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Abstract— Reliable state estimation is an important enabler

for robot operation in human environments. Uncertainty and un-

predictability of these environments requires global uncertainty

problems to be solved for dependable operation. Relative sensors

— such as vision, laser and tactile — are common in these ap-

plications leading to challenging perceptual problems, for which

modern inference methods fail to guarantee accurate estimates.

Further, as we show, the reliability of these estimates degrades

quickly as initial uncertainty increases. In this paper, our aim is

to maximize the amount of information extracted from sensory

data, allowing the robot to make the most of its sensors. We

present an inference algorithm, which guarantees that all optimal

solutions will be found and provides provable error bounds on

the approximation of the underlying probability distribution. The

approach is based on insight into the sensor model, which is used

to guide the refinement process in an adaptive grid algorithm. The

approach is applicable to a variety of pose estimation problems

with relative sensors. We demonstrate the generality of the

approach on the examples of indoor robot localization and tactile

manipulation, where it dramatically outperforms state-of-the-art.

Empirically, our method increased safety of decision making to

100%. The proposed algorithm also demonstrated logarithmic

dependence on desired precision, allowing for efficient high-

accuracy estimation. In indoor localization experiments, the

approach led to 1mm accuracy of pose estimation based on

the commonly used laser range finders. This high accuracy is

useful for accurate maneuvering in tight spaces and is sufficient

for reliable manipulation of stationary objects of interest within

the environment (e.g. door handles, elevator buttons, etc.) It also

opens up new potential applications during building construction,

inspection and maintenance. In the tactile manipulation setting,

the method results in efficient, accurate and reliable 6DOF

object pose estimation from tactile data, allowing for reliable

manipulation.

I. INTRODUCTION

Accurate and reliable state estimation is required for safe
and dependable robot operation in human environments, where
uncertainty is high due to inherent unpredictability. How-
ever reliable estimation can be challenging in this setting
because the state has to be inferred from non-linear relative
sensors. These sensors include the most common types used
in robotics: laser, vision, and tactile. In these cases, the
underlying probability distribution (the posterior) is highly
complex with many discontinuities and narrow peaks. The
complexity is due to the properties of the sensors: occlusion
boundaries cause discontinuities and high sensor accuracy
leads to narrow peaks. Since the sensors are relative, the
posterior estimation problem becomes non-trivial whenever

large initial uncertainty must be considered. We will call
posteriors exhibiting this type of complexity high-roughness
posteriors due to their similarity to rough terrain with many
sharp transitions and narrow peaks. Although a variety of
Monte Carlo and deterministic methods have been developed
for non-linear problems [1, 2], the reliability of these methods
for high-roughness posteriors degrades as initial uncertainty
increases. Methods that can provide guaranteed results for
these posteriors are virtually nonexistent.

Due to the challenge posed by high-roughness posteriors,
two main paths have been pursued in order to simplify the
problem. The first method is to reduce the roughness by
smoothing the measurement model. This method is popular
in the indoor localization literature [3, 4, 5]. However, sharp
transitions in the posterior actually contain very accurate
information, which is discarded by smoothing leading to
inaccurate estimates and increased ambiguity. The second
method is to reduce the initial uncertainty. This method is
very popular in visual tracking systems, where the state has to
be initialized manually as documented in a recent study of 3D
visual tracking literature [6]. However, as the study concludes,
methods incapable of dealing with global uncertainty tend
to be inherently fragile because they can not recover from
tracking failures.

In this paper we present an inference method suitable for
moderately dimensional problems, in which the state has to be
recovered from global uncertainty based on a set of non-linear
relative sensor measurements. The method is a variation of an
adaptive grid algorithm [7, 8], in which estimates of posterior
variation are used to drive the grid refinement process. Unlike
[7, 8], we rely on analysis of the measurement model to
produce sound bounds on the variation of the posterior. As
a result, our approach guarantees that all global optima are
found and provides provable approximation error bounds. The
method is capable of handling arbitrarily rough posteriors
without discarding information. It can even handle the extreme
case of perfect sensors, known to break most popular posterior
estimation methods. Thus the method allows the robot to make
the most of its sensors by extracting maximum amount of
information contained in the sensor data.

We have termed the approach Guaranteed Recursive Adap-
tive Bounding (GRAB). It is applicable to a variety of pose
estimation problems with relative sensors. We demonstrate its
generality on two basic competency tasks: indoor navigation



and tactile manipulation, where it drastically outperforms
state-of-the-art. In our experiments, GRAB increased deci-
sion safety to 100%. Empirical evaluation shows that the
performance of GRAB scales logarithmically with the desired
approximation precision, allowing for efficient high-accuracy
estimation. This property is due to the fact that the approach
falls within the class of divide-and-conquer methods.

In indoor localization experiments, the approach led to
1mm accuracy of pose estimation based on the commonly
used laser range finders. This high accuracy is useful for
accurate maneuvering in tight spaces and is sufficient for
reliable manipulation of stationary objects of interest within
the environment (e.g. door handles, elevator buttons, light
switches, etc.) as we have demonstrated in [9]. It also opens
up new potential applications during building construction,
inspection and maintenance. In the tactile manipulation setting,
the method results in efficient and reliable 6DOF object pose
estimation with sub-millimeter accuracy, allowing for reliable
manipulation.

II. RELATED WORK

Methods for posterior estimation with non-linear measure-
ments can be divided into deterministic and Monte Carlo
classes. Deterministic methods include uniform grid (UG) and,
for problems with dynamics, histogram filter [10]. Adaptive
grid methods have been developed to improve efficiency by
concentrating samples near narrow modes. One of the earliest
adaptive grid methods is subregion adaptive integration (SAI),
which has been shown by Genz and Kass to outperform Monte
Carlo methods in moderate dimensions [7]. SAI selectively
subdivides regions based on their estimated contribution to
the cumulative integration error. The key difficulty here (and
in other adaptive grid methods) is estimating the variation of
the posterior within a subregion. SAI estimates the variation
by evaluating the function at selected points. This method is
error prone and tends to underestimate the variation. Genz and
Kass specifically warn that for functions with narrow peaks
it is possible to miss the peaks entirely. An adaptive grid
algorithm has also been applied to robot localization with laser
range finders [8], but similarly to SAI it did not provide any
guarantees. A guaranteed adaptive grid algorithm has been
developed by Olson for robot localization based on stereo
sensors in the context of planetary exploration [11]. However,
it did not estimate the full posterior — only its maximum. This
approach restricted estimation to just x and y coordinates, ob-
taining robot orientation from a compass. Moreover, it utilized
a likelihood field measurement model [10], which discards
negative information. This model is smooth and induces a
smooth posterior, but can lead to frequent mis-localizations
in the cluttered indoor environments.

Monte Carlo methods include variants of importance sam-
pling and, for problems with dynamics, particle filter [1]. In
the mobile robot navigation domain these algorithms are called
Monte Carlo localization (MCL) [10]. One of the most widely
used adaptive Monte Carlo methods is Adaptive Monte Carlo
Localization (AMCL) [12]. It has been implemented in modern

mobile navigation suites [4, 13]. AMCL adapts the number of
particles over time by considering the KL-divergence of the
resulting approximation. Recent work has improved AMCL
to better maintain multi-modality during pose tracking by
adding spatial clustering [14]. For reliable global localization,
all variants of MCL require a large number of samples (at least
initially). For this reason, some approaches suggest injecting
samples directly from the measurement model [15, 3], al-
though these methods require the availability of a measurement
model from which one can easily and efficiently draw samples.
A number of smoothing techniques are often applied: e.g.
inflation of the measurement noise and/or subsampling of
sensor data [3, 10]. Since smoothing discards information,
recent approaches improve global localization by learning
more sophisticated smoothed models with Gaussian processes
[5].

The progress is much slower in tactile manipulation, due to
complexity of experimental setup and relatively poor avail-
ability of tactile sensors. Posterior estimation literature for
this problem relies primarily on variants of particle filters
[16, 17, 18]. Since solving a global uncertainty problem in
6DOF with a particle filter is computationally expensive, some
authors restrict the problem to 3DOF thus reducing the initial
uncertainty [16, 17]. In our prior work [18] we introduced a
Scaling Series particle filter (SSPF), which is similar to the
technique we describe in this paper. SSPF relies on graduated
smoothing to eventually estimate an un-smoothed posterior.
However it is not able to provide guarantees.

Belief propagation (BP) and message passing methods have
been developed to take advantage of the factorization structure
present in some belief estimation problems. These methods can
often be more efficient than direct posterior estimation meth-
ods and are capable of handling high dimensional problems.
Kozlov and Koller proposed a non-uniform discretization BP
method (NUBP), which combines BP with adaptive gridding
[19]. Similar to SAI, NUBP estimates function variation over
subregions by random sampling. As for SAI, this can lead
to entirely inaccurate posterior approximations. Recently, the
interest in adaptive gridding has been renewed by Isard et al.
[20]. Isard’s approach is similar to NUBP, but requires the
integration for BP message computation to be easily tractable,
which makes the method unsuitable for the applications we
consider. Another recent promising structured method is non-
parametric BP (NBP) [21], combining regularization with BP.
It turns out that in the problems we consider, local beliefs have
even more complex distributions than the posterior itself. Thus,
as we show, BP variants perform poorly.

III. MATHEMATICAL BACKGROUND

In this section we provide mathematical background and
introduce the notions necessary for the proposed algorithm.

A. Problem Statement and Notation
We consider the class of problems where the state X has to

be inferred from a set of sensor measurements D = {Yk}.
Our goal is to estimate the probability distribution of the



state given the measurements, p(X|D), known as the posterior
distribution, which we will denote by ψ(X). Our goal is to
approximate the posterior and find all of its modes.

For the general algorithm, we will assume that the state X
is a d-dimensional vector in a bounded rectangle R in Rd.
The measurements are modeled as K random variables Yk,
which are drawn independently from conditional probability
distributions p(Yk|X) with domains in Rdk . The conditional
probability distributions (CPDs) encode the measurement
model and often depend non-linearly on the state X . In many
applications, the CPDs are naturally given in the log-linear
form via measurement energy potentials vk : Rd×Rdk �→ R+.
Then the CPD for Yk can be written as

p(Yk|X) =
1

Zk
exp

�
−vk(X,Yk)

�
, (1)

where 1
Zk

is the normalizing constant. Let v(X) :=�
k vk(X,Yk) be the total measurement energy.
We will primarily focus on problems with global initial

uncertainty as this is often the more challenging case in
robotics. In this case the prior p(X) is uniform. With this
assumption, using Bayes rule and conditional independence
of Yk, the posterior can be shown to be proportionate to�

k p(Yk|X). Using the log-linear form of measurement CPDs,
we can express this fact as ψ(X) ∝ exp(−v(X)). Since
the normalization constant is usually unavailable directly, it
is more convenient to work with the unnormalized posterior
π(X) := exp(−v(X)). Then the posterior can be obtained by
normalizing: ψ(X) = 1

Z π(X), where Z is called the partition
function. When the prior is non-uniform, we will write φ(X)
to denote the prior, then the posterior is ψ(X) = 1

Z φ(X)π(X).
In the indoor localization problem the robot needs to de-

termine its position on a known map M from laser range
measurements D . The map is commonly represented by
an occupancy grid, which can be produced using SLAM
techniques [10]. The state X := (x, y, θ) is the robot’s pose
comprised of map coordinates (x, y) and orientation angle θ.
The measurements D consist of a single scan from a laser
range finder. Yk := (ρk, αk) denotes a single ray in the scan
and consists of range ρk and bearing αk components. To
interpret the measurements, we rely on the most widely used
independent beam (IB) measurement model for range finders
[10]. In this model all rays are considered as independent mea-
surements of range to obstacles in the environment, corrupted
by Gaussian noise. The expected range to the closest obstacle
along ray k is computed by ray tracing on the map. If µk(X)
is the expected range along ray k, the measurement potential
is given by

vk(X, Yk) :=
1

2σ2
(µk(X)− ρk)2, (2)

where σ2 is the Gaussian noise variance.
In the tactile manipulation problem the robot needs to

determine the position X of a known stationary object O
based on a set of tactile measurements D . The object is
typically represented as a polygonal mesh. The state X :=

(x, y, z, α, β, γ) is the 6DOF pose of the object — including
position (x, y, z) and orientation angles (α, β, γ) — in the
manipulator coordinate frame. The measurements D are ob-
tained by touching the object with the robot’s end effector.
Each measurement Yk := (Y p

k , Y n
k ) consists of the measured

cartesian position of the contact point Y p
k and the measured

surface normal Y n
k . To interpret the tactile measurements

we use the measurement model proposed in [18]. In this
model the measurements are considered independent of each
other with both position and normal components corrupted
by Gaussian noise. The expected contact point is obtained by
maximizing the probability of the measurement. If µk(X) :=
(µp

k, µn
k ) is the expected contact point for measurement k

consisting of contact coordinates µp
k and surface normal µn

k ,
the measurement potential is given by

vk(X,Yk) :=
1

2σ2
p

||µp
k(X)− Y p

k ||
2 +

1
2σ2

n

||µn
k (X)− Y n

k ||
2,

(3)
where σ2

p and σ2
n are Gaussian noise variances of position and

normal measurement components respectively.

B. Insight into the Measurement Model
Each measurement model contains a wealth of domain

knowledge about the application, the sensor, and the measure-
ment process. In order to construct a more efficient inference
algorithm, we make two properties of the measurement model
available to the algorithm at runtime. The first property is
a relaxation of the measurement model, representing a more
optimistic interpretation of the measurements. The second
property is a strengthening, representing a more pessimistic
interpretation of the measurements. Thus we define rk to be
a relaxation and sk to be a strengthening of the measurement
potential vk, if for all X in R we have

rk(X) ≤ vk(X,Yk) ≤ sk(X). (4)

We define r(X) :=
�

k rk(X) and s(X) :=
�

k sk(X). Then
for all X in R

r(X) ≤ v(X) ≤ s(X). (5)

From relaxations and strengthenings we obtain bounds on the
unnormalized posterior π. Let πs(X) := exp(−s(X)) and
πr(X) := exp(−r(X)). Using (5), for all X in R we obtain

πs(X) ≤ π(X) ≤ πr(X). (6)

To extend the above equation to the case of non-uniform prior,
let φr and φs be relaxation and strengthening of the prior, then
we have φs(X)πs(X) ≤ φ(X)π(X) ≤ φr(X)πr(X).

Note that relaxations and strengthenings defined here are
simply lower and upper bounds on the measurement potentials.
However, we feel it is helpful to have an intuitive understand-
ing of these bounds, because they are central to the proposed
algorithm. For relaxations and strengthenings to be useful, they
need to be easy to evaluate on the rectangular grid regions that
arise during adaptive gridding. For this reason we construct
relaxations and strengthenings that are piece-wise constant
over the grid regions.



In the subsections below we show how to build useful
relaxations and strengthenings for tactile manipulation and
robot localization. These two applications represent two of the
most common measurement model types in robotics. Tactile
manipulation utilizes a proximity model, which is commonly
used for many sensor types: e.g. for stereo [11] and laser
range finders (under the name of likelihood fields) [10]. This
model is smooth, almost everywhere differentiable and omits
negative information. The indoor localization example utilizes
the independent beam model, which takes negative information
into account. This is a more complex model that results in an
erratic discontinuous posterior, but captures more information
from the measurement process.

C. Relaxations and Strengthenings for Tactile Manipulation

Due to the maximization implicit in the definition of the
expected contact point, the measurement potential can be com-
puted by maximizing over all the faces comprising the object.
Therefore for an object consisting of faces F , vk(X,Yk) =
maxf∈F vf

k (X,Yk), where vf
k is a potential for a single face

f defined similarly to equation (3). Thus if we construct a
relaxation rf

k and a strengthening sf
k for the potential of each

face, then rk := maxfrf
k and sk := maxfsf

k will constitute
proper relaxation and strengthening of the potential for the
whole object.

All that remains is to construct rf
k and sf

k . An alternative
way of computing the measurement potential for a face f is

vf
k (X,Yk) =

1
2σ2

p

d(f, Y p
k )2 +

1
2σ2

n

||nf − Y n
k ||

2, (7)

where d(·, ·) denotes the Euclidean distance and nf denotes
the normal of the face f .

Consider a grid cell G of object’s poses X . Let Gc and Ga

be the cartesian and angular components of G respectively.
We can split up the potential vf

k into its position and normal
components: vf,p

k and vf,n
k .

Since the cartesian component of G has no effect on the
normal of the face f , the difference in normals can increase
or decrease by at most R(Ga), where R(·) denotes the radius
of a body in n-space.1 Hence a strengthening sf,n

k and a
relaxation rf,n

k can be defined as 1
2σ2

n
(||nf −Y n

k || ±R(Ga))2

respectively.2

For the position component of the potential we need to
take into account the contribution from both the cartesian and
the angular components of G. The cartesian component can
increase or decrease the distance to the face by at most R(Gc).
The angular component can increase or decrease this distance
by at most 2R(O) sin(R(Ga)

2 ) assuming that the object is ro-
tated around the center point, for which all other points of the
object lie within R(O). Hence, we can define a strengthening

1The radius of a body in n-space is the shortest distance such that there
exists a point, for which all other points of the body are located within that
distance.

2The relaxation should be set to zero wherever ||nf − Y n
k || − R(Ga)

becomes negative.

sf,p
k and a relaxation rf,p

k by adding and subtracting these
quantities3: 1

2σ2
p
(d(f, Y n

k )±R(Gc)± 2R(O) sin(R(Ga)
2 ))2.

Now we set rf
k := rf,p

k + rf,n
k and sf

k := sf,p
k + sf,n

k ,
which define the required relaxation and strengthening of the
potential vf

k .

D. Relaxations and Strengthenings for Robot Localization
Consider a grid cell G of robot’s poses X = (x, y, θ). The

k-th measurement potential is proportional to the squared error
of measured range ρk with respect to expected range µk(X)
(see Eqn. 2). For the moment assume that mk(G) is a lower
bound on µk(X) for X in G and Mk(G) is an upper bound
(we will explain how to obtain these values shortly). Then
we can construct a relaxation rk of the k-th measurement
potential by underestimating the squared error as follows. If
the range reading ρk is within [mk(G), Mk(G)] interval, we
set rk(X) := 0. Otherwise we compute the squared error to
the closest of the mk and Mk values:

rk(X) :=
1

2σ2
min{(mk(G)− ρk)2, (Mk(G)− ρk)2}. (8)

A strengthening of the k-th potential can be constructed by
overestimating the squared error:

sk(X) :=
1

2σ2
max{(mk(G)− ρk)2, (Mk(G)− ρk)2}. (9)

By construction rk and sk are constant in G and, as one can
easily check, satisfy inequality (4).

All that remains to see is how to obtain mk(G) and Mk(G).
Without loss of generality, let us assume that the range finder
is mounted at the center of the robot facing directly forward.
A grid cell G of robot’s poses creates a cone of possible k-
th rays (see Fig. 1). We set mk(G) to the distance between
the closest obstacle within this cone and the boundary of G.
An upper bound Mk(G) on the possible range reading can
be computed by walking the piece-wise linear map boundary.
If a boundary fragment starts on one side of the cone and
finishes on the other, then it completely blocks all rays in the
cone from passing through. Hence Mk(G) is attained on this
boundary fragment.

For small grid cells, both mk and Mk can be computed
efficiently. For larger grid cells, these values can be propagated
from the smaller grid cells comprising the larger ones. All of
mk and Mk values can be pre-computed before the robot needs
to localize, because these values are independent of the actual
sensor data.

IV. POSTERIOR APPROXIMATION ALGORITHM AND
ANALYSIS

We start with an intuitive description of the proposed
algorithm. The algorithm begins by partitioning the state space
into large grid cells. Then it iteratively refines grid cells
until the desired final resolution is reached. At each iteration,
low probability grid cells are pruned to focus computational

3Again, if the subtraction of these quantities makes the distance negative,
the relaxation should be set to zero.



Fig. 1. Computations of min and max range for a cone of ray
poses corresponding to a grid cell G of robot poses. Note that
the intersections of the occupied space boundary with the cone
boundaries are included as corner points.

resources on the high likelihood areas of the state space. The
pruning step relies on relaxations and strengthenings. After the
final iteration the result is a piece-wise constant approximation
of the posterior: zero in all pruned grid cells and equal to each
cell’s midpoint value in each of the remaining grid cells. We
give full algorithm listing in Algorithm 1.4

A. Algorithm Detail
1) Notation: Let τ∗ be the desired final resolution — a

user specified parameter, which directly controls the degree
of refinement. Then the total number of refinement iterations
required is T = log δ1

τ∗ , where δ1 is the size of region R along
the first axis. A finer resolution τ∗ will increase overall running
time and improve accuracy of the resulting approximation. Let
vol∗ be the volume of a grid cell at the final resolution τ∗.

For each iteration t, the current set of grid cells will be
denoted by G(t) := {Gi|i ∈ I(t)}. All grid cells in G(t) have
the same resolution τ (t). During pruning step we will prune
some grid cells G(t)

prune ⊂ G(t) and keep the rest G(t)
keep. We

will denote the center of a grid cell Gi by Xi.
The pruning of low-likelihood grid cells is controlled by a

mode sensitivity parameter λ. It is a user specified parameter,
which is the smallest fraction of the maximum value of π that
is still considered significant. In other words, if λ is set to 1%,
then all regions where π is at least 1% of its maximum value
are considered significant.

2) Initialization: The initialization of π̂max in Eqn. 11 has
an effect on the efficiency of the algorithm. The better the
estimate the more can be pruned from the very beginning in
Eqn. 12. The simplest implementations can set π̂max := 0
or π̂max := π(X) for some X ∈ R. A more sophisticated
strategy is to run a greedy version of Alg. 1, where U (t)

max :=
maxi U (t)

i can be used instead of π̂max in Eq. 12. Then
set π̂max := maxi π̂(Xi) based on the posterior estimate
produced by the greedy run. The greedy run can not guarantee
that a mode will be found, but it tends to provide a good initial
estimate for πmax very quickly.

3) Bounding Step: Note that we adaptively change the
relaxations and strengthenings from one refinement to the next.
In practice r(t) and s(t) are chosen so that the bounds on π(t)

r

4In this section we focus on the case of uniform prior. For the non-uniform
prior case πr(X), π(X), and πs(X) need to be replaced by φr(X)πr(X),
φ(X)π(X), and φs(X)πs(X) respectively throughout the section.

and π(t)
s are easy to compute. If L(t)

i is a lower bound on π(t)
s

in a grid cell Gi and U (t)
i is an upper bound on π(t)

r in Gi,
then due to (6) L(t)

i and U (t)
i are also bounds on the variation

of π within Gi:

L(t)
i ≤ π(X) ≤ U (t)

i . (10)

4) Pruning Step: Inequality (12) ensures that the total
probability mass discarded after all T refinements is at most
λ portion of the estimated mass of the “heaviest” grid cell.
In practice, for peaked posteriors the value of λ can be set
quite low, because π is virtually zero everywhere except in
the vicinity of the peak.

5) Error Computations: We have two sources of approxi-
mation error in our algorithm. εprune upper-bounds the error
due to the probability mass of grid cells we pruned. εkeep

upper-bounds the error due to the variation of π in the grid
cells kept at the final refinement stage. Thus ε upper-bounds
the total L1 error between π and its approximation π̂.

B. Approximation Analysis
Two important properties of the algorithm can be proven:
1) GRAB will find all modes of the posterior.
2) We can compute a sound bound on the L1 distance

between the true posterior and its approximation.
Hence we can be absolutely sure that the algorithm did

not miss any global optima and we know how good of an
approximation was produced.

First we define what we mean by a mode. Let ψmax be
the maximum value of the posterior ψ, then we will consider
any point X in R to be a λ-mode of the posterior if ψ(X) ≥
λψmax for some user-specified parameter λ.

Theorem 1: Let λ be the mode sensitivity setting of GRAB.
Let X be a λ-mode of the posterior ψ. Then X is in one of
the grid cells kept at the final iteration of GRAB.

Proof: We argue by contradiction. If X is not in the final set
of grid cells, then at some iteration t a grid cell Gi containing
X has been pruned. However, as one can easily check, this
assumption violates the condition (12). �

Theorem 2: Let Ẑ, π̂ and ψ̂ be the partition function,
unnormalized posterior and normalized posterior estimates
respectively produced by GRAB. Let ε be the error bound
computed by GRAB at runtime. Then

|Z − Ẑ| ≤ �π − π̂�L1 ≤ ε (17)

and
�ψ − ψ̂�L1 ≤

2ε

Ẑ − ε
. (18)

The proof follows from the bounds carefully constructed at
runtime. We provide details in the Appendix.

V. EXPERIMENTAL RESULTS

A. Indoor Robot Localization
Indoor environments contain a variety of obstacles invisible

to robot’s sensors — glass doors, mirrors, staircases — as



Algorithm 1 Guaranteed Recursive Adaptive Bounding
(GRAB): adaptive grid algorithm for posterior estimation.
Inputs: R - state space, D - data set, λ - mode sensitivity
parameter, τ∗ - desired final resolution.

π̂max := init pi max () (11)

Start with the whole region G
(0)
keep := {R}. Until the desired

resolution is reached, repeat:
Refine: Construct G(t) by splitting each grid cell in G(t−1)

keep
in halves along each dimension.

Bound: For each Gi in G(t) compute upper bound U (t)
i

and lower bound L(t)
i on π using relaxation r(t)

and strengthening s(t) and compute π(Xi). Update
π̂max, the maximum value of π(Xi) observed by the
algorithm thus far.

Prune: Add to G(t)
prune grid cells Gi with the lowest upper

bounds U (t)
i , as long as:

�

i

U (t)
i vol(Gi) ≤ λ π̂maxvol∗/T. (12)

Prune the selected grid cells by setting G
(t)
keep :=

G(t) − G
(t)
prune.

After the final iteration, estimate the unnormalized posterior:

π̂(X) :=

�
π(Xi), if X ∈ Gi ∈ G

(T )
keep

0, otherwise.
(13)

Estimate the partition function Ẑ :=
�

π̂ and the normalized
posterior ψ̂(X) := 1

Ẑ
π̂(X).

Compute approximation error bounds:

εprune :=
T�

t=1

�

Gi∈G(t)
prune

U (t)
i vol(Gi). (14)

εkeep :=
�

Gi∈G(T )
keep

(U (T )
i − L(T )

i ) vol∗. (15)

ε := εprune + εkeep. (16)

Outputs: π̂, Ẑ, ψ̂ - estimated unnormalized posterior, partition
function, normalized posterior, ε - approximation error bound.

has been noted in several field studies [22, 23]. Therefore,
for safety, it is important for the robot to localize itself on a
known map denoting invisible hazards prior to moving in the
environment. For this reason we evaluate the ability of modern
algorithms to reliably estimate the global localization posterior
prior to moving.

We performed several sets of experiments with real and
simulated robot data in several different environments.5 In

5In our experiments we used publicly available maps produced by Cyrill
Stachniss (Fig. 2), Mike Montemerlo (Fig. 3), and Ashley Tews (Fig. 4). We
thank the map authors for making these maps available to the public.

Fig. 2. Smoothing improves reliability of MCL because it decreases
roughness of the posterior. Here the reliability of MCL and S-MCL is
tested on the 20m x 14m map (left). Red triangle denotes the robot’s
pose.

each experiment, the localization was performed from a single
scan of laser data. The real data was produced by a SICK
LMS laser range finder. In the experiments the results are
averaged over 100 runs. The error bars in plots represent 95%
confidence intervals. For GRAB the different running times are
obtained by varying the desired resolution τ∗ with λ = 1%.

We compared the performance of the proposed algo-
rithm (GRAB), uniform grid (UG), uniform discretization
belief propagation (UBP), non-deterministic belief propaga-
tion (NBP, proposed in [21]), subregion adaptive integration
(SAI, proposed in [7]), and several variants of Monte Carlo
localization. Although for Monte Carlo localization with a
single scan of laser data it is more correct to perform a
single importance sampling update, in some situations multiple
updates can perform better. For completeness we provide both
versions: single-update (IS) and 10-update (MCL). For the
latter we injected 50cm position noise between updates.

For GRAB, we pre-computed the min-max ranges for grid
cells sized 10cm and greater as described in Sect. III-D. The
pre-computation only needs to be carried out once for each
map as it is independent of actual sensor measurements. For
a 70m x 70m map the pre-computation takes 3 minutes. For
GRAB, UG, and UBP, we also pre-computed expected range
scans for grid cells sized 10cm and greater. This optimization
allows grid based methods to be more efficient than Monte
Carlo approaches, for which such pre-computations are un-
suitable.

The BP algorithms were implemented on a cluster graph
satisfying the running intersection property. We assigned X
CPD and Y1 CPD factors to the first cluster, and each of the
remaining Yk CPDs to the other k − 1 clusters. For UBP,
the evidence was applied to the factors prior to propagation.
For efficiency reasons, operations during propagation were
carried out only on the rows supporting the evidence. Since
the evidence was applied prior to propagation, the method
is equivalent to integrating measurements one at a time. BP
variants performed rather poorly because the belief in this
problem is unstructured. While this may seem obvious in
retrospect, we still provide the empirical evaluations.

1) Impact of Smoothing: In indoor localization the most
common smoothing techniques are to increase the measure-
ment noise and to decrease the number of rays considered.
To evaluate smoothed MCL (S-MCL) we use 20cm noise and



Fig. 3. Smoothing increases ambiguity of localization. Left: without
smoothing the resulting posterior has a unique mode (circled). Right:
with significant smoothing (50cm noise, 7 rays) the result is highly
multi-modal.

Fig. 4. Dependence of reliability on initial uncertainty (right).
Experiments were performed on sub-maps of the 80m x 80m library
map (left). Red triangle denotes the robot’s pose.

61 rays per scan. In this and later experiments, we consider
the localization successful if the mean pose is within 1m and
30◦ of the true pose. Figure 2 shows the reliability of global
localization on a 20m x 14m map, where S-MCL exhibits very
similar performance to prior art with similar settings [3, 5].
MCL without smoothing (i.e. 1cm noise, 361 rays) fails to
solve the problem. Thus smoothing has been vital for solving
the global localization problem because MCL is unable to
solve the problem without it.

On the other hand smoothing can have a number of negative
effects as it discards information contained in the data. Not
only can the accuracy go down, but the produced posterior
estimate is much more ambiguous than without smoothing
(Fig. 3). Under these conditions the robot has to travel to
resolve the ambiguity. In addition to being unsafe with respect
to invisible hazards, this strategy risks losing the robot’s loca-
tion because MCL does not track multiple modes very well.
Moreover, from theoretical perspective smoothed posterior
estimates do not converge to the true posterior even as the
number of particles tends to infinity.

2) Dependence on Initial Uncertainty: Even with smooth-
ing, reliability of MCL drops quickly as map size increases
(Fig. 4). These experiments were performed in simulation by
taking sub-maps of a larger map. We show results for S-MCL
with 1,000, 10,000, and 100,000 particles (with computation
time of 1.7s, 17s, and 170s respectively). For comparison,
GRAB solves the problem in under 1s (with τ∗= 5cm) and
provides guaranteed results.

3) Localization Accuracy: To evaluate the accuracy of
localization we performed two sets of experiments on the 70m

Fig. 5. Accuracy of pose estimation (left) and posterior estimation
(right) for global robot localization on the map depicted in Fig. 3.
The right plot shows 0.5L1 error, which represents dissimilarity
percentage of the approximated posterior vs. ground truth posterior.

x 70m map depicted in Fig. 3. In the first set, the robot has to
localize after being placed in a random position on the map.
These experiments used simulated data with 1cm noise, so that
exact reference pose is available for evaluation purposes. The
results are shown in Fig. 5 (left), where we plotted the distance
of the estimated pose from the reference pose vs. computa-
tion time.6 GRAB demonstrated logarithmic dependence on
localization precision, whereas the other algorithms behaved
roughly linearly. GRAB was able to recover the reference pose
with 1mm accuracy7 and outperformed other approaches by
several orders of magnitude.

The second set of experiments evaluates the accuracy with
which the entire global localization posterior can be estimated.
These experiments were carried out with a single scan of
real robot data. The robot’s pose is circled in Fig. 3. The
reference distribution was obtained using a fine mesh. Prior art
approaches were unable to estimate the un-smoothed posterior
with any degree of accuracy within reasonable time. The right
plot in Fig. 5 shows the results using a smoothed model (25
rays and 10cm noise) for all algorithms and reference distri-
bution. GRAB dramatically outperformed other approaches.
The experiments demonstrate that accurate estimation of the
posterior takes significantly longer than estimation of only the
robot’s pose.

4) Safety During Exploration: This set of experiments
evaluates whether a robot is able to make safe decisions
during navigation under conditions of multi-modality. The
experiments were carried out in a 70m x 70m simulated
museum environment (Fig. 6). The red shaded areas denote
safety zones containing glass encased exhibits. The robot was
placed randomly in front of the safety zones and had to plan
an exploration route using safe maneuvers. Note that this
environment has several look-alike areas leading to multi-
modal localization posteriors.

First, the robot estimates a global localization posterior.
Then it evaluates the proposed action of moving forward by

6Horizontal error bars for GRAB show 95% confidence in running time for
the same setting of τ∗.

7Although GRAB was able to recover the pose to within 1mm, one should
keep in mind that these experiments were carried out in simulation. To achieve
comparable accuracy with real data, accurate environment models are required
(see [9] for one such example).



Fig. 7. Tactile sensing for object localization. Left: experimental setup. Center: pose estimation accuracy vs. computation time. Right:
reliability vs. initial uncertainty (with unrestricted orientation).

Fig. 6. Decision safety results (right). On the map (left), the blue
triangle denotes the robot’s pose in one of the experiments. The
green circles denote multiple modes of the posterior. Safety zones
are shaded in red.

1m based on the estimated posterior. To make a fair compar-
ison of all algorithms, the robot’s planner treats all posterior
estimates the same. For each experiment, it draws 100,000
samples from the posterior approximation and applies the
robot’s dynamics model to the samples obtaining a prediction
distribution. The prediction distribution is used to compute the
expected risk of the maneuver. The risk function is 1 in the
safety zones and 0 everywhere else. If the expected risk is
higher than 0.01%, the maneuver is considered unsafe. Since
the robot is positioned facing safety zones, this maneuver
should be identified as unsafe in all experiments.

As expected, GRAB correctly identified all modes of the
posterior and thus lead to safe decisions in all experiments.
Other algorithms often lead to unsafe decisions.

B. Tactile Manipulation

In these experiments a stationary object is localized by
a robot that explores the object by touching it with its
end-effector. The experimental setup consisted of a PUMA
manipulator robot equipped with 6D JR3 force/torque sensor
at the wrist (see Fig. 7). The sensed object was a rectangular
box, for which we constructed a polygonal model using careful
ruler measurements. The data sets consisted of five data points
taken from different sides of the box.

For un-smoothed versions of the algorithms we used σp

= 1mm and σn = 2◦. We compared the proposed algorithm
(GRAB), importance sampling (IS), and particle filter (PF).
For PF we performed 10 updates with the same data injecting
1cm noise between updates. We also evaluated S-IS and S-
PF using smoothing parameters shown to be optimal in [18]:
σp = 1cm and σn = 10◦.

1) Object Localization Accuracy: First we evaluated how
accurately the object could be localized in the robot’s
workspace. The initial uncertainty in these experiments was
40cm x 40cm x 40cm with unrestricted orientation. The
results shown in Fig. 7 (center) are averaged over 100 runs
with simulated data, although the algorithms exhibited similar
performance with real data. GRAB was able to localize the
object to 1mm within about 1s. Other algorithms were unable
to get average accuracy better than 1cm even after 3 minutes. It
should be noted that sub-centimeter accuracy is often required
for successful manipulation [9]. GRAB quickly achieves sub-
millimeter accuracy, which we have previously shown to be
sufficient for reliable manipulation of objects [18].

2) Reliability vs. Initial Uncertainty: To evaluate how relia-
bility depends on initial uncertainty, we varied the uncertainty
from 5cm cube to 40cm cube. Unrestricted orientation was
used in all experiments. The localization was considered
successful if the pose was recovered within 5mm and 5◦. The
results of 100 runs with simulated data are shown in Fig. 7
(right). GRAB solves the problem in 1s (with τ∗ = 2mm)
with guaranteed results. We also show results for S-PF with
10,000 to 1,000,000 particles (2.1s to 210s running time) and
S-IS with 100,000 to 1,000,000 particles (2.1s to 21s running
time). For S-IS and S-PF the reliability degrades quickly with
uncertainty. IS and PF performed even worse.

VI. DISCUSSION AND CONCLUSIONS

We have presented a posterior estimation algorithm that
relies on a simple adaptive gridding technique. Yet, in con-
trast to state-of-the-art, it is able to solve high-roughness
posteriors with guaranteed results. The reason for the superior
performance is that our algorithm utilizes additional domain
knowledge, whereas the other algorithms treat the posterior as
a ”black box” function. The downside is that GRAB is less
general than ”black box” approaches and requires additional
work to extract the domain knowledge. However, in situations
where ”black box” algorithms are insufficient, the extra work
is very worthwhile. The domain knowledge is captured in
a general way in the form of measurement model bounds,
which we have given intuitive names of relaxations and
strengthenings. Thus our algorithm is applicable to problems
where such bounds can be constructed. We have demonstrated
the algorithm on indoor navigation and tactile manipulation.
We expect that it will extend to other robotic applications with



accurate relative sensors (laser, vision and tactile), although
clearly application-specific relaxations and strengthenings will
need to be built in each case. Since the class of domain
knowledge algorithms is in principle stronger than the class
of ”black box” algorithms, we hope the demonstrated success
will encourage development of algorithms utilizing domain
knowledge in a general way.

A number of extensions of the algorithm can be made. For
high dimensional problems, the approach can be combined
with belief propagation [19, 20] or Rao-Blackwellization [24,
25] — a very promising direction for future work. The
refinement strategy could also be tuned to obtain different
properties. For example SAI-like refinement strategy could be
beneficial when the posterior has regions of similar probability
or whenever a better representation of low probability regions
is desired. In this paper we have only shown that non-uniform
priors could be used in principle, but have not performed
any empirical evaluation of such scenarios. The non-uniform
priors could carry information about prior measurements and
dynamic updates. There are several possible methods for using
GRAB to solve dynamic problems. One method is an adaptive
histogram filter [8]. Another method is to use GRAB to obtain
a representation of the measurement probability distribution
for algorithms that sample directly from this distribution [15,
3]. Thus evaluation of how GRAB can be used with non-
uniform priors in dynamic applications represents an interest-
ing direction for future work.

Our focus has been solely on posterior estimation and
we have left many application aspects outside the scope.
For indoor localization, combining the presented algorithm
with existing methods for handling high traffic areas, doors
and other dynamic environment changes, could provide the
community with one of the most reliable and accurate global
localization solutions to date.8 We have shown that GRAB is
able to achieve 1mm localization accuracy very quickly even
in large buildings. In prior art, it has been shown that laser
scans contain sufficient information to achieve such accuracy
[27]. In our own prior work, we have shown that 3mm
pose estimation accuracy has allowed the robot to reliably
manipulate stationary objects not directly observed by its
sensors (e.g. door handles, elevator buttons, switches) [9].
Moreover, high localization accuracy is useful for maneuvering
in tight spaces (e.g. when passing through a doorway). Of
course, accuracy of localization depends on accuracy of the
environment model. To achieve high accuracy in [27] laser
scans were matched up directly to each other. In [9] a highly
accurate polygonal model of a door was used in conjunction
with a less accurate grid map. Thus further work on high-
accuracy modeling of the environment and sensors will lead
to high-accuracy localization, which will open up a host of
new applications. In the past, 1mm accuracy has been reserved
for stationary manipulators. With high-accuracy localization,
mobile robots will be able to aid in building construction,

8Development of GRAB library is currently underway. Once complete the
library will be made available at [26].

inspection, and maintenance. They will be able to precisely
place fixtures in the environment, accurately drill and paint
walls, provide accurate distance measurements, etc. Moreover,
high-accuracy localization can easily provide an accurate coor-
dinate transformation between a robot and an off-board sensor
(e.g. ceiling mounted camera or another robot’s sensor). Hence
robots will potentially be able to manipulate even dynamic
objects invisible to their own sensors.

In summary, we have presented an adaptive grid method
suitable for estimating high-roughness posteriors that result
from non-linear relative sensors. The method guarantees that
all modes will be found and provides provable approximation
error bounds. The strength of the approach comes from
utilizing domain knowledge about the measurement process
to construct bounds in a general way. We demonstrated the
approach on the examples of indoor navigation and tactile
manipulation, where it performed significantly better than
state-of-the-art and opens up new potential applications.
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APPENDIX

Proof of Theorem 2: To see the left hand side of inequality
(17), consider that |Z − Ẑ| = |

�
π − π̂| and �π − π̂�L1 =�

|π − π̂|. Since |
�

f | ≤
�
|f | for any integrable function f ,

we can obtain the inequality by setting f := π − π̂.
To see the right hand side of inequality (17), let Rprune

be the union of all grid cells we pruned and Rkeep be the
union of grid cells we kept at the last iteration. By definition
�π − π̂�L1 =

�
|π − π̂|. We can split up this integral into a

sum of two terms: an integral over Rprune and an integral over
Rkeep. Since π̂ is zero everywhere in Rprune, the first term is
simply

�
Rprune

π, which is bounded from above by εprune.
To bound the integral over Rkeep, consider one of the grid

cells Gi kept at the last iteration. Everywhere in Gi, both π and
π̂ are bounded by the variation bounds U (T )

i and L(T )
i . Hence,

|π − π̂| ≤ U (T )
i − L(T )

i everywhere in Gi. Integrating this
inequality over all grid cells kept at the last iteration and taking
into account Eqn. (15), we obtain

�
Rkeep

|π−π̂| ≤ εkeep. Thus�
|π − π̂| ≤ εprune + εkeep = ε.
Lastly, to obtain inequality (18), we have the following

derivation:

|ψ − ψ̂| =
���
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Z
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1
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Integrating the obtained inequality over R, we have
�
|ψ − ψ̂| ≤

�
1
Z

���π − π̂
��� +

�
|Z − Ẑ|

ZẐ
π̂

≤
1
Z

ε +
1
Z
|Z − Ẑ| ≤

2ε

Z
≤

2ε

Ẑ − ε
.

The last step follows from the fact that Ẑ − ε ≤ Z and thus
1/Z ≤ 1/(Ẑ − ε) as long as Ẑ − ε > 0. �


