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Abstract Situational awareness is crucial for autonomousl Introduction
driving in urban environments. This paper describes the-mov

ing vehicle detection and tracking module that we develoloe%utonomously driving cars have been a long-lasting dream

for our autonomous driving robot Junior. The robot won sec-fr botics r rchers and enthusiasts. Self-drivi :
ond place in the Urban Grand Challenge, an autonomou?s k())rir? Csnesr’r?s(; ?‘Ean ﬁ? t us asi St ii I dinﬁgmr lv ie
driving race organized by the U.S. Government in 20072 g @ humber of BENETILs 1o SoCIety, INcluding preve

. . ; . tion of road accidents, optimal fuel usage, comfort and con-
The module provides reliable detection and tracking of mov-

. : : . ; venience. In recent years the Defense Advanced Research
ing vehicles from a high-speed moving platform using lase

range finders. Our approach models both dynamic and gecliJD—mJeCtS Agency (DARPA) has taken a lead on encouraging

. . . . research in this area and organized a series of competitions
metric properties of the tracked vehicles and estimates the X .

. : : ) for autonomous vehicles. In 2005 autonomous vehicles were
using a single Bayes filter per vehicle. We present the no- . .
. ) ! . able to complete a 131 mile course in the desert (Buehler
tion of motion evidence, which allows us to overcome the tal. 2007). In the 2007 competition. the Urban Grand Chal
low signal-to-noise ratio that arises during rapid detacti Iena, UG)(.Z th er b tc\(/)v rpe ro ,nted wit?\ n av n mar-
of moving vehicles in noisy urban environments. Further-(;fﬁge Igct k'), tenomo S We fe pnej,ie t? nin r?) r? ?lvir ae
more, we show how to build consistent and efficient 2D rep- cult task. altohomous safe havigatio urban enwviro

. ments. In this competition the robots had to drive safeljwit
resentations out of 3D range data and how to detect poorIP/ : : .
- . . e espect to other robots, human-driven vehicles and the envi
visible black vehicles. Experimental validation includbe

) - rémment. They also had to obey the rules of the road as de-
most challenging conditions presented at the Urban Grand . . .
. scribed in the California rulebook (see DARPA (2007) for
Challenge as well as other urban settings. . - o
a detailed description of the rules). One of the most signif-
icant changes from the previous competition is the need for
situational awareness of both static and dynamic partseof th
Keywords vehicle tracking autonomous driving urban environment. Several successful approaches have been de-
driving - Bayesian modelpatrticle filter- laser range finders veloped in parallel by the UGC participants (Leonard et al,
2008; Urmson et al, 2008). Our robot, Junior, won second
prize in the 2007 competition. An overview of Junior’s soft-
ware and hardware architecture is given in Montemerlo et al
This work was in part supported by the Defense Advanced Re(2008). In this paper we describe the approach we developed

search Projects Agency under contract number HR0011-0646:01 for detection and tracking of moving vehicles.
The opinions expressed in the paper are ours and not endorskd by t

U.S. Government. Vehicle tracking has been studied for several decades. A
A. Petrovskaya n_umber Qf approaches focu_sed on the use of vision exclu-
Computer Science Department, Stanford University sively (Zielke et al, 1993; Dickmanns, 1998; Dellaert and
E-mail: anya@cs.stanford.edu Thorpe, 1998), whereas others utilized laser range finders
S. Thrun (Zzhao and Thorpe, 1998; Streller et al, 2002; Wang et al,
Computer Science Department, Stanford University 2007) sometimes in combination with vision (Wender and

E-mail: thrun@cs.stanford.edu Dietmayer, 2008). We give an overview of prior artin Sect. 2.
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Fig. 3 Vehicles come in different sizes. Accurate estimation of ge-

ometric shape helps obtain a more precise estimate of the vehicle
dynamics. Solid arrows show the actual distance the vehicle moved
‘ Dashed arrows show the estimated motion. Purple rectanglesedenot
SCREDLRS Laser the geometric vehicle models. Black dots denote laser dataspoint
(Best viewed in color.)
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approach eliminates the need for separate data segmentatio
Fig. 1 (a) Our robot Junior (blue) negotiates an intersection Withyny 5550ciation steps. We show how to properly model the
human-driven vehicles at the qualification event for the dr@aand . . .
Challenge in November 2007. (b) Junior, is equipped with fiffedint dependence between geometric and dynamic vehicle prop-
laser measurement systems, a multi-radar assembly, and a multi-sigreiities usinganchor point coordinatesThe geometric model
inertial navigation system. allows us to naturally handle the disjoint point clusteratth
often result from partial occlusion of vehicles (see Fig. 2)
Moreover, the estimation of geometric shape leads to accu-
rate prediction of dynamic parameters (see Fig. 3).

Further, we introduce an abstract sensor representation,
called thevirtual scan which allows for efficient computa-
tion and can be used for a wide variety of laser sensors. We
present techniques for building consistent virtual scems f
3D range data and show how to detect poorly visible black

o o vehicles in laser scans. To battle the low signal-to-naase r
o - tio during rapid detection of vehicles in noisy urban sejgin
(a) without geometric model  (b) with geometric model we introduce the notion afnotion evidencewhich allows

us to quickly prune false positives caused by noise. Our ap-
Fig. 2 _Scans from v_ehicle_s are often split up into separate clusters bproach runs in real time with an average update rate of 40Hz,
occlusion. Geometric vehicle model helps interpret the daipesty.  \yhich is 4 times faster than the common sensor frame rate

Purple rectangles group together points that have been as=b¢o- . .
gether. In (b) the purple rectangle also denotes the geomelhicle of 10Hz. The results show that our approach is reliable and

model. Gray areas are objects. Gray dotted lines representrigser  €fficient even in the challenging traffic situations present
Black dots denote laser data points. (Best viewed in color.) at the UGC.

For our application we are concerned with laser base@ Background
vehicle tracking from the autonomous robotic platform Ju-
nior, to which we will also refer as the ego-vehicle (seeA number of vehicle tracking approaches have been devel-
Fig. 1). In contrast to prior art, we propose a model basedped over the past few decades (e.g. Zhao and Thorpe (1998);
approach which encompasses both geometric and dynantreller et al (2002); Wang (2004); Wender and Dietmayer
properties of the tracked vehicle in a single Bayes filtee Th (2008)) including most recent developments by the UGC



participants (Darms et al, 2008; Leonard et al, 2008). Typi-3 Representation
cally these approaches proceed in three stages: data segmen
tation, data association, and Bayesian filter update. Qurinin this paper we shall assume that a reasonably precise pose
data segmentation the sensor data is divided into meaningf the ego-vehicle is always available. On our robot, thespos
ful pieces — usually line features (Zhao and Thorpe, 1998estimates are provided by the localization module, which is
Darms et al, 2008) or clusters (Wender and Dietmayer, 2008escribed in detail in (Montemerlo et al, 2008). Here we
Leonard et al, 2008). During data association these piecggovide a brief summary. The robot is outfitted with an Ap-
are assigned to tracked vehicles. Next, a Bayesian filter ugplanix POS LV 420 inertial navigation system (INS) which
date is performed to fit targets to the data. provides pose localization with 1m accuracy. Due to peri-
o ) odic GPS measurement updates the INS pose estimate can
~ The second stage — data association —is generally cong,qyenly shift by up to 1m. The sudden shifts are very unde-
sidered the most challenging stage of the vehicle detectiogy ;e for vehicle tracking as they greatly increase firagk
and tracking problem because of the association ambiguiti,ertainty. For the purposes of vehicle tracking the ego-
that arise. Typically this stage is carried out using vasan ephicle pose estimate should evolve smoothly over time. For
of the multiple hypothesis tracking (MHT) algorithm (e.g. this reason we implementathooth coordinatesvhich pro-
Streller et al (2002); Wang et al (2007)). vide a locally consistent estimate of the ego-vehicle nmtio

In the third stage, the filter update is usually carried oufY Intégrating the velocity estimates from the INS. Althbug
using variants of Kalman filter (KF), which is augmented bythe smooth pose estimate can drift over time, it does not ex-

the interacting multiple model method in some cases (zhaBerience sudden shifts. To map from smooth coordinates to
and Thorpe, 1998; Wang et al, 2007). globally consistent GPS coordinates, one simply needs to

add an offset, which is periodically updated to reflect the

Although vehicle tracking literature primarily relies on mismatch between the smooth and GPS coordinate systems.
variants of KF, there is a great body of multiple target track A similar smooth coordinate system was independently de-
ing literature for other applications where parametri;pke- veloped by the MIT UGC team (Leonard et al, 2008). In
based, and hybrid filters are used. Blackman et al (2004he remainder of this paper all operations will be carrietl ou
provides a summary. For examplargka et al (2007) uses a in the smooth coordinate frame, which we will also call the
Rao-Blackwellized particle filter (RBPF) for multiple taigy  world frame. The transformation from smooth to GPS coor-
tracking on simulated data. A popular alternative to MHTdinates will only be needed when dealing with global fea-
for data association is the joint probabilistic data associ tures, such as the digital road map.
tion (JPDA) method, which is used by Schulz et al (2001)to  Following the common practice in vehicle tracking (Del-
track multiple targets from an indoor mobile robot platform |aert and Thorpe, 1998; Dietmayer et al, 2001; Leonard et al,
2008), we will represent each vehicle by a separate Bayesian

N The ¥vork |ncl.uge<t:i n tEIS papedr _T_ﬁs beezrz)g;esinted 3 ter, and represent dependencies between vehicles via a se
WO conlerences. Fetrovskaya an run a) focuse local spatial constraints. Specifically, we will assumatt

on efficient detection of vehicles and Petrovskaya and ThruHO two vehicles overlap, that all vehicles are spatiallyasep

(2098b) focu; ed on model baseq tracking. In contrast to PM%ated by some free space, and that all vehicles of interest ar
vehicle tracking literature, we utilize a model based apph located on or near the road

which uses RBPFs and eliminates the need for separate data
segmentation and association stages. Our approach estimat
position, velocity and shape of tracked vehicles.

Further, we propose techniques for fast and accurate ma¥-L Probabilistic Model and Notation
ing vehicle detection, which is a prerequisite for vehicle
tracking. In prior art, the detection problem has been sbive For each vehicle we estimate its 2D position and orientation
by addition of vision sensors (e.g. Wender and DietmayeX = (%.,t, &) at timet, its forward velocityw and its ge-
(2008)), although visual classification does not help disti ometry G (further defined in Sect. 3.2). Also at each time
guish moving vehicles from stationary. Another approach istep we obtain a new measuremént A dynamic Bayes
to sample frames at lower rates to overcome the low signahRetwork representation of the resulting probabilistic eiod
to-noise ratio (Wang et al, 2007), although this increaseis shown in Fig. 4. The dependencies between the parame-
the time it takes to detect a new moving vehicle. Other deters involved are modeled via probabilistic laws discussed
scribed approaches detect vehicles by scan shape (Zhao atefail in Sects. 3.3 and 3.5. For now we briefly note that the
Thorpe, 1998; Streller et al, 2002) or by location (Wang gt alvelocity evolves over time according to
2007). Due to possible ambiguities in the range data, these
approaches tend to have lower detection accuracy. p(Vt|V—1). (8]



between our belief about the vehicle’s shape and its positio

v 1) @ @ \Vt As we observe the objec_t from_ a different vantage point, we
change not only our belief of its shape, but also our belief
of the position of its center point. Allowin¥; to denote the

N N\ N\ /< center point can lead to the undesired effect of obtaining a
@y \Xy Q(y \Xt non-zero velocity for a stationary vehicle, simply because

we refine our knowledge of its shape as Fig. 5 illustrates.

To overcome this problem, we vieX as the pose of
ananchor pointwhose position with respect to the vehicle’s
center can change over time. Initially we set the anchortpoin
to be the center of what we believe to be the car’'s shape and
thus its coordinates in the vehicldcal coordinate system

areC = (0,0). We assume that the vehicle’s local coordinate

Fig. 4 Dynamic Bayesian network model of the tracked vehicle pose L . . . . .
%, forward velocitys, geometnG, and measuremen. system is tied to its center with theaxis pointing directly

forward. As we revise our knowledge of the vehicle’s shape,

Time step: t Time step: t + 1 the local coordinates of the anchor point will also need to be
revised accordingly t€ = (Cy,Cy). Thus, the complete set
X of geometric parameters = (W,L,C,,C,).
X
— 3.3 Vehicle Dynamics Model
y | }e
y X, |C=(0,0) Xt:‘l C=(C,0) In vehicle tracking literature it is common to use a constant
velocity model (Dellaert and Thorpe, 1998), a constant ac-
celeration model (Dietmayer et al, 2001), or a switching dy-
V observer Observer Q namics model (Wang, 2004; Darms et al, 2008). We use the

constant velocity model and assume that velocity of each
Fig. 5 As we move to observe a different side of a stationary car, out_tr""Ckl:"d vehicle stays ConStam_for the duration of each time
belief of its shape changes and so does the position of the emterc ~ interval fromt — 1 to t. It also instantaneously evolves at
point. To compensate for the effect, we introduce local angloint  each time stepvia addition of random bounded noise based
coordinate€ = (Cy,Cy) so that we can keep the anchor paiaista- oy maximum allowed accelerati@may and the time delay
tionary in the world coordinates. . . e

At from the previous time step- 1. Specifically, we sample

Av uniformly from [—amaAt, amadt].
The vehicle moves based on the evolved velocity according The pose evolves via linear motion (Thrun et al, 2005,

to a dynamics model: Sec. 5.4) — a motion law that is often utilized when exact
P(X|%e—1, V). (2) dynamics of the object are unknown. The motion consists
eci]‘ perturbing orientation byA 6, then moving forward ac-
cording to the current velocity by At, and making a final

The measurements are governed by a measurement mod

P(Z[%,G). (3)  adjustment to orientation k§6,. Again we samplé 6; and
For convenience we will write! = (X1, X, ..., %) for the A8 uniformly from [—d6madt, dbmadt] for a maximum
vehicle’s trajectory up to timé. Similarly, v andzt will ~ allowed orientation chang#fmax.

denote all velocities and all measurements up to time

3.4 Sensor Data Representation

3.2 Vehicle Geometry
In this paper we focus on laser range finders for sensing

The exact geometric shape of a vehicle can be complex arte environment. Recently these sensors have evolved to be
difficult to model precisely. For simplicity we approximate more suitable for driving applications. For example IBEO
it by a rectangular shape of widi and lengthL. The 2D  Alasca sensors allow for easy ground filtering by collecting
representation is sufficient because the height of tracked vfour parallel horizontal scan lines and marking which of the
hicles is not important for driving applications. readings are likely to come from the ground (Ibeo Automo-
During vehicle tracking, the state varialtdeusually rep-  bile Sensor GmbH, 2008). Velodyne HDL-64E sensors do
resents the position of the vehicle’s center in the world conot provide ground filtering, however they take a 3D scan
ordinate frame. However, there is an interesting deperaenof the environment at high frame rates (10Hz) producing



free occupied  occluded constructed using models trained on spectrally rich data to
space space space “fill in” unmeasured spectral channels in spectrally podada
\ t for improved detection of clouds over snow and ice (Srivas-
angular tava et al, 2005). In artificial intelligence and robotics; v
origin } arid cell tual sensors are commonplace in simulated environments,

often used as a testbed for perception, planning and control
algorithms (Thalmann et al, 1997; Gerkey et al, 2003).
To create a virtual sensor for our application, we con-
virtual ray struct a grid in polar coordinates —vatual scan— which
(a) anatomy of a virtual scan subdivides 360 around a chosen origin point into angular

grid cells (see Fig. 6). In each angular grid cell we recoed th
range to the closest obstacle within that cell. Hence each an
gular grid cell contains the following information: the sea
from origin up to the recorded range is free, at the recorded
range — occupied, and beyond the recorded range — occluded.
We will often refer to the cone of an angular grid cell from
the origin up to the recorded range asag due to its simi-
larity to a laser ray. We will also treat each angular grid cel
as a single range measurement in the virtual scan.

Virtual scans simplify data access by providing a single
AW f/f S point of origin for the entire data set, which allows constan

(b) avirtual scan constructed from Velodyne data time look-up for any given point in space. As we mentioned

) . . earlier, it is important to compute correct world coordesat
Flg. 6 In (b) yellow line segments represent V|rtu_al rays. Coloredfor the raw sensor readings. However, once the correct po-
points show the results of a scan differencing operation. Redsgpare : ’
new obstacles, green points are obstacles that disappearesthited ~ Sitions of obstacle points have been computed, adjustiag th
points are obstacles that remained unchanged or appearevioysly  origin of each ray to be at the common origin for the virtual
occluded areas. (Best viewed in color.) scan produces an acceptable approximation. To minimize
the error due to approximation, we select the common origin

1,000,000 readings per second (Velodyne Lidar, Inc., 2008§° be the average sensor pose during scan collection. Con-
Given such rich data, the challenge has become to proce§§ucted in this manner, a virtual scan provides a compact
the readings in real time. Vehicle tracking at 10 - 20Hz isfepresentation of the space around the ego-vehicle cebsifi
desirable for driving decision making. into free, occupied and occluded. The classification hedps u

A number of factors make the use of raw sensor dat®roperly reason about what parts of an object should be vis-
inefficient. As the sensor rotates to collect the data, eaclple as we describe in Sect. 3.5.
new reading is made from a new vantage point due to ego- One important parameter of a virtual scan is the angular
motion. Ignoring this effect leads to significant sensosaoi resolution. Although coarser resolutions can speed up com-
Taking this effect into account makes it difficult to quickly putations because fewer rays need to be examined, it is de-
access data that pertains to a specific region of space. Muéifable to set the resolution as fine as possible in order to
of the data comes from surfaces uninteresting for the puiapture more detail about objects at long rahdr this
pose of vehicle tracking, e.g. ground readings, curbs antfason, we set the resolution as fine as possible in our im-
tree tops. Finally, the raw 3D data wastes a lot of resourcedlementation. For the IBEO lasers we set the resolution to
as vehicle tracking is a 2D application where the cars ar€-5°, which is the highest resolution the sensor provides.
restricted to move on the ground surface. Therefore it is de- For the purpose of vehicle tracking it is crucial to de-
sirable to pre-process the data to produce a virtual sensé@rmine what changes take place in the environment over
representation tailored for vehicle tracking. time. With virtual scans these changes can be easily com-

Virtual sensors have been employed in the past for @uted in spite of the fact that ego-motion can cause two con-
wide range of applications. For example, in neuroimagingsecutive virtual scans to have different origins. The cleang
virtual sensors have been created from fMRI data using maare computed by checking which obstacles in the old scan
chine learning techniques for diagnosis of mental processe
in patients with brain injuries (Mitchell et al, 2002). Inrse ~ * In principle it is possible to get the best of both worlds by con-
sor networks, virtual sensors have been implemented to a tructing several wrtual scans of varying resolution for tr_]e skaser

. ata. Lower resolution virtual scans can be used to examine eoge r

stract data from multiple non-homogeneous sensors (Kab@pjects, while higher resolution scans can be used for long rapege
dayi et al, 2006). In geoscience, virtual sensors have beeions.




are cleared by rays in the new scan and vice versa. This
computation takes time linear in the size of the virtual scan
and only needs to be carried out once per frame. Fig. 6(b) B Cor curface

shows results of a virtual scan differencing operation with Free space around the car
red points denoting new obstacles, green points denoting ob
stacles that disappeared, and white points denoting dbstac
that remained in place or appeared in previously occluded
areas.

Virtual scans are a suitable representation for a wide va-
riety of laser range finders. While this representation iy eas
to build for 2D sensors such as IBEO, 3D range sensors
require additional considerations to produce consistént 2 @
representations. We describe these techniques in Sect. 6.
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our knowledge, range scan likelihood models have not been "
proposed for vehicle tracking, as most of the vehicle track- (b)

ing literature is concerned with trackl.ng pointtargets -us Fig. 7 Measurement likelihood computations. (a) shows the geometric
ally centers of clusters (Wang, 2004; Leonard et al, 2008) Ofggions involved in the likelihood computations. (b) shows ¢hets

features extracted from the range data (Streller et al, ;2002ssignment for a single ray. (Best viewed in color.)

Wender and Dietmayer, 2008; Darms et al, 2008). In contrast

to the prior art, we are able to provide a direct interpretati

of the range measurements because we model geometry@lys going through a candidate vehicle provide strong evi-
the tracked vehicles. Measurement models for range finddence that these points may not belong to the same physical
ers in the presence of a geometric environment model hav@bject.

been proposed in mobile robot localization and mapping lit-  Given a vehicle’s posk, geometryG and a virtual scan
erature, where the environment is commonly represented b%, we compute the measurement likelihop®|G,X) as

an occupancy grid map (see Thrun et al (2005, Ch. 6) fofollows. We position a rectangular shape representing the
an overview). The two most common models are the indevehicle according tX and G. Then we build a bounding
pendent beam model (IB) (Moravec, 1988; Burgard et alpox to include all points within a predefined distark®
1996; Fox et al, 1999) and the likelihood field model (LF) around the vehicle (see Fig. 7). Assuming that there is an ac-
(Thrun, 2001). The IB model treats each ray in the scan aial vehicle in this configuration, we would expect the pgint
an independent measurement of range to the closest obstagléhin the rectangle to be occupied or occluded, and points
along the ray corrupted by Gaussian noise. One drawback @f its vicinity to be free or occluded because vehicles are
the IB model is that rays are represented by lines. This aspatially separated from other objects in the environment.
sumption does not work well at longer ranges {5000m) Like the IB and LF models for laser range finders, we
typical in outdoor environments. Outdoors it is better fo-re consider measurements obtained along each ray to be con-
resent rays by cones because the laser spot light is of noditionally independent of each other given vehicle pose and
negligible radius (26- 40cm). Another drawback is that the geometry. Thus, if we have a total bf rays in the virtual

IB model does not leave room for possible unmodeled ocscanz, the measurement likelihood factors as follows:
clusions of the geometric model — a very common scenario

in vehicle tracking. The LF model also treats laser rays-as in N

dependent of each other. The end point of each ray is corrP-(Z|G’X) - H P(zG,X). )
pared to the closest obstacle point (not necessarily on the -

ray itself) under the assumption of Gaussian noise. The LIFollowing the IB and LF models, we use a Gaussian form
model is more appropriate for cone representation of raygor each ray'’s likelihood. Specifically, we model it as a zero

It also handles unmodeled occlusions very well. Howevemean Gaussian of varianeg computed with respect to a
the LF model allows rays to go through obstacles without
any penalty. This is undesirable for vehicle tracking bseau 2 We used the setting of = 1min our implementation.




costc; selected based on the relationship between the ragrows linearly with the number of vehicles in the environ-

and the vehiclerf; is a normalization constant): ment because vehicle dynamics dictates that vehicles can
2 only be matched to data points in their immediate vicinity.
p(z|G,X) = n exp( _f;2 ) (5)  The downside, of course, is that two targets can in principle
i

merge into one. In practice we have found that this happens

The costs are set to constants that depend on the region fiarely and only in situations where one of the targets is lost
which the ray’s end point falls (see Fig. 7 for illustration) due to complete occlusion. In these situations target mgrgi
CocciS the cost for range readings that fall short of the boundis acceptable for our application.

ing box and thus represent situations when another objectis We have a total of eight parameters to estimate for each
occluding the vehiclec, is the cost for range readings that Vehicle:X = (x,y,6), v, G = (W, L,Cx,Cy). Computational

fall short of the vehicle but inside of the bounding boxis ~ complexity grows exponentially with the number of param-
the cost for readings on the vehicle’s visible surface whicteters for particle filters. Thus, to keep computational com-
we assume to be of non-zero deptpis used for rays that plexity low, we turn to RBPFs firstintroduced in Doucet et al
extend beyond the vehicle’s surface. Assigning likelihood2000). We estimatX andv by samples and keep Gaussian
based on the region of space in which a ray’s end point fall§stimates foG within each particle. Below we give a brief
bears resemblance to the LF model. It is more appropriatderivation of the required update equations.

for cone representation of rays than the IB model. Like the

LF model our measurement model gives little penalty to oc-

clusions by other objects, but unlike the LF model we assigi-1 Derivation of Update Equations

a large penalty to rays passing through the candidate eehicl

We also enforce our assumption of free space around eaél} ach time step, we produce an estimate of a Bayesian

vehicle by assigning a large penalty to rays that termimate jbelief about the tracked vehicle’s trajectory, velocityd@e-
this region. ometry based on a set of measurements:

The domain for each range reading is between the minige} — p(x!,\},G|Z!). (6)

mum range min and the maximum rangsg,ax of the sensor. o ] o
Since the costs we select are piece-wise constant, it is eadf?® derivation provided below is similar to the one used

to integrate the unnormalized likelihnoods to obtain the- norin Montemerlo (2003). We split up the belief into two con-
malization constantg;. Note that for the rays that do not ditional factors:

target'the ve.hicle or_the boynd_ing_box, the above logic auge} = p(X!,V[Z!) p(GIX!,\V,ZY). @)

tomatically yields uniform distributions as these raysarev

hit the bounding box. The first factor encodes the vehicle’s motion posterior,
Note that the above measurement model naturally harPt = p(X!,\[ZY). @8)

dles partially occluded objects including objects that‘apdit
up” by occlusion into several point clusters (see Fig. 2). InThe second factor encodes the vehicle’'s geometry posterior
contrast, these cases are often challenging for approachg@nditioned on its motion,
that utilize separate data segmentation and correspoederg — p(GIX!\, ZY). )
methods.
The factorR; is approximated using a set of particles; the
factor§ is approximated using a Gaussian distribution (one
4 Vehicle Tracking Gaussian per particle). Let us denote a particleghy=
(xtIm \iim g™ and a collection of particles at tinteby
Most vehicle tracking methods described in the literature: = {di,}m. We computeQ; recursively fromQ_1. Sup-
apply separate methods for data segmentation and corrpese that at time stetp particles inQ;_1 are distributed ac-
spondence matching before fitting model parameters via exording toR; ;. We compute an intermediate set of particles
tended Kalman filter (EKF). In contrast, we use a singleQ: by sampling a guess of the vehicle’s pose and velocity
Bayesian filter to fit model parameters from the start. Thigat timet from the dynamics model (described in detail in
is possible because our model includes both geometric arfdect. 3.3). Thus, particles @ are distributed according to
dynamic parameters of the vehicles and because we rely ¢he vehicle motion prediction distribution,
efﬂment methods for pgramet.erﬂt_tlng. We ch0§e_ the pazrtlc! R — p(XUH 2D, (10)
filter method for Bayesian estimation because it is more suit
able for multi-modal distributions than EKF. Unlike the mul To ensure that particles @@; are distributed according &
tiple hypothesis tracking (MHT) method commonly used in(asymptotically), we generat@ by sampling fromQ; with
the literature, the computational complexity for our metho replacement in proportion to importance weights given by
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W = Rt/lit. Before we can compute the weights, we need tat.3 Shape Inference
derive the update equations for the geometry posterior.

We use a Gaussian approximation for the geometry podn order to maintain the vehicle’s geometry posterior in a
terior, §. Thus we keep track of the mean and the co- Gaussian form, we need to linearize the measurement likeli-
variance matrix%; of the approximating Gaussian in each hoodp(Z|G,X;) with respect t&. Clearly the measurement
particle:q, = (XM vtm ™ sy we have: likelihood does not lend itself to differentiation in clase
; ; form. Thus we turn to Laplace’'s method to obtain a suit-
S = p(GIX ’\’t’Z) able Gaussian approximation. The method involves fitting

0 p(z|G, X', V,Z" 1) p(GX', v,z 1) a Gaussian at the global maximum of a function. Since the

= p(Z|G, %) p(G|xt*1,vt*17zt*1)_ (11) global maximum is not readily available, we search for it

via local optimization starting at the current best estarat

The first step above folloyv_s from Bayes' rule; the SeC(_)ndgeometry parameters. Due to construction of our measure-
step follows from the conditional independence assumption -+ model (Sect. 3.5), the search is inexpensive as we only

of our model (F?g. ‘_1)' The expression (11) is a product of theheed to recompute the costs for the rays directly affected by
measurement likelihood and the geometry p&or. To ob- alocal change itG

tain a Gaussian approximation f&; we linearize the mea- The dependence between our belief of the vehicle’s shape

;:Jr?_ment_ I|k$I|hqod a? wil k()je tehxplalned mdstiCt' 4.3. aneand its position (discussed in Sect. 3.2) manifests itself i
€ linearization IS periormed, the mean and Ihe co-vagtanc, dependence between the local anchor point coordinates
matrix forS can be computed in closed form beca8sgq is

. : C and the vehicle’s width and length. The vehicle’s corner
already approxma}ted by a Gau53|a.n (represented by a Raabsest to the vantage point is a very prominent feature that
Blackwellized particle from the prewoug time step). i impacts how the sides of the vehicle match the data. When
, Now we are ready to.cor.npu.te the importance We'ghtsrevising the belief of the vehicle’s width and length, wekee
Briefly, following the derivation in Montemerlo (2003), it the closest corner in place. Thus a change in the width or

is straightforward to show that the importance weights the length leads to a change in the global coordinates of the

should be: (XA vehicle’s center point, for which we compensate with an ad-
=) pX,v|Z justment inC to keep the anchor point in place. This way a
W =R/R = =Es . [pZ|GX%)]. @2 ! p p place. y
t=R/ p(Xtv[Zt-1) ~ T8 [PEGX)] (12) change in geometry does not create phantom motion of the

In words, the importance weights are the expected valugehicle.

(with respect to the vehicle geometry prior) of the measure-

ment likelihood. Using Gaussian approximation§af; and

p(Z|G, %), this expectation can be expressed as an integrdl.4 Initializing and Discontinuing Tracks

over a product of two Gaussians, and can thus be carried out
in closed form. New tracks are initialized in areas where scan differencing

detects a change in data that is not already explained by

existing tracks. New tracks are fitted using the same mea-
4.2 Motion Inference surement and motion models that we use for vehicle track-

ing (Sects. 3.5 and 3.3). The candidates are vetted for three
As we mentioned in Sect. 3.1, a vehicle’s motion is governegrames before they can become “real tracks”. Detection of
by two probabilistic lawsp(vi|vi—1) andp(X|X—1, ). These new vehicles is the most computationally expensive part of
laws are related to the motion prediction distribution ds fo vehicle tracking. In Sect. 5 we describe the techniques we

lows: used to achieve reliable vehicle detection in real time.
R = p(xt’vt|zt—1) We discontinue tracks if the target vehicle gets out of
(% XLV 2Ly p(xtL vtz Sensor range or moves too far away from the rosde also
discontinue tracks if the unnormalized weights have been
= p(X%X" 12 pw XV ZE R low for several turns. Low unnormalized weights signal that
= p(X|%—1,%) p(\t|v—1) R—1. (13) the sensor data is insufficient to track the target, or that ou

E_stimate is too far away from the actual vehicle. This logic
torizations; the third step follows from the conditionadlé eeps the resource cost of tracklpg OCC|Ude.d objects low,
yet it still allows for a tracked vehicle to survive bad data

pendence assumptions of our model (Fig. 4). . .
. . .. or complete occlusion for several turns. Since new track ac-
Note that since only the latest vehicle pose and velocity " . .
isition only takes three frames, it does not make sense to

are used in the update equations, we do not need to actuaf&j
store entire trajectories in each particle. Thus the memory 3 a gigital street map was available for our application in thea&o
storage requirements per particle do not grow with Network Definition Format (RNDF).




continue tracking objects that are occluded for signifilyant Motion direction
longer periods of time.

v

5 Vehicle Detection

Accurate moving vehicle detection in laser range data re- '\I
quires three frames. The first two frames are required to de-

tect motion of an object. The third frame is required to check Bl Timet+1
that the motion is consistent over time and follows the veFig. 8 Diagram representing forward motion of a bus. Green color rep-

. . - resents the position of the bus at titndRed color represents its posi-
hicle dynamics law. Thus for a 10Hz sensor the mmlmun‘hon at timet + 1. The green shaded area in the back of the bus frees

vehicle detection time is.8 seconds. up as the bus moves forward. The red shaded area in the frone of th
Note that detection based on three frames allows for adus becomes occupied. Note that these changes are small conpared t

curate results because we can observe two consecutive nmjge overall area taken up by the bus, which remains occupiedtin b

tion updates and verify that the observed motion is consisf-rames' (Best viewed in color)

tent with a moving vehicle. For some applications it may be . - . .
o : . 1s in general difficult to quantify. Studies have been per-
acceptable to sacrifice accuracy in favor of faster detectio .
) . formed for older sensors (8kynen, 2000; Blais, 2004), but
based on just one or two frames. For example in Wang et

(2007) objects that appear in areas previously seen as emﬁ is information is not yet available for the newer models

are detected as “moving”. Often this approach is adopteg}lrange finders. Finally, environmental factors such as$ dus

when the intention is to filter out moving obstacles to buildggfI rain cause false readings many meters off the actual tar-

a static map.

B Timet

Back

For the driving application we need to detect vehicles
moving at 5mph to 35mph with a 10Hz sensor. Thus a vehi-
cle moves 26- 150cm per frame. This signal can be easily
overwhelmed by noise especially in the lower range of the
velocities. The poor signal-to-noise ratio makes it diffico
accurately tell a moving object apart from noise in justé¢hre
1. First a vehicle is fitted using importance sampling in anframes.

area where a change in the environment has been de- Although the signal is easier to detect if we use more
tected by scan differencing. The scoring is performedhan three frames, this solution is undesirable because it i
using the measurement model described in Sect. 3.5. creases the detection time and takes up more computational
2. Next the vehicle’s velocity is estimated by performing aresources. A more efficient approach, proposed by Wang
particle filter update step and scoring using the measureet al (2007), is to sample the frames at a lower rate (e.g.

5.1 The Basic Detection Algorithm

Our vehicle detection method proceeds in three stages:

ment model in the next frame. 1Hz), so that the signal is prevalent over the noise. How-

3. During the last stage, another particle filter updateiis pe ever, this method also increases the total time required for

formed and scored against a third frame. detection of a vehicle and therefore it is unsuitable for our
application.

5.2 Challenges in Vehicle Detection

5.3 Motion Evidence
The range data in outdoor urban environments contains large
amounts of noise that adds up from a number of source§o overcome the poor signal-to-noise ratio, we turn to the
The limitations of horizontal scan resolution§0for IBEO  method used by humans to detect moving vehicles in noisy
and 01° for Velodyne) and vertical scan resolution{0for  data. Consider a long bus moving forward at 5mph (Fig. 8).
Velodyne) produce 468 50cm noise at 60m range. Another From one frame to the next it travels 20cm - a negligible dis-
source of noise is the laser beam spot size, which can excetaihce compared to the noise and overall size of the vehicle.
the scan resolution (Sick Optics, 2003). Scanning the sanfgince the middle of the bus appears stationary, a human try-
vehicle at a slightly different height can result in-2m  ing to discern motion will focus on the front and back of the
range discrepancy. Additional noise comes from the virtuabus, to see if there is at least a tad of motion.
scan approximation (25cm at 60m range fo°Oangular To take advantage of the same method for vehicle detec-
resolution) and the box model approximation of the vehi-tion, we define a score we cafiotion evidencelo compute
cle’s shape (26- 40cm). Internal sensor construction, cir- this score, we consider the regions cleared by the vehicle as
cuitry, and messaging time delays also produce noise, whidhmoves. The cleared area behind the vehicle should be oc-
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cupied in the prior frame and free in the current frame. Sim<leared area will be in the current frame with respect to the

ilarly, the area in front of the moving vehicle should be freeprior frame. If the vehicle is approaching us, the clearedar

in the prior frame and occupied in the current frame. Ofterwill be in the prior frame with respect to the current frame.

we can only observe the front or the back of the vehicle, thu¥hus we can find both types of cleared area by performing a

only half of the evidence is available due to self-occlusionsymmetric clearing operation between the two frames.

To allow for self-occlusion and partial occlusions by other  Even though cleared area logic is not as powerful as

objects we threshold the motion evidence score at 25%. the motion evidence score, it provides a significant speed-
Note that the motion evidence score is different from theup when used as a fast data pre-processing step.

probabilities obtained by fitting a vehicle using a particle

filter. The particle filter computes the probability that mo-

tion “could have” happened, whereas the motion evidences 4.3 Scaling Series

scores the motion thatust have” happened. In the bus ex-

ample given above the motion evidence score would ignorehe first step of vehicle detection involves fitting the geo-

the entire bus except 20cm in the front and in the back.  metric vehicle model to a virtual scan under conditions of
The motion evidence score can be computed for any pajarge uncertainty: several meters in position and®36@ri-

of consecutive frames. In our approach we compute it for thentation of the vehicle. Using simple importance sampling

firstand the second pairs of frames and filter out vehicle canyith three state parameters makes the problem intractable

didates for which the score is below the threshold. Doing sqyithin real time constraints.

provides a very dramatic decrease in false positives, witho T4 jmprove performance, we turn to Scaling Series, a

affecting the false negatives rate. method first proposed in Petrovskaya et al (20086) for a tac-

tile localization application. In that application the nien

of parameters was also too large to perform an importance

sampling step in real time in conditions of global uncer-

Since new vehicle detection is computationally expensivel@inty: They proposed the Scaling Series algorithm to effi-

we developed several optimizations to achieve reliable re&€Ntly produce a much more informed proposal distribu-

time performance. We describe the optimization techniquet®": Oneé that is concentrated around the areas of high prob-
below and evaluate their impact on the performance of vehi’glblllty mass. We rgfer the_ reader tq Petrovskaya.et al (2006)
cle detection in Sect. 7.2. for details on Scaling Series, but briefly, the algorithm keor

by performing a series of successive refinements, generat-
ing an increasingly informative proposal distribution atlke

step of the series. The successive refinements are performed

Since a digital road map is available in our application, ond?Y 9radually annealing the measurement model from artifi-
simple optimization is to restrict the search to the road recially relaxed to realistic.

gions. We do this by marking each data point as “close to  For our problem, we applied the Scaling Series algo-
road” or “far from road”. Only the points near the road arefithm to choose the proposal distribution for the initiakim
considered for new vehicle detection. This optimizatiogegly Portance sampling step. We obtained measurement model

improves the efficiency of the vehicle detection algorithm. relaxations by inflating the widttw, of the vehicle surface
region (see Fig. 7). The normal setting foris 0.25m. The

5.4.2 Cleared Area most relaxed model was obtained by padding the region by
1m on the inside and outside, resulting in @rsetting of
As we already discussed above, a change in the data c&5m. At this setting the vehicle surface region expands to
be caused by either noise or motion. Ultimately the motiorconsume the free space region, and thus the peogliy
evidence score will help disambiguate motion from noisenot applied. However, even with this coarse model, the algo-
However, the motion evidence score can only be used aftéithm quickly rules out vehicle candidates placed more than
the vehicle model has already been fitted to data. To makkm away from the actual vehicle location. The resulting high
the search more efficient we would like to distinguish be-ikelihood region includes a region of 1m radius around the
tween noise and motion before performing any model fitirue position of the vehicle. As is gradually annealed from
tings. 2.25m to 025m, the high likelihood region shrinks, result-
When a vehicle moves forward with a minimum velocity ing in a more and more informed proposal distribution.
Vmin for a time intervalAt, it clears an area of approximately In Sect. 7.2 we show that using this method, we obtained
ViminAtW. Thus we can examine each data point to see if very significantimprovement in the reliability of the sdar
enough space has been cleared around it to allow for m@&nd reduced the time it takes to detect a new moving vehicle
tion of a vehicle. If the vehicle is moving away from us, the by a factor of 10.

5.4 Optimizations

5.4.1 Road Masking
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of the sensor data set because the actual laser readings in a
scan have varying points of origin. In order to downsample
and reject outliers for each spherical grid cell we compute
the median range of the readings falling withifhis gives

us a single obstacle point per grid cell. For each spherical

Fig. 9 We determine ground readings by comparing angles betwee@rid cell, we will refer to the cone from the grid origin to the
consecutive readings. K B,C are ground readings, thenis close to  obstacle point as a virtual ray.

0 and thus cos is close to 1. The first classification step is to determine ground points.
For this purpose, we select a single slice of vertical angles
5.4.4 Backward Search from the spherical grid (i.e. rays that all have the same-bear
ing angle). We cycle through the rays in the slice from the
Since vehicle detection takes three frames, the minimum ddowest vertical angle to the highest. For three consecutive
tection time is (B seconds for a sensor with a frame rate offeadingsA, B, andC, the slope betweeAB andBC should
10Hz. It turns out that if we only search forward in time, thenbe near zero if all three points lie on the ground (see Fig. 9
the minimum detection time is 0.4 seconds for approachingpr illustration). If we normalizeAB andBC, their dot prod-
vehicles because the first frame is only used to detect dyict should be close to 1. Hence a simple thresholding of
namic data points in the second frame. However, if we fithe dot product allows us to classify ground readings and to
the vehicle in the second frame and then move it backwardebtain estimates of local ground elevation. Thus, one use-
in time, we can utilize the first frame as well. In this caseful piece of information we can obtain from 3D sensors is
we use frame number two for the initial vehicle fitting and an estimate of ground elevation. A similar ground estima-
frame number one for velocity estimation. As before, thetion method was independently developed by the MIT Ur-
third frame is used to check motion consistency. ban Challenge team (Leonard et al, 2008).
Using the elevation estimates, we can classify the re-
maining non-ground readings into low, medium and high
6 Working with 3D Range Data obstacles, out of which we are only interested in the medium
ones (see Fig. 10). It turns out that there can be medium
As we explained in Sect. 3.4, vehicle tracking is a 2D prob_height obstacles that are still worth filtering out: birds; i
lem, for which compact 2D virtual scans are sufficient. How-S€cts and occasional readings from cat-eye reflectorseThes
ever for 3D sensors, such as Velodyne, it is non-trivial toPPstacles are easy to filter becauseBfisvector tends to be
build consistent 2D virtual scans. These sensors provide inY€"Y Iong (greater than 1m), which is not the case for normal
mense 3D data sets of the surroundings, making computé{@rt'cal _obstacl_es such as bwldmgs and cars. After iflenti
tional efficiency a high priority when processing the datan9 the interesting obstacles we simply project them on the
In our experience, the hard work pays off and the resulting?D horizontal plane to obtain a virtual scan.
virtual scans carry more information than 2D sensor data.
To produce consistent 2D virtual scans, we need to un-
derstand which of the 3D data points should be considere@-1 Detection of Black Obstacles
obstacles. From the perspective of driving applications, w
are interested in the slice of space directly above the groun-aser range finders are widely known to have difficulty see-
and up to 2m high, as this is the space that a vehicle woulthg black objects. Since these objects absorb light, the sen
actually have to drive through. Objects elevated more thafOr Never gets a return. Clearly it is desirable to “see”lblac
2m above ground — e.g. tree tops or overpasses — are nebstacles for driving applications. Other sensors could be
obstacles. The ground itself is not an obstacle (assumings€d. butthey all have their own drawbacks. Here we present
the terrain is drivable). Moreover, for tracking applicats, @ method for detecting black objects in 3D laser data. Fig-
low obstacles such as curbs should be excluded from virtul'® 11 shows the returns obtained from a black car. The only
scans because they can prevent us from seeing more impég_adings obtained are from the license plate and wheels of
tant obstacles beyond them. The remaining objects in ththe vehicle, all of which get filtered out as low obstacles. In

objects are not directly touching the ground. black obstacle by looking at the absent data. If no readings

In order to classify the data into the different types of&'® optained along a range of vertical angles in a speci_fic
objects described above we first build a 3D grid in sphericafliréction, we can conclude that the space must be occupied

coordmates. Similarly to a virtual scan, _It has a singlenpoi — In our implementation, the angular grid resolution for Velogyn
of origin and stores actual world coordinates of the sensOgased virtual scans is®, which results in three readings per angular

readings. Just as in the 2D case, this grid is an approximatiayrid cell on average — just enough to reject outliers.
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(a) actual scene (b) Velodyne data

(c) after classification (d) generated virtual scan

Fig. 10 In (c) Velodyne data is colored by type: orange — groundoyel— low obstacle, red — medium obstacle, green — high obstac(e)In
yellow lines denote the virtual scan. Note the truck crossiegrtersection, the cars parked on a side of the road and the wdnitparked on a
driveway. On the virtual scan all of these vehicles are cleadyked as obstacles, but ground, curbs and tree tops are ignored

by a black obstacle. Otherwise the rays would have hit some
obstacle or the ground. To provide a conservative estinfate o
the range to the black obstacle we place it at the last reading =
obtained in the vertical angles just before the absent read- |
ings. We note that this method works well as long as the
sensor is good at seeing the ground. For the Velodyne sen- |
sor the range within which the ground returns are reliable is
about 25- 30m, beyond this range the black obstacle detec-
tion logic does not work.

7 Experimental Validation
7.1 Tracking Results

The most challenging traffic situation at the Urban Grand
Challenge was presented on course A during the qualifying
event (Fig. 12) . The test consisted of dense human driven
traffic in both directions on a course with an outline resem-
bling the Greek lette6. The robots had to merge repeatedly
into the dense traffic. The merge was performed using a left (b) course A outline

turn, so the ro_b_ots had to cross ohe lane of traf_ﬂf: each tIm(?:ig. 12 Test conditions on course A at the Urban Grand Challenge.
In these conditions, accurate estimates of positions and V§he test consisted of repeated merges into dense traffic (a) onsecou
locities of the cars are very useful for determining a gap irwith an outline resembling the Greek let(b).

traffic large enough to perform the merge safely. Cars passed

in close proximity to each other and to stationary obstacles

(e.g. signs and guard rails) providing plenty of opportynit
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(c) virtual scan with black object detection (d) virtual scan without black object detection

Fig. 11 Detecting black vehicles in 3D range scans. White points sgpteraw Velodyne data. Yellow lines represent the generatebscans.

(a) without size estimation (b) with size estimation
Fig. 15 Size estimation on the example of a passing bus from a data set teé&amieda. Without size estimation (a) the tracking results aoe po
because the geometric model does not fit the data well. Not otieigelocity estimated incorrectly, but the track is lost efyivhen the bus is
passing. With size estimation (b) the bus is tracked successfullthangklocity is properly estimated. (Best viewed in color.)
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Table1 Tracker performance on data sets from three urban environnMaxsTP is the theoretically maximum possible true positive perfmn
each data set. TP and FP are the actual true positive and falsieguates attained by the algorithm.

Total Total | Correctly Falsely | Max TP TP FP
Data Sets Frames| Vehicles | Identified | Identified (%) (%) | (%)
UGC Area A 1,577 5,911 5,676 205 97.8 | 96.02 | 3.35
Stanford Campug| 2,140 3,581 3,530 150 99.22 | 98.58 | 4.02
Alameda Day 1 1,531 901 879 0 98.22 | 97.56 0
Overall 5,248 | 10,393 10,085 355 98.33 | 97.04 | 3.3

(c) virtual scan and tracking results

Fig. 14 Size estimation results on Stanford campus. Vehicles of differ-
ent sizes are successfully estimated and tracked. (Best viewelbir) co

for false associations. Partial and complete occlusiops ha
pened frequently due to traffic density. Moreover, these oc-
clusions often happened near merge points which compli-
cated decision making.

During extensive testing, the performance of our vehi-
cle tracking module has been very reliable and efficient (see
Fig. 13). Geometric shape of vehicles was properly esti-
mated (see Figs. 14 and 15), which increased tracking re-
liability and improved motion estimation. The tracking ap-
proach proved capable of handling complex traffic situation
such as the one presented on course A of the UGC. The com-
putation time of our approach averages at 25ms per frame,
which is faster than real time for most modern laser range
finders.

We also gathered empirical results of the tracking mod-
ule performance on data sets from several urban environ-
ments: course A of the UGC, Stanford campus and a port
town in Alameda, CA. In each frame of data, we labeled the
vehicles a human is able to identify in the laser range data.
The vehicles had to be within 50m of the ego-vehicle, on or

Fig. 13 Tracking results on course A at the UGC. In (c) yellow line near the road, and moving with a speed of at least 5mph. We

segments represent the virtual scan and red/green/white mbiate
results of scan differencing. The purple boxes denote thiddhaeehi-

cles. (Best viewed in color.)

summarize how the tracker performed on the labeled data
sets in Thl. 1. Note that the maximum theoretically possible

true positive rate is lower than 100% because three frames
are required to detect a new vehicle. On all three data sets
the tracker performed very close to the theoretical bound.

Overall the true positive rate was 97% compared to the the-
oretical maximum of 98%.
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each target after tracking it for 1 second. Figure 16 prasent
comparison of results obtained using a standard partiele fil
ter and Scaling Series patrticle filter. Vehicle detectiothwi

s 20 s @ the standard particle filter took 4.44 seconds on average and
(a) standard PF 13.7 seconds in the worst case, which can easily result in a
collision in a real life situation. In contrast the Scaling-S
ries particle filter took 0.32 seconds on average to detect th
vehicle, with the worst case being 0.5 seconds. Thus, the
Scaling Series approach performs very close to the theoreti
0 s 2 - 2 cal minimum of 0.3 seconds.

(b) Scaling Series Several videos of vehicle detection and tracking using

the techniques presented in this paper are available at the
Fig. 16 Comparison of standard PF to Scaling Series for new vehiclgyapsite
detection. The horizontal axis denotes time in seconds. Theakr

axis has two states: 0 — target is not tracked, 1 — target isewchcto http://cs.stanford.edu/people/petrovsk/uc.html
verify target acquisition, the code was specifically modifiediszon-

tinue tracking a target after 1 second. By construction of thersghm,

the minimum possible time spent in non-tracking state is 0.3 seconds. )

(a) standard PF has a long target acquisition time — too dangero8 Conclusions
for autonomous driving. (b) Scaling Series method has nearfept

acquisition time. We have presented the vehicle detection and tracking mod-
ule developed for Stanford’s autonomous driving robot Ju-
nior. Tracking is performed from a high-speed moving plat-
form and relies on laser range finders for sensing. Our ap-
proach models both dynamic and geometric properties of

'I?ohevaluat.e. thﬁ perforfmance rc])f the Vk?h'de detclactlon algo[he tracked vehicles and estimates them with a single Bayes
rithm empirically, we forced the tracking module to dmpfijter per vehicle. In contrast to prior art, the common data

each targgt as soon as It was detecteq. We then ran Veg'égmentation and association steps do not need to be carried
cle detection on data sets from three different urban envi:

_ __Yout prior to the filtering step. The approach has proved re-
ronments: Area A of the Urban Grand Challenge quahflers"able, efficient and capable of handling challenging teaffi

the Stanford campus, and a port town in Alamed.a, CA_‘ (Segituations, such as the ones presented at the Urban Grand
Thl. 2). In each frame of data we labeled all vehicles 'den'ChaIIenge
tifiable by a human in the range data. The vehicles had to Our approach explicitly models tracked vehicle’s geo-

b? within 50m of Junior, on or near the roa_d, and MOVINGetric shape, which is estimated simultaneously with the
with a speed of at I'east Smph. For gach vehicle, we Counte\gehicle’s motion using an efficient RBPF method. The in-
hovx{ many frames it took Fo detect it. We also FO‘{”ted 1E""Isetroduced anchor point notion allows us to correctly model
positives. Overall, all vehicles were detected in five frame the shape vs motion ambiguity, previously unaddressed in
or less and the false positive rate was%. vehicle tracking literature. This reduces motion uncetai

To evaluate motion evidence contribution, we ran the alyng improves the estimation of vehicle dynamics.
gorithm with and without motion evidence logic on labeled  ypjike prior vehicle tracking approaches, which relied
data sets. The use of motion evidence brought false discoyy, features for tracking, we introduced a direct measure-
ery rate from 60% down to 0.4%. At the same time the raténent model for range scans. This approach eliminates the
of false negatives did not increase. need for data segmentation and association steps. Moreover

We used prerecorded data sets to evaluate performangenaturally handles partial occlusions of the tracked vehi
gains from the optimization techniques. We compared theles, including situations where the vehicle scan is sylit u
computation time of the algorithm with and without road into multiple disjoint clusters by occlusion.
masking. Road masking sped up the algorithm by a factor We presented a number of optimization techniques to
of eight. We also ran the algorithm with and without clearedimprove accuracy and efficiency of vehicle detection. These
area logic. The speed up from this optimization was approxtechniques are largely independent of each other. To aid the
imately a factor of three. The backward search Optimizatiomesign decisions of future vehicle tracking approaches, we
reduced the minimum detection delay for oncoming trafficprovided an analysis of how each technique influences the
by 25%. end result.

To evaluate improvements from Scaling Series, we used We presented techniques for efficient manipulation of
a 30 second data set of our ego-vehicle following anotheBD data clouds and construction of 2D virtual sensor mod-
car. For evaluation purposes we modified the tracker to dropls. The method relies on a ground estimation technique,

Tracking
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7.2 Detection Results
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Table 2 Vehicle detector performance on data sets from three urbaroenvents. For each car we counted how many frames it took totdetec
By construction of the algorithm, at least three frames are reduWWe also counted the number of false detections. The '% Refemblumns
give the percentages of cars detected by frame three, fouivend=P %’ is the false positive rate attained by the vehicledgon algorithm.

Total | Detected in Frame False % Detected by Frame | FP
Data Sets Cars 3 4 5 | Detections 3 4 5 %
UGC Area A 713 506 | 103 | 14 1 83.6 98.0 | 100.0| 0.1
Stanford Campusg| 679 645 32| 2 2 95.0 99.7 | 100.0| 0.3
Alameda Day 2 532 485 45| 2 5 91.2 99.6 | 100.0| 0.9
Overall 1,924 | 1,726 | 180 | 18 8 89.7 99.1 | 100.0| 0.4

which we expect to be applicable not only in urban envi-Burgard W, Fox D, Hennig D, Schmidt T (1996) Estimat-

ronments but also in off-road settings with rugged terrain. ing the absolute position of a mobile robot using position

The method purposefully ignores short obstacles in an ef- probability grids. In: Proceedings of the National Confer-

fort to extract data useful specifically for vehicle traakin ence on Artificial Intelligence, pp 896—901

As a result, detection and tracking of vehicles is unimpede®arms M, Rybski P, Urmson C, Inc C, Auburn Hills M

by curbs and short foliage present in urban settings, or even (2008) Classification and tracking of dynamic objects

small rocks and rough features in completely off-road envi- with multiple sensors for autonomous driving in urban

ronments. It also ignores overhanging obstacles — such as environments. In: Intelligent Vehicles Symposium, 2008

trees, signs, and overpasses — if there is sufficient clearan  IEEE, pp 1197-1202

for a vehicle to pass underneath. However, due to the fadARPA (2007) Urban challenge rules, revision oct. 27,

that short obstacles are ignored, the presented data extrac 2007. URL http://www.darpa.mil/grandchallenge/rules.

tion method is not suitable for estimation of terrain drivab asp

ity. For this reason, we used a separate method for detectidpellaert F, Thorpe C (1998) Robust car tracking using

of small hazards as described in Montemerlo et al (2008).  kalman filtering and bayesian templates. In: Proceedings
We also introduced a method for detection of poorly vis- of SPIE, vol 3207, p 72

ible black objects in 3D range data. This method is applicabickmanns E (1998) Vehicles capable of dynamic vision:
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