
Dynamic Simulation of
Interactive Robotic Environment

Paul U. Lee, Diego C. Ruspini, and Oussama Khatib
Robotics Laboratory

Computer Science Department
Stanford University, Stanford, CA 94305

Abstract

A dynamic simulation package, which can accurately
model the interactions between robots and their envi-
ronment, has been developed. This package creates
a virtual environment where various controllers and
workcells may be tested. The simulator is divided in
two parts: local objects that compute their own d y -
namic equations of motion, and a global coordinator
that resolves interactive forces between objects. This
simulator builds upon previous work on dynamic sim-
ulation of simple rigid bodies and extends it to cor-
rectly model and efficiently compute the dynamics of
multi-link robots.

1 Introduction

In recent years there have been many efforts to accu-
rately simulate physical environments in both robotics
and computer graphics. A physically accurate simu-
lation gives important insights into the real-world be-
havior of a robotic environment.

The usefulness of robotic simulation is illustrated
by a problem of the construction industry: the trans-
fer of beams from one point to another (Figure 1).
It is desired to accomplish this task in optimal time
while limiting the swing of the load. Use of unstable
controllers on a real crane, could result in permanent
damage to the crane and/or its environment. Using
simulation, we can test, change, and improve the con-
troller design in an iterative fashion without fear of
damaging the physical system. Computer graphics
permit the visualization of results in a quick, intuitive
manner, and is, therefore, a valuable tool to speed the
design and analysis process.

We have developed a dynamic simulation package
to simulate the interactions between robots and other
objects in their environment. This simulation is based
on dynamic equations of motion with accurate analyt-
ical solutions of the constraint equations [l]. Although

1050-4729194 $03.00 0 1994 IEEE

Figure 1: Simulation of a Crane

the dynamic equations of motion can be easily derived
for each object, the interactions (i.e., collision and/or
contact) between them, however, have proved to be
more difficult to handle. In recent work, two general
approaches have been proposed to address this prob-
lem.

The first approach resolves constraint forces, which
keep objects from inter-penetrating, by using “spring-
like” repulsion at the collision and contact points [113.
The advantage of this approach is its ease of imple-
mentation and its extendibility to nonrigid bodies.
This method, however, does not guarantee a physi-
cally accurate solution for the dynamic behavior of
the objects.

The second approach finds analytically correct so-
lutions to the dynamic interactions between rigid
bodies by explicitly solving the constraint equations.
Baraff [l] uses this technique to find constraint forces
that prevent inter-penetrations between rigid objects.
Although these analytical solutions for rigid body con-
tact yield accurate physical behavior, they are more

1147

difficult t o implement and are not easily extended to
nonrigid bodies.

A physically accurate solution is essential in a sim-
ulator that is designed to duplicate the motions of
real world objects. Since the first approach does not
guarantee a physically accurate solution, we have im-
plemented the second method, which yields accurate
analytical results [l]. Previous algorithms have been
only developed for simple rigid-body objects. We have
extended these algorithms to account for multiple link
robots and other articulated objects.

2 Dynamic Simulator

The main objective in the design of our dynamic sim-
ulator was the development of an interactive package
that could be run in tandem with a physical robotic
environment. In an ideal system, robot controllers
should be capable of being connected interchangeably
to either real robots or to our dynamic simulator. This
capability permits to preview the behavior of robots
and their interactions with the environment. In this
way, various tasks and controllers may be tested in a
“virtual reality” environment before they are applied
to physical systems.

..-
Sensor i
Data Physical

Joint
Actuators

Simulated
L

I Joint I Actuators Kinematics

Simulated

Figure 2: Overall Structure of the System

Figure 2 illustrates the overall structure of the sys-
tem. The dynamic simulator uses as inputs joint ac-
tuator forces from a set of controllers. Employing the
dynamic equations for each object in the environment,
the simulator calculates and returns simulated sensor
data to the controllers. Updated kinematic informa-
tion, such as joint angles, is sent to a graphical output
process to update the display of the simulated envi-
ronment.

3 Global/Local Architecture

The simulator has been separated into two parts: a
global coordinator and a set of local objects with their
corresponding equations of motion. This functional
separation is based on the following considerations:

Dynamic equations of motion can be determined
and independently calculated for each object as
long as there is no contact or collision between
objects.

When contact or collision occurs, constraint
forces or impulses impose correct dynamic be-
havior and prohibit inter-penetrations of objects.
Determination of constraint forces and impulses
requires knowledge of all objects that are interact-
ing at a given time. This determination requires
a global treatment.

A local object consists of its equations of motion,
an integrator to update positions and velocities based
on its dynamics, and a set of parameters required for
the above calculations.

The global coordinator determines if interac-
tion between objects has occurred and solves the
constraint impulse/force equations a t the colli-
sion/contact points. The collision is resolved by first
calculating appropriate impulse forces that correctly
model the collisions. If objects remain in contact af-
ter the collision is resolved, contact forces are calcu-
lated [l].

4 Object Structure

The configuration of an n-DOF (degree-of-freedom)
object is described by a vector q of n independent gen-
eralized coordinates. Joint angles are generally used
as generalized coordinates for robots, but other sets
of parameters that satisfy the above constraints may
also be utilized. The equations of motion in terms of
generalized coordinates are given by

where A(q) designates the kinetic energy matrix;
b (q , q) , the centrifugal and Coriolis force vector; g(q) ,
the gravity force vector; and I?, the generalized torque
vector of the object [4].

The generalized torque r can be divided into
torques generated by robot actuators rjoint and
torques from external constraint forces rest.

1148

Joint Acceleration
Mass Matrix
Coriolis and Centrifugal Force
Gravity Force
Joint Torque

Joint Angle
Joint Velocity
Jacobian

Link Shape (cylinder, rectangle, etc.)
Surface Representation

Graphics Representation
Color

Dynamic
Model

Kinematic
Model

Geometric
Model

Graphical
Model

Figure 3: Robot Structure

Equation 1 is solved for q to dynamically simulate
the motion of an object

H = A - l (q) [r - b(q , 4) - d!dl . (3)

Given an initial position and velocity, updated posi-
tions and velocities can be obtained by numerical in-
tegration of Equation 3 .

This approach finds an efficient solution for robots
and other multi-linked objects by taking advantage
of well-defined holonomic constraints a t their joints.
By taking these constraints into account, this method
finds solutions only for the parameters that affect the
dynamics of the system. In contrast, other works [l, 31
treat multi-linked objects as series of simple objects.
These techniques require computation of all forces, in-
cluding the internal joint forces, which have no effect
on the motion of the system. These unnecessary cal-
culations leads to slower simulations.

Each object stores the parameters needed to rep-
resent and solve the equations of motion in an object
model. The description of the object model is divided
into four categories: dynamic, kinematic, geometric]
and graphical. Figure 3 shows an example of an ob-
ject data structure for the robot manipulator.

The dynamic model contains information related
to the forces required to cause motion including such
data as inertial forces, Coriolis forces, and the kinetic
energy matrix.

The kinematics model incorporates data such as
joint angles, joint velocities, the Jacobian, and trans-
formation matrices. This information may be used to

calculate parameters such as the position and velocity
of the end-effector.

The geometric model stores the geometric descrip-
tion of each object. This information is used to find
if contact between objects has occurred and, if so, the
location of that contact. This information can then
be used to resolve the constraint force equations.

The graphical model determines the visual image
of the objects in a graphical rendering of the scene
representing such qualities as shape, color, lighting,
and shading.

5 Global Coordinator

5.1 Collision/ Contact Detection

Collision and contact points are determined by first
calculating object locations using the equations of mo-
tion and assuming that no collisions or contacts occur.
Inter-penetrations between objects indicate the pres-
ence of collisions and/or contacts. Forces arising from
these collisions and contacts can then be computed
solving the constraint equations as described below in
sections 5.2 and 5.3.

Figure 4: 6 DOF manipulator with Bounding Boxes

The algorithm that determines the existence of
inter-penetrations is divided into two parts. First,
each object is enclosed in bounding boxes that may
be checked quickly for intersections. If the bounding
boxes do not overlap, further checking of collisions or
contacts for those objects is unnecessary. Figure 4
shows two 6 DOF arm robots with bounding boxes
around their links.

A naive collision-checking implementation that
checks all pairs of objects has a complexity of
O(n2) but a sort and sweep algorithm requires only
O(n log n) steps. [a] . In subsequent simulation cycles,
an insertion sort may be used for additional efficiency.

1149

If the bounding boxes of two objects overlap, the
minimum distance between them is computed in or-
der to determine inter-penetrations. For this purpose,
Orlowski [12] relies on an algorithm with a complexity
of O(M log M) where M is total number of vertices in
the two objects, M = M I + Mz. Baraff employs an
algorithm that has an initial complexity of O(M1 M z)
but that utilizes temporal witnesses to reduce that
complexity to O (M) [2]. We have implemented an al-
gorithm developed by Gilbert [5], which is considered
to be one of the most efficient to compute inter-object
distances. It has a complexity of O (M) with a small
coefficient of linear growth.

5.2 Impulse Force Resolution

A collision between two objects a, and b occurs when
there exist points p a and Pb such that at some colli-
sion time t,, p a (t c) = p b (t c) and such that their rel-
ative velocity just prior to collision is negative in the
direction n; normal to the contact region. Given m
collision points (1 5 a 5 m), v i and U' are defined as
the component of the relative velocity parallel to the
common normal at point i where "-" and "+" differ-
entiate between the values before and after collision,
respectively. The normal ni is defined to have a pos-
itive direction from b to a. The relative velocity v 7 ,
which has a negative value, is then formally defined as

(4)

where pi, and pa, are the velocity vectors prior to the
collision a t i th collision points on the objects a and b.

Because of space limitations we restrict our discus-
sion to the collision of one generalized object against
a fixed obstacle. This formulation can easily be ex-
tended to the generalized case. Using this simplifying
assumption, then I j b , (t) = 0, and Equation 4 becomes

'U, = n; P a , .

When a collision occurs in a physical system, a lo-
cal deformation is produced for a brief period of time
that generates forces sufficient to prevent penetration.
Modeling this deformation for hard objects produces
stiff equations that are slow to integrate. We have
instead chosen to model objects as rigid bodies and
to calculate the impulse forces explicitly. An impulse
causes an instantaneous change in the velocity of an
object. The equations of motion are integrated, there-
fore, to the time of collision, new values of the gener-
alized velocities q are then calculated, and the inte-
gration is continued using the new state. By breaking
up the intergration at the velocity discontinuity the
integration of a stiff set of equations can be avoided.

(5)
- T .-

Baraff [l] uses three constraint equations for each
contact point i to calculate the impulse forces on a
body.

U' 2 -€;U;, (6)
j i L 0 , (7)

j;(vi+ +€;U*:) = 0 , (8)

where is the coefficient of restitution, and j , is the
magnitude of the impulse force in the direction ni at
the contact point. Equation 6 can be rewritten as

Avi >_ -(1 + ei).: ,

AV; = V' - U,:.

(9)

(10)
where

The quantity AV, is the instantaneous change in ve-
locity between t ; and t$ caused by the impulse forces
j i . The velocity U; (Equation 5) can be expressed as

Since [4]
1 - 1 q ,

where Ji is the Jacobian that maps q to the velocity
at the i th collision point. Accordingly, Avi can be
expressed as

The instantaneous change in velocity AV; is calculated
by first mapping the unknown impulse forces into the
generalized coordinate space of the object. For colli-
sions at the end effector of a manipulator, this map-
ping is given by

(12) $. - J . '

Avi = nT JiAq . (13)

(14) cr . - J T n . ' .
1 - , 131 1

where pi is the generalized impulse caused by the col-
lision impulse j ; on the contact point i. The total
generalized impulse on the object is the sum of the
individual impulses on the object. This vector is then
given, in the generalized coordinates of the object, by
the equation

m

k = l

The generalized impulse p is then used to compute the
instantaneous change of the generalized coordinates.

Aq = A - l p . (16)

Using Equations 13, 15, and 16, Equation 9 can be
rewritten as

m

k = l

1150

Since is previously known and AV; depends lin-
early on the unknown impulse magnitudes j i , the con-
straint equations can be solved simultaneously for the
unknown impulse forces ji. The constraint equations
(Equations 6, 7, 8) are such that they can be solved
using quadratic programming techniques [11.

Once the impulse forces have been found, the new
generalized velocity can be calculated.

qs = q- + Aq . (18)
The above equations can be easily extend to handle
multiple, moving, and redundant objects [2, 101.

5.3 Contact Force Resolution

If U+ = 0, inter-penetration may still occur if ai = ;+
is negative. In this case, the objects are said to be
in resting contact. When objects are in resting con-
tact, forces of magnitude f ; must be generated at the
contact points in the direction normal to the contact
surfaces. The magnitude of the force must be non-
negative, and zero when the contact points are sepa-
rating, i.e., ai > 0. Given m contact force constraints,
the constraint equations may be written as

ai 2 0 , (19)
f i 2 0 , (20)

f i a i = 0 . (21)

where 15 i 5 m. Note these constraint equations are
similar in form to Equations 6, 7, and 8. Given that

we can differentiate U' to obtain a i .

Recalling now Equation 3

c = A - l (m - q q , 4) - ddl
where r = rjoint + reXt , and reIt is the generalized
torque caused by the sum of the forces f i applied at
the contact points in the direction n i . The mapping
between rezt and the applied forces a t the contact
points [4] is given by

m

k=l

Equations 19, 20, and 21 depend linearly on the un-
known forces f ; (see Equations 23, 2, 3, and 24) and
have a form similar to the impulse constraint equa-
tions(Equations 6, 7, and 8). A similar method may

be used, therefore, to solve the contact constraints.
Once the contact forces are found, reIt may be com-
puted and the dynamics are updated to the next time
cycle.

A discussion on determining rext for redundant ma-
nipulators and for contacts outside the end effector has
been given by Khatib [lo].

6 Implementation

Our dynamic simulator is implemented in C on a Sil-
icon Graphics workstation. Gilbert's distance algo-
rithm is used to find the minimum distance between
objects [5]. When interaction occurs, the constraint
equations (Equations 6, 7, 8 and 19, 20, 21) are solved
by means of quadratic programming techniques [6].
When the objects are not in contact with each other,
they are governed solely by their rigid body dynam-
ics. For a given body, these dynamic equations are
predetermined and calculated symbolically off-line by
a program based on Kane's formulation [8].

These equations are integrated to obtain position
and velocity information using an Adams-Bashforth
adaptive step-size predictor-corrector integrator [7].

Figure 5: Graphical User Interface

We have also developed a graphical user interface
to make our simulator more accessible to the user.
This interface, which controls camera views, collision
detection, movie record/playback, and simulation is
shown on Figure 5.

7 Results

We have developed a modeling system to dynamically
simulate interactive robotic environments. Using this
simulator, a wide range of robotic environments can
be represented and simulated.

1151

For example, a crane has been simulated to study
the load swing under various conditions and to de-
termine the feasibility of different tasks under those
conditions (Figure 1). We have also simulated (Fig-
ure 4) a more traditional robotic environment consist-
ing of two PUMA 560 manipulators to test various
robotic applications including a singularity controller
that smoothly moves in and out of singular configu-
rations. We have also used our approach to model a
submarine (Figure 5) to determine the feasibility of an
autonomous underwater vehicle recovery system.

A simple simulation can demonstrate the dynamic
interactions of robots. Figure 6 illustrates collisions
between two 6 DOF robots. The left robot is falling
under the effect of gravity while the right robot has
gravity compensation. The up/down sequence shows
the two robots colliding at frame 5 and again at frame
16 (right of frame 5). In this sequence, we can also ob-
serve the complex robot motions due to joint coupling.
Even for such a simple environment, the dynamics of
multi-linked objects and the resolution of interactive
forces must be simulated in order to produce realis-
tic results. We have incorporated these functionalities
into our package by means of a global/local structure
that creates efficient dynamic simulations of interac-
tive robotic environments.

References

D. Baraff, “Analytical methods for dynamic simu-
lation of non-penetrating rigid bodies,n Computer
Graphics 23, (August 1989), 223-232.

D. Baraff, “Rigid Body Simulation”, Lecture Notes
for SIGGRAPH ’92 Course, (1992).

R. Barzel and A. H. Barr, “A modeling system based
on dynamic constraints,” Computer Graphics 22, 4
(August 1988), 179-188.

J. Craig, “Introduction to Robotics Mechanics and
Control,” Addison- Wesley Pub. Co., 1989.

E. G. Gilbert, et. al., “A Fast Procedure for Comput-
ing the Distance between Complex Objects in Three-
Dimensional Space,” IEEE J. of Robotics and Au-
tomation, vo1.4, No. 2, April 1988.

P. Gill, S. Hammarling, W. Murray, M. Saunders and
M. Wright, “User’s guide to LLSOL,” Stanford Uni-
versity Technical Report SOL 86-1, (January 1996).

D. Kahaner, et. al., “Numerical Methods and Soft-
ware,” Prentice Hall, Englewood Cliffs, NJ, 1989.

T. Kane, Dynamics: Theory and Applications,
McGraw-Hill, 1985.

1

Figure 6: Sequence of Interactive Dynamic Simulation

0. Khatib, “A Unified Approach to Motion and Force
Control of Robot Manipulators: The Operational
Space Formulation,” IEEE J. on Robotics and Au-
tomation, Vol. 3, No. 1, 1987.

0. Khatib, “Object Manipulation in a Multi-Effector
Robot System,” Int. Sym. of Robotics Research,
Santa Cruz, CA, Aug. 1987.

M. Moore and J. Wilhelms, “Collision detection and
response for computer animation,” Computer Graph-
ics 22, (1988), 289-298.

M. Orlowski, “The computation of the distance be-
tween polyhedra in 3-space,” SIAM Conf. on Geomet-
ric Modeling and Robotics, Albany, NY, July 1985.

1152

