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Abstract

The paper investigates the dynamic characterization of redundant manipulators and
formalizes the problem of dynamic optimization in manipulator design. The dynamic
performance of a manipulator is described by both inertial and acceleration charac-
teristics as perceived at the end-effector operational point. The inertial characteristics
at this point are given by the operational space kinetic energy matrix (pseudo-kinetic
energy matrix for a redundant manipulator) which is dependent on the kinematic and
inertial parameters of the manipulator and varies with its configuration. The accel-
eration characteristics of the end-cffector are described by a joint torque/acceleration
transmission matrix. In addition to their dependency on the kinematic and inertial pa-
rameters, the acceleration characteristics depend on the velocities and actuator torque
bounds. The dynamic optimization is formalized in terms of finding the design pa-
rameters under the various constraints to achieve the smallest most isotropic and most
uniform end-effector inertial properties, while providing the largest, most isotropic, and
most uniform bounds on the magnitude of end-effector acceleration. This approach is
used in the design of ARTISAN, a ten-degree-of-freedom manipulator currently under
development at Stanford University.

Introduction

Over the past two decades, an important research effort has been devoted to the
development of robot systems. This effort has produced significant iinprovements in
dexterity, workspace, and kinematic characteristics of robot mechanisms. Research in
kinematics has developed means for the analysis of workspace characteristics [8,9] ,

and the evaluation of kinematic performance [2,6,11).

Manipulators are highly nonlinear and coupled systems. During motion a manipulator
is subject to inertial, centrifugal, and Coriolis forces. The magnitude of these dynamic
forces cannot be ignored when large accelerations and fast motions are considered.
The dynamic characterization is, therefore, an essential consideration in the analysis,
design, and control of these mechanisms. One of the most significant characteris-
tics in evaluating manipulator performance is associated with the dynamic behavior
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of its end-effector. The end-effector is indeed the part most closely linked to the
task. These characteristics cannot be found in the manipulator joint space dynamic
model, as it provides a description of joint motion dynamics. The description, analy-
sis and control of manipulator systems with respect to the dynamic characteristics of
their end-effectors has been the basic motivation in the development of the operational
space formulation [3,5]. The end-effector dynamic model is a fundamental tool for the

analysis and dynamic characterization of manipulator systems.

The inertial characteristics at some point on the end-effector or the manipulated object
are given by the operational space kinetic energy matrix. The kinetic energy matrix,
or the generalized inertia ellipsoid [1], establishes the relationship between end-effector
forces and accelerations. However, this relationship does not relate the actual actuator
torque input to the end-effector accelerations. The description of the acceleration char-
acteristics is an essential requirement for the evaluation of the dynamic performance of
manipulators. The operational space dynamic model has been used to establish [4], for
different regimes, the input/output relationships between joint forces and end-effector
acceleration. A similar relationship has been used to establish a measure of dynamic
manipulability [12].

The joint torque/accelcration transmission matrix has been used in the design of ma-
nipulators with improved dynamic characteristics. An optimal selection of the design
parameters has been shown [4] to significantly improve the end-effector dynamic char-

acteristics by providing large, isotropic, and uniform end-effector accelerations.

In this paper, the dynamic characterization integrates both inertial and accelera-
tion properties.; “The dynamic optimization is aimed at obtaining the smallest, most
isotropic and most uniform end-effector inertial characteristics, while providing the
largest, most isotropic, and most uniform bounds on the magnitude of end-effector
acceleration. The approach is extended to redundant manipulator systems and used
in the design of ARTISAN, a ten-degree-of-frecdom redundant manipulator.

End-Effector Equations of Motion-

The end-effector position and orientation, with respect to an inertial reference frame
Ro is described by the relationship between Ro and a coordinate frame Rg of origin
© attached to this effector. @ is called the operational point. It is with respect to
this point that motions and active forces of the effector are specified. An operatland
coordinate system associated with an m-degree-of-freedom effector and a point O, is

a set x of m independent parameters describing the effector position and orientation
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in Ro. For a non-redundant n-degree-of-freedom manipulator, i.e. n = m, these
parameters form a set of of generalized operational coordinates. The effector equations
of motion in operational space [3,5] are given by

A(x)% + p(x,%) + p(x) = F; (1)

where A(x) designates the kinetic energy matrix, and p(x) and F are respectively the
gravity and the generalized operational force vectors. p(x,X) represents the vector of
centrifugal and Coriolis forces. The dynamic decoupling and motion control of the

manipulator in operational space is achieved by sclecting the control structure
F = A(x)F* + p(x,%) + p(x); (2)

and the end-effector becomes equivalent to a single unit mass, I, moving in the
m-dimensional space,

Ik = F*. (3)

F* is the input of the dccoupled end-effector. This provides a general framework for
the implementation of various control structures at the level of decoupled end-effector.
The generalized joint forces T' needed to produce the operational forces F of (eq. 2)
are given, using the Jacobian matrix J(q), by

r'=J"(q)F; (4)

where q represents the vector of generalized joint coordinates.

Redundant Manipulators

A set of operational coordinates, which describes the end-effector position and orien-
tation, is not sufficient to completely specify the configuration of a redundant manip-
ulator. Therefore, the dynamic behavior of the entire system cannot be described by
a dynamic model in operational coordinates. With respect to a system of generalized

joint coordinates, the equations of motion of a manipulator can be written in the form

A(q)§+b(q,q)+g(q) =T; (%)

where b(q, &), g(q), and T, represent the Coriolis and centrifugal, gravity, and gener-
alized forces in joint space; and A(q) is the n x n joint space kinetic energy matrix.

While the dynamics of the entire system cannot be described in operational coordi-
nates, the dynamic behavior of the end-effector itself, can still be described, and its

equations of motion in operational space can still be established. In fact, the structure
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of the effector dynamic model is identical to that obtained in the case of non-redundant
manipulators (eq. 1). In the redundant case, however, the matrix A should be inter-
preted as a “pseudo kinetic energy matrix”. This matrix is related to the joint space
kinetic encrgy matrix by A = [JA~'JT]-L.

Another important characteristic of redundant manipulator is concerned with the rela-
tionship between operational forces and joint forces. In the case of non-redundancy, an
operational force vector F is produced by the joint force vector JTF. The additional
freedom of redundant mechanism results in infinities of possible joint force vectors T'.

However, for a given F, all possible joint forces T' satisfy the relation
F=7T; (6)

where

T(q) = A (@)TT(Q)A(a)- (M
7(q) is actually a generalized inverse of the J acobian matrix. A joint force vector I' can
then Le decomposed into two terms: one contributes to the opcrational force vector,
and the other only acts internally (in the null space associated with the Jacobian
matrix)

T = JT(Q)F + [I. - J7(@)T" (@)ITs; (8)

where I, is the n x n identity matrix and T, is an arbitrary joint force vector. It has
been shown that a generalized inverse that is consistent with the system’s dynamics is
unique [5] and given by (eq. 7). This gencralized inverse corresponds to the solution

that minimizes the manipulator’s instantaneous kinetic energy.

The relationsleps between the components of the operational space and joint space
dynamic models are

Aq) = [J(@A™ (@I @)™ (9)
w(a,q) = T (a)b(a,q) - A(q)h(a, a); (10)
p(a) = T (q)gta) (11)

where h(q,q) = J(q)4. The previous relationships are general. In particular, they
still apply to non-redundant mechanisms. In this case of zero degree of redundancy,
the matrix J reduces to J~'.

Similar to the case of non-redundant manipulators, the dynamic decoupling and con-
trol of the end-effector can be achieved by selecting an operational command vector of
the form (eq. 2). The manipulator joint motions produced by this command vector are

those that minimize the instantaneous kinetic energy of the mechanism. Asymptotic
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stabilization is achieved by the addition of dissipative joint forces. In order to pre-
clude any effect of the additional forces on the end-effector and maintain its dynamic
decoupling, these forces are selected to act in the dynamically consistent nullspace
associated with J(q). In the actual implementation, the control vector is developed
in a form [5] that avoids the explicit evaluation of the expression of the gencralized

inverse of the Jacobian matrix.

End-Effector Dynamic Performance

The dynamic response of a mechanical system is determined by its inertial character-
istics. Reducing the magnitude of inertias improves the system’s dynamic response.
The end-cffector inertial characteristics at a configuration q are described by the ki-
netic cnergy matrix A(q). It’s effective inertia at a configuration q, when moving in
a direction u is given by u”A(q)u. The effective inertia varies with the configuration
and direction. Isotropic and uniform inertial characteristics are therefore essential to

provide isotropic and uniform end-effector’s dynamic response.

The second characteristic is concerned with the acceleration characteristics at the end-
effector. This is the minimum achievable acceleration given the bounds on actuator
torques. Equivalently, this characteristic can be stated in terms of the bounds on the
operational force vector F*, the input of the decoupled end-effector in (eq. 3). Let us
examine the operational command vector F in (eq. 2), which achieves the dynamic
decoupling and control of end-effector motion. Only a fraction of these operational
forces, namely F* the input of the decoupled end-effector, contributes to the end-
effector acceleration. , The end-effector dynamic performance is, thercfore, dependent
on the extent of the boundaries of F*, which determine the limitations on the magni-
tude of available end-effector acceleration.

The vector F of (eq. 2) is produced from the actuator joint force vector I by 7T(q)I‘,
J(q) is equal to J-(q) for a non-redundant manipulator. Substituting in (eq. 2)
yields,

T(@)T = A@F" + u(q, &) + P(a);

which, using (eq. 9- 11), can be written as

F* = E(q)[T - b(q,q) - &(a)}; (12)

where

E(q) = J(q)A™(q). (13)
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and

B(a,d) = 7@ (a)l b(q,d) - J7(a)A(a)h(q,q) (14)
Za) = [IT(@)7" ()] ga)- (15)

B(q, q) and g(q) are the joint force vectors corresponding to the end-effector Cori-
olis and centrifugal forces, and Gravity forces. For a non-redundant manipulator,
[ T(q)7”(q)] reduces to the identity matrix and g(q) becomes identical to g(q). For
a redundant manipulator, g(q) reperesents the part of g(q) that has a contribution at
the end-effector, b(q, §) is similarly interpreted. Given (eq. 3), the matrix E(q) also
establishes the relationship between joint torques and accelerations.

% = E(q)T; (16)

where

T'=T-b(q,q) - 8a)- (17
T represents the vector of joint forces that contributes to the end-effector accelera-
tions. These contributing forces are limited by the boundaries of actuator torques. At
zero velocity the matrix E(q) describes the bounds on the end-effector accelerations
corresponding to the bounds on joint actuator torques corrected for the gravity. The

bounds on T has been used [4] to construct a joint force normalization matrix No(q).
This matrix has been used to define

Eo(q) = WE(a)No(q); (18)

where W is a weighting matrix for the normalization of angular and linear accelera-
tions. The matrix Eo(q) can be interpreted as a joint force/acceleration transmission
matrix at zcro-vélocity. Bounds on actuator torques are modified at non-zero veloc-
ities. Coriolis and centrifugal forces that arise at non-zero velocities also affect the
bounds on T'. Similarly to Ey(q), a matrix E,(q)

E,(q) = WE(q)N.(q); (19)

has been constructed to describe the joint force/acceleration transmission at maxi-
mum operating velocities. At a given configuration q, the end-effector’s acceleration
characteristics will be described by the matrices Eo(q) and E,(q).

Dynamic Optimization

The dynamic optimization is aimed at finding the design parameters under the various
constraints to achieve the smallest, most isotropic, and most uniform end-effector in-

ertial properties, while providing the largest, most isotropic, and most uniform bounds
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on the magnitude of end-effector acceleration, or equivalently, on the command vector
F* both at low and high velocities. The performance at high velocity is important for
fast and gross motion, while performance at low velocity is particularly important for

fast response in tasks with small range of motion, such as part-mating operations.

At a given configuration q, the matrices A(q), Eo(q), and E.(q) are functions of
the manipulator’s gecometric and motion parameters; e.g. link length, mass, moment
of inertia, centers of mass, actuator mass, and bounds on actuator torques. Let 7
designate the set of these parameters.

The design process would typically start with an initial design based on workspace and
geometric considerations. The various design parameters would be estimated within
some range. These specifications and the dynamic and structural requirements form
the set of design parameters 5. Let {wi(n);i = 1,...,n.} and {vi(n)i = 1,...,m4}
designate the sets of equality and inequality constraints on the manipulator design

parameters 7.

Expressed as a function of the manipulator configuration q and the design parameters
7, the matrices A(qQ), Eo(q,n) and E.(q, 1) constitute the basic components in this
optimization problem. At a given configuration, the problem is to find the optimal de-
sign parameters 7, under the constraints {u;(n)} and {vi(n)}, that minimize some cost
function based on the end-effector inertial and acceleration characteristics. This cost
function is made up of three weighted components associated with the characterisitics
of the matrices A(q), Eo(q), and E.(q), ; '

C(a,n) = f:w.C.-(q,n);

=1

subject to the equality and inequality constraints
u(n)=0 i= 1,...,04

v(n) €0 i=1,...,n

where w; are the weight coefficients. The cost function associated with the Kinetic
energy matrix is aimed at providing small and isotropic inertial properties at q. The
magnitude characteristics is described by the norm || A(q)||, and the isotropic properties
are represented by the matrix condition number, i.e. kK(A(q,n)). The first component
becomes

Cu(a,n) = [1AGa, DI + aax(Ala, M

The cost functions associated with the end-effector accelerations at zero and maximum

oper Ling velocity are aimed at providing the largest and most isotropic properties at



q. This is .
Ci(q,n) = [m + az2x(Eo(q,m);i

Ci(q,n) = IITE-.(_:{JI—)II + a3x(Ey(q,7)))-

where @), a,, a;. Finally, the problem of dynamic optimization over the manipulator

work space Dq can be expressed as
minimize /D . C(q,n)w(q)dq;
subject
w(n) =0 i=1,...,n4
vi(n) <0 i=1,...,n;
where the function w(q) is used to relax the weighting of the cost function C(q,7n) in

the vicinity of the work space boundaries and singularities.

Application to ARTISAN

Optimal dynamic characteristics at the end-effector has been one of the basic goals in
the ARTISAN project [7]. These include high performance joint torque control ability,
motion redundancy, micro-manipulation ability [10], light structure, and integrated
sensing. The kinematic structure of the ARTISAN is divided into three subsystems:
wrist positioning structure, wrist and micro-manipulator. The wrist positioning struc-
ture is the part of the manipulator composed of the first four joints. Joint 1 and joint
2 are intersecting, orthogonal revolutes. Joints 3 and 4 are revolutes with axes parallel
to the axis of joi;;t 2. This part of the system forms a redundant structure if we regard
This part of the system forms a redundant structure with respect to the positioning
of the wrist point. The dynamic optimization has been applied to the design of the
redundant structure formed by the first four degrees of frecdom of ARTISAN.

The design parameters consisted of the links’ dimensions, masses, inertias, and motor
parameters. The dynamic optimization was conducted in three main steps. Based on
the preliminary design, the inertial characteristics were first optimized. This resulted
in an initial selection of dimensions and mass distribution. This first set of design
parameters is used to initialize, the sccond step which is aimed at providing optimal
acccleration characteristics. Actuators are chosen in this second step. The overall
optimization is achieved in the third step.

This procedure, illustrated in Fig. 1., has led to a significant reduction of the search
space in steps 1 and 2 and provided a good initial estimate for the overall optimization
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in step 3. It is important to mention the impact of the various weights on the final

Workspace, Kinematic
and Preliminary Dynamic

solution.

Considerations
¥
Initial Design
Constraints
i
Inertial Characteristic
Optimization
1
Acceleration Characteristic
Optimization

Incrtial + Acceleration
Characteristic
Optimization

Fig. 1. The Three Step Optimization Procedure

The optimization was carried out using a sequential quadratic programming (SQP)
algorithm. The results of this optimization for ARTISAN has been compared to a
PUMA 560 arm. Fig. 2. shows the inertial characteristics of the PUMA arm (Fig. 2.a.)
and ARTISAN (Fig. 2.b). At a given position of the end-effector, these figures show
the projections of the ellipsoids associated with the three eigenvalues of A. Because
of the redundancy, different ellipsoids would result at given end-effector poistion. The
ellipsoids shown in Fig. 2.b. correspond to those that have the largest eigenvalues.
Also, the scale used in Fig. 2.b. is twice that of Fig. 2.a. The average effective inertia
of the PUMA is roughly three times that of ARTISAN.
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Fig. 2. The inertial Characteristics

Fig. 3. illustrates the minimum available end effector acceleration for the PUMA
(Fig. 3.2.) and ARTISAN (Fig. 3.b) at zero joint velocity. The circles depict the min-
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imum available accelerations at points in the workspace. On an average, the minimum
available accclerations for ARTISAN is twice that of the PUMA arm for same joint
torques.
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Fig. 3. Minimum Available End-Effector Accelerations

Fig. 4. shows the condition numbers of the acceleration characteristics at zero joint
velocity for ARTISAN to be uniform over the workspace. These characteristics has
been estimated to be roughly half of those computed for PUMA arm.

Fig. 4. Acceleration Characteristics
Conclusion

The dynamic characterisitics of manipulator systems have been described by the in-
ertial and acceleration properties as perceived at their end-effectors. These charac-
terisitics have been used in the developement of a methodology for the dynamic opti-
mization in manipulator design. The optimization problem has been expressed as the
minimization, with respect to the design parameters and constraints, of a cost function
based on these characteristics. The small isotropic and uniform inertial characteris-
tics will provide higher dynamic response at the end-effector. The large isotropic and
uniform bounds on the end-effector accelerations will be translated into a large and



269

well conditioned operational space command vector. The application to ARTISAN has
demonstrated the effectiveness of this methodology to provide higher dynamic char-
acteristics. With an optimal redistribution of masses, dimensions, and actuators, the
resulting design has been shown to be significantly superior to conventional designs.
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