
Hard ware- Soft ware Run-Time Systems and Robotics : A Case Study

Vincent Johii Mooiiey III".' .Diego Ruspinit, Oiissaiiia I<hatil)t aiitl Giovaiiiii De lliclicli:
"School of Electrical a id Coiiiputcr Eiiginceriiig. Georgia Iiistitute of Techiiology

t Coinpiiter Scimcc Robotics Laboratory, Stanford Uiiiversity
4Coiiiputcr Systcins Laboratory, Stanford Uiiiversity

riiooncyiQec.e.gatech.edu
{ inoonc;v,ruspini ,khatib ,iiaiiiii} G w s t aiiford.edu

Abstract

We present a sample im,plementation of a run-time
scheduler, split betureen, h>arduiare and softuiare: control-
ling a real-time robotics application. Xh.e hm-duiare part
of th,e ru.n-time sch.eduler. implemented as a Finite State
Machine (F S M) . sch#edules th,e tasks for th,e application,
and can be readily exten,ded to include additional tasks
i n hardware or in softmare. Th.e softuiare part executes
tasks based on. uhich? tasks are ready to execute as in,-
dicated by the F S M . We h,ave successfully implemented
the scheduler o n a uiorking prototype which, sh!ouis the
feasibility of our approach,.

1 Introduction
Hardware-software co-design[6] is becoming more impor-
tant as the performance of applications increasingly de-
pends on the interaction between hardware and soft.ware.

Procedure Calls where one process (in liarclware or soft-
ware) can trigger the execiition of a thread in another

In this paper, however. we consider the mixed imple-
mentation of a run- f zmp .whPd?LlPr in hardware and soft-
ware as first proposed in [i]. The basic idea behind the
run- tune schedulpr is as follows. First. we consider the
application to consist of tasks in hardware and software.
where a task is a hardware niorliile or a software thread.
Second. the schediiler only keeps track of which tasks
are ready to start execution and which tasks are done
execution. Third. we implement in liarclware a state ma-
chine to seqiience the signals starting execution of the
tasks. Clearly, the state machine represents the overall
control flow of tasks in the application. Finally. in soft-
ware me iniplenient a priority scheduler to execute the
highest priority software task based on which software
tasks are readv to start execution.

process [HI.

'This work was done while the first a u t h o r w a s at Stanford Figure 1: Haptic Robot With Graphics
Pni versi ty.

1089-6503/98 $10.00 0 1998 IEEE
162

http://riiooncyiQec.e.gatech.edu
http://aiiford.edu

2 Motivation

We look a t a real design case where a designer has to
make a system work within timing constraints. We
wanted to experiment with our co-design methodology
in the context of a robotics application where we can test
our impleinentation on a prototype. By looking closely
at the requirements for this case, we can then character-
ize the CA4D requirements froin the designer's perspec-
tive. This helps us identify problem areas both in the
design flow and in the CAD tools used or proposed for
use. The specific co-design inethodology we wanted to
test was the run,-tzme scherlvler of ['i]. We were able to
implement a simple version of the scheduler. Thus. this
paper presents a "proof of concept" example of a run-
tiine scheduler split between hardware and software.

3 Design Case Study

For our case study we considered the design of the fol-
lowing real-time robotics application: a Haptzc robot im-
plementing force-feeclback based on interact ion through
a graphics display [9]. The Haptic robotics device con-
tains a thimble where the user places his or her finger.
The thimble is connected to the end of a sniall robot arni
which can exert force on the thimble in any direction.
The object in the graphics display is represented by a
collection of polygons, usually in the range of 10,000 to
20.000 polygons. Figure 1 shows a user interacting with
a graphic display where the Haptic device gives feedback
based on the position of a small point (called a proxy)
on the screen. In particular, whenever the proxy col-
lides with a graphical object. a force is generated and
the user's finger in the Haptic device is stopped from
continuing penetration in that direction. In fact, the

feedback is quite complex: the tactile interaction in-
cludes contact constraints, siirface shading, friction, and
texture [9]. Such a system has wide-ranging application
possibilities, from helping surgeons operate on patients
to training pilots with flight simulation. This applica-
tion is a good case study 1,ecaiise there are soine tasks
which are poorly implemented in software, e.g. collision
detection, which coiild potentially riin much faster in
hardware. The first step towards integrating a hard-
ware iinpleinentation of such a task into the system is
to have a scheduler for the application.

3.1 Original Design

The original design consists of an all software sohition
ruiiiiiiig on a Silicon Graphics Indigo (SGI) workstation
and an IBN compatible PC. The SGI client contains
the graphics routines which update the display. and the
PC server runs the low level routines for controlling the
Haptic device. Onr system architecture can be seen in
Figure 2 .

3.1.1 Collision Detection

c
face covered
by hierarchical
spheres

I /\ e Haptic
Interface -

I

CLIENT SERVER

Figure 2: System Architecture

Figure 3: Sphere Characterization

From nieasureinent, we observed that approximately
50% of the CPC time is spent in detecting when the
proxy collides with an object in the graphics display.
Collision detection is achieved by an algorithmic ap-
proach first described in [8]. The basic idea is to take a
polygonal siirface and cover each polygon with a small
sphere. Then, from this initial set of spheres. they are
hierarchically covered. Figure 3 shows the l>eginnings of
covering a face using this method (the actual algorithm
was written for three dimensions). At the end, we have
a root sphere with covers the entire graphical object and
all subspheres. The resulting tree data structure of hier-
archical spheres has height O (/ g n) . Since the collision

163

detection algorithm checks the sphere hierarchy to see if
collision has occurred, O (/ g n) checks are needed.

3.1.2 T i m i n g Constraints
Standard soliitions are used for the low level hardware
interactions that iiiiglit otherwise involve strict timing
constraints. For .cr-riting torque values to the Haptic de-
vice, we i~ a de\ ice driver: for reading in the joint po-
sitions, we utilize the same device driver to read values
from tlie port.

Model information about the graphics objects and the
proxy are communicated between the SGI workstation
and the PC 13)- sending and receiving packets using the
TCP/IP protocol. In the actual cock on the PC. we
never perforni a blocking wait: instead. we check to see
if a packet has arrived. and if so we accept the packet
and continue.
The overriding tiiiiiiig constraint we have is a rate coii-

straint: the tasks of the following section must complete
before a hard real-time deadline is reached. Ant. dela>-
in iipdating the torques could damage the Haptic device
or the user.

3.1.3 H a p t i c L ib ra ry
The original code (called the "Haptic library") for coii-
trolling the Haptic device was written in C. Some of the
most time-consuming tasks, such as that of commiini-
rating tlie polygons composing the graphics objects and
then building a sphere hierarchy, are performed during
tlie initialization and sphere building phases. Once a
particular graphical display is up and running, the fol-
loiviiig tasks are executed in each iteration of a core loop
called the serzio loop:

owait for nest millisecond clock tick
owrite torques to Haptic device
oread joint angles of Haptic device
oconvert joint angles to x.y.7 coordinates
ocollision detect
ocalculate new proxy position based on collision or

ocompute new torques for Haptic device
@if ready. send/rweive network packets (nevi proxy
position. etc.)

For example, consider a user interacting with a graph-
ical display of a teapot. When the proxy is in space
not near the teapot, the user can inove the proxv freely.
However, as soon as the proxy conies close to tlie teapot,
penetrating the sphere hierarchy (an exaniple penetra-
tion in two dimensions is shown in Figure 3) . collision
detection is used to check if the user's proxy on the
screen has hit the teapot. The Haptic device provides
force-feedback control to simulate the interaction of the
proxy with the graphical object. e.g. when sliding along
the curved surface of the teapot. Figure 1 shows a user

not

iitilizing the proxy to push around a spaceship merry-
go-round. An execution of the servo loop for controlling
tlie robot inlist coiiiplete once every inillisecond.

3.2 New Design
The iiew design contains a slightly altered sched~ller for
the S P T O O loop. SIP divide the loop into tasks in ordei
to control their execution from a hardware FSSf. Before
entering the loop, we kick off execution of the FSSI.
TSlithin the loop. we execute tasks as directed by the
FS51.

3.2.1 Task Execut ion
1t-e divided the tasks of Section 3.1 into three c o x w
grained groupings as follows:

0"Phantoin" roiitines:
-wait for next inillisecond clock tick
--Write torques to Haptic device
-read joint angles of Haptic device
-convert joint angles to x,y.7 coordinates

-collision detect
-calculate new prosy position Iiasetl on colli-

-compute new torques for Haptic device
0 "Setwork" routines, executed onlp if there are net-

-send new prosy position to graphics over net-

receive new graphics info over network
I1.p iiiipleniented an FSM in hardware to sequence the

above three co~irse granularity software threads. For
the sake of experimentation. we use an FPGX-basecl
board (the PCI Painette[lO]) for the hardnwe imple-
mentation. This hardware FSSI portion of the run-time
schediiler is specified in JJ-erilog and syntliesiiecl iisiiig
the Synopsys-Xiliiix interface: the tool flow is shown

0 "Proxy" routines:

sion or not

work packets ready to send/receive:

work

Figure 4: Synopsys-Xilinx Tool Flow

164

Idone

Istart

CPU

Figure 5: Rim-Time Scliediiler Control Coniiiiiinicatioii

Sote that we wanted to he able to tiirn the hartl-
ware FSN on aiid off from software. since tlie system
initialization is directed by software. Thus. we adcled
FSJfstart aiid F S J f d o ? ~ e signals to kick off and teriiii-
nate. respectively. FSM execution. Figure 5 shows the
comniuiiicatioii of the FSMstnrt . FSJldonP. s tn r t and
done vectors.

Therefore we split tlie run-time scheduler into two
parts:

.An executive iiiaiiager in hardware with cycle-
based seiiiaiitics that caii satisfy hard real-time
constraints.
0-4 polling scliediiler that execiites different threads
based on eligihlr software-tasks as indicated by the
start vector.

The Haptic library code was alt erecl t o accommodate
this new split. In particular. a polling scheduler wa5
written as tlie inner core loop implementing the three

,a i C

9
0

$ FSM
- 5

4-
U)

course-grained tasks as described here.

4 System Implementation

The original system in the CS Robotics Lah at Stanford
was successfiilly ported to the S T environment all in
software. Then we siiccessfully implemented the split
run-time scliediiler in the act rial design.

4.1 System Architecture

Oiir system architecture consists of an SGI workstation
for the graphics, a PC with a PeiitiiiiiiT processor. ancl
a Haptic device connected to the PC.

1 PMC
Download I
Readback

P
C
I protocol)

or
Daughter
Board

Secondary

Board
Connector

7, FPCiA I’ FPGA 7 Daughter

SRAM DRAM SlMM sockets

Figure G: PCI Paniette I-ersion 1 A4rcliitecture

The PC has a PCI Paniette[10] board connected to
one of its slots. The PCI Paniette. shown in Figiire G .
has one FPGA dedicated to talking to the PC iisiiig
the 32 or G4 l i t PCI protocol. with four niore Silinx
4020E FPGXs configiirahle 1))- the iiser. Tlic two 1’28IiB
SRrllIs are essentially scratchpad mrmorie.s which the
nearest FPGA can iise. l G hits of nieniory can 11e written
to or read from each SRAN every cycle.
For coiiiniimication with tlir FPG.Is. we iw tlir PC‘I

protocol as implemented by the PCI Pamettr software
library for Visiial C++ and tlie FPGX on the PCI
Painette. From the point of view of the softn-air code.
this appears as a iiieiiiory-iiiaI’pe~l read or write. How-
ever, there are timing constraints which mist l~ 011-

served by tlie two FPG.4s that caii read data from the
32-hit bus coining out from the FPGX iiiipleiiienting
the PCI protocol: once an address appears on the hiis.
the data corresponding to that address iiiiist he read in
the following cycle. Similarly. for writing to the hiis
(in which case the software is executing a read from
memory-mapped IO). tlie data read iiiiist lie driven to
the hiis on tlie following cycle aiid held there for six c\-
cles. There are many niore constraints esplainetl in tlie
PCI documentation [IO].
In order to inwt these exact timing constraint<. we

latch valiies going oii/off chip using DC aiid then real
the values using behavioral Ierilog synthesized in cycle-
accurate mode with BC.

165

4.2 Software Generation

Tlie software for programming aiid controlling tlie PCI
Paniette is available for Mcrosoft \-isiial C++ 4 . 0 ~ I'

with M'indovi5 S T 4.0T1' or for the DEC Xlplia. Be-
caiise we wanted to iise a PC. we iitili~ec-l tlie ST vei-
sioii.

Tlie original code (called the "Haptic library") for coii-
trolliiiq the Haptic clexice was written in 10,000 lines of
C for Liiiiis. In order to I I S ~ the Paiiiette. we ported
tlie Haptic library to i'isiial C++ 40T" with lYiiidows
S T 4.0T". Tliis porting effort iiicliided writing a de-
\-ice driver in S T to control the Haptic device as well as
rewriting the iiettvork code for coiiiiiiiiiiicatioii with the
SGI workstation using TCP/IP.
Reading aiid writing to tlie S R A l I on the Paiiiette is

accomplished iisiiig iiiriiior.\.-i~iapped I/ 0 aiid hardware-
tasks in the FPG.4. The PCI interface takes ail a\-erage
of 5 to 9 CPU clock cycles to comilliiiiicatea single 32-hit
read or write.

Therefore. gken a particiilar valiie of tlie ,strwt vector.
tlie appropriate software-task(s) can be execiitetl. The
scheduler for tlie software i5 a simple polling loop. Sote
that for this to work we have to guarantee that after
iiitlicatiiig that a particular software-task has completed
by writing to tlie donp vector, tlie next stnrt \ d u e must
be updated and ready to be read before the software
polling loop next reads in the stnrt vector. Otherwise,
the software schediiler could read in the exact saiiie stnrt
vector again aiid t h i s fail to meet the rate coiistraiiit
of lipdating tlie robot's torque values every millisecond.
We verified that the FSM implemented in the FPGX
was fast enough hy extensix-e simulation.

Task

wait for next iiiillisecoiicl clock tick
write torciiies to Hmtic device

Figure T: Teapot Graphical Object With Proq-

Figlire i shotvs a graphical teapot model which vie iised
to test the design. The proxy is shown on the teapot
near tlie base of tlie spoilt. The teapot is coiiiposed
of 3,41G triangular surfaces. Tlie client computer was
a i SGI Indigo2 High Impact rtiiiiiing IRIX G.2 aiid the

Lines
C

G5
50

Haptic server was a PC with a 2GG 11117 Peiitiiiiii Pro
riiiiiiiiig V h l o w s S T 4.0. Tlie PC lias 32 MB of iiiaiii
iiieiiiory aiirl a 512ICB cache. Coiiiiiiiiiiicatioii hetween
the tx-o compiiters was t h e throiigh a staiidarrl ether-
iiet TCP/IP connection. Tlie Haptic device iised was a
groiiiirl based PH-4ISToM iiiaiiipiilator with 3 degrees of
freedoiii in it force-feedback.

read joint angles of Haptic device
convert joii:: aiigles to x , v ~ coordinate.,
collision detect

48
428

2189

Task

elxisreadl .v
ehswr i t e1 .v
generat ecoiitro1.x

Line5 Stvle of
lerilog I-erilog

1-26 1)eliavioral
114 Iwhavioral
48 1,eliavioral

liaptic .\-

I traiisactioiiiiiode1ih.v II 1.31 I striictiiral I

2.22 1 striictural

Table 2: Code space for liardivare tasks.

hant iccoiit ro1.v

Xiliiix To. Slas. Percent
Sleasiire Used Xvail. Used

Boiided 1/0 Pins
F and G Function Generators 15G8 31%
H Fuiictioii Generators 784 11%
CLB Flip Flops 217 15G8 13%
IOB Input Flip Flops 224 14%

178 1 hehavioral

IOB &itput Flip Fiops 18 224 8%
3-State Buffers 0 1680 0%
3-State Half Longlines 0 112 0%
Edae Dwode Inpiit\ 0 336 0%
Edge Decode Half Longlines 0 I 3'2 0%
CLB Fast Carry Logic 8 I '784 1%

Tahle 3: Statistics for Xiliiis 4020E Mapping

Tahle 1 shows the code space iised for tlie varioiis sofr-
ware tasks in the inner RCTIJO loop. The hnal execiitalde
took 111) -185ICB of iiieiiiorj-: however, the code aiitl data

166

used in the serclo loop is niiidi less and likely fit entirely
in tlie 512KB cache on tlie PC (however. we did not
verify this). Table 2 shows tlie code space iised for read-
ing aiid writing data from/to the bus aiid the SRASI,
startiiig/teriiiinatiiig the hardware FSSI, aiid the liard-
ware FSSI itself (in hapticontro1.v). Xotice that the
FSSI takes only 178 lilies of 1erilog. while the support-
ing Verilog code takes 1195 lines. Talilr 3 shows the
various nieasiires of utilization provided for the Xilinx
4020E which implements tlie Verilog code. The 4020E
can fit a t most around 20Ii logic gates. lye are currently
using about half of tlie available CLBs.

5 Conclusion and Future Directions

For future work, an ASIC impleineiitation of the col-
lision detection algorithm woitld drastically speed up
the application. especially since tlie sphere checking is
qiiite natiirally parallelizahle. The run-time scheduler
descrihed here could quite easily lie aiigniented with
siich an ASIC. In fact. tlie inchision of multiple liard-
ware ASICs could lie easily added to the system. The
major practical design cost woiild he tlie specification
and design of the collision detection ilSIC.
The PC-Pamette architecture described in the prev-

oils sections provides the basis for a iiiodiilar extendable
hardware-software rim-time system. Since the hardware
part of tlie run-time system is in FPGAs, it can be re-
coiihgured cpickly with tlie synthesis path of Figure 4.
Currently we only use one of tlie four available FPGXs.
Portions of the real-time Haptic control systeiii can be
migrated to hardware. either into FPGXs. ASICs or
DSPs. For example. an XSIC implementing tlie colli-
sion detection algorithm (which has a lot of parallelism)
could be integrated quickly into the run-time system.
For the final eiiibedded application. tlie hardware part

of tlie run-time svsteni is synthesized into hardware
rapidly since it is described in behavioral b-erilog and
uses synthesis all the way down to tlie bitstream for
programming tlie XILISX 4020E FPGAs. For example,
given a working prototype. oiie could design a single chip
implementation of tlie control system using a Peiitiuiii
core, dedicated logic for the logic implemented in FPGAs
in the prototype. and a core for tlie ASIC implementing
the collision detection algorithm. In other words. given
the Intellectual Propert?- (IP) for each conipolieilt used
in tlie prototype. it is possible that the entire design
coiild be placed on the same single chip and fabricated.

In conclusion. we have shomn a sample application of a
rim-time scheduler split lietween liardivare and software.
The scliediiler has been successfully iiiipleiiieiit ed on a
real-time robotics system. The fact that the iiiaiii loop
controlling the Haptic device has its sequence of tasks
schediiled by an FSSI in hardware is transparent from
the user's perspective. Finally, this work provides tlie

basis for an extendalde r i in - the system in liardivare aiitl
software.

Acknowledgments
This research was sponsored hy ARPX iiiider grant 10.
DhBTG3-95-C-0049. SASA/JSC iinder grant So . SGT-
9-G. Satioiial Seniicoiidiictor. Interval Rewarch Corpo-
ration aiid Boeing. IT-e acknowledge the help of Stefan
Litdwig of DEC Systems Research Center who lent 11s

tlie PCI Pamette with Xilinx 4020E FPG.45.

References
[1]F. Balarin. SI. Cliiodo. P. Giiisto, H. Hsieli. -4. Ji i -

recska. L. Lavagno. C. Passerone, A. Sangiovanni-
\-inceiitelli, Ellen Sentovicli, Iiei Sii7iil<i and B. Tali-
bara. Hard iiirwe-Sofliiiare CO- De sign of Em bedded Sy s -
tems T / L ~ polz5 Approach. I<liiwei Academic Puldislier5.
Sorwell, 11.4, 1997.

[2]C. S. Coelho Jr . aiid G. De ~Iicheli, *..Aiialvsi5
aiid S? nthe5is of Concurrent Digital Circiiit5 Using
Control-Flow Espressiom." IEEE T r m socfiori s 011

CAD/ICAS. 1-01. 15, So. 8. August 199G .
[3]R. I<. Giipta, Co-Synthesis of Hnrrluiore ond S o f t u m f

for Digitnl Embddcrl System s, I<liii~-er rlcadeiiiic Piih-
lisliers. Boston, SI=1. 1995.

[i].J. Henkel. Th. Benner, R. Eriist. IT-. \-e. S. Serafinlo\
aiid G. G l a w . TOSYl lX: X Soft.vi.are-Orient ed A p
proarh to Hardware/Softmare Co-design." Th e J o i u -
rial of Computer rind Softiliare Engine~ri7ig 1-01. 2.

Digital System Dr-
sign Using the Synoysys Behr~~~iorr i l Compile?. Preii-
tice Hall. Upper Saddle Rivei. TJ, 199G.

[G I G . De Sliclieli and SI. Sanii. editoi5. Hortl-
~ i ~ ~ ~ r e / S o f t u ~ r i r e CO-Design. Iiliiner Xcatleniic Pithlish-
ers. Sormell. ALA, 199G.

[:]I-. SIoone:,. T. Sahanioto and G. De Mcheli. **Riiii-
Time Schediiler Svntliesis For Hardware-Software S\ c-
tenis and Application to Rohot Control Design." 5th
Int 'l Workshop on Hard uirLw/Soft uiare Go-dr sign .. pp.
95-99. Braunschweig. C;ernian\. SIarch 1997.

[SIS. Quinlan, "Efficient Distance Conipiitation lietiwen
Son- Convex Objects.'' In t rrnntzon nl Con jrrc n cr on

[9]D. Riispini. I<. Kolarov and 0. Iiliatil). ..The Haptic
Displa?- of Complex Graphical Environment 5:' SIG-
GRAPH '96 Proceedings. pp. 315-352. Aiigiist 1997.

[10]S1. Shand, '*PC1 Paniette 1-1". Digital Equip-
ment Corporation. System Research Centei.
lit t p: / /wwu .research.digit al.coiii/SRC / pamet te/ .

[11]D. 1Prkest. I<. \ a n Ronipaey. I. Bolsen5 k H. De
Alan. b.CoTVare A Design Environment for Heteroge-
iieoii~ Hardware/Softnare S? s~eiiis." Design Airtonio-
tion for Emberldrd Systems. 1-01. 1, S o . 1. pp. 357-3%.
October 1996

SO. 3, l ip. 293-311, 1994.
[;]D. Iiiiapp. Brhaoiorril Siynthe

(md Automcition, pp. 3324-3329, 1994.

167

