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Abstract

This article presents the architecture of Junior, a robedicicle capable of navi-
gating urban environments autonomously. In doing so, tiicieis able to select
its own routes, perceive and interact with other traffic, @mdcute various urban
driving skills including lane changes, U-turns, parkingdamerging into moving
traffic. The vehicle successfully finished and won secondepia the DARPA Ur-

ban Challenge, a robot competition organized by the U.S. (hovent.

1 Introduction

The vision of self-driving cars promises to bring fundanatichange to one of the most essential
aspects of our daily lives. In the U.S. alone, traffic acciderause the loss of over 40,000 people
annually, and a substantial fraction of the world’s energysed for personal car-based transporta-
tion (U.S. Department of Transportation, 2005). A safef-deling car would fundamentally im-
prove the safety and comfort of the driving population, whiéducing the environmental impact
of the automobile.

In 2003, the Defense Advanced Research Projects Agency BDARitiated a series of competi-
tions aimed at the rapid technological advancement of amaus vehicle control. The first such
event, the “DARPA Grand Challenge,” led to the developmentedficles that could confidently
follow a desert trail at average velocities nearing 20mpbeder et al., 2006). In October 2005,
Stanford’s robot “Stanley” won this challenge and becaneditist robot to finish the 131-mile long
course (Montemerlo et al., 2006). The “DARPA Urban Challeihwylich took place on November
3, 2007, brought about vehicles that could navigate in tréffa mock urban environment.

The rules of the DARPA Urban Challenge were complex (DARPA7)0Vehicles were provided
with a digital street map of the environment, in the form dR@ead Network Description Fijeor
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Figure 1: Junior, our entry in the DARPA Urban Challenge. durs equipped with five different
laser measurement systems, a multi-radar assembly, anttissignal inertial navigation system,
as shown in this figure.

RNDF. The RNDF contained geometric information on lanese lamarkings, stop signs, parking
lots, and special checkpoints. Teams were also providedl aviiigh-resolution aerial image of

the area, enabling them to manually enhance the RNDF bdferevent. During the Urban Chal-

lenge event, vehicles were given multiple missions, defagesequences of checkpoints. Multiple
robotic vehicles carried out missions in the same envirarina¢ the same time, possibly with

different speed limits. When encountering another vehieésh robot had to obey traffic rules.

Maneuvers that were specifically required for the Urban @maé included: passing parked or
slow-moving vehicles, precedence handling at intersastiaith multiple stop signs, merging into

fast-moving traffic, left turns across oncoming traffic, pag in a parking lot, and the execution

of U-turns in situations where a road is completely blockéghicle speeds were generally limited
to 30mph, with lower speed limits in many places. DARPA atiditeleven vehicles to the final

event, of which the present vehicle was one.

“Junior,” the robot shown in Figure 1, is a modified 2006 Vollegen Passat Wagon, equipped
with five laser rangefinders (manufactured by IBEO, RiegtkSand Velodyne), an Applanix
GPS-aided inertial navigation system, five BOSCH radars,lhtel quad core computer systems,
and a custom drive-by-wire interface developed by Volkssveg) Electronic Research Lab. The
vehicle has an obstacle detection range of up to 120 metais,eaches a maximum velocity of
30mph, the maximum speed limit according to the Urban Chg#lenles. Junior made its driving
decisions through a distributed software pipeline thatgrdites perception, planning, and control.
This software is the focus of the present article.



Figure 2: All computing and power equipment is placed in thek of the vehicle. Two Intel quad
core computers (bottom right) run the bulk of all vehicleta@ire. Other modules in the trunk
rack include a power server for selectively powering indual vehicle components, and various
modules concerned with drive-by-wire and GPS navigatioré BOF Inertial measurement unit
is also mounted in the trunk of the vehicle, near the rear.axle

Junior was developed by a team of researchers from Stanfardetsity, Volkswagen, and its

affiliated corporate sponsors: Applanix, Google, Intel,iM®avidow Ventures, NXP, and Red
Bull. This team was mostly comprised of the original Stadf®acing Team, which developed the
winning entry “Stanley” in the 2005 DARPA Grand Challenge (Memerlo et al., 2006). In the

Urban Challenge, Junior placed second, behind a vehicle €amegie Mellon University, and

ahead of third-place winner from Virginia Tech.

2 Vehicle

Junior is a modified 2006 Passat wagon, equipped with a adsiturbo diesel injection engine.
The 140 hp vehicle is equipped with a limited-torque stagrnrotor, an electronic brake booster,
electronic throttle, gear shifter, parking brake, and signals. A custom interface board provides
computer control over each of these vehicle elements. Tlggmerprovides electric power to
Junior's computing system through a high-current protetgfternator, supported by a battery-
backed electronically controlled power system. For dgwelent purposes, the cabin is equipped
with switches that enable a human driver to engage vari@gsrehic interface components at will.
For example, a human developer may choose the computer takthre steering wheel and turn
signals, while retaining manual control over the throttiel ahe vehicle brakes. These controls
were primarily for testing purposes; during the actual cetitpn, no humans were allowed inside
the vehicles.

For inertial navigation, an Applanix POS LV 420 system pd®s real-time integration of multiple
dual-frequency GPS receivers which includes a GPS Azimwadthg measurement subsystem,
a high-performance inertial measurement unit, wheel odgmea a distance measurement unit
(DMI), and the Omnistar satellite-based Virtual Base $taservice. The real-time position and
orientation errors of this system were typically below 10@ &nd 0.1 degrees, respectively.

Two side-facing SICK LMS 291-S14 sensors and a forward-pdiRIEGL LMS-Q120 laser sen-



sor provide measurements of the adjacent 3-D road struatutenfrared reflectivity measurements
of the road surface for lane marking detection and precigamcle localization.

For obstacle and moving vehicle detection, a Velodyne HRE-& mounted on the roof of the
vehicle. The Velodyne, which incorporates 64 laser diodes spins at up to 15 Hz, generates
dense range data covering a 360 horizontal field-of-view a3® degree vertical field-of-view.
The Velodyne is supplemented by two SICK LDLRS sensors mauatehe rear of the vehicle,
and two IBEO ALASCA XT lidars mounted in the front bumper. FB®SCH Long Range Radars
(LRR2) mounted around the front grill provide additionalammation about moving vehicles.

Junior’'s computer system consists of two Intel quad coreeser Both computers run Linux, and
they communicate over a gigabit ethernet link.

3 Software Architecture

Junior’s software architecture is designed as a data dpvesgline in which individual modules
process information asynchronously. This same softwarieitecture was employed successfully
by Junior’s predecessor Stanley in the 2005 challenge (®vetlo et al., 2006). Each module
communicates with other modules via an anonymous publibbfsibe message passing protocol,
based on the Inter Proccess Communication Toolkit (IPC) (Rinsvand Apfelbaum, 1998).

Modules subscribe to message streams from other modulésh ate then sent asynchronously.
The result of the computation of a module may then be puldisbether modules. In this way,
each module is processing data at all times, acting as ampgpdihe time delay between entry of
sensor data into the pipeline to the effect on the vehicletaadors is approximately 300ms. The
software is roughly organized into five groups of modules.

e sensor interfaces— The sensor interfaces manage communication with the eehitd
individual sensors, and make resulting sensor data avaitabthe rest of the software
modules.

e perception modules— The perception modules segment the environment data iowanig
vehicles and static obstacles. They also provide preclsmalization of the vehicle relative
to the digital map of the environment.

e navigation modules— The navigation modules determine the behavior of the \@hithe
navigation group consists of a number of motion plannenss jpl hierarchical finite state
machine for invoking different robot behaviors and prevegteadlocks.

e drive-by-wire interface — Controls are passed back to the vehicle through the drive-by
wire interface. This module enables software control ofttirettle, brake, steering, gear
shifting, turn signals, and emergency brake.

e support modules— A number of system level modules provide logging, time iz,
message passing support, and watchdog functions to kespftiaare running reliably.

Table 1 lists the actual processes running on the robot’spatens during the race event, and
Figure 3 shows a overview of the data flow between modules.



Process name Computer| Description

PROCESS-CONTROL 1 starts and restarts processes, adds process control via IPC

APPLANIX 1 Applanix interface (via IPC).

LDLRS1 & LDLRS2 1 Sick LDLRS laser interface (via IPC).

IBEO 1 IBEO laser interface (via IPC).

SICK1 & SICK2 1 Sick LMS laser interfaces (via IPC).

RIEGL 1 Riegl laser interface (via IPC).

VELODYNE 1 Velodyne laser interface (via IPC and shared memory). This modute als
projects the 3d points using Applanix pose information.

CAN 1 CAN bus interface

RADAR1 - RADAR5 | 1 Radar interfaces (via IPC).

PERCEPTION 1 IPC/Shared Memory interface of Velodyne data, obstacle detectioranaign
tracking and scan differencing

RNDF_LOCALIZE 1 1D localization using RNDF

HEALTHMON 1 logs computer health information (temperature, processes, CPU amdbnye
usage)

PROCESS-CONTROLY 2 start/restarts processes and adds process control over IPC

CENTRAL 2 IPC-server

PARAM_SERVER 2 central server for all parameters

ESTOP 2 IPC/serial interface to DARPA E-stop

HEALTHMON 2 monitors the health of all modules

POWER 2 IPC/serial interface to power-server (relay card)

PASSAT 2 IPC/serial interface to vehicle interface board

CONTROLLER 2 vehicle motion controller

PLANNER 2 path planner and hybrid A* planner

Table 1: Table of processes running during the Urban Chadleng
4 Environment Perception

Junior’s perceptual routines address a wide variety ofamhstdetection and tracking problems.
Figure 4b shows a scan from the primary obstacle detectiososethe Velodyne. Scans from the
IBEO and SICK lasers are used to supplement the Velodyne nldtiind spots. A radar system
complements the laser system as an early warning systemolangobjects in intersections.

4.1 Laser Obstacle Detection

In urban environments, the vehicle encounters a wide yaakstatic and moving obstacles. Ob-
stacles as small as a curb may trip a fast-moving vehicle esecting small objects is of great
importance. Overhangs and trees may look like large olestaa a distance, but traveling un-
derneath is often possible. Thus, obstacle detection nwnstider the 3D geometry of the world.
Figure 5 depicts a typical output of the obstacle detectoutine in an urban environment. Each
red object corresponds to an obstacle. Towards the bottgit, ra camera image is shown for
reference.

The robot’s primary sensor for obstacle detection is theoghe laser. A simple algorithm for
detecting obstacles in Velodyne scans would be to find paiittssimilar x-y coordinates whose
vertical displacement exceeds a given threshold. Indéedatlgorithm can be used to detect large
obstacles such as pedestrians, signposts, and cars. Hovesge and calibration error are high
enough with this sensor that the displacement thresholdatdre set low enough in practice to
detect curb-sized objects without substantial numberalséfpositives.
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Figure 3: Flow diagram of the Junior Software.
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Figure 4: (a) The IBEO sensor possesses four scan lineshwhgcoriented vertically in the front
of the vehicle, and horizontally at its sides. In the veltmaas, the sensor can identify objects
that stick out vertically. (b) The Velodyne laser sensoerdf64 scan lines of widely varying noise
levels.

An alternative to comparing vertical displacements is tmpare the range returned by two adja-
cent beams, where “adjacency” is measured in terms of th@ipgiangle of the sensor. Each of
the 64 lasers has a fixed pitch angle relative to the vehialady;, and thus would sweep out a circle
of a fixed radius on a flat ground plane as the sensor rotatepelterrain locally compresses
these rings, causing the distance between adjacent rirtgs $maller than the inter-ring distance
on flat terrain. In the extreme case, a vertical obstacleasaadjacent beams to return nearly equal
ranges. Because the individual beams strike the groundcht shallow angles, the distance be-
tween rings is a much more sensitive measurement of teri@de shan vertical displacement. By
finding points that generate inter-ring distances thaediifom the expected distance by more than
a given threshold, even obstacles that are not appareneteettical thresholding algorithm can
be reliably detected.



Figure 5: Obstacle detection: Here the vehicle detectsta&ga, a road sign, and also small curbs.

In addition to terrain slope, rolling and pitching of the v&l will cause the rings traced out by the
individual lasers to compress and expand. If this is notridgké account, rolling to the left can
cause otherwise flat terrain to the left of the vehicle to iected incorrectly as an obstacle. This
problem can be remedied by making the expected distancestodkt ring a function of range,
rather than the index of the particular laser. Thus as thecleetolls to the left, the expected range
difference for a specific beam decreases as the ring movesrdio the vehicle. Implemented in
this way, small obstacles can be reliably detected eveneasathsor rolls and pitches.

Two more issues must be addressed when doing obstacleidet@atirban terrain. First, trees and
other objects frequently overhang safe driving surfacek dmuld not be detected as obstacles.
Overhanging objects are filtered out by comparing their lhiaigth a simple ground model. Points
that fall in a particular x-y grid cell that exceed the heighthe lowest detected point in the same
cell by more than a given threshold (the height of the vehptlis a safety buffer), are ignored as
overhanging obstacles.

Second, the Velodyne sensor possesses a “blind spot” bééndehicle. This is the result of
the sensor’s geometry and mounting location. Furthersib @annot detect small obstacles such
as curbs in the immediate vicinity of the robot due to selftosion. Here the IBEO and SICK
LDLRS sensors are used to supplement the Velodyne datauBedeth of these sensors are es-
sentially 2-D, ground readings cannot be distinguisheghfvertical obstacles, and hence obstacles
can only be found at very short range (where ground measuntsraee unlikely). Whenever either
of these sensors detects an object within a close range (iérsrfer the LDLRS and 5 meters
for the IBEO), the measurement is flagged as an obstacle.cohibination between short-range
sensing in 2-D and longer range sensing using the 3-D semgaidps high reliability. We note
that a 5 meter cut-off for the IBEO sensor may seem overlyipessc, as this laser is designed
for long range detection (100 meters and more). Howeversémsor presents a large number of
false positive detections on non-flat terrain, such as datls.

Our obstacle detection method worked exceptionally welthe Urban Challenge, we know of no
instance in which our robot Junior collided with an obstadheparticular, Junior never ran over a
curb. We also found that the number of false positives wasrkably small, and false positives
did not measurably impact the vehicle performance. In thrse, static obstacle detection worked
flawlessly.



Figure 6: A map of a parking lot. Obstacles colored in yelloe/tall obstacles, brown obstacles are
curbs, and green obstacles are objects high in the air thatfano relevance to ground navigation.

4.2 Static Mapping

In many situations, multiple measurements have to be iatedrover time even for static environ-
ment mapping. Such is the case, for example, in parking\wdisye occlusion or range limitations
may make it impossible to see all relevant obstacles atadigi Integrating multiple measurements
is also necessary to cope with certain blind spots in the raaage of the vehicle. In particular,
curbs are only detectable beyond a certain minimum rangle aviVelodyne laser. To alleviate
these problems, Junior caches sensor measurement intorlapa. Figure 6 shows such a local
map, constructed from many sensor measurements over tinfierddt colors indicate different
obstacle types on a parking lot.

A key downside of accumulating static data over time into @ aréses from objects that move. For
example, a passage may be blocked for a while, and then betdrable again. To accommodate
such situations, the software performs a local visibiligfctlation. In each polar direction away
from the robot, the space between the robot and the nearesttelé object is assumed to be free.
Grid cells in the map that are seen as free are then cleared, iEthey possess a previously
seen obstacle. Beyond the first detected obstacle, of gatisampossible to say whether the
absence of further obstacles is due to occlusion. Hence,amreasetting takes place beyond this
range. This mechanism may still lead to an overly consematiap, but empirically works well
for navigating cluttered spaces such as parking lots. Eiguitlustrates the region in which free
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Figure 7: Examples of free space analysis for Velodyne scans

space is detected in a Velodyne sensor scan.

The exact map update rule relies on the standard Bayesiarewark for evidence accumula-
tion (Moravec, 1988). This safeguards the robot againsti@psi obstacles that only show up in a
small number of measurements.

4.3 Dynamic Object Detection and Tracking

A key challenge in successful urban driving pertains to otheving traffic. The present software
provides a reliable method for moving object detection aredljgtion based on patrticle filters.

Moving object detection is performed on a synthetic 2-D sohthe environment. This scan is
synthesized from the various laser sensors by extractigahge to the nearest detected obstacle
along an evenly spaced array of synthetic range sensorsudéhef such a synthetic scan comes
with several advantages over the raw sensor data. Firsipmgactness allows for efficient com-
putation. Second, the method is applicable to any of thestbiestacle-detecting range sensors
(Velodyne, IBEO, and SICK LDLRS), and any combination thérebhe latter property stems
from the fact that any of those laser measurements can beada&asily into a synthetic 2-D range
scan, rendering the scan representation relatively sendependent. This synergy thus provides
our robot with a unified method for finding, tracking, and potidg moving objects. Figure 8a
shows such a synthetic scan.

The moving object tracker then proceeds in two stages. , RFirgtentifiesareas of changeFor
that, it compares two synthetic scans acquired over a bmef interval. If an obstacle in one of
the scans falls into the free space of the respective otlagr, slais obstacle is a witness of motion.
Figure 8b shows such a situation. The red color of a scan sjooreds to an obstacle that is new,
and the green color marks the absence of a previously seéactdas



@

(b)

(©

(d)

Figure 8: (a) Synthetic 2D scan derived from Velodyne ddta Scan differencing provides areas
in which change has occurred, colored here in green and egdrdcks of other vehicles. (d) The
corresponding camera image.



Figure 9: The side lasers provide intensity informatiort isamatched probabilistically with the
RNDF for precision localization.

When such witnesses are found, the tracker initializes af gggtrticles as possible object hypothe-
ses. These particles implement rectangular objects aréifit dimensions, and at slightly different
velocities and locations. A patrticle filter algorithm is thesed to track such moving objects over
time. Typically, within three sightings of a moving objettg filter latches on and reliably tracks
the moving object.

Figure 8c depicts the resulting tracks; a camera image o$dinee scene is shown in Figure 8d.
The tracker estimates the location, the yaw, the velocitg, the size of the object.

5 Precision Localization

One of the key perceptual routines in Junior’s softwaregiestto localization. As noted, the robot
is given a digital map of the road network in form of an RNDF. Whhe RNDF is specified in
GPS coordinates, the GPS-based inertial position compaytetde Applanix system is generally
not able to recover the coordinates of the vehicle with sefficaccuracy to perform reliable lane
keeping without sensor feedback. Further, the RNDF isfiteaccurate, adding further errors if
the vehicle were to blindly follow the road using the RNDF apuplanix pose estimates. Junior
therefore estimates a local alignment between the RNDFtampdasent position using local sensor
measurements. In other words, Junior continuously loealitself relative to the RNDF.

This fine-grained localization uses two types of informatioad reflectivity and curb-like obsta-
cles. The reflectivity is sensed using the RIEGL LMS-Q120 tedSICK LMS sensors, both of
which are pointed towards the ground. Fig. 9 shows the réflgcinformation obtained through
the sideways mounted SICK sensors, and integrated overTinigdiagram illustrates the varying
reflectivity of the lane markings in the infrared spectrum.

The filter for localization is a 1-D histogram filter which esttes the vehicle’s lateral offset rela-
tive to the RNDF. This filter estimates the posterior disttibn of any lateral offset based on the
reflectivity and the sighted curbs along the road. It “revedrch a probabilistic fashion, offsets



Figure 10: Typical localization result: The red bar illegts the Applanix localization, whereas
the yellow curve measures the posterior over the lateratiposof the vehicle. In this case, the
error is approximately 80 cm.

for which lane-marker-like reflectivity patterns align Wwithe lane markers or the road side in the
RNDF. The filter “penalizes” offsets for which an observedbcwould reach into the driving cor-
ridor of the RNDF. As a result, at any point in time the vehieimates a fine-grained offset to
the measured location by the GPS-based INS system.

Figure 10 illustrates localization relative to the RNDF iteat run. Here the green curves measure
likely locations lane markers in both lasers, and the yelbonwe depicts the posterior distribution
in the lateral direction. This specific posterior deviates1f the Applanix estimate by about 80
cm, which, if not accounted for, would make Junior's wheelgalon the center line. In the Urban
Challenge Event, localization offsets of 1 meter or more veer@mon. Without this localization
step, Junior would have frequently crossed the center imetentionally, or possibly hit a curb.

Finally, Figure 11 shows a distribution of lateral offsetrextions that were applied during the
Urban Challenge.

5.1 Smooth Coordinates

When integrating multiple sensor measurements over timmay be tempting to use the INS
pose estimates (the output of the Applanix) to calculate¢leive offset between different mea-
surements. However, in any precision INS system, the estingosition frequently “jumps” in
response to GPS measurements. This is because INS systevidepthemost likelyposition
at the present time. As new GPS information arrives, it issfms that the most likely position
changes by an amount inconsistent with the vehicle motitwe. problem, then, is that when such
a revision occurs, past INS measurements have to be cairastevell, to yield a consistent map.
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Figure 11: Histogram of average localization correctionsirty the race. At times the lateral
correction exceeds one meter.

Such a problem is known in the estimation literature as (bacls) smoothing (Jazwinsky, 1970).

To alleviate this problem, Junior maintains an intersadoothcoordinate system that is robust
to such jumps. In the smooth coordinate system, the robotigoss defined as the sum of all
incremental velocity updates:

r = I0+2Atl't
t

wherezx is the first INS coordinate, antl are the velocity estimates of the INS. In this internal
coordinate system, sudden INS position jumps have no eféext the sensor data are always
locally consistent. Vehicle velocity estimates from thes@@stimation system tend to be much
more stable than the position estimates, even when GPSeisnittent or unavailable. X and Y

velocities are particularly resistant to jumps becausg &ne partially observed by wheel odometry.

This “trick” of smooth coordinates makes it possible to ntain locally consistent maps even when
GPS shifts occur. We note, however, that the smooth coaelsystem may cause inconsistencies
in mapping data over long time periods, hence can only beieppb local mapping problems.
This is of course not a problem for the present applicatisrtha robot only maintains local maps
for navigation.

In the software implementation, the mapping between raab@) and smooth (local) coordinates
only requires that one maintain the sum of all estimatioftshivhich is initialized by zero. This
correction term is then recursively updated by adding mistres between actual INS coordinates
and the velocity-based value.

6 Navigation

6.1 Global Path Planning

The first step of navigation pertains to global path plannifige global path planner is activated for
each new checkpoint; it also is activated when a permanextiitockage leads to a change of the



Figure 12: Global planning: Dynamic programming propagatglues through a crude discrete
version of the environment map.

topology of the road network. However, instead of planing specific path to the next checkpoint,
the global path planner plans paths from every location értfap to the next checkpoint. As a
result, the vehicle may depart from the optimal path andcsededifferent one without losing
direction as to where to move.

Junior’s global path planner is an instancedghamic programmingor DP (Howard, 1960). The
DP algorithm recursively computes for each cell in a diseketrsion of the RNDF theumulative
costsof moving from each such location to the goal point. The remerupdate equation for the
cost is standard in the DP literature. L¥tz) be the cost of a discrete location in the RNDF,
with V' (goal) = 0. Then the following recursive equation defines the backug anplicitly, the
cumulative cost functiofv:

V() «— min e(z,u)+ > ply |z u) V(y)

Herew is an action, e.g., drive along a specific road segment. Irt cases, there is only one
admissible action. At intersections, however, there amags (go straight, turn left, ...). Multi-
lane roads offer the choice of lane changes. For these dasenaximization over the control
choicew in the expression above will provide multiple terms, the imization of which leads to
the fastest expected path.

In practice, not all action choices are always successfolr ekample, a shift from a left to a
right lane only “succeeds” if there is no vehicle in the ridgdme; otherwise the vehicle cannot
shift lanes. This is accommodated in the use of the tramsgirobabilityp(y | x,«). Junior, for
example, might assess the success probability of a larteashifly given discrete location as low as
10%. The benefit of this probabilistic view of decision makis that it penalizes plans that delay



lane changes to the very last moment. In fact, Junior tenéxéoute lane shifts at the earliest
possibility, and it trades off speed gains with the proligbfand the cost) of failure when passing
a slow moving vehicle at locations where a subsequent rightis required (which may only be
admissible when in the right lane).

A key ingredient in the recursive equation above is the e@stu). In most cases, the cost is
simply the time it takes to move between adjacent cells iniberete version of the RNDF. In this
way, the speed limits are factored into the optimal pathudaton, and the vehicle selects the path
that in expectation minimizes arrival time. Certain manesysuch as left turns across traffic, are
“penalized” by an additional time penalty to account for tis& that the robot takes when making
such a choice. In this way, the cost functioimplements a careful balance between navigation
time and risk. So in some cases, Junior engages on a slighirdsi as to avoid a risky left turn,
or a risky merge.

Figure 12 shows a propagated cumulative cost function. Hereumulative cost is indicated by
the color of the path. This global function is brought to ba&aassess the “goodness” of each
location beyond the immediate sensor reach of the vehicle.

6.2 RNDF Road Navigation

The actual vehicle navigation is handled differently fomezoon road navigation and the free-style
navigation necessary for parking lots.

Figure 13 visualizes a typical situation. For each princpgath, the planner rolls out a trajectory
that is parallel to the smoothed center of the lane. This sheablane center is directly computed
from the RNDF. However, the planner also rolls out trajele®that undergo lateral shifts. Each of
those trajectories is the result of an internal vehicle $ation with different steering parameters.
The score of a trajectory considers the time it will take tlbofe this path (which may be infinite
if a path is blocked by an obstacle), plus the cumulative costputed by the global path planner,
for the final point along the trajectory. The planner thersts the trajectory which minimizes this
total cost value. In doing so, the robot combines optimate@election with dynamic nudging
around local obstacles.

Figure 14 illustrates this decision process in a situatibrere a slow-moving vehicle blocks the
right lane. Even though lane changes come with a small peoadt, the time savings due to faster
travel on the left lane result in a lane change. The planrer theers the robot back into the right
lane when the passing maneuver is complete.

We find that this path planner works well in well-defined t@ffituations. It results in smooth
motion along unobstructed roads, and in smooth and welkéédfpassing maneuvers. The planner
also enables Junior to avoid small obstacles that mighhexteo a lane, such as parked cars on
the side. However, it is unable to handle blocked roads ersetctions, and it also is unable to
navigate parking lots.



Figure 13: Planner roll-outs in an urban setting with mudtigiscrete choices.

6.3 Free-Form Navigation

For free-form navigation in parking lots, the robot utiliza second planner, which can generate ar-
bitrary trajectories irrespective of a specific road stmet This planner requires a goal coordinate
and a map. It identifies a near-cost optimal path to the gaalldrsuch a path exist.

This free-form planner is a modified version of A*, which wellchybrid A*. In the present
application, hybrid A* represents the vehicle state in a dixrete grid. Two of those dimensions
represent thee-y-location of the vehicle center in smooth map coordinatehira the vehicle
heading directiory, and a forth dimension pertains the direction of motionheitforward or
reverse.

One problem with regular (non-hybrid) A* is that the resodfidiscrete plan cannot be executed
by a vehicle, simply because the world is continuous, wieAastates are discrete. To remedy
this problem, hybrid A* assigns to each discrete cell in A*amtinuous vehicle coordinate. This



Figure 15: Graphical comparison of search algorithms. :L&ftassociates costs with centers of
cells and only visits states that correspond to grid-catitees. Center: Field D* (Ferguson and
Stentz, 2005) associates costs with cell corners and alobigary linear paths from cell to cell.
Right: Hybrid A* associates a continuous state with eacharal the score of the cell is the cost
of its associated continuous state.

continuous coordinate is such that it can be realized by ¢heabrobot.

To see how this works, letr,y, 0) be the present coordinates of the robot, and suppose those
coordinates lie in celt; in the discrete A* state representation. Then, by definjtiba continuous
coordinates associated with cellarex; = x, y; = y, andd; = 6. Now predict the (continuous)
vehicle state after applying a contrelfor a given amount of time. Suppose the prediction is
(«',y',0"), and assume this prediction falls into a different cell, @ted c;. Then, if this is the

first time ¢; has been expanded, this cell will be assigned the assoaatd#thuous coordinates

x; =2, y; =y, andd; = 0. The result of this assignment is that there exists an actuatol «

in which the continuous coordinates associated withGetban actually be attained—a guarantee
which is not available for conventional A*. The hybrid A* algthm then applies the same logic
for future cell expansions, using;, y;, #;) whenever making a prediction that starts in eellWe



Figure 16: Hybrid-state A* heuristics. (a) Euclidean dista in 2D expand&1, 515 nodes. (b)
The non-holonomic-without-obstacles heuristic is a digant improvement, as it expands465
nodes, but as shown in (c), it can lead to wasteful explanatibdead-ends in more complex
settings (8, 730 nodes). (d) This is rectified by using the latter in conjumictivith the holonomic-
with-obstacles heuristid (), 588 nodes).

note that hybrid A* is guaranteed to yield realizable pathd,it is not complete. That is, it may
fail to find a path. The coarser the discretization, the mdenchybrid A* will fail to find a path.

Figure 15 compares hybrid A* to regular A* and Field D* (Fesgun and Stentz, 2005), an alter-
native algorithm that also considers the continuous nattitbe underlying state space. A path
found by plain A* cannot easily be executed; and even the rsuatother Field D* path possesses
kinks that a vehicle cannot execute. By virtue of assoajgtontinuous coordinates with each grid
cell in Hybrid A*, our approach results in a path that is exedle.

The cost function in A* follows the idea of execution time. iGuwplementation assigns a slightly
higher cost to reverse driving to encourage the vehicle ieednormally.” Further, a change of
direction induces an additional cost to account for the tintakes to execute such a maneuver.
Finally, we add a pseudo-cost that relates to the distangedrdy obstacles so as to encourage the
vehicle to stay clear of obstacles.

Our search algorithm is guided by two heuristics, called niba-holonomic-without-obstacles
heuristicand theholonomic-with-obstacles heuristicAs the name suggests, the first heuristic
ignores obstacles but takes into account the non-holonoatige of the car. This heuristic, which
can be completely pre-computed for the entire 4D space ¢leelocation, and orientation, and
direction of motion), helps in the end-game by approachieggoal with the desired heading. The
second heuristic is a dual of the first in that it ignores tha-holonomic nature of the car, but
computes the shortest distance to the goal. Itis calcutaikde by performing dynamic program-
ming in 2D (ignoring vehicle orientation and motion direet). Both heuristics are admissible, so
the maximum of the two can be used.

Figure 16a illustrates A* planning using the commonly usedtllean distance heuristic. As
shown in Figure 16b, the non-holonomic-without-obstablegristic is significantly more efficient
than Euclidean distance, since it takes into account vebieéntation. However, as shown in Fig-
ure 16c¢, this heuristic alone fails in situation with U-skdglead ends. By adding the holonomic-
with-obstacles heuristic, the resulting planner is higtfiycient, as illustrated in Figure 16d.
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Figure 17: Path smoothing with Conjugate Gradient. This ghrerauses a vehicle model to guar-
antee that the resulting paths are attainable. The Hybrigakh is shown in black. The smoothed
path is shown in blue (front axle) and cyan (rear axle). Théngped path is much smoother than
the Hybrid A* path, and can thus be driven faster.

While hybrid A* paths are realizable by the vehicle, the smalnber of discrete actions available
to the planner often lead to trajectories with rapid changeseering angles, which may still lead
to trajectories that require excessive steering. In a finat4processing stage, the path is further
smoothed by a L2 smoother that optimizes similar criteriaysid A*. This smoother modifies
controls and moves waypoints locally. In the optimizatiwe, also optimize for minimal steering
wheel motion and minimum curvature. Figure 17 shows thelre$smoothing.

The hybrid A* planner is used for parking lots and also fortagr traffic maneuvers, such as
U-turns. Figure 18 shows examples from the Urban Challenddtanassociated National Qualifi-

cation Event. Shown there are two successful U-turns angbarkeng maneuver. The example in

Figure 18d is based on a simulation of a more complex parkihglhe apparent suboptimality of

the path is the result of the fact that the robot “discoveln® map as it explores the environment,
forcing it into multiple backups as a previously believeddipath is found to be occupied. All

of those runs involve repetitive executions of the hybridadorithm, which take place while the

vehicle is in motion. When executed on a single core of Junmwmputers, planning from scratch
requires up to 100 milliseconds; in the Urban Challenge,iptawas substantially faster because
of the lack of obstacles on parking lots.

6.4 Intersections and Merges

Intersections are places that require discrete choicesavetred by the basic navigation modules.
For example, at multi-way intersections with stop signsigkes may only proceed through the
intersection in the order of their arrival.
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Figure 18: Examples of trajectories generated by Junigitsid A* planner. Trajectories in (a)—
(c) were driven by Junior in the DARPA Urban challenge: @)ghow U-turns on blocked roads,
(c) shows a parking task. The path in (d) was generated inlation for a more complex maze-like
environment. Note that in all cases the robot had to replaasponse to obstacles being detected
by its sensors (a planar rangefinder was simulated in (dy;etkplains the sub-optimality of the
trajectory in (d).

Junior keeps track of specific “critical zones” at intergamts. For multi-way intersections with
stop signs, such critical zones correspond to regions raedr €op sign. If such a zone is occupied
by a vehicle at the time the robot arrives, Junior waits uthi$ zone has cleared (or a timeout
has occurred). Intersection critical zones are shown imfeid9. In merging, the critical zones
correspond to segments of roads where Junior may have tqgaeedence to moving traffic. If
an object is found in such a zone, Junior uses its radars angliicle tracker to determine the
velocity of moving objects. Based on the velocity and pragyra threshold test then marks the
zone in question as busy, which then results in Junior wgiha merge point. The calculation
of critical zones is somewhat involved. However, all congpioins are performed automatically
based on the RNDF, and ahead of the actual vehicle operation.

Figure 20 visualizes a merging process during the qualiinavent to the Urban Challenge. This
test involves merging into a busy lane with 4 human-drivemales, and across another lane with 7
human-driven cars. The robot waits until none of the critetaes are busy, and then pulls into the
moving traffic. In this example, the vehicle was able to pafe$y into 8 second gaps in two-way

traffic.
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Figure 19: Critical zones: (a) At this four-way stop sign, Yyusitical zones are colored in red,
whereas critical zones without vehicles are shown in greéerihis image, a vehicle can be seen
driving through the intersection from the right. (b) Criti@@nes for merging into an intersection.

6.5 Behavior Hierarchy

An essential aspect of the control software is logic thavemnés the robot from getting stuck.
Junior'sstuckness detectds triggered in two ways: through timeouts when the vehisleaiting
for an impasse to clear, and through the repeated travefrsalozation in the map—which may
indicate that the vehicle is looping indefinitely.

Figure 21 shows the finite state machine (FSM) that is usedviicls between different driving
states, and that invokes exceptions to overcome stuckhbssEFSM possesses 13 states (of which
11 are shown; 2 are omitted for clarity). The individual s&in this FSM correspond to the
following conditions:

e LOCATE_VEHICLE: This is the initial state of the vehicle. Before itrcatart driving,
the robot estimates its initial position on the RNDF, andtsteoad driving or parking lot
navigation, whichever is appropriate.

e FORWARD DRIVE: This state corresponds to forward driving, lane kagmand obstacle
avoidance. When not in a parking lot, this is the preferredgedion state.

e STOPSIGN.WAIT: This state is invoked when the robot waits at at a stgm $0 handle
intersection precedence.

e CROSSINTERSECTION: Here the robot waits if it is safe to cross ariséction (e.g.,
during merging), or until the intersection is clear (if itas all-way intersection). The state
also handles driving until Junior has exited the intersecti

e STOPFOR CHEATERS: This state enables Junior to wait for another caringoout of
turn at a four way intersection.

¢ UTURN_DRIVE: This state is invoked for a U-turn.

e UTURN_STOP: Same as UTURRIVE, but here the robot is stopping in preparation
for a U-turn.
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Figure 20: Merging into dense traffic during the qualificatevents at the Urban Challenge. (a)
Photo of merging test; (b)-(c) The merging process.

e CROSSDIVIDER: This state enables Junior to cross the yellow liatgf stopping and
waiting for oncoming traffic) in order to avoid a partial roblbckage.

e PARKING_NAVIGATE: Normal parking lot driving.

e TRAFFIC_JAM: In this sate, the robot uses the general-purpose hyriplanner to get
around a road blockage. The planner aims to achieve any mat20 meters away on the

current robot trajectory. Use of the general-purpose paatiows the robot to engage in
unrestricted motion and disregard certain traffic rules.

e ESCAPE: This state is the same as TRAFBKM, only more extreme. Here the robot
aims for any waypoint on any base trajectory more than 20 mmeigay. This state enables

the robot to choose a suboptimal route at an intersectiomdardo extract itself out of a
jam.

e BAD _RNDF: In this state, the robot uses the hybrid A* planner taigate a road that does
not match the RNDF. It triggers on one lane, one way roads if SRDIVIDER fails.

¢ MISSION.COMPLETE: This state is set when race is over.
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Figure 21: Finite State Machine that governs the robot'salugin.

(a) Blocked intersection (b) Hybrid A* (c) Successful traversal

Figure 22: Navigating a simulated traffic jam: After a timéperiod, the robot resorts to hybrid
A* to find a feasible path across the intersection.

For simplicity, Figure 21 omits ESCAPE and TRAFFIBM. Nearly all states have transitions to
ESCAPE and TRAFFIGAM.

At the top level, the FSM transitions between the normalidgvstates, such as lane keeping
and parking lot navigation. Transitions to lower drivingydés (exceptions) are initiated by the
stuckness detectors. Most of those transition invoke at“pariod” before the corresponding
exception behavior is invoked. The FSM returns to normabledr after the successful execution
of a robotic behavior.

The FSM makes the robot robust to a number of contingenc@sexample:

e For a blocked lane, the vehicle considers crossing into ffposite lane. If the opposite



lane is also blocked, a U-turn is initiated, the internal RNIB modified accordingly, and
dynamic programming is run to regenerate the RNDF valuetifonc

¢ Failure to traverse a blocked intersection is resolved bgking the hybrid A* algorithm,
to find a path to the nearest reachable exit of the intersectiee Figure 22 for an example.

e Failure to navigate a blocked one-way road results in usitgith A* to the next GPS
waypoint. This feature enables vehicles to navigate RNDiHssparse GPS waypoints.

e Repeated looping while attempting to reach a checkpointiteegh the checkpoint being
skipped, so as to not jeopardize the overall mission. Thigber avoids infinite looping
if a checkpoint is unreachable.

e Failure to find a path in a parking lot with hybrid A* makes tledot temporarily erase its
map. Such failures may be the result of treating as statieatbjthat since moved away —
which cannot be excluded.

¢ In nearly all situations, failure to make progress for exeth periods of time ultimately
leads to the use of hybrid A* to find a path to a nearby GPS waypdiVhen this rare
behavior is invoked, the robot does not obey traffic ruleslanger.

In the Urban Challenge event, the robot almost never entargafathe exception states. This is
largely because the race organizers repeatedly pausedlibewhen it was facing traffic jams.
However, extensive experiments prior to the Urban Challesigeved that it was quite difficult to
make the robot fail to achieve its mission, provided thatrthg&sion remained achievable.

6.6 Manual RNDF Adjustment

Ahead of the Urban Challenge event, DARPA provided teamsusbtyith an RNDF, but also with
a high-resolution aerial image of the site. While the RNDF wasluced by careful ground-based
GPS measurements along the course, the aerial image wdsapaccfrom a commercial vendor
and acquired by aircratft.

To maximize the accuracy of the RNDF, the team manually &eljuand augmented the DARPA-
provided RNDF. Figure 23 shows a screen shot of the editas ol enables an editor to move,
add, and delete waypoints. The RNDF editor program is fastigh to incorporate new waypoints
in real time (10Hz).

The editing required three hours of a person’s time. In atiainphase, waypoints were shifted
manually, and roughly 400 new way points were added mantalthe 629 lane waypoints in
the RNDF. Those additions increased the spatial cohereintee RNDF and the aerial image.
Figure 24 shows a situation in which the addition of such @mitl waypoint constraints leads to
substantial improvements of the RNDF.

To avoid sharp turns at the transition of linear road segs)ene tool provides an automated RNDF
smoothing algorithm. This algorithm upsamples the RNDFreg meter intervals, and sets those
as to maximize the smoothness of the resulting path. Thengattion of these additional points
combines a least squares distance measure with a smootheassire. The resulting “smooth
RNDF,” or SRNDF, is then used instead of the original RNDF lfaralization and navigation.
Figure 25 compares the RNDF and the SRNDF for a small fractfdhe course.



i -rn&f_eciit

Figure 23: RNDF editor tool.

7 The Urban Challenge

7.1 Results

The Urban Challenge took place Nov. 3, 2007, in Victorville, . GAgure 26 shows images of the
start and the finish of the Urban Challenge. Our robot Junieenkit an obstacle, and according to
DARPA, it broke no traffic rule. A careful analysis of the rdogs and official DARPA documen-

tation revealed two situations (described below) in whighidr behaved suboptimally. However,
all of those events were deemed rule conforming by the rag&nizers. Overall, Junior’s localiza-

tion and road following behaviors were essentially flawlédse robot never came close to hitting
a curb or crossing into opposing traffic.

The event was organized in three missions, which differelémgth and complexity. Our robot
accomplished all three missions in 4 hours 5 minutes, and@nss of run time. During this time,
the robot traveled a total of 55.96 miles, or 90.068 km. lsrage speed while in run mode was
thus 13.7 mph. This is slower than the average speed in the @éé@nd Challenge (Montemerlo
et al., 2006; Urmson et al., 2004), but most of the slowdows vaused by speed limits, traffic
regulations (e.g., stop signs), and other traffic. The totad from the start to the final arrival was
5 hours, 23 minutes, and 2 seconds, which includes all pamgs.t Thus, Junior was paused for
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Figure 24: Example: Effect of adding and moving waypointsh@ RNDF. Here the corridor is
slightly altered to better match the aerial image. The RND#oe permits for such alterations in
an interactive manner, and displays the results on the bajsetory without any delay.

a total of 1 hour, 17 minutes and 56 seconds. None of thoseepamsre caused by Junior, or
requested by our team. An estimated 26 minutes and 27 sewgrds‘local’ pauses, in which
Junior was paused by the organizers because other vehielesstuck. Our robot was paused six
times because other robots encountered problems on theauffsection, or were involved in an
accident. The longest local pause (10 min, 15 sec) occurheshwunior had to wait behind a two-
robot accident. Because of DARPA's decision to pause rolatsor could not exercise its hybrid
A* planner in these situations. DARPA determined Juniodfuated total time to be 4 hours, 29
minutes, and 28 seconds. Junior was judged to be the secstedtfinishing robot in this event.

7.2 Notable Race Events

Figure 27 shows scans of other robots encountered in the @aall, DARPA officials estimate
that Junior faced approximately 200 other vehicles durimgrace. The large number of robot-
robot encounters was a unique feature of the Urban Challenge.

There were several notable encounters during the race ichwhinior exhibited particularly intel-
ligent driving behavior, as well as two incidents where dumhade clearly suboptimal decisions
(neither of which violated any traffic rules).

Hybrid A* on the Dirt Road

While the majority of the course was paved, urban terrainrtihets were required to traverse a
short off-road section connecting the urban road netwoek30mph highway section. The off-road
terrain was graded dirt path with a non-trivial elevatiorange, reminiscent of the 2005 DARPA
Grand Challenge course. This section caused problems feradef the robots in the competition.
Junior traveled down the dirt road during the first missionmediately behind another robot and
its chase car. While Junior had no difficulty following thetdimad, the robot in front of Junior
stopped three times for extended periods of time. In resptmthe first stop, Junior also stopped
and waited behind the robot and its chase car. After seeingiaaement for a period of time,
Junior activated several of its recovery behaviors. Firghior considered CROSBIVIDER, a
preset passing maneuver to the left of the two stopped cdrsreTwas not sufficient space to fit
between the cars and the berm on the side of the road, so Jhaioswitched to the BAOIRNDF
behavior, in which the Hybrid A* planner is used to plan anit#oy path to the next DARPA



Figure 25: The SRNDF creator produces a smooth base trajesntibomatically by minimizing a
set of nonlinear quadratic constraints.

waypoint. Unfortunately, there was not enough space tomgeira the cars even with the general
path planner. Junior repeatedly repositioned himself enrdlad in an attempt to find a free path
to the next waypoint, until the cars started moving agaimialurepeated this behavior when the
preceding robot stopped a second time, but was paused by BARIH the first robot recovered.
Figure 29a shows data and a CROBK/IDER path around the preceding vehicle on the dirt road.

Passing Disabled Robot

The course included several free-form navigation zonegevte robots were required to navigate
around arbitrary obstacles and park in parking spots. Asodwapproached one of these zones
during the first mission, it encountered another robot wihiati become disabled at the entrance to
the zone. Junior queued up behind the robot, waiting foretntier the zone. After the robot did not
move for a given amount of time, Junior passed it slowly onléfteusing the CROS®IVIDER
behavior. Once Junior had cleared the disabled vehicleHth®id A* planner was enabled to
navigate successfully through the zone. Figure 29b showp#ssing maneuver.

Avoiding Opposing Traffic

During the first mission, Junior was traveling down a two-we&d and encountered another robot
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Figure 27: Scans of other robots encountered in the race.

in the opposing lane of traffic. The other robot was drivingtsthat its left wheels were approxi-
mately one foot over the yellow line, protruding into oncagptraffic. Junior sensed the oncoming
vehicle and quickly nudged the right side of its lane, wherheén passed at full speed without
incident. This situation is depicted in Figure 29c.

Reacting to an Aggressive Merge

During the third mission, Junior was traveling around adatigffic circle which featured promi-
nently in the competition. Another robot was stopped at @ sign waiting to enter the traffic
circle. The other robot pulled out aggressively in front ofibr, who was traveling approximately
15mph at the time. Junior braked hard to slow down for the rothleot, and continued with its
mission. Figure 29d depicts the situation during this merge

Junior Merges Aggressively

Junior merged into moving traffic successfully on numerocsasions during the race. On one
occasion during the first mission, however, Junior turnédftem a stop sign in front of a robot
that was moving at 20mph with an uncomfortably small gap.aledm this merge is shown in
Figure 29e. The merge was aggressive enough that the chadeveas paused the other vehicle.
Later analysis revealed that Junior saw the oncoming vehyat believed there was a sufficient
distance to merge safely. Our team had previously loweradimgdistance thresholds to compen-
sate for overly conservative behavior during the qualifaraevent. In retrospect, these thresholds
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Figure 28: Junior mission times during the Urban Challengee$ marked green correspond to
local pauses, and times in red to all-pauses, in which aliclethwere paused.

were set too low for higher speed merging situations. While rtierge was definitely suboptimal
behavior, it was later judged not be a violation of the rulgOBRPA.

Pulling Alongside a Waiting Car

During the second mission, Junior pulled up behind a robatingaat a stop sign. The lane was
quite wide, and the other robot was offset towards the rigle sf the lane. Junior, on the other
hand, was traveling down the left side of the lane. When pyiflorward, Junior did not register
the other car as being inside the lane of travel, and thusrbegpull alongside of the car waiting
at the stop sign. As Junior tried to pass, the other car pitieslard from the stop sign and left
the area. This incident highlights how difficult it can be #orobot to distinguish between a car
stopped at a stop sign and a car parked on the side of the readzi§ure 29f.

8 Discussion

This paper described a robot designed for urban drivingafStd’s robot Junior integrates a num-
ber of recent innovations in mobile robotics, such as praistib localization, mapping, tracking,

global and local planning, and a FSM for making the robot sbtha unexpected situations. The
results of the Urban Challenge, along with prior experimeratsied out by the research team,
suggest that the robot is capable of navigating in othertrolamd human traffic. The robot suc-



(a) Navigating a blocked dirt road (b) Passing a disabled robot at parking lot entrance
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Figure 29: Key moments in the Urban Challenge race.

cessfully demonstrated merging, intersection handlirgkipg lot navigation, lane changes, and
autonomous U-turns.

The approach presented here features a number of innosatidrich are well-grounded in past
research on autonomous driving and mobile robotics. Thesavations include the obstacle/curb
detection method, the vehicle tracker, the various motiammers, and the behavioral hierarchy
that addresses a broad range of traffic situations. Togetinese methods provide for a robust
system for urban in-traffic autonomous navigation.

Still, a number of advances are required for truly autonosnedban driving. The present robot



is unable to handle traffic lights. No experiments have bemfopmed with a more diverse set

of traffic participants, such as bicycles and pedestriaimallly, DARPA frequently paused robots

in the Urban Challenge to clear up traffic jams. In real urbaffitr, such interventions are not

realistic. Itis unclear if the present robot (or other rabiot this event!) would have acted sensibly
in lasting traffic congestion.
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