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Abstract— Situational awareness is crucial for autonomous
driving in urban environments. We present the moving vehicle
tracking module we developed for our autonomous driving
robot Junior. The robot won second place in the Urban Grand
Challenge, an autonomous driving race organized by the U.S.
Government in 2007. The module provides reliable detection
and tracking of moving vehicles from a high-speed moving
platform using laser range finders. Our approach models both
dynamic and geometric properties of the tracked vehicles and (a)
estimates them using a single Bayes filter per vehicle. We
show how to build consistent and efficient 2D representations
out of 3D range data and how to detect poorly visible black
vehicles. Experimental validation includes the most challenging
conditions presented at the Urban Grand Challenge as well as
other urban settings.

I. INTRODUCTION

Autonomously driving cars have been a long-lasting dream Applanic INS!  \RIoRyrie Lasel

of robotics researchers and enthusiasts. Self-driving car sioKkLusLaser | : prgsaes
promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfort
and convenience. In recent years the Defense Advanc
Research Projects Agency (DARPA) has taken a lead on
encouraging research in this area and organized a series of
competitions for autonomous vehicles. In 2005 autonomous
vehicles were able to complete a 131 mile course in the desert
[1]. In the 2007 competition, the Urban Grand Challenge, IBEO Laser
the robots were presented with an even more difficult task:

i atinn ; ig. 1. (@) Our robot Junior (blue) negotiates an intersection
autonomous safe navigation in urban environments. In this h human-driven vehicles at the qualification event for the Urban

competition the robots had to drive safely with respect t@rand Challenge in November 2007. (b) Junior, is equipped with
other robots, human-driven vehicles and the environmerfive different laser measurement systems, a multi-radar assembly,

They also had to obey the rules of the road as describd§d @ multi-signal inertial navigation system.
in the California rulebook (see [2] for a detailed descapti
of the rules). One of the most significant changes from the
previous competition is the need for situational awareness
of both static and dynamic parts of the environment. Oul
robot, Junior, won the second prize in the 2007 competition
An overview of Junior’s software and hardware architecture
is given in [3]. In this paper we describe the approach we
developed for detection and tracking of moving vehicles.
Vehicle tracking has been studied for several decade:
A number of approaches focused on the use of visior
exclusively [4], [5], [6]. Whereas others utilized laser gan
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finders [7], [8], [9] sometimes in combination with vision o -
[10]. We give an overview of prior art in Sect. Il. o o
For our application we are concerned with laser basea _ i . .
(a) without geometric model (b) with geometric model

vehicle tracking from the autonomous robotic platform Ju-

ni_or’ to which we will a_lso refer as the ego-vehicle (segg 2. scans from vehicles are often split up into separhtstars by
Fig. 1). In contrast to prior art, we propose a model basegtclusion. Geometric vehicle model helps interpret the dedpeply. Purple
approach which encompasses both geometric and dynar{ﬂetangles group together points that have been assodi@gether. In (b)

€ purple rectangle also denotes the geometric vehicle mGdai areas

) . are objects. Gray dotted lines represent laser rays. Blatk denote laser
This work was in part supported by the Defense Advanced Refsea data points. (Best viewed in color.)

Projects Agency under contract number HR0011-06-C-0148. dfinions
expressed in the paper are ours and not endorsed by the WBrm@went.
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(a) without shape estimation (b) with shape estimation

Fig. 3. Vehicles come in different sizes. Accurate estimatbryeometric shape helps obtain a more precise estimate of tiielevelynamics. Solid
arrows show the actual distance the vehicle moved. Dashedsshow the estimated motion. Purple rectangles denote thraajec vehicle models.
Black dots denote laser data points. (Best viewed in color.)

properties of the tracked vehicle in a single Bayes filtee Th
approach eliminates the need for separate data segmentati Vv
and association steps. We show how to properly mode y
the dependence between geometric and dynamic vehicl
properties usinganchor point coordinatesThe geometric

model allows us to naturally handle the disjoint point ctust Q(

that often result from partial occlusion of vehicles (see
Fig. 2). Moreover, the estimation of geometric shape lead:
to accurate prediction of dynamic parameters (see Fig. 3).
Further, we introduce an abstract sensor representatsn, v
call thevirtual scan which allows for efficient computation

and can be used for a wide variety of laser sensors. Wi /

present techniques for building consistent virtual scaosf

3D range data and show how to detect poorly visible black (7 7 @ @
vehicles in laser scans. Our approach runs in real time witt 1 2 3 t

an average update rate of 40Hz, which is 4 times faster tha

the common sensor frame rate of 10Hz. The results shawg. 4. Dynamic Bayesian network model of the tracked vehicle
that our approach is reliable and efficient even in challeggi PoseX:, forward velocityv;, geometryG;, and measurements;.
traffic situations presented at the Urban Grand Challenge.

1. BACKGROUND segmentation and association stages. Our approach estimat

Typically vehicle tracking approaches (e.g. [7], [8], [9],p03|t|0n, velocity and shape of tracked vehicles.

[10]) proceed in three stages: data segmentation, dataiasso 1. REPRESENTATION
ation, and Bayesian filter update. During data segmentation o ) ) ) o
the sensor data is divided into meaningful pieces (usually Our ego-vehicle is outfitted with the Applanix navigation
lines or clusters). During data association these pieces ayyStem that provides pose localization with 1m accuracy.
assigned to tracked vehicles. Next a Bayesian filter upday¥e further improved the localization module performance
is performed to fit targets to the data. by.observmg_ lane markm_gs [3]. AI;hoqgh global localipati
The second stage - data association - is generally copbifts may still occur, vehicle tracking is much more aféett
sidered the most challenging stage of the vehicle detectidly localization drift rather than global shifts. For thissen
and tracking problem because of the association ambiguiti@e implementesmooth coordinatesvhich provide a locally
of multiple hypothesis tracking (MHT) algorithm (e.g. [8], data from the inertial measurement unit (IMU). As a result
[9]). The filter update is usually carried out using varianthere is virtually no drift in the smooth coordinate system.
of Kalman filter (KF), which is augmented by interactingThus for the remainder of the paper we will assume that
multiple model method in some cases [7], [9]. a rgasonably precise pose of the ego-vehicle is always
Although vehicle tracking literature primarily relies onavailable. o . ]
variants of KF, there is a great body of multiple target Following the common practice in vehicle tracking, we
tracking literature for other applications (see [11] for awill represent each vehicle with a separate Bayesian filter,
summary) where parametric, sample-based, and hybridsfiltegnd represent dependencies between vehicles via a set of
are used. For example [12] uses a Rao-Blackwellized particiocal spatial constraints. Specifically we will assume thait
filter (RBPF) for multiple target tracking on simulated datatwo vehicles overlap, that all vehicles are spatially sefeat
A popular alternative to MHT for data association is the joinby some free space, and that all vehicles of interest are
probabilistic data association (JPDA) method. For exampl€cated on or near the road.
in [13] a JPDA particle filter is used to track multiple target I .
from an indoor mobile robot platform. A. Probabilistic Model and Notation
The work included in this paper has been presented atFor each vehicle we estimate its 2D position and orien-
two conferences: [14] and [15]. In contrast to prior vehitation X; = (z,y:,6;) at time ¢, its forward velocityv;
cle tracking literature, we utilize a model based approacland its geometryG (further defined in Sect. 1lI-B). Also
which uses RBPFs and eliminates the need for separate dataeach time step we obtain a new measurenigntSee



_ _ the local coordinates of the anchor point will also need to
Time step: t Time step: t+ 1 be revised accordingly t6' = (C,, C,). Thus the complete
set of geometric parameters@= (W, L, C,, C,).

x C. Vehicle Dynamics Model

Given a vehicle’s velocityv; _; at time stept — 1, the
P velocity evolves via addition of random bounded noise based
y ]’Cx on maximum allowed acceleratian, ., and the time delay

K At between time steps— 1 andt. Specifically, we sample
y X C=(0,0 Xe1 |C=(C, 0) Awv uniformly from [—a,;maz At, GmaeAt].

The pose evolves via linear motion - a motion law that
is often utilized when exact dynamics of the object are
unknown. The motion consists of perturbing orientation by
A6y, then moving forward according to the current velocity
by v;At, and making a final adjustment to orientation
Fig. 5. As we move to observe a different side of a stationanpy Afd,. Again we sampleAd; and Ad, uniformly from

car, our belief of its shape changes and so does the position of the i ; ;
car’s center point. To compensate for the effect, we introduce IocJéaﬁlI 0 mazAt; dbmar At] for @ maximum allowed orientation

anchor point coordinate§' = %C’Z,C’y) so that we can keep the changedty,q. .
anchor pointX; stationary in the world coordinates.

v Observer Observer Q

D. Sensor Data Representation

In this paper we focus on laser range finders for sensing
e environment. Recently these sensors have evolved to be
ore suitable for driving applications. For example IBEO
lasca sensors allow for easy ground filtering by collecting
our parallel horizontal scan lines and marking which of
he readings are likely to come from the ground. Velodyne
p(ve|ve—1). HDL-64E sensors do not provide ground filtering, however
. . . they take a 3D scan of the environment at high frame rates
The vehlcle_ moves based on the evolved velocity accord|r@OHz) thereby producing 1,000,000 readings per second.
to a dynamics model: Given such rich data, the challenge has become to process
(X Xi_1,v0). the readings in real time. Vehicle tracking at 10 - 20Hz is
desirable for driving decision making.
The measurements are governed by a measurement model:A number of factors make the use of raw sensor data
(Z:| X, G) inefficient_. As the sensor rotates to collect t_he data, each
plat]de, &) new reading is made from a new vantage point due to ego-
For convenience we will writeX? = (X1, X»,..., X;) for ~motion. Ignoring this effect leads to significant sensoiseoi
the vehicle’s trajectory up to time Similarly, ! and Z*  Taking this effect into account makes it difficult to quickly
will denote all velocities and all measurements up to time access data that pertains to a specific region of space. Much
i of the data comes from surfaces uninteresting for the perpos
B. Vehicle Geometry of vehicle tracking, e.g. ground readings, curbs and trps.to

The exact geometric shape of a vehicle can be compléinally, the raw 3D data wastes a lot of resources as vehicle
and difficult to model precisely. For simplicity we approx-tracking is a 2D application where the cars are restricted
imate it by a rectangular shape of widii and lengthL. to move on the ground surface. Therefore it is desirable to
The 2D representation is sufficient because the height of tipge-process the data to produce a representation tailored f
vehicles is not important for driving applications. vehicle tracking.

For vehicle tracking it is common to track the position To expedite computations, we construct a grid in polar
of a vehicle’s center within the state variab¥e. However, coordinates - airtual scan- which subdivides360° around
there is an interesting dependence between our belief ab@uthosen origin point into angular grids (see Fig. 6). In each
the vehicle’s shape and position (Fig. 5). As we observe thangular grid we record the range to the closest obstacle.
object from a different vantage point, we change not only oudence each angular grid contains information about free,
belief of its shape, but also our belief of the position of itsoccupied, and occluded space. We will often refer to the
center point. AllowingX; to denote the center point can leadcone of an angular grid from the origin until the recorded
to the undesired effect of obtaining a non-zero velocitydor range as aay due to its similarity to a laser ray.
stationary vehicle, simply because we refine our knowledge Virtual scans simplify data access by providing a single
of its shape. point of origin for the entire data set, which allows con-

To overcome this problem, we vieX; as the pose of stant time look-up for any given point in space. As we
an anchor pointwho’s position with respect to the vehicle’s mentioned earlier it is important to compute correct world
center can change over time. Initially we set the anchortpoicoordinates for the raw sensor readings. However, once the
to be the center of what we believe to be the car shape andrrect positions of obstacle points have been computed,
thus its coordinates in the vehicldscal coordinate system adjusting the origin of each ray to be at the common origin
areC = (0,0). We assume that the vehicle’s local coordinatdor the virtual scan produces an acceptable approximation.
system is tied to its center with theaxis pointing directly Constructed in this manner, a virtual scan provides a cotnpac
forward. As we revise our knowledge of the vehicle's shapagpresentation of the space around the ego-vehicle ckbsifi

Fig. 4 for a dynamic Bayes network representation of th
resulting probabilistic model. The dependencies betwe
the parameters involved are modeled via probabilistic la
discussed in detail in Sects. IlI-C and IlI-E. For now w
briefly note that the velocity evolves over time according t
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(b) a virtual scan constructed from Velodyne data ®)
Fig. 6. In (b) yellow line segments represent virtual rayslo@a points . T .
show the resuilts of a scan differencing operation. Red poime new Fig. 7. Measurement likelihood computations. (a) shows the
obstacles, green points are obstacles that disappeatayhre points are g€OMetric regions involved in the likelihood computations. (Ib)
obstacles that remained unchanged or appeared in previmailyded areas. SNOWs the costs assignment for a single ray. (Best viewed in color.)
(Best viewed in color.)
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box to include all points within a predefined distans®

into free, occupied and occluded. The classification helg@yound the vehicle (see Fig. 7). For an actual vehicle in

us properly reason about what parts of an object should Bis configuration, we would expect the points within the

visible as we describe in Sect. IlI-E. rectangle to be occupied or occluded, and points in its
For the purpose of vehicle tracking it is crucial to deterYicinity to be free or occluded, because vehicles are dpatia

mine what changes take place in the environment over timgeParated from other objects in the environment.

With virtual scans these changes can be easily computed jnFollowing the common practice for modeling laser range

spite of the fact that ego-motion can cause two consecutiy@ders, we consider measurements obtained along each ray

virtual scans to have different origins. The changes are-corffdependent of each other. Thus if we have a totaVafays

puted by checking which obstacles in the old scan are clearBythe virtual scanz, the measurement likelihood factors as

by rays in the new scan and vice versa. This computatioR!/IOWs: N

takes time linear in the size of the virtual scan and only .

needs to be carried out once per frame. Fig. 6(b) shows p(Z]G, X) = Hp(zi|G’X)'

results of a virtual scan differencing operation with rechpo =1

denoting new obstacles, green points denoting obstaclg& model each ray’s likelihood as a zero-mean Gaussian of

that disappeared, and white points denoting obstacles thatriances; computed with respect to a castselected based

remained in place or appeared in previously occluded aream the relationship between the ray and the vehigleiq a
Virtual scans are a suitable representation for a wideormalization constant):

variety of laser range finders. While this representation is 9

easy to build for 2D sensors such as IBEO, for 3D range P(%]G,X) =n; exp 7% b

sensors additional considerations are required to produce o;

consistent 2D representations. We describe these teCElrmIq'°|'he costs and variances are set to constants that depend on

in Sect. V. the region in which the reading falls into (see Fig. 7 for

illustration). c,cc, oocc are the settings for range readings that
E. Measurement Model fall short of the bounding box and thus represent situations
when another object is occluding the vehialg.and oy, are
Given a vehicle’s pos&, geometryG and a virtual scan the settings for range readings that fall short of the vehicl
Z we compute the measurement likelihoptZ |G, X)) as but inside of the bounding box and o, are the settings
follows. We position a rectangular shape representing the
vehicle according taX and G. Then we build a bounding  !we used the setting of = 1m in our implementation.



for readings on the vehicle’s visible surface (that we assum
to be of non-zero depthy,,, o, are used for rays that extend
beyond the vehicle’s surface.

The domain for each range reading is between minimum
ranger,,;, and maximum range.,.. of the sensor. Since
the costs we select are piece-wise constant, it is easy to
integrate the unnormalized likelihoods to obtain the norgjg 5 e determine ground readings by comparing angles between
malization constants,. Note that for the rays that do not consecutive readings. Iff, B, C' are ground readings, them is
target the vehicle or the bounding box, the above logiglose to0 and thuscos o is close tol.
automatically yields uniform distributions as these raggan
hit the bounding box. ) , , ,

Note that the proposed measurement model naturalf’€ factorR; is approximated using a set of particles; the
handles partially occluded objects including objects trat factor S, is approximated using a Gaussian distribution (one
“split up” by occlusion into several point clusters (see.Rly ~ Gaussian per particle). _ )

In contrast these cases are often challenging for appreache Detailed derivations of the update equations are provided

that utilize separate data segmentation and correspoedefit [15]. Here we briefly note that the motion update of the
methods. particle filter is carried out using the vehicle dynamics eiod

described in Sect. llI-C. The measurement update is carried
IV. VEHICLE TRACKING out by computing the importance weights for all particles:
Most vehicle tracking methods described in the literature _E 721G X
apply separate methods for data segmentation and corre- we = Bs,_, [ p(Z:|G, Xe) |-

spondence matching before fitting model parameters via words, the importance weights are the expected value
extended Kalman filter (EKF). In contrast we use a singlewith respect to the vehicle geometry prior) of the mea-
Bayesian filter to fit model parameters from the start. Thisurement likelihood. Using Gaussian approximations of
is possible because our model includes both geometric agse geometry priorS;_; and the measurement likelihood
dynamic parameters of the vehicles and because we quyzt|G, X,), this expectation can be computed in closed
on efficient methods for parameter fitting. We chose thgyrm. We obtain a Gaussian approximation of the geometry
particle filter method for Bayesian estimation because it igrior recursively and apply Laplace’s method to approxanat
more suitable for multi-modal distributions than EKF. Weli the measurement likelihood by a Gaussian.
the multiple hypothesis tracking (MHT) method commonly — . o
used in the literature, the computational complexity for ouB. Initializing and Discontinuing Tracks
method grows linearly with the number of vehicles in the New tracks are initialized in areas where scan differencing
environment, because vehicle dynamics dictates that leshicdetects a change in data, that is not already explained
can only be matched to data points in their immediatey existing tracks. New tracks are fitted using the same
vicinity. The downside of course is that in our case twaneasurement and motion models (Sects. IlI-E and 1lI-C) that
targets can in principle merge into one. In practice we hawse use for vehicle tracking. The candidates are vetted for
found that it happens rarely and only in situations wheréhree frames before they can become “real tracks”. Detectio
one of the targets is lost due to complete occlusion. In thesg new vehicles is the most computationally expensive piart o
situations target merging is acceptable for our applicatio vehicle tracking. In order to achieve reliable vehicle déta
We have a total of eight parameters to estimate for eaéh real time, we developed a number of optimization tech-
vehicle: X = (z,v,6), v, G = (W,L,C,,C,). Computa- niques. Details of the detection algorithm and optimizztio
tional complexity grows exponentially with the number ofcan be found in [14].
parameters for particle filters. Thus to keep computational We discontinue tracks if the target vehicle gets out of
complexity low, we turn to RBPFs first introduced in [16].sensor range or moves too far away from the fodlde also
We estimateX and v by samples and keep Gaussian esdiscontinue tracks if the unnormalized weights have been
timates forG within each particle. Below we give a brief low for several turns. Low unnormalized weights signal that
derivation of the required update equations. the sensor data is insufficient to track the target, or that
A. Update Equations lour' estimate is too far away from the _actual vehicle. This
, i . logic keeps the resource cost of tracking occluded objects
At each time step we produce an estimate of a Bayesiangy, yet it still allows for a tracked vehicle to survive bad
belief about the tracked vehicle’s trajectory, velocitydan gata or complete occlusion for several turns. Since nevk trac
geometry based on a set of measurements: acquisition only takes three frames, it does not make sense t
Bel, = p(X*', 0!, G| ZY). continue tracking objects that are occluded for signifigant
longer periods of time.

We split up the belief into two conditional factors:
V. WORKING WITH 3D RANGE DATA

t t|r7t t .t t
Bely = p(X°,v|Z7) p(GIXT, 0, Z7). As we explained in Sect. llI-D, vehicle tracking is a 2D
The first factor encodes the vehicle’s motion posterior:  problem, for which compact 2D virtual scans are sufficient.
R, = p(X*,0'ZY) However fqr 3D sensors, suc;h as Velodyne, it is non-
t = PASLY ) trivial to build consistent 2D virtual scans. These sensors
The second factor encodes the vehicle’s geometry posteriprovide immense 3D data sets of the surroundings, making

conditioned on its motion:
P 2A digital street map was available for our application in theaR
Sy = p(G| X' v, Z°). Network Definition Format (RNDF).



computational efficiency a high priority when processing th
data. In our experience, the hard work pays off and th
resulting virtual scans carry more information than 2D sens
data.

A. Classification of 3D Points

To produce consistent 2D virtual scans, we need to u
derstand which of the 3D data points should be considerd
obstacles. From the perspective of driving applications
are interested in the slice of space directly above the grou
and about 2m high, as this is the space that a vehicle wo
actually have to drive through. Objects elevated more th
2m above ground - e.g. tree tops or overpasses - are
obstacles. The ground itself is not an obstacle (assum
the terrain is drivable). Moreover, for tracking appliceis
low obstacles such as curbs should be excluded from virtu
scans, because otherwise they can prevent us from seeing
more important obstacles beyond them. The remaining obig. 10. Detecting black vehicles in 3D range scans. Whitatsaepresent
jects in the 2m slice of space are obstacles for a vehiclgi! Yeochne Sae, Yelow Ines epresent i generaisaiscens. Top
even if these objects are not directly touching the ground.aser returns. Bottom left: virtual scan with black objeetettion. Bottom

In order to classify the data into the different types ofight: virtual scan without black object detection.
objects described above we first build a 3D grid in spherical
coordinates. Similarly to a virtual scan, it has a singlenpoi
of origin and stores actual world coordinates of the sens@resent a method for detecting black objects in 3D laser. data
readings. Just as in the 2D case, this grid is an approximati&igure 10 shows the returns obtained from a black car. The
of the sensor data set, because the actual laser readings inn#y readings obtained are from the license plate and wheels
scan have varying points of origin. In order to downsamplef the vehicle, all of which get filtered out as low obstacles.
and reject outliers, for each spherical grid cell we computistead of looking at the little data that is present, we can
the median range of the readings falling within it. This give detect the black obstacle by looking at the data that is absen
us a single obstacle point per grid cell. For each spheric#ino readings are obtained along a range of vertical angles i
grid cell we will refer to the cone from the grid origin to the a specific direction, we can conclude that the space must be
obstacle point as a virtual ray. occupied by a black obstacle. Otherwise the rays would have

The first classification step is to determine ground point$it some obstacle or the ground. To provide a conservative
For this purpose we select a single slice of vertical anglasstimate of the range to the black obstacle we place it at
from the spherical grid (i.e. rays that all have the samthe last reading obtained in the vertical angles just before
bearing angle). We cycle through the rays in the slice frorthe absent readings. We note that this method works well
the lowest vertical angle to the highest. For three consexut as long as the sensor is good at seeing the ground. For the
readings4, B, andC, the slope betweeA B and BC should Velodyne sensor the range within which the ground returns
be near zero if all three points lie on the ground (see Fig. &e reliable is about 25 - 30m, beyond this range the black
for illustration). If we normalizeAB and BC, their dot obstacle detection logic does not work.
product should be close b Hence a simple thresholding of
the dot product allows us to classify ground readings and to VI. EXPERIMENTAL VALIDATION
obtain estimates of local ground elevation. Thus one useful The most challenging traffic situation at the Urban Grand
piece of information we can obtain from 3D sensors is aChallenge was presented on course A during the qualifying
estimate of ground elevation. event (Fig. 11) . The test consisted of dense human driven

Using the elevation estimates we can classify the reraffic in both directions on a course with an outline resem-
maining non-ground readings into low, medium and higlpling the Greek lette. The robots had to merge repeatedly
obstacles, out of which we are only interested in the mediuinto the dense traffic. The merge was performed using a
ones (see Fig. 9). It turns out that there can be medium heidbft turn, so that the robots had to cross one lane of traffic
obstacles that are still worth filtering out: birds, inseat&l each time. In these conditions accurate estimates of positi
occasional readings from cat-eye reflectors. These obkstachnd velocities of the cars are very useful for determining
are easy to filter, because th’ vector tends to be very long a gap in traffic large enough to perform the merge safely.
(greater than 1m), which is not the case for normal verticalars passed in close proximity to each other and to station-
obstacles such as buildings and cars. After identifying thery obstacles (e.g. signs and guard rails) providing plenty
interesting obstacles we simply project them on the 2[Bf opportunity for false associations. Partial and congplet
horizontal plane to obtain a virtual scan. occlusions happened frequently due to the traffic density.
. Moreover these occlusions often happened near merge points
B. Detection of Black Obstacles which complicated decision making.

Laser range finders are widely known to have difficulty During extensive testing, the performance of our vehicle
seeing black objects. Since these objects absorb light, ttracking module has been very reliable and efficient (see
sensor never gets a return. Clearly it is desirable to “sed”ig. 11). Geometric shape of vehicles was properly estichate
black obstacles for driving applications. Other sensordcco (see Figs. 12 and 13), which increased tracking relialalitgt
be used, but they all have their own drawbacks. Here wieproved motion estimation. The tracking approach proved



(a) actual scene (b) Velodyne data

(c) after classification (d) generated virtual scan

Fig. 9. In (c) _Velod(?/ne data is colored by %pe: orange - ground, yellow - lowtatie, red - medium obstacle, green - high obstacle.
In (d) yellow lines denote the virtual scan. Note the truck crossing the ettos, the cars parked on a side of the road and the white
van pe:jrked on a driveway. On the virtual scan all of these vehiclesleagly marked as obstacles, but ground, curbs and tree tops are
ignored.

TABLE |
TRACKER PERFORMANCE ON DATA SETS FROM THREE URBAN ENVIRONMERS. MAX TP IS THE THEORETICALLY MAXIMUM POSSIBLE TRUE
POSITIVE PERCENT FOR EACH DATA SETTP AND FP ARE THE ACTUAL TRUE POSITIVE AND FALSE POSITIVE RATES ATTAINED BY THE ALGORITHM.

Total Total | Correctly Falsely | Max TP TP FP
Data Sets Frames | Vehicles | Identified | Identified (%) (%) | (%)
UGC Area A 1577 5,911 5,676 205 97.81 96.02 | 3.35
Stanford Campus| 2,140 3,581 3,530 150 99.22 | 98.58 | 4.02
Alameda Day 1 1,531 901 879 0 98.22 | 97.56 0
Overal | 5,248 10,393 10,085 355 98.33 97.04| 33
capable of handling complex traffic situations such as the VII. CONCLUSIONS

one presented on course A of the UGC. The computation \ye have presented the vehicle tracking module developed
time of our approach averages at 25ms per frame, which i§; Stanford’s autonomous driving robot Junior. Trackisg i
faster than real time for most modern laser range finders. performed from a high-speed moving platform and relies on

We also gathered empirical results of the tracking modull@Ser range finders for sensing. Our approach models both
performance on data sets from several urban environmenfnamic and geometric properties of the tracked vehicles
course A of the UGC, Stanford campus and a port town ignd estimates them with a single Bayes filter per yehlcle.
Alameda, CA. For each frame of data we counted how marl{} contrast to prior art, the common data segmentation and
vehicles a human is able to identify in the laser range dat ssociation steps are carried out as part of the filter itself
The vehicles had to be within 50m of the ego-vehicle, on of € approach has proved reliable, efficient and capable of
near the road, and moving with a speed of at least 5mph. ndling challenging traffic situations, such as the ones
summarize the tracker’s performance in Tbl. I. Note that thBresented at the Urban Grand Challenge.
maximum theoretically possible true positive rate is lower Clearly there is ample room for future work. The pre-
than 100% because three frames are required to detect 3gNted approach does not model pedestrians, bicyclists, or
new vehicle. On all three data sets the tracker performégotorcyclists, whichis a prerequisite for driving in pogigld
very close to the theoretical bound. Overall the true pasiti r€@S. Another promising direction for future work is fusio
rate was)7% compared to the theoretical maximumas%. of different sensors, including laser, radar and vision.

Several videos of vehicle detection and tracking using the VIIl. A CKNOWLEDGEMENTS
technigues presented in this paper are available at theitwebs This research has been conducted for the Stanford Racing
Team and would have been impossible without the whole
team’s efforts to build the hardware and software that makes
http://cs.stanford.edu/people/petrovsk/uc.html up the team's robot Junior. The authors thank all team



(a) without size estimation (b) with size estimation

Fig. 13. Size estimation improves accuracy of tracking as easelen on
the example of a passing bus taken from an Alameda data sebWiize

estimation (a) the tracking results are poor because the deomsodel

does not fit the data well. Not only is the velocity estimatezbmectly, but

the track is lost entirely when the bus is passing. With sitémation (b)

the bus is tracked successfully and the velocity is propestymated. (Best
viewed in color.)
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