
On-Line Trajectory Generation:
Nonconstant Motion Constraints

Torsten Kröger

Abstract— A concept of on-line trajectory generation for
robot motion control systems enabling instantaneous reactions
to unforeseen sensor events was introduced in a former pub-
lication. This previously proposed class of algorithms requires
constant kinematic motion constraints, and this paper extends
the approach by the usage of time-variant motion constraints,
such that low-level trajectory parameters can now abruptly
be changed, and the system can react instantaneously within
the same control cycle (typically one millisecond or less). This
feature is important for instantaneous switchings between state
spaces and reference frames at sensor-dependent instants of
time, and for the usage of the algorithm as a control submodule
in a hybrid switched robot motion control system. Real-world
experimental results of two sample use-cases highlight the
practical relevance of this extension.

I. INTRODUCTION

Sensor integration in the feedback loops of low-level
motion controllers belongs to key technologies for the future
advancement of robot arm controllers. It is important to
enable robot motion controllers to instantaneously switch
from sensor-guided motion control (e.g., force/torque control
[1] or visual servo control [2]) to trajectory-following motion
control (and vice versa) at unforeseen instants. This way,
new event-based robot programming methodologies can be
realized as robots become enabled to react instantaneously
in the moment the event is detected. In recent works [3],
[4], a concept of on-line trajectory generation (OTG) was
proposed. The resulting algorithms run in parallel to low-
level motion controllers and are able to compute a trajectory
from arbitrary states of motion within the same control cycle
that the unforeseen switching occurs. The major limitation of
the algorithms described in [3] is that only constant kinematic
motion constraints can be applied to them, that is,

Bi =
(
~V max
i , ~Amax

i , ~J max
i , ~Dmax

i

)
= const ∀ i ∈ Z ,

(1)
where the columns of the matrix Bi contain the maximum
velocity vector ~V max

i at a discrete instant Ti, the maximum
acceleration vector ~Amax

i , the maximum jerk vector ~J max
i ,

and/or even a vector for the maximum derivatives of jerk
~Dmax
i . This paper extends the algorithms of [3], such that

time-variant values for all elements of Bi can be applied.
This way, the algorithm can generate a trajectory even if
one or more elements of the current state of motion

Mi =
(
~Pi, ~Vi, ~Ai, ~Ji

)
=
(

1
~Mi, . . . , k

~Mi, . . . , K
~Mi

)T
(2)

T. Kröger is with the Artificial Intelligence Laboratory at Stanford
University, Stanford, CA 94305-9010, USA, tkr@stanford.edu.

exceed the values of Bi. In eqn. (2), K represents the number
of degrees of freedom (DOF) of the robotic system; ~Pi

contains the position, ~Vi the velocity, ~Ai the acceleration,
and ~Ji the jerk at the discrete instant Ti. The major benefits
of this extension will be:

• The values of the kinematic motion constraints can
be abruptly increased or decreased, such that motion
trajectory parameters can be adapted on-line and the
system reacts to the change immediately within one
control cycle (commonly, one millisecond or less).

• The algorithm can be used as a control submodule in a
hybrid switched robot motion control system, which is
available even if sensors fail.

• Instantaneous switchings between state spaces and ref-
erence frames at unforeseen instants become possible.

• One of the prerequisites for the embedding of robot
dynamics to the OTG concept is set up (future work).

The next section introduces related works, Sec. III describes
the extension of the OTG algorithm, and Sec. IV discusses
real-world experimental results of this extended class of OTG
algorithms.

II. RELATED WORK

The works most related to this paper are [5]–[11], all
of which belong to the fields of robot motion control [12]
and trajectory generation [13], [14] in robotic systems. Mac-
farlane et al. [5] present a jerk-bounded, near-time-optimal
trajectory planner that uses quintic splines, which are also
computed on-line but only for one-DOF systems. In [6], Cao
et al. use rectangular jerk pulses to compute trajectories, but
initial accelerations different from zero cannot be applied.
Compared to the multi-DOF approach presented here, the
latter method has been developed for one-dimensional prob-
lems only. Broquère et al. [7] published a work that uses
an on-line trajectory generator for an arbitrary number of
independently acting DOFs. The approach is very similar
to the one of Liu [8] and is based on the classic seven-
segment acceleration profile [15]. With regard to [4], it is
a Type V on-line trajectory generation approach designed
for handling several DOFs individually. Another very recent
concept was proposed by Haddadin et al. [11]; Instead of
generating motion trajectories, virtual springs and damping
elements are setup up used as input values for a Cartesian
impedance controller of the robot.

A disadvantage of [5], [6], [8] is that they cannot cope
with initial acceleration values unequal to zero. A further,
recent work of Haschke et al. [9] presents an on-line tra-
jectory planner in the very same sense as [3] does. The

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1404-6/12/$31.00 ©2012 IEEE 2048

proposed algorithm generates jerk-limited trajectories from
arbitrary states of motion, but it suffers from numerical
stability problems, that is, it may happen, that no jerk-limited
trajectory can be calculated. In such a case, a second-order
trajectory with infinite jerks is calculated. Furthermore, the
algorithm only allows target velocities of zero. Ahn et al.
[10] proposed a work for the on-line calculation of one-
dimensional motion trajectories for any given state of motion
and with arbitrary target states of motion, that is, with target
velocities and target accelerations unequal to zero. Sixth-
order polynomials are used to represent the trajectory, which
is called arbitrary states polynomial-like trajectory (ASPOT).
The major drawback of this work is that no kinematic motion
constraints, such as maximum velocity, acceleration, and jerk
values, can be specified.

III. THE EXTENDED ALGORITHM

Let us first describe the extension of the OTG algorithm
in a generic manner and afterwards concretely by means of
the extension of the OTG Types III – V.1

A. Formal Description

This nomenclature used here is inherited from [3], [4]. Let
us define a trajectoryMi(t), which is calculated at a discrete
time instant Ti, as

Mi(t) =
{(

1mi(t),
1Vi
)
, . . . ,

(
lmi(t),

lVi
)
,

. . . ,
(
Lmi(t),

LVi
)}

,
(3)

where the elements lmi(t) are matrices of motion polyno-
mials

lmi(t) =
(
l~pi(t),

l~vi(t),
l~ai(t),

l~ji(t)
)

=
(
l
1 ~mi(t), . . . ,

l
k ~mi(t), . . . ,

l
K ~mi(t)

)T
.

(4)
Time-discrete values are represented by capital letters, time-
continuous values by lower case letters. A trajectory segment
l of a single DOF k is described by the motion polynomials

l
k ~mi(t) =

(
l
kpi(t),

l
kvi(t),

l
kai(t),

l
kji(t)

)
, (5)

where l
kpi(t) represents the position progression, l

kvi(t) the
velocity progression, l

kai(t) the acceleration progression, and
l
kji(t) the jerk progression. According to eqn. (3), a complete
trajectory is described by L segments, and each segment l is
accompanied by a set of time intervals

lVi =
{
l
1ϑi, . . . ,

l
k ϑi, . . . ,

l
Kϑi

}
, where l

kϑi =
[
l−1

kti,
l
kti
]
,

(6)
such that a single set of motion polynomials l

k ~mi(t) is only
valid within the interval l

kϑi.
Fig. 1 shows the input and output values of the OTG

algorithm in a generic manner (cf. [3]). It is the task of

1For the OTG Types I – II, ~J max
i and ~Dmax

i are irrelevant; for the
Types III – V, the values of ~Dmax

i are not relevant, because they are not
considered by these types of OTG algorithms (cf. [3]).

O
n
-l
in

e
 t
ra

je
c
to

ry
 g

e
n
e
ra

ti
o
n
 a

lg
o
ri
th

m Set-points
for lower-

level control

Fig. 1. Input and output values of the Type IX OTG algorithm (cf. [3]).

the algorithm to time-optimally transfer an arbitrary current
state of motion Mi into the desired target state of motion

M trgt
i =

(
~P trgt
i , ~V trgt

i , ~A trgt
i , ~J trgt

i

)
(7)

under consideration of the kinematic motion constraints Bi.
The algorithm works memoryless and calculates only the
state of motion of the next control cycle, Mi+1 (because an
unforeseen sensor event may occur until Ti+1). The cycle
time commonly is in the range of one millisecond or less to
be able to react instantaneously, that is, in the same control
cycle an unforeseen switching event occurs.

The algorithms described in [3] require constant values
of Bi (cf. eqn. (1)) and are extended now, such that the
elements of Bi can be time-variant. The extension works in
the same way as the basic algorithms of [3] do, but here an
additional decision tree is connected upstream of each basic
decision tree. The case in which one or more elements of the
initial motion state values k

~Mi exceed their corresponding
constraints of k

~Bi has to be considered in this extension, and
it may happen at any discrete time instant Ti with i ∈ Z

and k ∈ {1, . . . , K}, in which

|kVi| > kV
max

i and/or |kAi| > kA
max
i and/or

|kJi| > kJ
max
i and/or |kDi| > kD

max
i

(8)
is true. Furthermore, motion states k

~Mi may occur, which are
within their respective bounds k

~Bi at instant Ti, but which
will lead to an unavoidable future exceeding of k

~Bi at a time
instant Ti+u:

|kVi+u| > kV
max

i and/or |kAi+u| > kA
max
i and/or

|kJi+u| > kJ
max
i and/or |kDi+u| > kD

max
i

with u ∈ N\{0} . (9)

2049

Fig. 2. This decision tree is applied prior to the decision trees of the Type III – V OTG algorithms described in [3]. Its task is to bring all motion
state values Mi into their limits Bi and to guarantee that the elements of Mi can remain within in these bounds. For this purpose, one or more of the
intermediate acceleration profiles, which are shown on the left, are connected upstream of the acceleration profiles selected by the main algorithm (cf. [3],
[4]).

If one or more of the cases in eqns. (8) and (9) are true,
the extended algorithm has to select and parameterize Λ
intermediate trajectory segments l

k ~mi with l ∈ {1, . . . , Λ}
with corresponding time intervals l

kϑi with l ∈ {1, . . . , Λ}
(cf. eqns. (5) and (6)) in order to guide these values back
into their bounds, and furthermore to bring the DOF k of the
system into a state of motion after which the motion variables
can be kept within the constraint values of k

~Bi. Therefore,
this set of intermediate trajectory segments is determined
and executed prior to the segments that are generated by
the basic algorithm: l

k ~mi with l ∈ {Λ + 1, . . . , L} and
l
kϑi with l ∈ {Λ + 1, . . . , L}. Corresponding to the
type of OTG, velocity profiles (Type I, II), acceleration
profiles (Type III – V), or jerk profiles (Type VI – IX) are
applied, respectively. As for the basic algorithms [3], [4], it is
absolutely essential that the additional decision tree and the
respective intermediate motion profiles cover the complete
input space of the algorithm; otherwise there would be input
values Wi (cf. Fig. 1) to which no trajectory, that is, no
output signal Mi+1, can be generated.

B. Extension by Means of Type III – V OTG Algorithms

Based on the OTG Types III – V, we will derive the
required extension in this subsection; these types generate
jerk-limited trajectories (cf. [3]). Fig. 2 shows the respective
decision tree in a minimized version. The execution of the
intermediate trajectory segments shown on the left of Fig. 2
is finished at (Λ+1)

kti (cf. eqns. (6) and (3)), and we have to

assure, that

−kV
max

i ≤ kvi

(
(Λ+1)

kti

)
≤ +kV

max
i ∧

−kA
max

i ≤ kai

(
(Λ+1)

kti

)
≤ +kA

max
i

(10)
hold for all DOFs k ∈ {1, . . . , K}. Furthermore, we have
to ensure for each DOF k that if we bring kai

(
(Λ+1)

kti

)
to zero by applying the maximum possible jerk ±kJ

max
i ,

the maximum velocity value of kV
max

i is not exceeded
again (neither positively nor negatively). Therefore, the plain
condition∣∣∣∣∣∣∣kvi

(
(Λ+1)

kti

)
±

(
kai

(
(Λ+1)

kti

))2

kJ max
i

∣∣∣∣∣∣∣ ≤ kV
max

i (11)

has to be fulfilled for all DOFs k ∈ {1, . . . , K}. In the
following, the extension is derived in order to let eqns. (10)
and (11) be true and to subsequently apply the basic part of
a Type III, IV, or V OTG algorithm (cf. [3]).

The minimized decision tree of Fig. 2 takes advantage
of sign switchings. Since this tree is executed prior to all
basic decision trees of OTG Types III – V and also prior to
the further decision tree for the synchronization of multiple
DOFs, the letter X has been chosen to replace the actual
tree identifier (e.g., 1A, 1B, or 2). Decision X.001 leads
to a switching of signs for the initial and for the target
state of motion if the current acceleration value kAi is
negative. Hence, kAi is positive for decision X.002. This
decision checks whether kA

max
i is currently exceeded. If

it is exceeded, we set up a first intermediate acceleration
profile segment (NegLin), which brings Ai down to kA

max
i

2050

by applying −kJ
max
i . The decisions X.003 and X.004 check

whether kV
max

i is positively or negatively exceeded. Since
our current acceleration value is positive, decision X.003
calculates the velocity value that we would obtain if we were
to bring the acceleration value to zero (which increases the
velocity value). If the resulting velocity is then greater than
+kV

max
i , we decrease the acceleration to zero by applying

−kJ
max
i again (NegLin), perform a switching of signs, and

let the decisions X.005 to X.008 bring the velocity value into
its bounds. Decision X.004 only checks whether −kV

max
i

is exceeded. If this is the case, we continue at decision
X.005. For this decision, we know that the velocity is less
than −kV

max
i , and the acceleration is positive (no matter

if the branch of decision X.003 or X.004 has been taken).
If we would now increase the acceleration to +kA

max
i ,

decision X.005 checks whether the resulting velocity value
is greater or less than −kV

max
i . If it is less, we know

that a simple acceleration increase brings the velocity value
back into its limits, but we have to make sure, that it can
remain within these. For this purpose, decision X.006 checks
whether +kV

max
i would be exceeded if we subsequently

decreased the acceleration value to zero. If this is not the case
(left branch), a simple PosLin profile segment, which applies
+kJ

max
i , complies with the requirements of eqns. (10)

and (11). Otherwise (right branch), we would increase the
acceleration value to a certain peak value, and subsequently
decrease it again, such that we would reach +kV

max
i exactly

after the full decrease to zero (profile segment PosLin-
NegLin). The decisions X.007 and X.008 work analogously.
In the last step, we have to re-switch the signs again if they
have been switched before (decision X.009). Finally, we can
assure that the conditions of eqns. (10) and (11) are fulfilled
and will not be breached again, and we can continue with the
basic decision trees of the Type III, IV, or V OTG algorithm
as presented in [3].

Depending on the input values Wi (cf. Fig. 1) and in
correspondence to the intermediate acceleration profiles of
the decision tree shown in Fig. 2,

Λ ∈ {0, . . . , 5} (12)

holds for the Types III – V. Once the Λ intermediate trajectory
segments are determined, they have to be parameterized. This
is also done in the same way as for the acceleration profiles
as described in [3], [4]. The resulting systems of equations
are of trivial nature and can be solved in a straightforward
way without any numerical problems.

IV. RESULTS

This section discusses experimental results and the benefits
achieved with the extended variant of the Type IV OTG
algorithm. For comprehensiveness, we start with a simple
one-DOF example, and subsequently we apply the proposed
concept to a six-DOF robot manipulator.

A. Basic Example with a One-DOF System

For a better understanding, we illustrate the functionality
of the extended Type IV OTG algorithm by means of a

Fig. 3. Resulting Type IV trajectory at T0 for one DOF k generated with
the extended OTG algorithm presented in Sec. III for the given input values
of eqn. (13). The vertical dashed lines indicate the bounds of the single
trajectory segments, and the horizontal dotted lines indicate the kinematic
motion constraints k

~Bi.

concrete example with one DOF k only. Let us assume some
given input values k

~W0 at instant T0 = 0ms:

kP0 = −100mm kP
trgt

0 = 300mm

kV0 = −270mm/s kV
trgt

0 = −100mm/s

kA0 = −450mm/s2
kV

max
0 = 300mm/s

kA
max
0 = 300mm/s2

kJ
max

0 = 900mm/s3 .
(13)

After the calculation at the control cycle of T0, the
trajectory of Fig. 3 results from the input values k

~W0 of
eqn. (13). In the first step, we select intermediate trajectory
segments by applying the decision tree of Fig. 2. Here, we
would take the following path:

X.001 → Change of signs → X.002 → NegLin →
X.003 → NegLin → Change of signs →
X.005 → X.007 → PosLinHld → X.009 →
Basic decision tree of Type IV .

This example results in Λ = 4 intermediate trajectory

2051

segments (cf. Fig. 2):

NegLin =⇒ PosLin One segment
(

1
k ~m0(t), 1

kV0

)
NegLin =⇒ PosLin One segment

(
2
k ~m0(t), 2

kV0

)
PosLinHld Two segments

(
3
k ~m0(t), 3

kV0

)
,(

4
k ~m0(t), 4

kV0

)
.

At T0, both conditions, eqns. (10) and (11), are not
fulfilled. These Λ = 4 trajectory segments lead to a new
state of motion Λ

k ~m0(
(Λ+1)

kt0), which satisfies eqns. (10) and
(11), and we can execute the basic Type IV decision tree of
[3]. The result of this tree is that PosTrapZeroNegTrap
acceleration profile is required for the time optimal solution;
the corresponding nonlinear system of equations can be
set up and solved to get all trajectory parameters kMi(t).
Finally, we obtain L = 4 + 7 = 11 trajectory segments,
whereas the fifth segment is actually not existent, because
5
ka0

(
5
kt0
)

= kA
max
i , and, thus, 5

kt0 ≡ 6
kt0 holds (cf. Fig. 3).

B. Real-World Experimental Results

To highlight the practical relevance of the method pro-
posed in this paper, we now discuss real-world experimental
results and show, how the extended OTG algorithm can be
applied in a hybrid switched-system for robot motion control.
For the experiments, the same hardware setup as described
in [3] has been used: The original controller of a six-
joint Stäubli RX60 industrial manipulator [16] was replaced,
and the frequency inverters were directly interfaced. Three
PCs running with QNX [17] as real-time operating system
perform a control rate of 10 KHz for the joint controllers; a
hybrid switched-system controller is used for Cartesian space
control and runs at a frequency of 1 KHz.

If we consider the actuator space control scheme as
Lyapunov stable [18], we can focus on the task space control
scheme, which contains the hybrid switched-system, and
the on-line trajectory generation submodule. Especially, the
works of Branicky [19], [20] and Liberzon [21], [22] provide
elementary concepts to develop and analyze hybrid switched-
system control techniques. In particular, the stability analysis
is of fundamental interest here, because the stability of a
switched-system cannot be assured by the stability of each
single sub-controller. Proving the stability of hybrid switch-
ing systems can be extremely difficult and many researchers
are working on analyzing such stability questions. Brockett
[23] explains this subject for motion control systems. Žefran
and Burdick [24], [25] suggest an approach, in which a
system with changing dynamics is considered, and a hybrid
controller is designed for handling the system in different
“regimes” of dynamics. One essential benefit of the OTG
submodule is that it can take over control at any time and in
any state of motion to stabilize the system, if the underlying
trajectory-tracking controller is stable.

Here, we consider a hybrid switched robot motion con-
trol system with six DOFs {x, y, z, jx , jy , jz } [26]; the
results are shown in Figs. 4 and 5. Starting with a sensor-
guided motion of a simple PID zero-force controller [1], the

Fig. 4. Position, velocity, and acceleration progressions. The switching
from sensor-guided robot motion control to trajectory-following control
happened at t = 662ms as the some acceleration values exceeded their
maximum values (cf. eqn. (14)). All six trajectories coinstantaneously reach
their desired target state of motion at TN = 2816ms. Fig. 5 depicts these
trajectories in the velocity-acceleration-plane of the state space (cf. [26]).

system detects that the acceleration amplitudes exceed

kA
max
i = 500mm/s2 ∀ (k, i) ∈ {x, y, z} × Z

kA
max
i = 500 ◦/s2 ∀ (k, i) ∈ { jx , jy , jz } × Z

(14)
for
{
z, jx , jz } at t = 662ms. It is essential that appro-

priate input parameters M trgt
i and M trgt

i are setup in the
moment of switching from sensor-guided motion control to
trajectory-following control. ~Amax

i may be calculated from
the local forward dynamics [27], ~V max

i commonly is given
through mechanical system properties, and ~J max

i may be

2052

Fig. 5. Corresponding to Fig. 4, this diagram illustrates the six trajec-
tories from the moment of switching on (i.e., in the interval 662ms ≤
t ≤ 2816ms). All trajectories terminate in an equilibrium point of the
underlying control loops (cf. [26]).

setup with regard to the current task again. The simplest
way to setup M trgt

i would be to choose

~V trgt
i = ~0 and ~A trgt

i = ~0 ∀ i ∈ Z (15)

again. The desired pose ~P trgt
i should be set to a safe pose

in workspace, such that no collisions and no singularities
occur during the motion. Depending on the task, it can also
be reasonable to specify a desired target velocity vector
~V trgt
i 6= ~0 in space (e.g., in order to synchronize the system

with cooperating one or to achieve a defined state of motion
from which a safe motion can be continued).

Fig. 4 depicts the position, velocity, and acceleration
progressions for all six DOFs {x, y, z, jx , jy , jz }, and
Fig. 5 displays the corresponding trajectories the velocity-
acceleration-plane of the state space from the moment of
switching on. As one can clearly see in Fig. 4, the trajectories
of all six DOFs are continuous, and they reach their desired
target state of motion M trgt

i coinstantaneously at TN =
2816ms. Furthermore, Fig. 5 shows that all six trajectories
terminate in an equilibrium point of the inner control loops as
eqn. (15) was applied in this experiment (i.e., it is a Type III
trajectory, cf. [3], [4]). Furthermore, it would also be possible
to switch only a selection of DOFs instead of all DOFs.

The reason, why only results with decreasing motion
constraints are shown, is that this case is more demanding,
and increasing values can already be handled by the former
algorithm of [3], [4]. For the reason of clarity, only these
simple examples have been chosen for the simulation and
real-world experimental results.

Due to the concept proposed in this paper, we are now
able to instantaneously switch to state feedback control, that
is, control performed by the extended OTG algorithm, in
order to stabilize the system and continuously guide it to a
safe pose. As proposed in [26], this concept may be used
to stabilize hybrid switched-systems in a very general way,
as the OTG algorithms can take over control from arbitrary
states of motion at unforeseen instants.

V. CONCLUSION

The class of on-line trajectory generation algorithms de-
scribed in [3] was extended, such that time-variant kinematic
motion constraints can be applied to the algorithms. An
additional decision tree is required to be applied upstream
of the basic decision trees; if necessary, this tree selects
intermediate motion profiles to be executed prior to the
ones of the basic algorithm. As an example, this tree was
derived for algorithm Types III – V, which generate jerk-
limited motion trajectories.

Such an extended OTG algorithm enables users to on-
line increase or decrease the values of kinematic motion
constraints; motion trajectory parameters can be adapted on-
line, and the system reacts to the change within one control
cycle (commonly a millisecond or less). If used as a control
submodule in a hybrid switched-system, the extended OTG
algorithm can be used as a state feedback controller, which is
available even if sensors fail. Real-world experimental results
have shown how the extended algorithm can be used in a
hybrid switched-system. Furthermore, instantaneous switch-
ings between state spaces and reference frames at unforeseen
instants become possible, and it is also a prerequisite for the
embedding of robot dynamics, which is part of the future
work to be done in this research direction.

APPENDIX

This extension of the OTG Framework has become part
of the Reflexxes Motion Libraries [28], which can be down-
loaded from [29].

ACKNOWLEDGMENT

The research described in this paper was conducted at the
Institut für Robotik und Prozessinformatik at the Technische
Universitaet Carolo-Wilhelmina zu Braunschweig, Braun-
schweig, Germany, headed by Professor Friedrich M. Wahl,
to whom I would like to express my sincere gratitude.
Furthermore, I would like to express my appreciation to
Professor Oussama Khatib, who is currently hosting me
at the Stanford Artificial Intelligence Laboratory at Stan-
ford University, Stanford, USA. The works of my former
diploma students, Michaela Hanisch, Christian Hurnaus, and
Adam Tomiczek, who worked hard on the first ideas and
implementations of this concept, are highly appreciated. I
am indebted to the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation).

REFERENCES

[1] L. Villani, , and J. De Schutter. Force control. In B. Siciliano and
O. Khatib, editors, Springer Handbook of Robotics, chapter 7, pages
161–185. Springer, Berlin, Heidelberg, Germany, first edition, 2008.

[2] F. Chaumette and S. A. Hutchinson. Visual servoing and visual
tracking. In B. Siciliano and O. Khatib, editors, Springer Handbook
of Robotics, chapter 24, pages 563–583. Springer, Berlin, Heidelberg,
Germany, first edition, 2008.

[3] T. Kröger and F. M. Wahl. On-line trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events. IEEE Trans.
on Robotics, 26(1):94–111, February 2010.

[4] T. Kröger. On-Line Trajectory Generation in Robotic Systems, vol-
ume 58 of Springer Tracts in Advanced Robotics. Springer, Berlin,
Heidelberg, Germany, first edition, January 2010.

2053

[5] S. Macfarlane and E. A. Croft. Jerk-bounded manipulator trajectory
planning: Design for real-time applications. IEEE Trans. on Robotics
and Automation, 19(1):42–52, February 2003.

[6] B. Cao, G. I. Dodds, and G. W. Irwin. A practical approach to near
time-optimal inspection-task-sequence planning for two cooperative
industrial robot arms. The International Journal of Robotics Research,
17(8):858–867, August 1998.

[7] X. Broquère, D. Sidobre, and I. Herrera-Aguilar. Soft motion trajectory
planner for service manipulator robot. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
2808–2813, Nice, France, September 2008.

[8] S. Liu. An on-line reference-trajectory generator for smooth motion
of impulse-controlled industrial manipulators. In Proc. of the seventh
International Workshop on Advanced Motion Control, pages 365–370,
Maribor, Slovenia, July 2002.

[9] R. Haschke, E. Weitnauer, and H. Ritter. On-line planning of
time-optimal, jerk-limited trajectories. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
3248–3253, Nice, France, September 2008.

[10] K. Ahn, W. K. Chung, and Y. Yourn. Arbitrary states polynomial-
like trajectory (ASPOT) generation. In Proc. of the 30th Annual
Conference of IEEE Industrial Electronics Society, volume 1, pages
123–128, Busan, South Korea, November 2004.

[11] S. Haddadin, H. Urbanek, S. Parusel, D. Burschka, J. Roßmann,
A. Albu-Schäffer, and G. Hirzinger. Real-time reactive motion gener-
ation based on variable attractor dynamics and shaped velocities. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3109–3116, Taipei, Taiwan, October 2010.

[12] W. Chung, L.-C. Fu, and S.-H. Hsu. Motion control. In B. Siciliano
and O. Khatib, editors, Springer Handbook of Robotics, chapter 6,
pages 133–159. Springer, Berlin, Heidelberg, Germany, first edition,
2008.

[13] L. Biagiotti and C. Melchiorri. Trajectory Planning for Automatic
Machines and Robots, chapter 3, Composition of Elementary Trajec-
tories, pages 59–150. Springer, Berlin, Heidelberg, Germany, first
edition, 2008.

[14] L. E. Kavraki and S. M. LaValle. Motion planning. In B. Siciliano and
O. Khatib, editors, Springer Handbook of Robotics, chapter 5, pages
109–131. Springer, Berlin, Heidelberg, Germany, first edition, 2008.

[15] R. H. Castain and R. P. Paul. An on-line dynamic trajectory generator.
The International Journal of Robotics Research, 3(1):68–72, March
1984.

[16] Stäubli Faverges SCA, Place Robert Stäubli BP 70, 74210 Faverges
(Annecy), France. Homepage. http://www.staubli.com/en/
robotics (accessed: Jan. 26, 2012). Internet, 2012.

[17] QNX Software Systems, 175 Terence Matthews Crescent, Ottawa,
Ontario, Canada, K2M 1W8. Homepage. http://www.qnx.com
(accessed: Mar. 10, 2011). Internet, 2011.

[18] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control.
Springer, New York, NY, USA, 1999.

[19] M. S. Branicky. Studies in Hybrid Systems: Modeling, Analysis,
and Control. PhD thesis, Electrical Engineering and Computer Sci-
ence Dept., Massachusetts Institute of Technology, http://dora.
cwru.edu/msb/pubs.html (accessed: Mar. 10, 2011), 1995.

[20] M. S. Branicky. Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems. IEEE Trans. on Automatic Control,
43(4):475–482, April 1998.

[21] D. Liberzon. Switching in Systems and Control. Systems and Control:
Foundations and Applications. Birkhäuser, Boston, MA, USA, 2003.

[22] D. Liberzon and A. S. Morse. Basic problems in stability and design
of switched systems. IEEE Control Systems Magazine, 19(5):59–70,
October 1999.

[23] R. W. Brockett. In H. L. Trentelman and J. C. Willems, editors, Essays
on Control: Perspectives in the Theory and its Applications, chapter 2,
pages 29–53. Birkhäuser, Boston, MA, USA, first edition, March 1993.

[24] M. Žefran and J. W. Burdick. Stabilization of systems with changing
dynamics by means of switching. In Proc. of the IEEE International
Conference on Robotics and Automation, volume 2, pages 1090–1095,
Leuven, Belgium, May 1998.

[25] M. Žefran and J. W. Burdick. Design of switching controllers for
systems with changing dynamics. In Proc. of the IEEE Conference on
Decision and Control, volume 2, pages 2113–2118, Tampa, FL, USA,
December 1998.

[26] T. Kröger and F. M. Wahl. Stabilizing hybrid switched motion control
systems with an on-line trajectory generator. In Proc. of the IEEE

International Conference on Robotics and Automation, pages 4009–
4015, Anchorage, AK, USA, May 2010.

[27] R. Featherstone. Rigid Body Dynamics Algorithms. Springer, New
York, NY, USA, first edition, 2007.

[28] T. Kröger. Opening the door to new sensor-based robot applications —
The Reflexxes Motion Libraries. In Proc. of the IEEE International
Conference on Robotics and Automation, Shanghai, China, May 2011.

[29] Reflexxes GmbH, Sandknöll 7, D-24805 Hamdorf, Germany. Hom-
pepage. http://www.reflexxes.com (accessed: Feb. 6, 2012).
Internet, 2012.

2054

