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Abstract 

A dynamic simulation package, which can accurately 
model the interactions between robots and their envi- 
ronment, has been developed. This package creates 
a virtual environment where various controllers and 
workcells may be tested. The simulator is divided in 
two parts: local objects that compute their own d y -  
namic equations of motion, and a global coordinator 
that resolves interactive forces between objects. This 
simulator builds upon previous work on dynamic sim- 
ulation of simple rigid bodies and extends it to cor- 
rectly model and efficiently compute the dynamics of 
multi-link robots. 

1 Introduction 

In recent years there have been many efforts to accu- 
rately simulate physical environments in both robotics 
and computer graphics. A physically accurate simu- 
lation gives important insights into the real-world be- 
havior of a robotic environment. 

The usefulness of robotic simulation is illustrated 
by a problem of the construction industry: the trans- 
fer of beams from one point to another (Figure 1). 
It is desired to  accomplish this task in optimal time 
while limiting the swing of the load. Use of unstable 
controllers on a real crane, could result in permanent 
damage to the crane and/or its environment. Using 
simulation, we can test, change, and improve the con- 
troller design in an iterative fashion without fear of 
damaging the physical system. Computer graphics 
permit the visualization of results in a quick, intuitive 
manner, and is, therefore, a valuable tool to speed the 
design and analysis process. 

We have developed a dynamic simulation package 
to simulate the interactions between robots and other 
objects in their environment. This simulation is based 
on dynamic equations of motion with accurate analyt- 
ical solutions of the constraint equations [l]. Although 
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Figure 1: Simulation of a Crane 

the dynamic equations of motion can be easily derived 
for each object, the interactions (i.e., collision and/or 
contact) between them, however, have proved to be 
more difficult to handle. In recent work, two general 
approaches have been proposed to address this prob- 
lem. 

The first approach resolves constraint forces, which 
keep objects from inter-penetrating, by using “spring- 
like” repulsion at  the collision and contact points [ 113. 
The advantage of this approach is its ease of imple- 
mentation and its extendibility to nonrigid bodies. 
This method, however, does not guarantee a physi- 
cally accurate solution for the dynamic behavior of 
the objects. 

The second approach finds analytically correct so- 
lutions to the dynamic interactions between rigid 
bodies by explicitly solving the constraint equations. 
Baraff [l] uses this technique to find constraint forces 
that prevent inter-penetrations between rigid objects. 
Although these analytical solutions for rigid body con- 
tact yield accurate physical behavior, they are more 
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difficult t o  implement and are not easily extended to 
nonrigid bodies. 

A physically accurate solution is essential in a sim- 
ulator that is designed to duplicate the motions of 
real world objects. Since the first approach does not 
guarantee a physically accurate solution, we have im- 
plemented the second method, which yields accurate 
analytical results [l]. Previous algorithms have been 
only developed for simple rigid-body objects. We have 
extended these algorithms to account for multiple link 
robots and other articulated objects. 

2 Dynamic Simulator 

The main objective in the design of our dynamic sim- 
ulator was the development of an interactive package 
that could be run in tandem with a physical robotic 
environment. In an ideal system, robot controllers 
should be capable of being connected interchangeably 
to either real robots or to our dynamic simulator. This 
capability permits to preview the behavior of robots 
and their interactions with the environment. In this 
way, various tasks and controllers may be tested in a 
“virtual reality” environment before they are applied 
to physical systems. 

.......................................................................................................... . ...............- 
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Figure 2: Overall Structure of the System 

Figure 2 illustrates the overall structure of the sys- 
tem. The dynamic simulator uses as inputs joint ac- 
tuator forces from a set of controllers. Employing the 
dynamic equations for each object in the environment, 
the simulator calculates and returns simulated sensor 
data to the controllers. Updated kinematic informa- 
tion, such as joint angles, is sent to a graphical output 
process to update the display of the simulated envi- 
ronment. 

3 Global/Local Architecture 

The simulator has been separated into two parts: a 
global coordinator and a set of local objects with their 
corresponding equations of motion. This functional 
separation is based on the following considerations: 

Dynamic equations of motion can be determined 
and independently calculated for each object as 
long as there is no contact or collision between 
objects. 

When contact or collision occurs, constraint 
forces or impulses impose correct dynamic be- 
havior and prohibit inter-penetrations of objects. 
Determination of constraint forces and impulses 
requires knowledge of all objects that are interact- 
ing at a given time. This determination requires 
a global treatment. 

A local object consists of its equations of motion, 
an integrator to update positions and velocities based 
on its dynamics, and a set of parameters required for 
the above calculations. 

The global coordinator determines if interac- 
tion between objects has occurred and solves the 
constraint impulse/force equations a t  the colli- 
sion/contact points. The collision is resolved by first 
calculating appropriate impulse forces that correctly 
model the collisions. If objects remain in contact af- 
ter the collision is resolved, contact forces are calcu- 
lated [l]. 

4 Object Structure 

The configuration of an n-DOF (degree-of-freedom) 
object is described by a vector q of n independent gen- 
eralized coordinates. Joint angles are generally used 
as generalized coordinates for robots, but other sets 
of parameters that satisfy the above constraints may 
also be utilized. The equations of motion in terms of 
generalized coordinates are given by 

where A(q)  designates the kinetic energy matrix; 
b ( q ,  q) ,  the centrifugal and Coriolis force vector; g(q) ,  
the gravity force vector; and I?, the generalized torque 
vector of the object [4]. 

The generalized torque r can be divided into 
torques generated by robot actuators rjoint and 
torques from external constraint forces rest. 
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Figure 3: Robot Structure 

Equation 1 is solved for q to dynamically simulate 
the motion of an object 

H = A - l ( q ) [ r  - b(q ,  4) - d!dl . ( 3 )  

Given an initial position and velocity, updated posi- 
tions and velocities can be obtained by numerical in- 
tegration of Equation 3 .  

This approach finds an efficient solution for robots 
and other multi-linked objects by taking advantage 
of well-defined holonomic constraints a t  their joints. 
By taking these constraints into account, this method 
finds solutions only for the parameters that affect the 
dynamics of the system. In contrast, other works [l, 31 
treat multi-linked objects as series of simple objects. 
These techniques require computation of all forces, in- 
cluding the internal joint forces, which have no effect 
on the motion of the system. These unnecessary cal- 
culations leads to  slower simulations. 

Each object stores the parameters needed to  rep- 
resent and solve the equations of motion in an object 
model. The description of the object model is divided 
into four categories: dynamic, kinematic, geometric] 
and graphical. Figure 3 shows an example of an ob- 
ject data structure for the robot manipulator. 

The dynamic model contains information related 
to  the forces required to cause motion including such 
data as inertial forces, Coriolis forces, and the kinetic 
energy matrix. 

The kinematics model incorporates data such as 
joint angles, joint velocities, the Jacobian, and trans- 
formation matrices. This information may be used to  

calculate parameters such as the position and velocity 
of the end-effector. 

The geometric model stores the geometric descrip- 
tion of each object. This information is used to find 
if contact between objects has occurred and, if so, the 
location of that contact. This information can then 
be used to  resolve the constraint force equations. 

The graphical model determines the visual image 
of the objects in a graphical rendering of the scene 
representing such qualities as shape, color, lighting, 
and shading. 

5 Global Coordinator 

5.1 Collision/ Contact Detection 

Collision and contact points are determined by first 
calculating object locations using the equations of mo- 
tion and assuming that no collisions or contacts occur. 
Inter-penetrations between objects indicate the pres- 
ence of collisions and/or contacts. Forces arising from 
these collisions and contacts can then be computed 
solving the constraint equations as described below in 
sections 5.2 and 5.3. 

Figure 4: 6 DOF manipulator with Bounding Boxes 

The algorithm that determines the existence of 
inter-penetrations is divided into two parts. First, 
each object is enclosed in bounding boxes that may 
be checked quickly for intersections. If the bounding 
boxes do not overlap, further checking of collisions or 
contacts for those objects is unnecessary. Figure 4 
shows two 6 DOF arm robots with bounding boxes 
around their links. 

A naive collision-checking implementation that 
checks all pairs of objects has a complexity of 
O(n2) but a sort and sweep algorithm requires only 
O(n log n) steps. [a] .  In subsequent simulation cycles, 
an insertion sort may be used for additional efficiency. 
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If the bounding boxes of two objects overlap, the 
minimum distance between them is computed in or- 
der to determine inter-penetrations. For this purpose, 
Orlowski [12] relies on an algorithm with a complexity 
of O(M log M )  where M is total number of vertices in 
the two objects, M = M I  + Mz. Baraff employs an 
algorithm that has an initial complexity of O(M1 M z )  
but that utilizes temporal witnesses to reduce that 
complexity to O ( M )  [2]. We have implemented an al- 
gorithm developed by Gilbert [5], which is considered 
to be one of the most efficient to compute inter-object 
distances. It has a complexity of O ( M )  with a small 
coefficient of linear growth. 

5.2 Impulse Force Resolution 

A collision between two objects a, and b occurs when 
there exist points p a  and Pb such that at  some colli- 
sion time t,, p a ( t c )  = p b ( t c )  and such that their rel- 
ative velocity just prior to collision is negative in the 
direction n; normal to the contact region. Given m 
collision points (1 5 a 5 m), v i  and U' are defined as 
the component of the relative velocity parallel to the 
common normal at point i where "-" and "+" differ- 
entiate between the values before and after collision, 
respectively. The normal ni is defined to have a pos- 
itive direction from b to a. The relative velocity v 7 ,  
which has a negative value, is then formally defined as 

(4) 

where pi, and pa, are the velocity vectors prior to the 
collision a t  i th collision points on the objects a and b. 

Because of space limitations we restrict our discus- 
sion to the collision of one generalized object against 
a fixed obstacle. This formulation can easily be ex- 
tended to the generalized case. Using this simplifying 
assumption, then I j b , ( t )  = 0, and Equation 4 becomes 

'U, = n; P a , .  

When a collision occurs in a physical system, a lo- 
cal deformation is produced for a brief period of time 
that generates forces sufficient to prevent penetration. 
Modeling this deformation for hard objects produces 
stiff equations that are slow to integrate. We have 
instead chosen to model objects as rigid bodies and 
to calculate the impulse forces explicitly. An impulse 
causes an instantaneous change in the velocity of an 
object. The equations of motion are integrated, there- 
fore, to the time of collision, new values of the gener- 
alized velocities q are then calculated, and the inte- 
gration is continued using the new state. By breaking 
up the intergration at the velocity discontinuity the 
integration of a stiff set of equations can be avoided. 

(5) 
- T .- 

Baraff [l] uses three constraint equations for each 
contact point i to calculate the impulse forces on a 
body. 

U' 2 -€;U;, (6) 
j i  L 0 ,  (7) 

j;(vi+ +€;U*:) = 0 ,  (8) 

where is the coefficient of restitution, and j ,  is the 
magnitude of the impulse force in the direction ni at 
the contact point. Equation 6 can be rewritten as 

Avi >_ -( 1 + ei).: , 

AV; = V' - U,:. 

(9) 

(10) 
where 

The quantity AV, is the instantaneous change in ve- 
locity between t ;  and t$ caused by the impulse forces 
j i .  The velocity U; (Equation 5) can be expressed as 

Since [4] 
1 -  1 q ,  

where Ji is the Jacobian that maps q to the velocity 
at  the i th collision point. Accordingly, Avi can be 
expressed as 

The instantaneous change in velocity AV; is calculated 
by first mapping the unknown impulse forces into the 
generalized coordinate space of the object. For colli- 
sions at  the end effector of a manipulator, this map- 
ping is given by 

(12) $. - J . '  

Avi = nT JiAq . (13) 

(14) cr .  - J T n . ' .  
1 - , 131 1 

where pi is the generalized impulse caused by the col- 
lision impulse j ;  on the contact point i. The total 
generalized impulse on the object is the sum of the 
individual impulses on the object. This vector is then 
given, in the generalized coordinates of the object, by 
the equation 

m 

k = l  

The generalized impulse p is then used to compute the 
instantaneous change of the generalized coordinates. 

Aq = A - l p .  (16) 

Using Equations 13, 15, and 16, Equation 9 can be 
rewritten as 

m 

k = l  
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Since is previously known and AV; depends lin- 
early on the unknown impulse magnitudes j i  , the con- 
straint equations can be solved simultaneously for the 
unknown impulse forces ji. The constraint equations 
(Equations 6, 7, 8) are such that they can be solved 
using quadratic programming techniques [ 11. 

Once the impulse forces have been found, the new 
generalized velocity can be calculated. 

qs = q-  + Aq . (18) 
The above equations can be easily extend to handle 
multiple, moving, and redundant objects [2, 101. 

5.3 Contact Force Resolution 

If U+ = 0, inter-penetration may still occur if ai  = ;+ 
is negative. In this case, the objects are said to be 
in resting contact. When objects are in resting con- 
tact, forces of magnitude f ;  must be generated at the 
contact points in the direction normal to  the contact 
surfaces. The magnitude of the force must be non- 
negative, and zero when the contact points are sepa- 
rating, i.e., ai  > 0. Given m contact force constraints, 
the constraint equations may be written as 

ai 2 0 ,  (19) 
f i  2 0 ,  (20) 

f i a i  = 0 .  (21) 

where 15 i 5 m. Note these constraint equations are 
similar in form to Equations 6, 7, and 8. Given that 

we can differentiate U' to obtain a i .  

Recalling now Equation 3 

c = A - l ( m  - q q ,  4) - ddl 
where r = rjoint + reXt ,  and reIt is the generalized 
torque caused by the sum of the forces f i  applied at 
the contact points in the direction n i .  The mapping 
between rezt and the applied forces a t  the contact 
points [4] is given by 

m 

k=l 

Equations 19, 20, and 21 depend linearly on the un- 
known forces f ;  (see Equations 23, 2,  3, and 24) and 
have a form similar to  the impulse constraint equa- 
tions(Equations 6, 7, and 8). A similar method may 

be used, therefore, to  solve the contact constraints. 
Once the contact forces are found, reIt may be com- 
puted and the dynamics are updated to  the next time 
cycle. 

A discussion on determining rext for redundant ma- 
nipulators and for contacts outside the end effector has 
been given by Khatib [lo]. 

6 Implementation 

Our dynamic simulator is implemented in C on a Sil- 
icon Graphics workstation. Gilbert's distance algo- 
rithm is used to find the minimum distance between 
objects [5]. When interaction occurs, the constraint 
equations (Equations 6, 7, 8 and 19, 20, 21) are solved 
by means of quadratic programming techniques [6]. 
When the objects are not in contact with each other, 
they are governed solely by their rigid body dynam- 
ics. For a given body, these dynamic equations are 
predetermined and calculated symbolically off-line by 
a program based on Kane's formulation [8]. 

These equations are integrated to obtain position 
and velocity information using an Adams-Bashforth 
adaptive step-size predictor-corrector integrator [7]. 

Figure 5: Graphical User Interface 

We have also developed a graphical user interface 
to make our simulator more accessible to  the user. 
This interface, which controls camera views, collision 
detection, movie record/playback, and simulation is 
shown on Figure 5. 

7 Results 

We have developed a modeling system to dynamically 
simulate interactive robotic environments. Using this 
simulator, a wide range of robotic environments can 
be represented and simulated. 
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For example, a crane has been simulated to study 
the load swing under various conditions and to de- 
termine the feasibility of different tasks under those 
conditions (Figure 1). We have also simulated (Fig- 
ure 4) a more traditional robotic environment consist- 
ing of two PUMA 560 manipulators to test various 
robotic applications including a singularity controller 
that smoothly moves in and out of singular configu- 
rations. We have also used our approach to model a 
submarine (Figure 5) to determine the feasibility of an 
autonomous underwater vehicle recovery system. 

A simple simulation can demonstrate the dynamic 
interactions of robots. Figure 6 illustrates collisions 
between two 6 DOF robots. The left robot is falling 
under the effect of gravity while the right robot has 
gravity compensation. The up/down sequence shows 
the two robots colliding at  frame 5 and again at  frame 
16 (right of frame 5). In this sequence, we can also ob- 
serve the complex robot motions due to joint coupling. 
Even for such a simple environment, the dynamics of 
multi-linked objects and the resolution of interactive 
forces must be simulated in order to produce realis- 
tic results. We have incorporated these functionalities 
into our package by means of a global/local structure 
that creates efficient dynamic simulations of interac- 
tive robotic environments. 
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