
Model Based Vehicle Tracking in Urban Environments

Anna Petrovskaya and Sebastian Thrun
Computer Science Department

Stanford University
Stanford, California 94305, USA
{ anya, thrun}@cs.stanford.edu

Abstract— Situational awareness is crucial for autonomous
driving in urban environments. We present the moving vehicle
tracking module we developed for our autonomous driving
robot Junior. The robot won second place in the Urban Grand
Challenge, an autonomous driving race organized by the U.S.
Government in 2007. The module provides reliable detection
and tracking of moving vehicles from a high-speed moving
platform using laser range finders. Our approach models both
dynamic and geometric properties of the tracked vehicles and
estimates them using a single Bayes filter per vehicle. We
show how to build consistent and efficient 2D representations
out of 3D range data and how to detect poorly visible black
vehicles. Experimental validation includes the most challenging
conditions presented at the Urban Grand Challenge as well as
other urban settings.

I. I NTRODUCTION

Autonomously driving cars have been a long-lasting dream
of robotics researchers and enthusiasts. Self-driving cars
promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfort
and convenience. In recent years the Defense Advanced
Research Projects Agency (DARPA) has taken a lead on
encouraging research in this area and organized a series of
competitions for autonomous vehicles. In 2005 autonomous
vehicles were able to complete a 131 mile course in the desert
[1]. In the 2007 competition, the Urban Grand Challenge,
the robots were presented with an even more difficult task:
autonomous safe navigation in urban environments. In this
competition the robots had to drive safely with respect to
other robots, human-driven vehicles and the environment.
They also had to obey the rules of the road as described
in the California rulebook (see [2] for a detailed description
of the rules). One of the most significant changes from the
previous competition is the need for situational awareness
of both static and dynamic parts of the environment. Our
robot, Junior, won the second prize in the 2007 competition.
An overview of Junior’s software and hardware architecture
is given in [3]. In this paper we describe the approach we
developed for detection and tracking of moving vehicles.

Vehicle tracking has been studied for several decades.
A number of approaches focused on the use of vision
exclusively [4], [5], [6]. Whereas others utilized laser range
finders [7], [8], [9] sometimes in combination with vision
[10]. We give an overview of prior art in Sect. II.

For our application we are concerned with laser based
vehicle tracking from the autonomous robotic platform Ju-
nior, to which we will also refer as the ego-vehicle (see
Fig. 1). In contrast to prior art, we propose a model based
approach which encompasses both geometric and dynamic
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Fig. 1. (a) Our robot Junior (blue) negotiates an intersection
with human-driven vehicles at the qualification event for the Urban
Grand Challenge in November 2007. (b) Junior, is equipped with
five different laser measurement systems, a multi-radar assembly,
and a multi-signal inertial navigation system.

(a) without geometric model (b) with geometric model

Fig. 2. Scans from vehicles are often split up into separate clusters by
occlusion. Geometric vehicle model helps interpret the data properly. Purple
rectangles group together points that have been associatedtogether. In (b)
the purple rectangle also denotes the geometric vehicle model. Gray areas
are objects. Gray dotted lines represent laser rays. Black dots denote laser
data points. (Best viewed in color.)



(a) without shape estimation (b) with shape estimation
Fig. 3. Vehicles come in different sizes. Accurate estimationof geometric shape helps obtain a more precise estimate of the vehicle dynamics. Solid
arrows show the actual distance the vehicle moved. Dashed arrows show the estimated motion. Purple rectangles denote the geometric vehicle models.
Black dots denote laser data points. (Best viewed in color.)

properties of the tracked vehicle in a single Bayes filter. The
approach eliminates the need for separate data segmentation
and association steps. We show how to properly model
the dependence between geometric and dynamic vehicle
properties usinganchor point coordinates. The geometric
model allows us to naturally handle the disjoint point clusters
that often result from partial occlusion of vehicles (see
Fig. 2). Moreover, the estimation of geometric shape leads
to accurate prediction of dynamic parameters (see Fig. 3).

Further, we introduce an abstract sensor representation, we
call thevirtual scan, which allows for efficient computation
and can be used for a wide variety of laser sensors. We
present techniques for building consistent virtual scans from
3D range data and show how to detect poorly visible black
vehicles in laser scans. Our approach runs in real time with
an average update rate of 40Hz, which is 4 times faster than
the common sensor frame rate of 10Hz. The results show
that our approach is reliable and efficient even in challenging
traffic situations presented at the Urban Grand Challenge.

II. BACKGROUND

Typically vehicle tracking approaches (e.g. [7], [8], [9],
[10]) proceed in three stages: data segmentation, data associ-
ation, and Bayesian filter update. During data segmentation
the sensor data is divided into meaningful pieces (usually
lines or clusters). During data association these pieces are
assigned to tracked vehicles. Next a Bayesian filter update
is performed to fit targets to the data.

The second stage - data association - is generally con-
sidered the most challenging stage of the vehicle detection
and tracking problem because of the association ambiguities
that arise. Typically this stage is carried out using variants
of multiple hypothesis tracking (MHT) algorithm (e.g. [8],
[9]). The filter update is usually carried out using variants
of Kalman filter (KF), which is augmented by interacting
multiple model method in some cases [7], [9].

Although vehicle tracking literature primarily relies on
variants of KF, there is a great body of multiple target
tracking literature for other applications (see [11] for a
summary) where parametric, sample-based, and hybrid filters
are used. For example [12] uses a Rao-Blackwellized particle
filter (RBPF) for multiple target tracking on simulated data.
A popular alternative to MHT for data association is the joint
probabilistic data association (JPDA) method. For example
in [13] a JPDA particle filter is used to track multiple targets
from an indoor mobile robot platform.

The work included in this paper has been presented at
two conferences: [14] and [15]. In contrast to prior vehi-
cle tracking literature, we utilize a model based approach,
which uses RBPFs and eliminates the need for separate data

Fig. 4. Dynamic Bayesian network model of the tracked vehicle
poseXt, forward velocityvt, geometryG, and measurementsZt.

segmentation and association stages. Our approach estimates
position, velocity and shape of tracked vehicles.

III. R EPRESENTATION

Our ego-vehicle is outfitted with the Applanix navigation
system that provides pose localization with 1m accuracy.
We further improved the localization module performance
by observing lane markings [3]. Although global localization
shifts may still occur, vehicle tracking is much more affected
by localization drift rather than global shifts. For this reason
we implementedsmooth coordinates, which provide a locally
consistent estimate of the ego-vehicle motion based on the
data from the inertial measurement unit (IMU). As a result
there is virtually no drift in the smooth coordinate system.
Thus for the remainder of the paper we will assume that
a reasonably precise pose of the ego-vehicle is always
available.

Following the common practice in vehicle tracking, we
will represent each vehicle with a separate Bayesian filter,
and represent dependencies between vehicles via a set of
local spatial constraints. Specifically we will assume thatno
two vehicles overlap, that all vehicles are spatially separated
by some free space, and that all vehicles of interest are
located on or near the road.

A. Probabilistic Model and Notation

For each vehicle we estimate its 2D position and orien-
tation Xt = (xt, yt, θt) at time t, its forward velocityvt

and its geometryG (further defined in Sect. III-B). Also
at each time step we obtain a new measurementZt. See



Fig. 5. As we move to observe a different side of a stationary
car, our belief of its shape changes and so does the position of the
car’s center point. To compensate for the effect, we introduce local
anchor point coordinatesC = (Cx, Cy) so that we can keep the
anchor pointXt stationary in the world coordinates.

Fig. 4 for a dynamic Bayes network representation of the
resulting probabilistic model. The dependencies between
the parameters involved are modeled via probabilistic laws
discussed in detail in Sects. III-C and III-E. For now we
briefly note that the velocity evolves over time according to

p(vt|vt−1).

The vehicle moves based on the evolved velocity according
to a dynamics model:

p(Xt|Xt−1, vt).

The measurements are governed by a measurement model:

p(Zt|Xt, G).

For convenience we will writeXt = (X1,X2, ...,Xt) for
the vehicle’s trajectory up to timet. Similarly, vt and Zt

will denote all velocities and all measurements up to timet.

B. Vehicle Geometry

The exact geometric shape of a vehicle can be complex
and difficult to model precisely. For simplicity we approx-
imate it by a rectangular shape of widthW and lengthL.
The 2D representation is sufficient because the height of the
vehicles is not important for driving applications.

For vehicle tracking it is common to track the position
of a vehicle’s center within the state variableXt. However,
there is an interesting dependence between our belief about
the vehicle’s shape and position (Fig. 5). As we observe the
object from a different vantage point, we change not only our
belief of its shape, but also our belief of the position of its
center point. AllowingXt to denote the center point can lead
to the undesired effect of obtaining a non-zero velocity fora
stationary vehicle, simply because we refine our knowledge
of its shape.

To overcome this problem, we viewXt as the pose of
an anchor pointwho’s position with respect to the vehicle’s
center can change over time. Initially we set the anchor point
to be the center of what we believe to be the car shape and
thus its coordinates in the vehicle’slocal coordinate system
areC = (0, 0). We assume that the vehicle’s local coordinate
system is tied to its center with thex-axis pointing directly
forward. As we revise our knowledge of the vehicle’s shape,

the local coordinates of the anchor point will also need to
be revised accordingly toC = (Cx, Cy). Thus the complete
set of geometric parameters isG = (W,L,Cx, Cy).

C. Vehicle Dynamics Model

Given a vehicle’s velocityvt−1 at time stept − 1, the
velocity evolves via addition of random bounded noise based
on maximum allowed accelerationamax and the time delay
∆t between time stepst − 1 and t. Specifically, we sample
∆v uniformly from [−amax∆t, amax∆t].

The pose evolves via linear motion - a motion law that
is often utilized when exact dynamics of the object are
unknown. The motion consists of perturbing orientation by
∆θ1, then moving forward according to the current velocity
by vt∆t, and making a final adjustment to orientation
by ∆θ2. Again we sample∆θ1 and ∆θ2 uniformly from
[−dθmax∆t, dθmax∆t] for a maximum allowed orientation
changedθmax.

D. Sensor Data Representation

In this paper we focus on laser range finders for sensing
the environment. Recently these sensors have evolved to be
more suitable for driving applications. For example IBEO
Alasca sensors allow for easy ground filtering by collecting
four parallel horizontal scan lines and marking which of
the readings are likely to come from the ground. Velodyne
HDL-64E sensors do not provide ground filtering, however
they take a 3D scan of the environment at high frame rates
(10Hz) thereby producing 1,000,000 readings per second.
Given such rich data, the challenge has become to process
the readings in real time. Vehicle tracking at 10 - 20Hz is
desirable for driving decision making.

A number of factors make the use of raw sensor data
inefficient. As the sensor rotates to collect the data, each
new reading is made from a new vantage point due to ego-
motion. Ignoring this effect leads to significant sensor noise.
Taking this effect into account makes it difficult to quickly
access data that pertains to a specific region of space. Much
of the data comes from surfaces uninteresting for the purpose
of vehicle tracking, e.g. ground readings, curbs and tree tops.
Finally, the raw 3D data wastes a lot of resources as vehicle
tracking is a 2D application where the cars are restricted
to move on the ground surface. Therefore it is desirable to
pre-process the data to produce a representation tailored for
vehicle tracking.

To expedite computations, we construct a grid in polar
coordinates - avirtual scan- which subdivides360◦ around
a chosen origin point into angular grids (see Fig. 6). In each
angular grid we record the range to the closest obstacle.
Hence each angular grid contains information about free,
occupied, and occluded space. We will often refer to the
cone of an angular grid from the origin until the recorded
range as aray due to its similarity to a laser ray.

Virtual scans simplify data access by providing a single
point of origin for the entire data set, which allows con-
stant time look-up for any given point in space. As we
mentioned earlier it is important to compute correct world
coordinates for the raw sensor readings. However, once the
correct positions of obstacle points have been computed,
adjusting the origin of each ray to be at the common origin
for the virtual scan produces an acceptable approximation.
Constructed in this manner, a virtual scan provides a compact
representation of the space around the ego-vehicle classified



(a) anatomy of a virtual scan

(b) a virtual scan constructed from Velodyne data

Fig. 6. In (b) yellow line segments represent virtual rays. Colored points
show the results of a scan differencing operation. Red points are new
obstacles, green points are obstacles that disappeared, and white points are
obstacles that remained unchanged or appeared in previouslyoccluded areas.
(Best viewed in color.)

into free, occupied and occluded. The classification helps
us properly reason about what parts of an object should be
visible as we describe in Sect. III-E.

For the purpose of vehicle tracking it is crucial to deter-
mine what changes take place in the environment over time.
With virtual scans these changes can be easily computed in
spite of the fact that ego-motion can cause two consecutive
virtual scans to have different origins. The changes are com-
puted by checking which obstacles in the old scan are cleared
by rays in the new scan and vice versa. This computation
takes time linear in the size of the virtual scan and only
needs to be carried out once per frame. Fig. 6(b) shows
results of a virtual scan differencing operation with red points
denoting new obstacles, green points denoting obstacles
that disappeared, and white points denoting obstacles that
remained in place or appeared in previously occluded areas.

Virtual scans are a suitable representation for a wide
variety of laser range finders. While this representation is
easy to build for 2D sensors such as IBEO, for 3D range
sensors additional considerations are required to produce
consistent 2D representations. We describe these techniques
in Sect. V.

E. Measurement Model

Given a vehicle’s poseX, geometryG and a virtual scan
Z we compute the measurement likelihoodp(Z|G,X) as
follows. We position a rectangular shape representing the
vehicle according toX and G. Then we build a bounding

(a)

(b)

Fig. 7. Measurement likelihood computations. (a) shows the
geometric regions involved in the likelihood computations. (b)
shows the costs assignment for a single ray. (Best viewed in color.)

box to include all points within a predefined distanceλ1

around the vehicle (see Fig. 7). For an actual vehicle in
this configuration, we would expect the points within the
rectangle to be occupied or occluded, and points in its
vicinity to be free or occluded, because vehicles are spatially
separated from other objects in the environment.

Following the common practice for modeling laser range
finders, we consider measurements obtained along each ray
independent of each other. Thus if we have a total ofN rays
in the virtual scanZ, the measurement likelihood factors as
follows:

p(Z|G,X) =
N∏

i=1

p(zi|G,X).

We model each ray’s likelihood as a zero-mean Gaussian of
varianceσi computed with respect to a costci selected based
on the relationship between the ray and the vehicle (ηi is a
normalization constant):

P (zi|G,X) = ηi exp{ −
c2

i

σ2

i

}.

The costs and variances are set to constants that depend on
the region in which the reading falls into (see Fig. 7 for
illustration).cocc, σocc are the settings for range readings that
fall short of the bounding box and thus represent situations
when another object is occluding the vehicle.cb andσb are
the settings for range readings that fall short of the vehicle
but inside of the bounding box.cs and σs are the settings

1We used the setting ofλ = 1m in our implementation.



for readings on the vehicle’s visible surface (that we assume
to be of non-zero depth).cp, σp are used for rays that extend
beyond the vehicle’s surface.

The domain for each range reading is between minimum
rangermin and maximum rangermax of the sensor. Since
the costs we select are piece-wise constant, it is easy to
integrate the unnormalized likelihoods to obtain the nor-
malization constantsηi. Note that for the rays that do not
target the vehicle or the bounding box, the above logic
automatically yields uniform distributions as these rays never
hit the bounding box.

Note that the proposed measurement model naturally
handles partially occluded objects including objects thatare
“split up” by occlusion into several point clusters (see Fig. 2).
In contrast these cases are often challenging for approaches
that utilize separate data segmentation and correspondence
methods.

IV. V EHICLE TRACKING

Most vehicle tracking methods described in the literature
apply separate methods for data segmentation and corre-
spondence matching before fitting model parameters via
extended Kalman filter (EKF). In contrast we use a single
Bayesian filter to fit model parameters from the start. This
is possible because our model includes both geometric and
dynamic parameters of the vehicles and because we rely
on efficient methods for parameter fitting. We chose the
particle filter method for Bayesian estimation because it is
more suitable for multi-modal distributions than EKF. Unlike
the multiple hypothesis tracking (MHT) method commonly
used in the literature, the computational complexity for our
method grows linearly with the number of vehicles in the
environment, because vehicle dynamics dictates that vehicles
can only be matched to data points in their immediate
vicinity. The downside of course is that in our case two
targets can in principle merge into one. In practice we have
found that it happens rarely and only in situations where
one of the targets is lost due to complete occlusion. In these
situations target merging is acceptable for our application.

We have a total of eight parameters to estimate for each
vehicle: X = (x, y, θ), v, G = (W,L,Cx, Cy). Computa-
tional complexity grows exponentially with the number of
parameters for particle filters. Thus to keep computational
complexity low, we turn to RBPFs first introduced in [16].
We estimateX and v by samples and keep Gaussian es-
timates forG within each particle. Below we give a brief
derivation of the required update equations.

A. Update Equations
At each time stept we produce an estimate of a Bayesian

belief about the tracked vehicle’s trajectory, velocity and
geometry based on a set of measurements:

Belt = p(Xt, vt, G|Zt).

We split up the belief into two conditional factors:

Belt = p(Xt, vt|Zt) p(G|Xt, vt, Zt).

The first factor encodes the vehicle’s motion posterior:

Rt = p(Xt, vt|Zt).

The second factor encodes the vehicle’s geometry posterior,
conditioned on its motion:

St = p(G|Xt, vt, Zt).

Fig. 8. We determine ground readings by comparing angles between
consecutive readings. IfA, B, C are ground readings, thenα is
close to0 and thuscos α is close to1.

The factorRt is approximated using a set of particles; the
factorSt is approximated using a Gaussian distribution (one
Gaussian per particle).

Detailed derivations of the update equations are provided
in [15]. Here we briefly note that the motion update of the
particle filter is carried out using the vehicle dynamics model
described in Sect. III-C. The measurement update is carried
out by computing the importance weightswt for all particles:

wt = IESt−1
[ p(Zt|G,Xt) ].

In words, the importance weights are the expected value
(with respect to the vehicle geometry prior) of the mea-
surement likelihood. Using Gaussian approximations of
the geometry priorSt−1 and the measurement likelihood
p(Zt|G,Xt), this expectation can be computed in closed
form. We obtain a Gaussian approximation of the geometry
prior recursively and apply Laplace’s method to approximate
the measurement likelihood by a Gaussian.

B. Initializing and Discontinuing Tracks

New tracks are initialized in areas where scan differencing
detects a change in data, that is not already explained
by existing tracks. New tracks are fitted using the same
measurement and motion models (Sects. III-E and III-C) that
we use for vehicle tracking. The candidates are vetted for
three frames before they can become “real tracks”. Detection
of new vehicles is the most computationally expensive part of
vehicle tracking. In order to achieve reliable vehicle detection
in real time, we developed a number of optimization tech-
niques. Details of the detection algorithm and optimizations
can be found in [14].

We discontinue tracks if the target vehicle gets out of
sensor range or moves too far away from the road2. We also
discontinue tracks if the unnormalized weights have been
low for several turns. Low unnormalized weights signal that
the sensor data is insufficient to track the target, or that
our estimate is too far away from the actual vehicle. This
logic keeps the resource cost of tracking occluded objects
low, yet it still allows for a tracked vehicle to survive bad
data or complete occlusion for several turns. Since new track
acquisition only takes three frames, it does not make sense to
continue tracking objects that are occluded for significantly
longer periods of time.

V. WORKING WITH 3D RANGE DATA

As we explained in Sect. III-D, vehicle tracking is a 2D
problem, for which compact 2D virtual scans are sufficient.
However for 3D sensors, such as Velodyne, it is non-
trivial to build consistent 2D virtual scans. These sensors
provide immense 3D data sets of the surroundings, making

2A digital street map was available for our application in the Road
Network Definition Format (RNDF).



computational efficiency a high priority when processing the
data. In our experience, the hard work pays off and the
resulting virtual scans carry more information than 2D sensor
data.

A. Classification of 3D Points

To produce consistent 2D virtual scans, we need to un-
derstand which of the 3D data points should be considered
obstacles. From the perspective of driving applications we
are interested in the slice of space directly above the ground
and about 2m high, as this is the space that a vehicle would
actually have to drive through. Objects elevated more than
2m above ground - e.g. tree tops or overpasses - are not
obstacles. The ground itself is not an obstacle (assuming
the terrain is drivable). Moreover, for tracking applications
low obstacles such as curbs should be excluded from virtual
scans, because otherwise they can prevent us from seeing
more important obstacles beyond them. The remaining ob-
jects in the 2m slice of space are obstacles for a vehicle,
even if these objects are not directly touching the ground.

In order to classify the data into the different types of
objects described above we first build a 3D grid in spherical
coordinates. Similarly to a virtual scan, it has a single point
of origin and stores actual world coordinates of the sensor
readings. Just as in the 2D case, this grid is an approximation
of the sensor data set, because the actual laser readings in a
scan have varying points of origin. In order to downsample
and reject outliers, for each spherical grid cell we compute
the median range of the readings falling within it. This gives
us a single obstacle point per grid cell. For each spherical
grid cell we will refer to the cone from the grid origin to the
obstacle point as a virtual ray.

The first classification step is to determine ground points.
For this purpose we select a single slice of vertical angles
from the spherical grid (i.e. rays that all have the same
bearing angle). We cycle through the rays in the slice from
the lowest vertical angle to the highest. For three consecutive
readingsA, B, andC, the slope betweenAB andBC should
be near zero if all three points lie on the ground (see Fig. 8
for illustration). If we normalizeAB and BC, their dot
product should be close to1. Hence a simple thresholding of
the dot product allows us to classify ground readings and to
obtain estimates of local ground elevation. Thus one useful
piece of information we can obtain from 3D sensors is an
estimate of ground elevation.

Using the elevation estimates we can classify the re-
maining non-ground readings into low, medium and high
obstacles, out of which we are only interested in the medium
ones (see Fig. 9). It turns out that there can be medium height
obstacles that are still worth filtering out: birds, insectsand
occasional readings from cat-eye reflectors. These obstacles
are easy to filter, because theBC vector tends to be very long
(greater than 1m), which is not the case for normal vertical
obstacles such as buildings and cars. After identifying the
interesting obstacles we simply project them on the 2D
horizontal plane to obtain a virtual scan.

B. Detection of Black Obstacles

Laser range finders are widely known to have difficulty
seeing black objects. Since these objects absorb light, the
sensor never gets a return. Clearly it is desirable to “see”
black obstacles for driving applications. Other sensors could
be used, but they all have their own drawbacks. Here we

Fig. 10. Detecting black vehicles in 3D range scans. White points represent
raw Velodyne data. Yellow lines represent the generated virtual scans. Top
left: actual appearance of the vehicle. Top right: the vehicle gives very few
laser returns. Bottom left: virtual scan with black object detection. Bottom
right: virtual scan without black object detection.

present a method for detecting black objects in 3D laser data.
Figure 10 shows the returns obtained from a black car. The
only readings obtained are from the license plate and wheels
of the vehicle, all of which get filtered out as low obstacles.
Instead of looking at the little data that is present, we can
detect the black obstacle by looking at the data that is absent.
If no readings are obtained along a range of vertical angles in
a specific direction, we can conclude that the space must be
occupied by a black obstacle. Otherwise the rays would have
hit some obstacle or the ground. To provide a conservative
estimate of the range to the black obstacle we place it at
the last reading obtained in the vertical angles just before
the absent readings. We note that this method works well
as long as the sensor is good at seeing the ground. For the
Velodyne sensor the range within which the ground returns
are reliable is about 25 - 30m, beyond this range the black
obstacle detection logic does not work.

VI. EXPERIMENTAL VALIDATION

The most challenging traffic situation at the Urban Grand
Challenge was presented on course A during the qualifying
event (Fig. 11) . The test consisted of dense human driven
traffic in both directions on a course with an outline resem-
bling the Greek letterθ. The robots had to merge repeatedly
into the dense traffic. The merge was performed using a
left turn, so that the robots had to cross one lane of traffic
each time. In these conditions accurate estimates of positions
and velocities of the cars are very useful for determining
a gap in traffic large enough to perform the merge safely.
Cars passed in close proximity to each other and to station-
ary obstacles (e.g. signs and guard rails) providing plenty
of opportunity for false associations. Partial and complete
occlusions happened frequently due to the traffic density.
Moreover these occlusions often happened near merge points
which complicated decision making.

During extensive testing, the performance of our vehicle
tracking module has been very reliable and efficient (see
Fig. 11). Geometric shape of vehicles was properly estimated
(see Figs. 12 and 13), which increased tracking reliabilityand
improved motion estimation. The tracking approach proved



(a) actual scene (b) Velodyne data

(c) after classification (d) generated virtual scan

Fig. 9. In (c) Velodyne data is colored by type: orange - ground, yellow - low obstacle, red - medium obstacle, green - high obstacle.
In (d) yellow lines denote the virtual scan. Note the truck crossing the intersection, the cars parked on a side of the road and the white
van parked on a driveway. On the virtual scan all of these vehicles areclearly marked as obstacles, but ground, curbs and tree tops are
ignored.

TABLE I
TRACKER PERFORMANCE ON DATA SETS FROM THREE URBAN ENVIRONMENTS. MAX TP IS THE THEORETICALLY MAXIMUM POSSIBLE TRUE

POSITIVE PERCENT FOR EACH DATA SET. TP AND FP ARE THE ACTUAL TRUE POSITIVE AND FALSE POSITIVE RATES ATTAINED BY THE ALGORITHM.

Total Total Correctly Falsely Max TP TP FP
Data Sets Frames Vehicles Identified Identified (%) (%) (%)
UGC Area A 1,577 5,911 5,676 205 97.8 96.02 3.35
Stanford Campus 2,140 3,581 3,530 150 99.22 98.58 4.02
Alameda Day 1 1,531 901 879 0 98.22 97.56 0
Overall 5,248 10,393 10,085 355 98.33 97.04 3.3

capable of handling complex traffic situations such as the
one presented on course A of the UGC. The computation
time of our approach averages at 25ms per frame, which is
faster than real time for most modern laser range finders.

We also gathered empirical results of the tracking module
performance on data sets from several urban environments:
course A of the UGC, Stanford campus and a port town in
Alameda, CA. For each frame of data we counted how many
vehicles a human is able to identify in the laser range data.
The vehicles had to be within 50m of the ego-vehicle, on or
near the road, and moving with a speed of at least 5mph. We
summarize the tracker’s performance in Tbl. I. Note that the
maximum theoretically possible true positive rate is lower
than 100% because three frames are required to detect a
new vehicle. On all three data sets the tracker performed
very close to the theoretical bound. Overall the true positive
rate was97% compared to the theoretical maximum of98%.

Several videos of vehicle detection and tracking using the
techniques presented in this paper are available at the website

http://cs.stanford.edu/people/petrovsk/uc.html

VII. C ONCLUSIONS

We have presented the vehicle tracking module developed
for Stanford’s autonomous driving robot Junior. Tracking is
performed from a high-speed moving platform and relies on
laser range finders for sensing. Our approach models both
dynamic and geometric properties of the tracked vehicles
and estimates them with a single Bayes filter per vehicle.
In contrast to prior art, the common data segmentation and
association steps are carried out as part of the filter itself.
The approach has proved reliable, efficient and capable of
handling challenging traffic situations, such as the ones
presented at the Urban Grand Challenge.

Clearly there is ample room for future work. The pre-
sented approach does not model pedestrians, bicyclists, or
motorcyclists, which is a prerequisite for driving in populated
areas. Another promising direction for future work is fusion
of different sensors, including laser, radar and vision.

VIII. A CKNOWLEDGEMENTS

This research has been conducted for the Stanford Racing
Team and would have been impossible without the whole
team’s efforts to build the hardware and software that makes
up the team’s robot Junior. The authors thank all team



(a)
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Fig. 11. Tracking results on course A at the UGC. (a) actual scene,
(b) Velodyne data, (c) virtual scan and tracking results. In(c) yellow line
segments represent the virtual scan and red/green/white points show results
of scan differencing. The purple boxes denote the tracked vehicles. (Best
viewed in color.)

Fig. 12. Size estimation results on Stanford campus. Vehiclesof different
sizes are successfully estimated and tracked. (Best viewed in color.)

(a) without size estimation (b) with size estimation

Fig. 13. Size estimation improves accuracy of tracking as can be seen on
the example of a passing bus taken from an Alameda data set. Without size
estimation (a) the tracking results are poor because the geometric model
does not fit the data well. Not only is the velocity estimated incorrectly, but
the track is lost entirely when the bus is passing. With size estimation (b)
the bus is tracked successfully and the velocity is properlyestimated. (Best
viewed in color.)
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Further, Stanford University thanks its various sponsors.
Special thanks also to NASA Ames for permission to use
their air field.
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[12] Särkkä, S. and Vehtari, A. and Lampinen, J., “Rao-blackwellized
particle filter for multiple target tracking,”Inf. Fusion, vol. 8, no. 1,
2007.

[13] D. Schulz, W. Burgard, D. Fox, and A. Cremers, “Tracking multiple
moving targets with a mobile robot using particle filters and statistical
data association,” inICRA, 2001.

[14] A. Petrovskaya and S. Thrun, “Efficient techniques for dynamic
vehicle detection,” inISER, Athens, Greece, 2008.

[15] A. Petrovskaya and S. Thrun, “Model based vehicle tracking for au-
tonomous driving in urban environments,” inRSS, Zurich, Switzerland,
2008.

[16] A. Doucet, N. d. Freitas, K. Murphy, and S. Russell, “Rao-
blackwellised filtering for dynamic bayesian networks,” inUAI, San
Francisco, CA, 2000.


