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Abstract

This article investigates the problem of manipula-
tor design for increased dynamic performance. Opli-
mization lechniques are used to determine the design
paramelers which improve manipulator performance.
The dynamic performance of a manipulator is char-
acterized by the inertial and acceleration properties of
the end-effector. Our study of inertial and accelera-
tton propertiies have provided separate descriptions of
the characteristics assoctated with linear and angular
motions. This allows a more physically meaningful
interpretation of these properties and provides simple
models for their analysis. The article presents these
models, discusses the design optimization crileria, and
formulates the optimization problem. The approach is
tllusirated 1n the selection of design parameters of a
parallel mechanism.

1 Introduction

The initial design of a manipulator is often based
on considerations dealing with its kinematic structure
and workspace. This initial design must then be an-
alyzed to examine its dynamic performance. A ma-
nipulator dynamic performance involves issues deal-
ing with how quickly the system responds to actuator
commands and how it reacts to contact forces and mo-
ments. These concerns translate into the study of the
end-effector acceleration and inertial characteristics.

A number of studies has addressed the characteriza-
tion of inertial and acceleration properties of manip-
ulators. The inertial properties have been explored
using the generalized inertia ellipsoid [1], the ellip-
soid of gyration [3], and the belted inertia ellipsoid
[4]. The proposed measures of acceleration capability
include the dynamic manipulability [10], the acceler-
ation parallelepiped [5], the acceleration sets [7], and
the ellipsoid expansion model [2].

Modifying a manipulator’s design parameters can
improve the end-effector inertial and acceleration
characteristics thereby improving dynamic perfor-
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mance. Our previous work in this area, [5] and [6],
resulted in a methodology for optimizing the dynamic
performance of manipulators.

These studies have also revealed the difficulty
of dealing with the non-homogeneity issues between
properties governing linear and angular motions. Typ-
ically, these issues are handled by introducing scal-
ing factors to compensate for the differences between
properties affecting linear and angular motions. In
practice, these scaling factors can be somewhat arbi- -
trary and difficult to determine. The work presented
here resolves these issues using new characterizations
of inertial and acceleration characteristics in the for-
mulation of the optimization problem.

We have recently presented a characterization that
provides a decomposition of the inertial properties into
effective mass and effective inertia associated with the
end-effector’s linear and angular motions [4]. The el-
lipsoid expansion model [2] we have proposed for the

-description the acceleration capability also provides

separate measures for linear and angular acceleration.
These models are the basis for the formulation pre-
sented in this article.

The goal of the optimization is to obtain a design
with the smallest, most isotropic inertial characteris-
tics, and the largest, most isotropic acceleration capa-
bility at the end-effector over the workspace. First we
present the models for the characterization of the iner-
tial and acceleration properties. These models will be
extended for redundant manipulators. We will then
discuss the optimization scheme and cost function.
Results from the application of this scheme to the de-
sign of a parallel mechanism will be presented.

2 Inertial Properties

The joint space equations of motion of a manipula-
tor are

A(q)q + b(q.q) + glq) =T, (1)

where q is the vector of n joint coordinates, A(q) is
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the joint space kinetic energy matrix, b(q.q) is the
vector of centrifugal and C'oriolis forces. g(q) is the
gravity vector, and 7 is the vector of joint torques.
For a redundant manipulator, the dvnamic behav-
ior at the end-effector is described by the equation [4]

A(@)V + u(a.@) +p(a) = F; (2)
where A(q) is the pseudo kinetic energy matrix
A™Y(q) = J(q)A™ (a)/ T (q) (3)

and p(q,q), p(q), and F are respectively the centrifu-
gal and Coriolis force vector, gravity force vector. and
generalized force vector acting in operational space. ¥
along with the Jacobian matrix [4], J(q), are defined
as

9E [”] = J(q)a. (4)

w

where v and w are the end-effector linear and angular
velocities.

The relationship between joint torques and opera-
tional forces for redundant manipulator is

—T
r=JT@F + [1-JT@T (@] o (5)
where Tg is an arbitrary joint torque vector, and

J(q) = A7 (q) JT(q) A(a). (6)

The matrix J(q) is the dynamically consistent gener-
alized inverse of the Jacobian matrix J(q). and [ is
the identity matrix.

This relationship of equation (5) provides a de-
composition of joint forces into two dynamically
decoupled control vectors: joint forces correspond-
ing to forces acting at the end effector (JT(q)F);
and joint forces that only affect internal motions,
(7= 7" @7 (@)

A(q) describes the inertial properties as perceived
at the end-effector. The eigenvalues and eigenvectors
of A(q) usually represent some mixture of mass and
inertia properties. However, the analysis of the matrix
A(q) reveals a structure that allows separate charac-
terization of the inertial properties for linear and angu-
lar motion [4]. The analysis is based on a decomposi-
tion of the Jacobian matrix into its linear and angular

sub-matrices:
@ =] @

where the matrix J,(q) transforms joint velocities
into end-effector linear velocities and J,(q) does like-
wise for end-effector angular velocities. The kinematic
structure of the particular manipulator will determine

the dimensions or existence of J, (q) and J.(q). Using
equation (7) the the matrix A~!(q) can be written in
the form

. A7 () Kvw(‘l)]
A 1 - _‘ s 8
W= (@ As'a) ®)
where A, (q) is
A = (Jo(@)A™ (@) (q) ! (9)
and
Ao = (Ju(@A (@I (@)™ (10)

The matrix A..(q) is given by

Aew(@) = Jo(@) A (@) (q).

The matrix A,(q), which describes the end-effector
translational response to a force, is homogeneous to
a mass matrix, while A, (q), which describes the end-
effector rotational response to a moment, is homoge-
neous to an inertia matrix. The matrix A,.(q) pro-
vides a description of the coupling between transla-
tional and rotational motions.

As stated earlier, part of the goal in the optimiza-
tion is to achieve the smallest. most isotropic inertial
properties. The magnitude of these properties is de-
scribed by the norm of A, and A., ||A,]] and [|AL]l-
The condition numbers of the two matrices. (Ay) and
k(A. ), describes the extent of isotropicity of the iner-
tial properties. These indicators will be used in the
cost function in our optimization.

3 Acceleration Characteristics:

The ellipsoid expansion model provides a simple
framework for analyzing end-effector acceleration ca-
pability. In this model acceleration capability is char-
acterized by the isotropic acceleration, defined as the
maximum acceleration achievable in or about every di-
rection. In the development of this model we consider
the bounds on joint torques which are determined by
the maximum torque of the actuators,

~Thound < T < Thound- (11)

The joint torque, 7, consists of torques required to
compensate for gravity and torques required to pro-
duce end-effector motion,

JTAd+p)+g=T (12)

Analysis of other requirements, such as the perfor-
mance of motions in the null space, can be easily in-
tegrated into this formulation.
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The bounds are normalized using a diagonal matrix
N with elements N;; = L_ Now using equations

(12) and (11) vields,

-1 < NJT(AV+p)+Ng < 1, (13)

where 1 is a vector of dimension n with each element
equal to one. Using equation (6) the above equation
can be rewritten as,

_ 9T M9
Tlower < [Ey EL] [ : + : < Tupper;
IT M9
(14)
where M; are symmetric matrices and,
[E, E,] = NJTA; (15)
9T M9
: = NJTy; (16)
IT M, 9
Tupper = 1-—Ng; (17)
Tlower = —1-— Ng. (18)
The central equation for this analysis is
9T M9
Tlower < Eyi + Euw + : < Tupper (19)
9T M, 9

The separation of linear and angular accelerations in
equation (19) is motivated by the need to analyze each
of them independently.

As stated earlier, the aim in this optimization is
to achieve the largest, most isotropic end-effector ac-
celeration capability. The extent of the magnitude
and isotropicity of the acceleration capability will be
measured by the norm and condition numbers of the
matrices £, and E_, which will be used in our cost
function.

3.1 Analysis

In the ellipsoid expansion model, the end-effector
acceleration capability is analyzed by determining the
end-effector isotropic accelerations. The basic ap-
proach is to analyze equation (19) by visualizing each
component of the equation as a geometric object.

The process begins with the torque bounds which
are visualized as an n-dimensional hypercube whose
center is shifted from the origin by the gravity ef-
fect, i.e. Ng from equations (17) and (18). Since
the bounds were normalized, equation (13), this hy-
percube has sides of length 1.

To visualize the isotropic accelerations, we first only
consider the end-effector linear acceleration in equa-
tion (19):

Tlower S Evv S Tupper - (20)

The evaluation of the isotropic linear acceleration re-
quires finding the maximum magnitude of @, that is
achievable in every direction. This can be visualized
as a hyper-sphere with some radius a,

oTo = a?. (21)

Since the bounds are represented in torque space, the
acceleration hyper-sphere must be mapped into torque
space. We have shown [2] that this can be achieved
using the following relationships:

Tv = Euv (22)
E':’Tv = v (23)

where
Ef = (ETE,)ET. (24)

Using the above relationships, the acceleration hyper-
sphere is transformed into a torque ellipsoid, of dimen-
sion three or less of the form,

I (E,ET)*r, = a2 (25)

This ellipsoid is mapped into the torque bounds.
The isotropic acceleration is determined by expand-
ing/contracting the ellipsoid, changing a, until it lies
within and is tangent to one of the torque bounds.
In Figure 1, this process is shown for a simple case
and Figure 2 shows a more general case. The ellipses
shown in dashed lines in both figures corresponds to
a=1.

— = f \\ §

Figure 1: Ellipse 7.
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Figure 2: Ellipsoid in 3D.

The same process can be performed on the E,w
term and the resulting ellipsoid is added to the linear
acceleration torque ellipsoid within the torque bounds.
The centrifugal and Coriolis terms are analyzed by
mapping isotropic linear and angular velocity hyper-
spheres, v7v = ¢? and wTw = d?, through those terms.
The information from the resulting surface is then
mapped into the torque bounds and added in with
the other ellipsoids.

Note that the ellipsoid in equation (25) is com-
pletely described by E,. If the condition number of
E, is equal to one, k(E,) = 1, the ellipsoid is a sphere.
Mapping a sphere into the hyper-cube is the best pos-
sible situation because an isotropic acceleration capa-
bility is achieved while most of the available actuator
torque capacity is used. This is true even though the
hyper-cube is shifted from the origin by the effect of
gravity. The situation improves with the reduction of
radius of the hyper-sphere. Then the ellipsoid must be
expanded a large amount before reaching the bound-
aries thus making the isotropic acceleration large.

Also note that this procedure allows to determine
the actuator capacity needed to achieve a given desired
linear isotropic acceleration. This can be done simply
by omitting the normalization of the torque bounds in
equation (13). Given a desired isotropic acceleration,
a specific value for a, and the equations of motion, the
torque ellipsoid in equation (25) is completely deter-
mined. The required actuator torques could then be
estimated by circumscribing a cube around the ellip-
soid. If the overall size of the ellipsoid is made as small
as possible, in effect, the required torques to achieve
a certain performance will also be minimized.

3.2 Results

The information resulting from the above analysis
is in the form of a set of 2n inequalities which give
the relationship between isotropic end-effector acceler-

ations, [|7]| and [[<]l. isotropic end-effector velocities,

[vl] a.nd [lwll. and actuator torque capacity. These
equations are nsed to produce plots of surfaces and
curves which describe the relationships between the
variables. An example of one of these plots is given in
Figure 3 for the PUMAS60, where [lw|| = 0.

150
100
S0

[l rad/s?

/l a7 \\Q

5 "
n/s2 10 1.5 W

Figure 3: Isotropic Curves for PUMAS560.

The above plot should show a three dimensional
surface, however only the lines where the surface in-
tersects the coordinate planes are shown. The num-
bers labeling each line segment represent the actuator
whose capacity has been the limiting factor for the
accelerations along that line segment.

4 Optimization Scheme

4.1 Cost Function

' ’ll“he cost function should reflect the goals of the op-
timization as closely as possible. The stated goals can
be achieved by minimizing the norms and condition
numbers of the mass. inertia, E,, and E_, matrices.

Tow?.rds this end the cost function at a given config-
uration is defined as:

cost; = w; k(A,) + wy K(A,) + ws ||A]l +
we Al + ws k(Ey) + we k(Ew) +
wr ||E|| + ws ||EL|

(26)
where w; is a weight. x(.\) is the condition number of
X, and ||.Y|| is the norm of \.

Optimizing the manipulator’s performance over the
entire workspace requires consideration of more than
one configuration. The properties of the end-effector
should change continuously as the manipulator con-
figuration changes. Therefore it is possible to select
a representative configuration for a group of nearby
or symmetric configurations such that the properties
of the group are within some range of this configura-
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tion. The optimization over the workspace requires
the evaluation of equation (26) over the set of i rep-
resentative configurations to obtain the total cost;

cost = Zcost,u

i

4.2 Iteration

Determine
wy, w2, W3, We

I

Choose Design
Parameters

y

Determine
Actuators

1

Evaluate Cost

Function
—eeee e/

Figure 4: Optimization Flowchart.

The steps in our optimization are shown in Fig-
ure 4. The first step is to determine the weights to
use in the cost function. Weights are basically deter-
mined empirically. The cost function is evaluated at
some sample design parameters to determine a range
of values for each component. This information can
be used to tailor the process to ones particular goals.
For instance a rough normalization of each compo-
nent can be achieved so that each may have the same
importance in the cost function. It is important to
mention that the final solution is highly dependent on
the choice of weights.

An initial estimate at the design parameters is the
input to the process. Given the initial design and the
desired performance, in terms of desired linear and
angular isotropic accelerations at some velocity state,
the required actuators can be determined as discussed
in section 3.1. A list of possible actuators must be
provided as input to the process. The actuators are
chosen such that their torque capacity is greater than,
yet nearest to, the required torque. However a new
selection of actuators alters E, and E,, in turn pos-
sibly altering the required torque. Thus some itera-
tions may be needed to obtain convergence between

required torques and selected actuators.

Once the actuators have been found, the inertial
properties of the manipulator are completely deter-
mined and the cost function is evaluated. This value
is sent back to the search algorithm which determines
the next set of design parameters. Our search has been
performed using a steepest descent search algorithm.

5 Application

The mechanism we have chosen is the three-degree-
of-freedom parallel mini-manipulator [8] shown in Fig-
ure 5. It consists of upper and lower plates connected
by three identical ball screws. The ball screws are
attached to the fixed lower plate by a one-degree of
freedom passive joint, and to the top plate by a three-
degree of freedom passive joint. The actuators are
mounted to the ends of the ball screws beneath the
lower plate.

The manipulator is designed to supply fast motions

in one translation and two rotations. Thus we analyze -

the linear acceleration in the direction perpendicular
to the lower plate and the two rotations about the
axes in the plane of the lower plate. The isotropic
linear acceleration is the acceleration in one direc-
tion. The design parameters optimized were the mass
of the upper plate and the pitch of the ball screw.

Actuators were chosen from a discrete set. The de-
sired performance was specified as, ||| = 150m/s?,
[lw]l = 0m/s?, ||v|]| = Om/s, and ||w|| = Orad/s for all

- configurations.

Figure 5: Parallel Mechanism.

The results of the optimization are shown in Table

2887



Acknowledgments

The financial support of NASA/JPL, Boeing, Hi-
tachi Construction Machinery, and NSF, grant IRI-
9320017, are gratefully acknowledged. Many thanks to
Professor Bernard Roth and Professor Walter Murray
who have made valuable contributions to this work.

References

(1]

(4]

(5]

Asada, H.: Dynamic Analysis and Design of
Robot Manipulators Using Inertia Ellipsoids,
Proceedings of the IEEE International Confer-
ence on Robotics, Atlanta, March 1984.

Bowling, A. and Khatib, O.: Analysis of the Ac-
celeration Characteristics of Non-Redundant Ma-
nipulators, Proceedings IEEE/RSJ International
Conference on Intelligent Robols and Systems,
Pittsburgh, August 1995.

Hogan, N.: Impedance Control of Industrial
Robots, Robotics Computer-Integrated Manufac-
turing vol.1, no. 1, pp. 97-113.

Khatib, O.: Inertial Properties in Robotic Ma-
nipulation: An Object-Level Framework, The In-
ternational Journal of Robotics Research, vol. 13,
no. 1, February 1995, pp. 19-36.

Khatib, O. and Burdick, J.: Dynamic Optimiza-
tion in Manipulator Design: The Operational

(6]

7]

(8]

(10]

2889

Space Formulation, The International Journal of
Robotics and Automation, vol.2, no.2, 1987, pp.
90-98.

Khatib, O. and Agrawal, S.: Isotropic and Uni-
form Inertial and Acceleration Characteristics:
Issues in the Design of Redundant Manipulators,
TUTAM/IFAC Symposium on Dynamics of Con-
trolled Mechanical Systems, Zurich, Switzerland,
1989.

Kim, Y. and Desa, S.: The Definition, Determi-
nation, and Characterization of Acceleration Sets
for Spatial Manipulators, The International Jour-
nal of Robotics Research, vol. 12, no. 6, 1993, pp.
572-587.

Waldron, K. J., Raghavan, M. and Roth, B.:
Kinematics of a Hybrid Series-Parallel Manipula-
tion System. Journal of Dynamic Systems, Mea-
surement, and Conirol, Vol. 111, pp. 211-221,
1989.

Yoshikawa, T.: Manipulability of Robotic Mecha-
nisms, The International Journal of Robotics Re-
search, Vol. 4, No. 2, MIT Press, 1985.

Yoshikawa, T.: Dynamic Manipulability of Robot
Manipulators, Proceedings 1985 IEEE Interna-
tional Conference on Robotics and Automation,
St. Louis, 1985, pp. 1033-1038.



