained experi-
ments, we collected five measurements using the above prob-
ing procedure. These five points were used to perform lo-
calization of the box using Scaling Series. Two grasp points
were manually defined on the box model, each consisting of
3 points: one for each side of the gripper and one for the
wrist position. Thus each grasp point fully defined position
and orientation of the gripper. After localization, the grasp
point with the highest z-coordinate was selected'*. The gripper

14 2-coordinates increase vertically upwards
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(b) grasping

Fig. 6. The stages of the box manipulation experiment. (a) Sensing the box
with a robotic finger. (b) Grasping the box. The position and orientation of the
box were estimated from the data obtained during sensing stage. The grasping
configuration is defined as part of the box model. Note the precise fit required
to perform the grasp. The last stage (not shown) is manipulation of the box.

(a) sensing

orientation, position and approach vector were derived from
the selected grasp point and estimated parameters. Note the
precise fit required for grasping in Fig. 6.

We performed 30 trials of fully-constrained experiments
on the real robot. The sensing procedure took 30 seconds.
Localization was performed in less than 1 second. Out of the
30 trials, the data collection procedure failed in 9 trials'.
These trials were aborted. In all of the remaining 21 trials,
the robot successfully localized, grasped, and manipulated the
box.

2) Early stages of exploration: To evaluate the algorithm
performance at early stages of exploration, we took data sets
consisting of 2 - 3 measurements from different sides of the
box. These data sets do not fully constrain the problem, and so
the modes of the resulting posterior form ridges in the state
space (Fig. 7). For real robot experiments, we took subsets
of measurements from our completed real robot trials. We
verified that the estimated region included the true state of
the object, as it was estimated from complete data sets. We
also examined the estimated region visually to make sure it
corresponded to the correct solution region in each under-
constrained scenario. In addition, we performed 100 simulated
trials where ground truth was available. The true state was
included in the resulting solution set in all 100 trials.

Since the number of solutions is infinite, high precision
settings result in large numbers of particles. However, it is
possible to exit out of iterations early based on a time limit
setting as discussed in Sect. IV-D3. For example for a data
set consisting of two measurements, Scaling Series generated
4,000 particles for § =11mm and 29,000 particles for § =1mm
(Fig. 7). The running time increases with the number of
particles generated. For our Java implementation, operations
with a few thousand particles take a few seconds, but 29,000
particles take 40-50 seconds to process. Thus it is possible to
trade off precision of estimation for running time. As more
measurements arrive, the solution region shrinks and higher
precision can be achieved with fewer particles.

SDuring these experiments the PUMA robot was experiencing intermittent
sudden jolts possibly due to faulty encoders. These jolts resulted in large
force measurements registered on the JR3 sensor and hence were interpreted
as phantom contact readings. Trials during which these jolts were experienced
were aborted.

Fig. 7. Examples of under-constrained solution estimation for data sets
consisting of 2 measurements (includes symmetry compensation). Left: With
6 =I11mm, 4,000 particles were generated by Scaling Series. Right: With
6 =1mm 29,000 particles were generated. As before each particle is shown
by a square indicating the location of the first data point on object surface.
The size of each square is 9.

1000 | ——SS-DYN3 —SS-DYN2
SS-DYN1 =——SS-APF
= —FPF APE
£
e ——————————

.E, e o S o S S = o
— 100
<
8
) <
2
T 10
g
w
Q
2
=]
e g T — —

123456738910
Time Step

(a) door handle experiments

(b) free standing objects

Fig. 8. (a) Harmonic Arm robot operating the door handle in one of the
experiments. (b) Accuracy of object tracking over 10 time steps starting with
global uncertainty. Each algorithm was given s of computation time per step.
Dashed lines show how the tracking improves if 60s per step are allotted for
algorithms of the corresponding color. The results are averaged over 100 runs.

C. Door Handle Operation

In the third set of real robot experiments, we performed
door handle manipulation with a mobile manipulator consist-
ing of a Segway platform and a SDOF Harmonic Arm 6M
manipulator (see Fig. 8(a)). Once the robot navigates to the
area in front of a door (using its laser sensors for approximate
localization), we use tactile feedback to accurately estimate
the position and orientation of the door and the door handle.
The Harmonic Arm manipulator used in these experiments
has about 1mm end-effector positioning precision. Since all
door handles in the building are mounted at the same height
and always in horizontal position, the height of the handle as
well as two orientation angles were fixed, which reduced the
localization task to a 3DOF problem. Our algorithm used a
2-D model of the door that was constructed by hand using
ruler measurements. Specifically, we took door handle depth
measurements every 10mm along its length in a horizontal
plane through the center of the handle. This resulted in a 2-D
model consisting of line segments (Fig. 2). The grasping point
was defined near the tip of the door handle. The sensing used
in this experiment gave only position measurements, and did
not include surface normals.

For each experimental trial, the robot took 6 measurements
in a 30° span (at 0°,6°,...,30°). Each data point thus
consisted of range to the contact point and an orientation angle.
The sensing procedure took between 1 and 2 minutes. Using
these six measurements, our algorithm was able to localize
the door and the door handle in a fraction of a second using
our Java implementation. In these experiments, we restricted
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the dimensions of the state space (to 60mm x 60mm x 30°)
because of the limited operational range of the manipulator.
Out of 100 independent trials, our algorithm successfully
completed the sensing in 98 trials. In all of these 98 trials,
our algorithm then successfully localized, grasped, and turned
the door handle, and opened the door. The two failures during
sensing were caused by a hardware glitch in communication
with the robot.

D. Free Standing Objects

When estimating the state of a dynamic system, it is im-
portant that the information gained via measurements exceeds
the information lost due to noisy motion at each time step.
Otherwise the state will only become more uncertain over time
making localization impossible. Since in our hardware setup
the robot only has one finger, little information is obtained at
each time step placing a very tight restriction on the amount
of motion allowed. Hence to evaluate tracking of moving
objects, we assume that the robot possesses a multi-fingered
hand capable of measuring at least three data points per time
step'0. We evaluated this scenario in simulation by sampling
three contacts randomly from the surface of the box using the
same box model as in Sect. V-B. The object was tracked over
ten time steps, starting with global 6DOF uncertainty (400mm
in position, 360° in orientation). We simulated measurement
noise of op0s = 1mm and oy, = 5° as well as considerable
motion noise: opyey = 20mm and o,ns = 10°. The rest of the
parameters for Scaling Series were set as follows: d, = Imm,
Tpos = 1lmm, 7o, = 1°, M =6, £ = 60%.

Using the C++ implementation, we compared SS-DYNI,
SS-DYN2, SS-DYN3, two variants of APF, and PF (Fig. 8(b)).
The two APF variants were: APF and SS-APF. The standard
APF used 100 layers and survival rate o = 90% with anneal-
ing schedule selected as in [48]. These settings performed the
best for APF. SS-APF used 20 layers and its annealing sched-
ule was selected using Scaling Series methodology. Hence,
SS-APF is in between SS and APF algorithms. It uses the
same annealing schedule as SS, but like APF it is missing the
Even_Density_Cover step of SS. All algorithms were given
1s of computation time per time step. Dashed lines show how
the performance improves with 60s per time step. The results
are averaged over 100 runs.

Note, that with three measurements per data set, the poste-
rior is multi-modal during the first several time steps. Hence
it is not possible to fully localize the object initially. The
ambiguity is gradually resolved as additional measurements
arrive. Also, note that the average error is to a large extent
a function of reliability. In other words whether or not a
particular algorithm found the object at each time step. The
lower the reliability, the higher the average error. Thus, even

190One possibility is a hand with three fingers, each consisting of three
phalanges with a tactile sensor on each phalange. Thus in principle this hand
is capable of making nine contacts during a single grasp of the object. If
the hand is operated compliantly (either in software or hardware), then it can
close around the object without knowing its exact location. As it closes it
will make multiple contacts. Since the blind grasp may not be very good, we
assume that only three out of possible nine contacts are sensed.

if an algorithm has high average error, it may have accurately
localized on some of the runs.

PF was unable to locate and/or track the object as the
average error is over 140mm even with 60s per update. Still,
the average error improves from 1s to 60s, so with more time
per update, PF is likely to perform even better. APF converges
to 68mm error, which improves to 53mm if 60s per update
are allotted. SS-APF ends up with 27mm average error, which
improves to 7mm with 60s per update. SS-DYNI starts off
well due to initialization via SS at first time step, however
over time SS-DYNI diverges and approaches APF error. These
results are in line with [50], where APF was compared to well
initialized PF.

Both SS-DYN2 and SS-DYN3 performed very well, quickly
converging to 1.5mm average error. There was no significant
difference in performance of these two algorithms. This is
likely because in our case little is known about how the
object moves. It is possible that in applications with more
informed motion models, SS-DYN3 will show an improvement
over SS-DYN2. The difference in performance between SS-
DYN3 and SS-APF clearly underscores the importance of
the Even_Density_Cover step for estimation of multi-modal
posteriors.

E. Algorithm Evaluation

In this section we evaluate the impact of Scaling Series
features and parameters on performance, as well as compare
Scaling Series to other algorithms. These experiments are
carried out on simulated data for the box localization problem.
The same box model was used as in the real data experiments
(Sect. V-B). Unless otherwise noted we used the following
settings: target resolution 0, = lmm, hyper-ellipsoid neigh-
borhoods with 7,6s = 1mm and roy = 1°, M = 6 parti-
cles per neighborhood, zoom = 1/ /2, measurement noise
Opos = 1mm and oy, = 5°. Fully-constrained data sets (with
5 measurements) were used, unless stated otherwise. Results
shown are averages over 100 runs of the algorithms. Most
experiments were carried out with our C++ implementation
and used Scaling Series with thresholding on & = 60%.

In experiments we compare several algorithms, including:
Scaling Series (SS), importance sampling (IS), annealed par-
ticle filter (APF), and a variant of APF with Scaling Series
annealing schedule (SS-APF).

1) Scaling Series evolution over iterations: First we eval-
uate how the search space and estimation error change during
iterations of Scaling Series (Fig. 9). In the plots, the progres-
sion of the series is from left to right, with corresponding
values noted in meters on the horizontal axis (in log scale).
The plots clearly show that the volume of the search space
shrinks drastically with iterations. At the same time estimation
error falls. The number of particles remained small throughout
all of the experiments, with the absolute maximum being
below 600. The number of particles is highest for § values
between 30 and 100mm. At these settings the distribution is
multi-modal, corresponding to 6 possible sides of the box.
As these possibilities are ruled out, the number of particles
goes down. The multi-modality is particularly noticeable on
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Fig. 9. Performance of Scaling Series on simulated data set during 100
experiments. Each graph shows progression of the series from left to right.
Corresponding value of ¢ is noted on the horizontal axis in meters, log scale.
Vertical bars represent absolute min/max values during all 100 runs.

the orientation error plot (Fig. 9(d)). These experiments used
our Java implementation.

2) Single mode estimation: In this set of experiments we
used fully-constraining data sets (5 measurements from differ-
ent sides of the box), so that the resulting posterior was uni-
modal. We compared reliability and accuracy of SS, IS, APF,
and SS-APF (Fig. 10). For SS-APF, we show performance
with 20 layers, which worked the best. For APF, we used 100
layers and survival rate & = 90%, which was optimal. For
IS the computation time is controlled by the total number of
particles. For SS-APF and APF it is controlled by number of
particles per layer. For SS the running time is controlled via
setting of M between 3 and 6. Reliability is the percentage
of experiments that localized the box successfully, i.e. had at
least one particle within Imm and 1° of the true pose.

IS was unable to localize the box even after several minutes
of computation. SS and SS-APF were able to localize the
box within several seconds (0.3s and 5s respectively), with SS
being approximately 15 times faster than SS-APF. APF local-
ized the box within 100 seconds, which is approximately 300
times slower than SS and 20 times slower than SS-APF. These
comparisons underline the impact of the Even_Density_Cover
step (SS vs. SS-APF) and annealing schedule methodology
(SS-APF vs. APF).

3) Multi-mode estimation: In this set of experiments we
used data sets with 3 measurements from three adjacent sides
of the box. Such data sets do not fully constrain the problem
and the resulting posterior has four modes. We evaluated
reliability of SS, SS-APF, APF, and IS (Fig. 11(a)). An
experiment was considered successful if the approximation had
at least one particle within Imm and 1° of each of the four
modes. For SS, the running time was varied by setting M = 5
to 7. Again, IS was unable to find all the modes even after
several minutes. SS and SS-APF both were able to find all the
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Fig. 11. (a) Comparison of SS, SS-APF, APF, and IS on multi-modal poste-
riors. The plot shows percentage of successful runs, in which each algorithm
found all modes. (b) Impact of changing é-neighborhood shape on reliability
of Scaling Series. Hyper-ellipse radius along orientation angles, rqi, was
changed during these experiments, while we kept dx = 7pos = lmm.
The legend shows 7, values in degrees. Computation time was varied by
changing M.

modes, with SS-APF taking 20s, and SS being approximately
15 times faster (1.5s). APF was not completely reliable even
after 10 minutes of computation, but it did reach reliability of
88%. APF was approximately 100 times slower than SS-APF
and 1500 times slower than SS. We suspect the difference
in performance would be even greater with more modes or
whenever multiple modes need to be tracked over time.

4) Neighborhood size and shape: We evaluated the effect
of 4, and hyper-ellipse shape on the performance of Scaling
Series. The hyper-ellipse shape is controlled by the position
radius, 7pes, and the orientation radius, 7or5. We kept rpos = 0.
in all experiments. Fig. 11(b) shows the effect of changing
Tori- The value computed via the Lipschitz constant (from
Appendix A) was 0.5° (bright red line), with performance
close to optimal. Optimal performance was achieved with
rori = 1° (bright blue line). This is likely due to the fact
that measurements tend to land in the interior of box faces,
hence the effective radius for Lipschitz constant computations
is smaller than the actual box radius.

Fig. 12 shows the impact of J, and M on accuracy. In the
left plot, each curve keeps ¢, constant, and varies running time
by changing M. The performance with the predicted J, =
0.7mm is optimal and remains optimal with J, in the 0.7 to
1.5mm range.

In the right plot, each curve keeps M constant and varies
0. M = 6 was optimal converging to the minimum average
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error of 1.5mm with ¢, = 1mm in 0.3s.

5) Zoom factor: The plot in Fig. 13(a) shows reliability vs.
time for varying settings of zoom. The results are reported
in terms of Vol(V,)/Vol(V,—1) ratio, which is easier to
understand than zoom itself. Ratio of 50% was optimal, which
corresponds to zoom setting shown in Alg. 1. However, ratios
of 12.5% to 80% worked well.

6) Pruning: We compared the performance of Scaling
Series with resampling and thresholding pruning strategies
(Fig. 13(b)). For thresholding the legend shows values of &.
Although not visible in the figure, different settings of M
result in the same running time for the two different strategies.
SS with resampling needs somewhere between M = 2 and
M = 3 particles per d-neighborhood. It is possible to extend
Even_Density_Cover to work with non-integer values of M,
which would allow for better performance with resampling
pruning strategy. SS with thresholding on £ = 30% to 70%
needs M = 3 to 14 respectively. The optimal threshold was
& = 60% (with M = 6) as predicted in Sect. IV-D2.

VI. CONCLUSIONS

We have considered the problem of global object localiza-
tion via touch. Bayesian posterior estimation for objects in
6DOF has been known to be computationally expensive for
this problem [6]. We have proposed an efficient approach,
termed Scaling Series, that approximates the posterior by par-
ticles. It performs the estimation by successively refining the
high probability region and scaling granularity of estimation

from low to high. Our approach does not utilize any special
properties of the manipulated objects and can be easily applied
to any object represented as a polygonal mesh. We have
demonstrated its portability by applying it to five different
everyday objects on two robotic platforms.

For fully-constraining data sets, our approach performs the
estimation in real time (under Is) with very high reliability
(= 99%). At early stages of exploration, when the data set does
not fully constrain the object, the resulting posterior is multi-
modal. Running time in these cases depends on the precision
desired and the size of the high probability region. However,
our approach allows us to trade off precision of estimation for
running time. Coarse estimates can be obtained quickly. As
additional measurements arrive, the ambiguities are resolved
and so more precise estimates can be obtained in a timely
fashion.

We have provided analysis of convergence of the proposed
algorithm along with strategies for parameter selection. We
have also compared Scaling Series to a number of prior
approaches. The results show that the proposed method out-
performs prior art and is much more stable in multi-modal
cases.

Similarly to [3], we expect that our approach can be
extended to perform object identification from a set of known
objects. Also, due to its stable performance with multi-modal
posteriors that arise during exploration, we expect our ap-
proach to be particularly well suited for active exploration
strategies that derive the optimal next sensing action based on
prior data as in [7], [8].

The Scaling Series algorithm can be used with other appli-
cations and sensors. For example, in [57] we used Scaling
Series for mobile manipulation during building navigation
based on 2D laser range finders. In [58] we used Scaling
Series for vehicle tracking based on 3D range data. In both
cases, Scaling Series provided a significant improvement over
state-of-the-art inference methods. In both of these works we
included additional parameters in the Scaling Series filter. In
[57] we used an articulated model of a door and estimated
its opening angle along with robot’s position. In [58], we
estimated the number of moving vehicles in a previously
unknown environment, as well as estimated vehicles’ shape,
position, and velocity. Similar techniques can be applied to
touch based object localization when less information about
the object shape is available a priori or when working with
articulated objects.

Although in this paper we focused on the sense of touch
exclusively, the presented approach can be naturally combined
with other sensing modalities. For example, if a prior pose
estimate is available from a vision system, it can be used
to initialize samples of Scaling Series. If several sensing
modalities are to be used simultaneously, one can perform
sensor updates for each sensor within the same Scaling Series
filter.

A number of aspects of the presented approach can be
improved upon in future work. The running time of the
algorithm depends linearly on the complexity of objects (i.e.
number of faces in the mesh model). However, it is possible to
implement efficiency improvements that only consider a small
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subset of faces during each measurement evaluation. So far
experiments with moving objects have only been carried out
in simulation, and so this aspect warrants further attention,
although better hardware is likely to be required. Additional
considerations will be needed if the object to be localized is
placed into a cluttered environment, where the correspondence
problem of measurements to objects will need to be solved.
More work can go into devising better sensing procedures in
order to reduce sensing time. In particular, it is possible to
use compliant motions during exploration to reduce the time
the robot has to travel to and from the object. However, more
sophisticated sensor configuration will be required to make
sure the robot does not contact the object with non-sensing
surfaces during exploration.

APPENDIX A
LIPSCHITZ CONSTANTS FOR TACTILE MANIPULATION

In this section we provide bounds on Lipschitz constants of
m and u. These bounds are used as explained in Sect. IV-C4
to set the shape of J-neighborhoods. Theorem Al relates the
Lipschitz constants of 7 and u. Theorem A2 computes bounds
on partial Lipschitz constants of u. For proof of Theorem A2
see [59].
Theorem Al: If A\ and A\, are Lipschitz constants of ™ and u
respectively, then A\ < \,/+/e. The same relationship holds
for partial Lipschitz constants of m and u.
Proof: We have 7(X) = exp(—u?(X)/2). Hence 7 can
be expressed as a composition: 7 = g o u, where g(u) :=
exp(—u?/2). Using chain rule, all partial derivatives of
can be written as g—; =g (u(X ))gT“ The (partial) Lipschitz
constant can be computed as maximum (partial) derivative. For
g(u) we have A\, = sup, |¢’(u)|. As one can easily compute,
this works out to 1/+/e. Thus using chain rule we obtain the
desired result. ]
Theorem A2: The partial Lipschitz constants of u(X) are
bounded by:
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