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Online Trajectory Generation: Straight-Line Trajectories

Torsten Kröger, Member, IEEE

Abstract—A concept of online trajectory generation for robot motion
control systems that enables instantaneous reactions to unforeseen sensor
events was introduced in a former publication. This concept is now ex-
tended with the important feature of homothety. Homothetic trajectories
are 1-D straight lines in a multidimensional space and are relevant for all
straight-line motion operations in robotics. This paper clarifies 1) how on-
line concepts can be used to generate homothetic trajectories and 2) how we
can instantaneously react to (sensor) events with homothetic trajectories.
To underline the practical relevance, real-world experimental results with
a seven-degree-of-freedom (DOF) robot arm are shown.

Index Terms—Homothety, online trajectory generation (OTG), robot
motion control, sensor integration.

I. INTRODUCTION AND PROBLEM FORMULATION

Homothetic trajectories belong to the most common ones in com-
mercially available robotic manipulator control. They represent a mo-
tion along a 1-D straight line in a multidimensional space (Euclidian
space, Euler space, spherical coordinates, joint space, etc.). If we con-
sider a mechanical system with multiple degrees of freedom (DOFs)
that is equipped with one or more sensors delivering digital and/or
analog sensor signals, it is an essential feature to instantaneously react
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A. Albu-Schäffer and Editor J.-P. Laumond upon evaluation of the reviewers’
comments. This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation).

The author is with the Artificial Intelligence Laboratory, Stanford University,
Stanford, CA 94305-9010 USA (e-mail: tkr@stanford.edu).

Digital Object Identifier 10.1109/TRO.2011.2158021

to unforseen sensor signals and events. In [1], a framework for the
online generation of time-synchronized robot motion trajectories was
introduced, which generates trajectories from arbitrary initial states
of motion. This paper now extends the framework of [1] by enabling
phase-synchronized (homothetic) trajectories that are generated within
low-level control cycle (typically, 1 ms or less).

Let us define a trajectory Mi (t), which is calculated at a discrete-
time instant Ti , as

Mi (t) =
{ (1mi (t), 1Vi

)
, . . . ,

(
lmi (t), lVi

)

. . . ,
(

L mi (t), LVi

) }
(1)

where the elements lmi (t) are the matrices of the motion polynomials

lmi (t) =
(

l �pi (t), l�vi (t), l�ai (t), l�ji (t)
)

=
(

l
1 �mi (t), . . . , l

k �mi (t), . . . , l
k �mi (t)

)T
. (2)

Here, K is the total number of DOFs, and a trajectory segment l of a
single DOF k is described by the motion polynomials

l
k �mi (t) =

(
l
k pi (t), l

k vi (t), l
k ai (t), l

k ji (t)
)

(3)

where l
k pi (t) represents the position progression, l

k vi (t) represents the
velocity progression, l

k ai (t) represents the acceleration progression,
and l

k ji (t) represents the jerk progression. According to (1), a com-
plete trajectory is described by L segments, and each segment l is
accompanied by a set of time intervals

lVi =
{

l
1ϑi , . . . , l

k ϑi , . . . , l
k ϑi

}
where l

k ϑi =
[
l−1

k ti ,
l
k ti

]
(4)

such that a single set of motion polynomials l
k �mi (t) is only valid within

the interval l
k ϑi .

In [2], a good introduction about homothety is given, and in [3],
it is applied to robot trajectory generation. To generate homothetic
trajectories in the K-dimensional space, we can take an arbitrary DOF,
i.e., κ ∈ {1, . . . , K}, as the reference DOF and design the trajectory
parameters, such that the condition

∀ (k, l) ∈ {1, . . . , K} × {1, . . . , L}
l
k vi (t) = k �i · l

κ vi (t) with t ∈ l
k ϑi (5)

is fulfilled. This naturally also implies that

∀ (k, l) ∈ {1, . . . , K} × {1, . . . , L}
l
k ai (t) = k �i · l

κ ai (t)
l
k ji (t) = k �i · l

κ ji (t)
l
k di (t) = k �i · l

κ di (t)

⎫⎬
⎭ with t ∈ l

k ϑi (6)

are fulfilled. The constant vector

��i = (1�i , . . . , k �i , . . . , k �i )
T with κ �i = 1 (7)

defines the ratios between the reference DOF κ and all other DOFs
{1, . . . , K}\{κ}. Usually, homothetic trajectories are generated as
described by (5)–(7): A scalar function specifies the velocity progres-
sion for one DOF, which is referred to as a reference DOF, and the
motion of the other DOFs is calculated by the use of ��i [3].

Fig. 1 illustrates the path of a simple 2-DOF point-to-point mo-
tion with zero velocities in �P0 and �P trgt

0 . One can clearly recognize
the differences between the phase-synchronized (homothetic), time-
synchronized (cf., [1]), and nonsynchronized trajectories. In particular,
the elements of the kinematic motion constraints

Bi =
(

�V m ax
i , �Am ax

i , �Jm ax
i , �Dm ax

i

)
(8)
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Fig. 1. XY-plot of a plain 2-DOF point-to-point motion: phase synchronized,
time synchronized, and without synchronization.

are the same for both DOFs, such that the nonsynchronized motion
starts with an angle of 45◦ with respect to the reference frame. The
time-synchronized one starts in �P0 and ends in �P trgt

0 with an angle of
45◦. In (8), �Dm ax

i contains the maximum values of the derivative of
jerk; holonomic constraints are not part of Bi and are not considered
in this paper.

The problem that is addressed in this paper is the online generation
of homothetic trajectories, i.e., a new motion state is calculated at each
single low-level control cycle in order to be capable to instantaneously
react to unforeseen events that are triggered by sensor signals. In [1],
an algorithm that addresses this problem for time-synchronized trajec-
tories was suggested, which will be used as the basis for this paper.
After a discussion of related works, Section III briefly repeats and in-
troduces the basic concept of [1], Section IV introduces the extended
algorithm for straight-line motions, and Section V presents real-world
experimental results of a 6-DOF robot task.

II. RELATED WORK

The works that are most related to this paper are [4]–[10], all of
which belong to the fields of robot motion control [11] and trajectory
generation [12], [13] in robotic systems. Macfarlane et al. [4] present
a jerk-bounded, near-time-optimal trajectory planner that uses quintic
splines, which are also computed online but only for 1-DOF systems.
In [5], Cao et al. use rectangular jerk pulses to compute trajectories, but
accelerations that are different from zero cannot be applied. Compared
with the multi-DOF approach that is presented here, the latter method
has been developed for 1-D problems only. Broquère et al. [6] published
a work that uses an online trajectory generator for an arbitrary number
of independently acting DOFs. The approach is very similar to the one
of Liu [7] and is based on the classic seven-segment acceleration profile
[14]. With regard to [15], it is a Type V online trajectory generation
(OTG) approach that is designed to handle several DOFs individually.
Another very recent concept was proposed by Haddadin et al. [10].
Instead of generating motion trajectories, virtual springs and damping
elements are the setups that are used as input values for a Cartesian
impedance controller of the robot.

A disadvantage of [4], [5], and [7] is that they cannot cope with
initial acceleration values that are unequal to zero. A further, recent
work of Haschke et al. [8] presents an online trajectory planner in the
very same sense as [1] does. The proposed algorithm generates jerk-
limited trajectories from arbitrary states of motion, but it suffers from
numerical stability problems, i.e., it may happen that no jerk-limited
trajectory can be calculated. In such a case, a second-order trajectory
with infinite jerks is calculated. Furthermore, the algorithm only allows
target velocities of zero. Ahn et al. [9] proposed a work for the online
calculation of 1-D motion trajectories for any given state of motion and

Fig. 2. Input and output values of the Type IX OTG algorithm [1].

with arbitrary target states of motion, i.e., with target velocities and
target accelerations unequal to zero. Sixth-order polynomials are used
to represent the trajectory, which is called arbitrary states’ polynomial-
like trajectory. The major drawback of this work is that no kinematic
motion constraints, such as maximum velocity, acceleration, and jerk
values, can be specified.

III. BASIC CONCEPT

For a better understanding of the approach that is presented in this
paper, the basic algorithm for OTG [1], [15] is briefly summarized in
this section.

Fig. 2 shows the input and output values of the OTG algorithm in a
generic manner (cf., [1]). It is the task of the algorithm to time-optimally
transfer an arbitrary current state of motion

Mi =
(

�Pi , �Vi , �Ai , �Ji

)
(9)

into the desired target state of motion

Mtrgt
i =

(
�P trgt

i , �V trgt
i , �Atrgt

i , �J trgt
i

)
(10)

under consideration of the kinematic motion constraints Bi [see (8)].
The algorithm works memoryless and calculates only the next state of
motion Mi+1 , which is used as the input value for lower level motion
controllers. The resulting trajectories are time optimal and synchro-
nized, such that all selected DOFs simultaneously reach their target
state of motion. The selection vector �Si contains Boolean values to
mask single DOFs, for which no output values are calculated. All types
and variant of the algorithm consist of three steps, which are introduced
in the following.

A. Step 1: Calculate the Synchronization Time t sy n c
i

Although only one single scalar value is calculated in this step, it the
the most complex one. First, the minimum execution times k tm in

i are
calculated for each selected DOF k ∈ {1, . . . , K}. The value of the
minimum synchronization time tsync

i must be equal to or greater than
the maximum value of all minimum execution times. To transfer the
motion state of one DOF to another, a finite set of motion profilesPStep1
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Fig. 3. Subset of the acceleration profile setPStep1 of Type IV [1]. The dotted
horizontal line indicates the maximum acceleration values. These profiles are
required to calculate k tm in

i , as well as all limits of existing inoperative time
intervals kZi , for each single selected DOF k.

is considered, and a decision tree selects a motion profile k ΨStep1
i ∈

PStep1 for each selected DOF k ∈ {1, . . . , K}. To calculate k tm in
i ,

a system of nonlinear equations is set up, and the solution contains
the desired value. Fig. 3 exemplarily shows a subset of the set of
acceleration profiles for the Type IV OTG algorithm.

Depending on the type of the algorithm (I – IX), it may occur that up
to Z = 3, time intervals are existent, within which the target state of
motion cannot be reached. Such inoperative time intervals may occur
if the vectors �V trgt

i , �Atrgt
i , and �J trgt

i are different from zero [cf., [1]
and (10)]. Furthermore, decision trees are used to calculate all limits of
these inoperative time intervals kZi , whose elements are denoted by

z
k ζi =

[
z
k tb egin

i , z
k tend

i

]
with z ∈ {1, . . . , Z} . (11)

Finally, the minimum time not being within any inoperative time
interval

z
k ζi ∀ (z, k) ∈ {1, . . . , Z} × {1, . . . , K} (12)

is selected as the value for the synchronization time tsync
i .

B. Step 2: Synchronization of All Selected Degrees of Freedom

All selected DOFs that did not determine tsync
i have to be synchro-

nized to this time value. In principle, an infinite number of solutions can
be found to parameterize a trajectory that transfers such a DOF from
k

�Mi to k
�M trgt

i in tsync
i . In order to achieve a deterministic framework,

an optimization criterion must be used; in [1], the most simple variant
for time synchronization was suggested, which leads to rectangular
jerk signals that only switch between −k Jm ax

i , zero, and +k Jm ax
i .

This way, another decision tree can be used to select a motion profile
k ΨStep2

i from another set of motion profiles PStep2 . Again, a system
of nonlinear equations can be setup and solved. The solution contains
all required trajectory parameters of the synchronized trajectory of
DOF k.

C. Step 3: Calculate Output Values

This last step is trivial: The resulting trajectory parameters of Step
2 are used to calculate a new state of motion Mi+1 , which is used as a
set point for lower level controllers at Ti+1 .

Fig. 4 summarizes the generic version of the OTG algorithm.

Fig. 4. Nassi–Shneiderman structogram of the basic OTG algorithm [1].

IV. ALGORITHM

This paper now extends the proposed concept to be applicable for
homothetic (i.e., phase synchronized) robot-motion trajectories.

To generate phase-synchronized (homothetic) trajectories online, we
have to calculate the internal parameter vector ��i online [see (5)–(7)]
and adapt the parameters of the kinematic motion constraints Bi to a
matrix B′

i , as will be shown in this paper.
Compared with the general case that is described in [1], the desired

homothetic trajectories cannot be generated from arbitrary states of
motions. The basic requirement for homothety is that the vectors �Vi ,
�Ai , �Ji , �V trgt

i , �Atrgt
i , �J trgt

i , and
(

�P trgt
i − �Pi

)
are collinear.1 This

is the basic requirement in order to be able to establish a relation to
(5)–(7) and to determine the internal parameter vector ��i .

Condition 1:

∃ �γ = (γ1 , . . . , γ6 ) ∈ R
6 , such that(

�P trgt
i − �Pi

)
= γ1 · �Vi = γ2 · �V trgt

i = γ3 · �Ai

= γ4 · �Atrgt
i = γ5 · �Ji = γ6 · �J trgt

i . (13)

If the input values comply with the condition of (13), we have to select a
reference DOF κ, which we use in the following to adapt the respective
elements of the matrix Bi . To sustain the feature of kinematic time
optimality, we first calculate the execution times of all the selected
DOFs

�tm in
i =

(
1 t

m in
i , . . . , k tm in

i , . . . , k tm in
i

)T
(14)

and the respective motion profiles

�ΨStep1
i =

(
1Ψ

Step1
i , . . . , k ΨStep1

i , . . . , k ΨStep1
i

)T

(15)

with k ΨStep1
i ∈ PStep1 ∀ k ∈ {1, . . . , K} and

PStep1 =
{1ΨStep1 , . . . , r ΨStep1 , . . . , R ΨStep1} . (16)

The previous equation is taken from [1]; the finite set PStep1 contains
all R possible motion profiles for Step 1 of the OTG algorithm. Fig. 5
shows the generic Nassi–Shneiderman structogram for the algorithms
that are presented here. Based on (14), we can determine the maximum
element of �tm in

i , which we define as κ tm in
i , the minimum possible

1For the OTG Types I and II, �Ai , �Atrgt
i , �Ji , and �J trgt

i are irrelevant; for the

Types III–V, �Ji and �J trgt
i are not relevant, because they are not considered by

these types of OTG algorithms (cf., [1]).
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Fig. 5. Generic Nassi–Shneiderman structogram for the OTG algorithm for
homothetic trajectories (see Fig. 4).

synchronization time for all DOFs. If phase synchronization is possible,
κ will become the reference DOF for the current trajectory [cf., (5) –
(7)], and the synchronization time tsync

i will be set to κ tm in
i .

Along with the first requirement of (13), the single vectors of Bi

also have to be collinear to the vectors of (13)

∃ �γ = (γ1 , . . . , γ4 ) ∈ R
4 , such that(

�P trgt
i − �Pi

)
= γ1 · �V m ax

i = γ2 · �Am ax
i

= γ3 · �Jm ax
i = γ4 · �Dm ax

i . (17)

Since this is commonly not given, we have to adapt Bi to B′
i : more

precisely, all elements of Bi , except the ones of the reference DOF κ.
This is done in two steps. First, we calculate the vector

��i =
�P trgt

i − �Pi∣∣
κ P trgt

i − κ Pi

∣∣ (18)

whose κth element κ �i is 1. Subsequently, the adapted elements of B′
i

can be calculated by

∀ k ∈ {1, . . . , K} : k V m ax
i

′ = k �i · k V m ax
i k Jm ax

i
′

= k �i · k Jm ax
i k Am ax

i
′ = k �i · k Am ax

i k Dm ax
i

′ = k �i · k Dm ax
i .

(19)

With the matrix

B′
i =

(
�V m ax

i

′
, �Am ax

i

′
, �Jm ax

i

′
, �Dm ax

i

′)
(20)

the requirement of (17) is fulfilled. In order not to breach the kinematic
motion constraint values Bi , the elements of B′

i must be less than or
equal to the original ones of Bi .

Condition 2:

∀ k ∈ {1, . . . , K} : k V m ax
i

′ ≤ k V m ax
i ∧ k Jm ax

i
′ ≤ k Jm ax

i

∧ k Am ax
i

′ ≤ k Am ax
i ∧ k Dm ax

i
′ ≤ k Dm ax

i . (21)

If this condition is also fulfilled, one further condition has to be satisfied
to be able to generate a homothetic trajectory. All selected DOFs have

to be executed with the same motion profile as used for the reference
DOF κ ΨStep1

i to comply with (5) and (6). As shown in [1], we can use
κ ΨStep1

i to set up a system of equations for each selected DOF. But
instead of Bi , B′

i becomes applicable here together with Mi , M
trgt
i ,

and �Si . The solution of a system of equations contains the execution
time k tm in

i
′ for a selected DOF k. For all DOFs except κ, the value

differs from k tm in
i

k tm in
i

′ ≥ k tm in
i ∀ k ∈ {1, . . . , K}\{κ} (22)

κ tm in
i

′ =κ tm in
i (23)

because B′
i and κ ΨStep1

i are applied, and it may happen that no valid
solution can be found for one or more DOFs. In such a case, the profile
κ ΨStep1

i cannot transfer Mi to Mtrgt
i , and homothety is not possible.

To generate a homothetic trajectory, all selected DOFs have to reach
their target state of motion synchronously.

Condition 3:

k tm in
i

′ = κ tm in
i ∀ k ∈ {1, . . . , K} (24)

must be fulfilled as a final condition. Equation (24) has to be regarded
as theoretical. Because of numerical inaccuracies

∣∣∣ k tm in
i

′ − κ tm in
i

∣∣∣ ≤ T cycle ∀ k ∈ {1, . . . , K} (25)

has to be applied in practice. T cycle is the cycle time, i.e., the time
interval, in which the OTG algorithm is periodically executed.

As a result, Conditions 1–3 [see (13), (21), and (25)] must be ful-
filled to generate a homothetic trajectory. In Fig. 5, this is done in
the block “Is homothety possible?”, i.e., if possible, the OTG algo-
rithm generates a homothetic trajectory (left branch); otherwise, only
a time-synchronized one is generated (right branch). Here, alternative
branches may be possible, as will be discussed in Section VI. In the
case of homothety, the profile κ ΨStep1

i and the adapted kinematic mo-
tion constraints B′

i are applied in Step 2 to all selected DOFs in order
to calculate homothetic motion parameters for Mi (t) (cf., (1) and [1]).

This section presented an adaptation of the general OTG algorithm
of Section III in order to provide the possibility to generate trajectories
along a 1-D straight line in a multidimensional space during runtime,
i.e., the possibility to instantaneously react to unforeseen and abrupt
set-point switchings is also sustained for these kinds of trajectories.
The key feature again is that all proposed algorithms work online and
can be executed in every low-level control cycle.

V. EXPERIMENTAL RESULTS

Subsequent to the algorithm description, let us now discuss an ex-
ample of a homothetic and a time-synchronous trajectory that have
been achieved with a real-world setup. A KUKA light-weight robot
IV [17], [18] was set up and controlled through the fast research in-
terface at a rate of 1 KHz. The library and the OTG algorithm were
executed under real-time conditions on a QNX [19] PC node; the trans-
lational DOFs x and y, as well as all rotational DOFs, ©x , ©y , and ©z ,
were controlled by the OTG algorithm, while DOF z was controlled
by a force controller (i.e., zSi = 0 ∀ i ∈ Z). Fig. 6 shows both tra-
jectories, and Fig. 7 shows the corresponding paths in the XY-plane.
The sensor-guided DOF z is shown in gray, the other two translational
DOFs are shown by solid lines, and the rotational DOFs are shown by
dashed lines. The beginnings and endings of both motions feature zero
velocity and zero acceleration, and the simple task is to move from the
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Fig. 6. Position, velocity, acceleration, and jerk progressions of the sample 2-DOF paths that are shown in Fig. 7. The left diagrams depict the time-synchronized
trajectory (left diagram of Fig. 7), and the right ones depict the homothetically generated trajectory (right diagram of Fig. 7). The two sensor-dependent switchings
that occur in both cases are triggered by the position signal of the sensor-guided DOF z (gray lines), which are enlarged in the bottom two diagrams. The thresholds
(dotted lines) to trigger the switchings are in both cases at 66 mm for sensor event 1 and at 70 mm for sensor event 2. In the time synchronized case, the switchings
occur at t = 3.168 s and at t = 7.887 s and in the phase-synchronized case at t = 2.686 s and at t = 7.554 s. Although the switchings occur at arbitrary and
unforeseen instants, the right trajectory always remains homothetic, which can, in particular, be recognized by means of the jerk progressions and is an important
feature for many industrial robot applications. The used Type IV OTG algorithms are part of the Reflexxes Motion Libraries [16].
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Fig. 7. XY-plot of the trajectory that is depicted in Fig. 6. The left part shows the path of the time-synchronized trajectory, and the right one shows the path of
the phase-synchronized (homothetic) trajectory. A straight line results because of the property of homothety.

initial pose

�P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x P0

y P0

z P0

©x P0

©y P0

©z P0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−600 mm

−400 mm

58 mm

0◦

−80◦

0◦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

to the target pose

�P trgt
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xP
t r g t
0

yP
t r g t
0

zP
t r g t
0

©x P trgt
0

©y P trgt
0

©z P trgt
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−400 mm

300 mm

58 mm

−20◦

−50◦

−40◦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

whereas the orientation is represented by roll-pitch-yaw angles.2 The
third DOF z is not considered by the OTG algorithm. The kinematic
motion constraints Bi remain constant and are adapted to B′

i in the
homothetic case [cf., (19) and (20)]. Two sensor-dependent switching
points were defined: If the position signal z pi (t) exceeds 66 mm (sensor
event 1), a target state of motion of

�P trgt
i =

�P trgt
0 − �P0

2
�V trgt

i = −�Vi

�Atrgt
i = �0

is set up, and if z pi (t) exceeds 70 mm (sensor event 2), the original
target state of motion is applied again, i.e., �P trgt

0 , at zero velocity and
zero acceleration. In the time synchronized case, the switchings occur at
t = 3.168 s and t = 7.887 s and in the phase-synchronized case at t =
2.686 s and t = 7.554 s. To illustrate the trigger procedure, the position
signal z pi (t) was enlarged at the bottom of Fig. 6, and the thresholds
were marked by dotted lines. By means of Fig. 7, one can clearly see
the difference between both methods of synchronization: the phase-
synchronized case results independently from the switching events in
a straight line, while the path of the time-synchronized case depends
on the switching instants and trajectory parameters. Nevertheless, a
continuous jerk-limited trajectory results in both cases.

The used Type IV OTG algorithms are provided as part of the Re-
flexxes Motion Libraries [16].

In the time-synchronized case, the computations for this 6-DOF
system requires an average execution time of 135 μs on a single-core

2Other orientation representations work as well.

machine3 for the Type IV OTG algorithm; the worst case execution
time is 540 μs [1]. The software library was compiled by the use of
the QNX Compile Command QCC with optimization enabled.4 In
the phase-synchronized case, the worst-case execution time is less than
90 μs on the same hardware. This value is lower, because no inoperative
time intervals have to be calculated [cf., (11)], and for Step 2, only one
system of nonlinear equations has to be solved. This solution can be
used for all selected DOFs by simply multiplying with the scaling
vector ��i [cf., (7)]. In all cases, the worst case execution times scale
linearly with the number of selected DOFs, such that a complexity of
O(n) results, where n is the number of DOFs K .

VI. DISCUSSION

One important question that has to be addressed in this context of
phase synchronization the following: What happens if the user or the
application require a homothetic motion, but one of the three Condi-
tions 1–3 is not fulfilled? In Fig. 5, it is suggested to utilize a time-
synchronized trajectory, but this must not be the only alternative. The
reason, why one of the conditions is not fulfilled can have several
causes, and depending on the current task, one of the following three
cases may be considered.

1) ( �P trgt
i − �Pi ), �Vi , �Ai , and �Ji are not collinear. In this case, phase

synchronization is impossible.
2) ( �P trgt

i − �Pi ), �Vi , �Ai , and �Ji are collinear, and �V trgt
i , �Atrgt

i ,
and �J trgt

i are not collinear to the former vectors. In this case,
the desired target state of motion cannot be reached homotheti-
cally, but it would be possible to calculate a state of motion that
continues the straight-line motion. Another option would be to
use the time-synchronized trajectory (see Fig. 5). Which option
is selected depends on the current task.

3) ( �P trgt
i − �Pi ), �Vi , �Ai , �Ji , �V trgt

i , �Atrgt
i , and �J trgt

i are collinear,
but the elements of B′

i exceed the corresponding values of Bi . In
this case, we can either accept the exceeding of Bi (which may
lead to a motion that is beyond the kinematic capability of the
robot), or we calculate a matrix B′′

i , whose columns are collinear
to ��i , and which do not exceed the original motion constraints
of Bi . A third option is the utilization of a time-synchronized
trajectory (see Fig. 5).

VII. CONCLUSION

Based on the concept of OTG that is introduced in [1], an ex-
tended version has been presented in this paper. This version allows—if
possible—the generation of straight-line trajectories in multidimen-
sional space, i.e., homothetic trajectories. This class of trajectories is

3Used hardware: AMD Athlon64 3700+ (2.2 GHz, 1024KB L2 Cache), 2 GB
DDR-400, Gigabyte GA-K8NF9 Ultra F5 Mainboard.

4QNX Neutrino Version 6.5.0; QCC is based on the GNU Compiler Collection
Version 4.4.2 [20] and optimization option O enabled.
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very important for many real-world applications, and because of the
online motion generation, the robot controllers become able to instanta-
neously react to unforeseen (sensor) events and/or set-point switchings,
while keeping the motion phase synchronized. This feature plays a very
important role in all fields of robotics requiring (multi)sensor integra-
tion. Besides the algorithmic concept, real-world experimental results
with a 7-DOF robot arm of an online-generated Type IV trajectory were
shown in order to support a clear understanding of this new approach.
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Path Following for Unicycle Robots With an Arbitrary
Path Curvature

Angelo Morro, Antonio Sgorbissa, and Renato Zaccaria

Abstract—A new feedback control model is provided that allows a
wheeled vehicle to follow a prescribed path. Differently from all other
methods in the literature, the method that is proposed neither requires the
computation of a projection of the robot position on the path, nor does
it need to consider a moving virtual target to be tracked. Nevertheless, it
guarantees asymptotic convergence to a generic 2-D curve which can be
represented through its implicit equation in the form f(x,y) = 0, and it
puts no bounds on the initial position of the vehicle, provided that ∇f �= 0.

Index Terms—Mobile robots, path following, wheeled vehicles.

I. INTRODUCTION

This paper provides a new path following model for a wheeled
unicycle vehicle that moves in the 2-D Cartesian space.

Path following has been deeply investigated in the literature. The
assumption made in early works [1], [2] is that the vehicle forward
speed conforms to a prescribed speed profile, while the controller acts
on the vehicle orientation to steer it to the path. To achieve this, the
orthogonal projection of the robot position on the path is computed,
and the distance and angular error are consequently defined. Next, an
asymptotically stable control law is proposed to minimize both errors
by controlling the vehicle orientation.
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