
Hard ware- Soft ware Run-Time Systems and Robotics : A Case Study 

Vincent Johii Mooiiey III".' .Diego Ruspinit, Oiissaiiia I<hatil)t aiitl Giovaiiiii De lliclicli: 
"School of Electrical a id  Coiiiputcr Eiiginceriiig. Georgia Iiistitute of Techiiology 

t Coinpiiter Scimcc Robotics Laboratory, Stanford Uiiiversity 
4Coiiiputcr Systcins Laboratory, Stanford Uiiiversity 

riiooncyiQec.e.gatech.edu 
{ inoonc;v,ruspini ,khatib ,iiaiiiii} G w s t  aiiford.edu 

Abstract 

We present a sample im,plementation of a run-time 
scheduler, split betureen, h>arduiare and softuiare: control- 
ling a real-time robotics application. Xh.e hm-duiare part 
of th,e ru.n-time sch.eduler. implemented as a Finite State 
Machine ( F S M ) .  sch#edules th,e tasks for th,e application, 
and can be readily exten,ded to  include additional tasks 
i n  hardware or in softmare. Th.e softuiare part executes 
tasks based on. uhich? tasks are ready to execute as in,- 
dicated by the F S M .  We h,ave successfully implemented 
the scheduler o n  a uiorking prototype which, sh!ouis the 
feasibility of our approach,. 

1 Introduction 
Hardware-software co-design[6] is becoming more impor- 
tant as the performance of applications increasingly de- 
pends on the interaction between hardware and soft.ware. 

Procedure Calls where one process (in liarclware or soft- 
ware) can trigger the execiition of a thread in another 

In this paper, however. we consider the mixed imple- 
mentation of a run- f zmp .whPd?LlPr in hardware and soft- 
ware as first proposed in [i]. The basic idea behind the 
run- tune  schedulpr is as follows. First. we consider the 
application to  consist of tasks in hardware and software. 
where a task is a hardware niorliile or a software thread. 
Second. the schediiler only keeps track of which tasks 
are ready to start execution and which tasks are done 
execution. Third. we implement in liarclware a state ma- 
chine to seqiience the signals starting execution of the 
tasks. Clearly, the state machine represents the overall 
control flow of tasks in the application. Finally. in soft- 
ware me iniplenient a priority scheduler to execute the 
highest priority software task based on which software 
tasks are readv to start execution. 

process [HI. 

'This work was done while the first a u t h o r  w a s  at Stanford Figure 1: Haptic Robot With Graphics 
Pni versi ty. 
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2 Motivation 

We look a t  a real design case where a designer has to 
make a system work within timing constraints. We 
wanted to experiment with our co-design methodology 
in the context of a robotics application where we can test 
our impleinentation on a prototype. By looking closely 
at the requirements for this case, we can then character- 
ize the CA4D requirements froin the designer's perspec- 
tive. This helps us identify problem areas both in the 
design flow and in the CAD tools used or proposed for 
use. The specific co-design inethodology we wanted to  
test was the run,-tzme scherlvler of ['i]. We were able to 
implement a simple version of the scheduler. Thus. this 
paper presents a "proof of concept" example of a run- 
tiine scheduler split between hardware and software. 

3 Design Case Study 

For our case study we considered the design of the fol- 
lowing real-time robotics application: a Haptzc robot im- 
plementing force-feeclback based on interact ion through 
a graphics display [9]. The Haptic robotics device con- 
tains a thimble where the user places his or her finger. 
The thimble is connected to  the end of a sniall robot arni 
which can exert force on the thimble in any direction. 
The object in the graphics display is represented by a 
collection of polygons, usually in the range of 10,000 to 
20.000 polygons. Figure 1 shows a user interacting with 
a graphic display where the Haptic device gives feedback 
based on the position of a small point (called a proxy) 
on the screen. In  particular, whenever the proxy col- 
lides with a graphical object. a force is generated and 
the user's finger in the Haptic device is stopped from 
continuing penetration in that direction. In fact, the 

feedback is quite complex: the tactile interaction in- 
cludes contact constraints, siirface shading, friction, and 
texture [9]. Such a system has wide-ranging application 
possibilities, from helping surgeons operate on patients 
to  training pilots with flight simulation. This applica- 
tion is a good case study 1,ecaiise there are soine tasks 
which are poorly implemented in software, e.g. collision 
detection, which coiild potentially riin much faster in 
hardware. The first step towards integrating a hard- 
ware iinpleinentation of such a task into the system is 
to  have a scheduler for the application. 

3.1 Original Design 

The original design consists of an all software sohition 
ruiiiiiiig on a Silicon Graphics Indigo (SGI) workstation 
and an IBN compatible PC. The SGI client contains 
the graphics routines which update the display. and the 
PC server runs the low level routines for controlling the 
Haptic device. Onr system architecture can be seen in 
Figure 2 .  

3.1.1 Collision Detection 

c 
face covered 
by hierarchical 
spheres 

I /\ e Haptic 
Interface - 

I 

CLIENT SERVER 

Figure 2: System Architecture 

Figure 3: Sphere Characterization 

From nieasureinent, we observed that approximately 
50% of the CPC time is spent in detecting when the 
proxy collides with an object in the graphics display. 
Collision detection is achieved by an algorithmic ap- 
proach first described in [8]. The basic idea is to  take a 
polygonal siirface and cover each polygon with a small 
sphere. Then, from this initial set of spheres. they are 
hierarchically covered. Figure 3 shows the l>eginnings of 
covering a face using this method ( the actual algorithm 
was written for three dimensions). At the end, we have 
a root sphere with covers the entire graphical object and 
all subspheres. The resulting tree data structure of hier- 
archical spheres has height O ( / g  n ) .  Since the collision 
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detection algorithm checks the sphere hierarchy to  see if 
collision has occurred, O ( / g  n )  checks are needed. 

3.1.2 T i m i n g  Constraints 
Standard soliitions are used for the low level hardware 
interactions that iiiiglit otherwise involve strict timing 
constraints. For .cr-riting torque values to the Haptic de- 
vice, we i~ a de\ ice driver: for reading in the joint po- 
sitions, we utilize the same device driver to read values 
from tlie port. 

Model information about the graphics objects and the 
proxy are communicated between the SGI workstation 
and the PC 13)- sending and receiving packets using the 
TCP/IP protocol. In the actual cock on the PC. we 
never perforni a blocking wait: instead. we check to see 
if a packet has arrived. and if so we accept the packet 
and continue. 
The overriding tiiiiiiig constraint we have is a rate coii- 

straint: the tasks of the following section must complete 
before a hard real-time deadline is reached. Ant. dela>- 
in iipdating the torques could damage the Haptic device 
or the user. 

3.1.3 H a p t i c  L ib ra ry  
The original code (called the "Haptic library") for coii- 
trolling the Haptic device was written in C. Some of the 
most time-consuming tasks, such as that of commiini- 
rating tlie polygons composing the graphics objects and 
then building a sphere hierarchy, are performed during 
tlie initialization and sphere building phases. Once a 
particular graphical display is up and running, the fol- 
loiviiig tasks are executed in each iteration of a core loop 
called the serzio loop: 

owait for nest millisecond clock tick 
owrite torques to Haptic device 
oread joint angles of Haptic device 
oconvert joint angles to x.y.7 coordinates 
ocollision detect 
ocalculate new proxy position based on collision or 

ocompute new torques for Haptic device 
@if ready. send/rweive network packets (nevi proxy 
position. etc.) 

For example, consider a user interacting with a graph- 
ical display of a teapot. When the proxy is in space 
not near the teapot, the user can inove the proxv freely. 
However, as soon as the proxy conies close to tlie teapot, 
penetrating the sphere hierarchy (an exaniple penetra- 
tion in two dimensions is shown in Figure 3) .  collision 
detection is used to  check if the user's proxy on the 
screen has hit the teapot. The Haptic device provides 
force-feedback control to simulate the interaction of the 
proxy with the graphical object. e.g. when sliding along 
the curved surface of the teapot. Figure 1 shows a user 

not 

iitilizing the proxy to push around a spaceship merry- 
go-round. An execution of the servo loop for controlling 
tlie robot inlist coiiiplete once every inillisecond. 

3.2 New Design 
The iiew design contains a slightly altered sched~ller for 
the S P T O O  loop. SIP divide the loop into tasks in ordei 
to control their execution from a hardware FSSf. Before 
entering the loop, we kick off execution of the FSSI. 
TSlithin the loop. we execute tasks as directed by the 
FS51. 

3.2.1 Task  Execut ion 
1t-e divided the tasks of Section 3.1 into three c o x w  
grained groupings as follows: 

0"Phantoin" roiitines: 
-wait for next inillisecond clock tick 
--Write torques to Haptic device 
-read joint angles of Haptic device 
-convert joint angles to x,y.7 coordinates 

-collision detect 
-calculate new prosy position Iiasetl on colli- 

-compute new torques for Haptic device 
0 "Setwork" routines, executed onlp if there are net- 

-send new prosy position to graphics over net- 

receive new graphics info over network 
I1.p iiiipleniented an FSM in hardware to sequence the 

above three co~irse granularity software threads. For 
the sake of experimentation. we use an FPGX-basecl 
board ( the PCI Painette[lO]) for the hardnwe imple- 
mentation. This hardware FSSI portion of the run-time 
schediiler is specified in JJ-erilog and syntliesiiecl iisiiig 
the Synopsys-Xiliiix interface: the tool flow is shown 

0 "Proxy" routines: 

sion or not 

work packets ready to send/receive: 

work 

Figure 4: Synopsys-Xilinx Tool Flow 
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Idone 

Istart 

CPU 

Figure 5: Rim-Time Scliediiler Control Coniiiiiinicatioii 

Sote that we wanted to he able to  tiirn the hartl- 
ware FSN on aiid off from software. since tlie system 
initialization is directed by software. Thus. we adcled 
FSJfstart aiid F S J f d o ? ~ e  signals to kick off and teriiii- 
nate. respectively. FSM execution. Figure 5 shows the 
comniuiiicatioii of the FSMstnrt .  FSJldonP. s tn r t  and 
done vectors. 

Therefore we split tlie run-time scheduler into two 
parts: 

.An executive iiiaiiager in hardware with cycle- 
based seiiiaiitics that caii satisfy hard real-time 
constraints. 
0-4 polling scliediiler that execiites different threads 
based on eligihlr software-tasks as indicated by the 
start vector. 

The Haptic library code was alt erecl t o  accommodate 
this new split. In particular. a polling scheduler wa5 
written as tlie inner core loop implementing the three 

,a i C 

9 
0 

$ FSM 
- 5  

4- 
U) 

course-grained tasks as described here. 

4 System Implementation 

The original system in the CS Robotics Lah at Stanford 
was successfiilly ported to  the S T  environment all in 
software. Then we siiccessfully implemented the split 
run-time scliediiler in the act rial design. 

4.1 System Architecture 

Oiir system architecture consists of an SGI workstation 
for the graphics, a PC with a PeiitiiiiiiT processor. ancl 
a Haptic device connected to the PC. 

1 PMC 
Download I 
Readback 

P 
C 
I protocol) 

or 
Daughter 
Board 

Secondary 

Board 
Connector 

7, FPCiA I’ FPGA 7 Daughter 

SRAM DRAM SlMM sockets 

Figure G: PCI Paniette I-ersion 1 A4rcliitecture 

The PC has a PCI Paniette[10] board connected to 
one of its slots. The PCI Paniette. shown in Figiire G .  
has one FPGA dedicated to talking to the PC iisiiig 
the 32 or G4 l i t  PCI protocol. with four niore Silinx 
4020E FPGXs configiirahle 1))- the iiser. Tlic two 1’28IiB 
SRrllIs are essentially scratchpad mrmorie.s which the 
nearest FPGA can iise. l G  hits of nieniory can 11e written 
to or read from each SRAN every cycle. 
For coiiiniimication with tlir FPG.Is. we iw tlir PC‘I 

protocol as implemented by the PCI Pamettr software 
library for Visiial C++ and tlie FPGX on the PCI 
Painette. From the point of view of the softn-air code. 
this appears as a iiieiiiory-iiiaI’pe~l read or write. How- 
ever, there are timing constraints which mist  l~ 011- 

served by tlie two FPG.4s that caii read data  from the 
32-hit bus coining out from the FPGX iiiipleiiienting 
the PCI protocol: once an address appears on the hiis. 
the data corresponding to  that address iiiiist he read in 
the following cycle. Similarly. for writing to  the hiis 
(in which case the software is executing a read from 
memory-mapped IO). tlie data  read iiiiist lie driven to 
the hiis on tlie following cycle aiid held there for six c\- 
cles. There are many niore constraints esplainetl in tlie 
PCI documentation [IO]. 
In order to inwt these exact timing constraint<. we 

latch valiies going oii/off chip using DC aiid then real  
the values using behavioral Ierilog synthesized in cycle- 
accurate mode with BC. 
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4.2 Software Generation 

Tlie software for programming aiid controlling tlie PCI 
Paniette is available for Mcrosoft \-isiial C++ 4 . 0 ~  I' 

with M'indovi5 S T  4.0T1' or for the DEC Xlplia. Be- 
caiise we wanted to  iise a PC. we iitili~ec-l tlie ST vei- 
sioii. 

Tlie original code (called the "Haptic library" ) for coii- 
trolliiiq the Haptic clexice was written in 10,000 lines of 
C for Liiiiis. In order to I I S ~  the Paiiiette. we ported 
tlie Haptic library to i'isiial C++ 40T"  with lYiiidows 
S T  4.0T". Tliis porting effort iiicliided writing a de- 
\-ice driver in S T  to control the Haptic device as well as 
rewriting the iiettvork code for coiiiiiiiiiiicatioii with the 
SGI workstation using TCP/IP. 
Reading aiid writing to tlie S R A l I  on the Paiiiette is 

accomplished iisiiig iiiriiior.\.-i~iapped I/ 0 aiid hardware- 
tasks in the FPG.4. The PCI interface takes ail a\-erage 
of 5 to  9 CPU clock cycles to comilliiiiicatea single 32-hit 
read or write. 

Therefore. gken  a particiilar valiie of tlie ,strwt vector. 
tlie appropriate software-task(s) can be execiitetl. The 
scheduler for tlie software i5 a simple polling loop. Sote  
that for this to work we have to guarantee that after 
iiitlicatiiig that a particular software-task has completed 
by writing to tlie donp vector, tlie next stnrt  \ d u e  must 
be updated and ready to  be read before the software 
polling loop next reads in the stnrt vector. Otherwise, 
the software schediiler could read in the exact saiiie stnrt 
vector again aiid t h i s  fail to meet the rate coiistraiiit 
of lipdating tlie robot's torque values every millisecond. 
We verified that the FSM implemented in the FPGX 
was fast enough hy extensix-e simulation. 

Task 

wait for next iiiillisecoiicl clock tick 
write torciiies to Hmtic  device 

Figure T: Teapot Graphical Object With Proq- 

Figlire i shotvs a graphical teapot model which vie iised 
to test the design. The proxy is shown on the teapot 
near tlie base of tlie spoilt. The teapot is coiiiposed 
of 3,41G triangular surfaces. Tlie client computer was 
a i  SGI Indigo2 High Impact rtiiiiiing IRIX G.2 aiid the 

Lines 
C 

G5 
50 

Haptic server was a PC with a 2GG 11117 Peiitiiiiii Pro 
riiiiiiiiig V h l o w s  S T  4.0. Tlie PC lias 32 MB of iiiaiii 
iiieiiiory aiirl a 512ICB cache. Coiiiiiiiiiiicatioii hetween 
the tx-o compiiters was t h e  throiigh a staiidarrl ether- 
iiet TCP/IP connection. Tlie Haptic device iised was a 
groiiiirl based PH-4ISToM iiiaiiipiilator with 3 degrees of 
freedoiii in it force-feedback. 

read joint angles of Haptic device 
convert joii:: aiigles to x , v ~  coordinate., 
collision detect 

48 
428 

2189 

Task 

elxisreadl .v 
ehswr i t  e1 .v 
generat ecoiitro1.x 

Line5 Stvle of 
lerilog I-erilog 

1-26 1)eliavioral 
114 Iwhavioral 
48 1,eliavioral 

liaptic .\- 

I traiisactioiiiiiode1ih.v II 1.31 I striictiiral I 

2.22 1 striictural 

Table 2: Code space for liardivare tasks. 

hant iccoiit ro1.v 

Xiliiix To. Slas. Percent 
Sleasiire Used Xvail. Used 

Boiided 1/0 Pins 
F and G Function Generators 15G8 31% 
H Fuiictioii Generators 784 11% 
CLB Flip Flops 217 15G8 13% 
IOB Input Flip Flops 224 14% 

178 1 hehavioral 

IOB &itput Flip Fiops 18 224 8% 
3-State Buffers 0 1680 0% 
3-State Half Longlines 0 112 0% 
Edae Dwode Inpiit\ 0 336 0% 
Edge Decode Half Longlines 0 I 3'2 0% 
CLB Fast Carry Logic 8 I '784 1% 

Tahle 3: Statistics for Xiliiis 4020E Mapping 

Tahle 1 shows the code space iised for tlie varioiis sofr- 
ware tasks in the inner RCTIJO loop. The hnal execiitalde 
took 111) -185ICB of iiieiiiorj-: however, the code aiitl data 
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used in the serclo loop is niiidi less and likely fit entirely 
in tlie 512KB cache on tlie PC (however. we did not 
verify this). Table 2 shows tlie code space iised for read- 
ing aiid writing data from/to the bus aiid the SRASI, 
startiiig/teriiiinatiiig the hardware FSSI, aiid the liard- 
ware FSSI itself (in hapticontro1.v). Xotice that the 
FSSI takes only 178 lilies of 1erilog. while the support- 
ing Verilog code takes 1195 lines. Talilr 3 shows the 
various nieasiires of utilization provided for the Xilinx 
4020E which implements tlie Verilog code. The 4020E 
can fit a t  most around 20Ii logic gates. lye are currently 
using about half of tlie available CLBs. 

5 Conclusion and Future Directions 

For future work, an ASIC impleineiitation of the col- 
lision detection algorithm woitld drastically speed up 
the application. especially since tlie sphere checking is 
qiiite natiirally parallelizahle. The run-time scheduler 
descrihed here could quite easily lie aiigniented with 
siich an ASIC. In fact. tlie inchision of multiple liard- 
ware ASICs could lie easily added to the system. The 
major practical design cost woiild he tlie specification 
and design of the collision detection ilSIC. 
The PC-Pamette architecture described in the prev- 

oils sections provides the basis for a iiiodiilar extendable 
hardware-software rim-time system. Since the hardware 
part of tlie run-time system is in FPGAs, it can be re- 
coiihgured cpickly with tlie synthesis path of Figure 4. 
Currently we only use one of tlie four available FPGXs. 
Portions of the real-time Haptic control systeiii can be 
migrated to  hardware. either into FPGXs. ASICs or 
DSPs. For example. an XSIC implementing tlie colli- 
sion detection algorithm (which has a lot of parallelism) 
could be integrated quickly into the run-time system. 
For the final eiiibedded application. tlie hardware part 

of tlie run-time svsteni is synthesized into hardware 
rapidly since it is described in behavioral b-erilog and 
uses synthesis all the way down to tlie bitstream for 
programming tlie XILISX 4020E FPGAs. For example, 
given a working prototype. oiie could design a single chip 
implementation of tlie control system using a Peiitiuiii 
core, dedicated logic for the logic implemented in FPGAs 
in the prototype. and a core for tlie ASIC implementing 
the collision detection algorithm. In other words. given 
the Intellectual Propert?- (IP) for each conipolieilt used 
in tlie prototype. it is possible that the entire design 
coiild be placed on the same single chip and fabricated. 

In conclusion. we have shomn a sample application of a 
rim-time scheduler split lietween liardivare and software. 
The scliediiler has been successfully iiiipleiiieiit ed on a 
real-time robotics system. The fact that the iiiaiii loop 
controlling the Haptic device has its sequence of tasks 
schediiled by an FSSI in hardware is transparent from 
the user's perspective. Finally, this work provides tlie 

basis for an extendalde r i in - the  system in liardivare aiitl 
software. 
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