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Abstract

The paper investigates the dynamic characteristics
and control of robot systems involving combinations
of parallel and serial mechanical structures, €.g. mul-
tiple manipulators and macro/micro—manipula.tors.
A {ramework for the analysis and control of multiple
manipulator systems with respect to the dynamic
behavior of the manipulated object is developed. A
multi-effector/object system is treated as an aug-
mented object representing the total masses and in-
ertias perceived at some operational point. This sys-
{em is actuated by the total effector forces acting at
that point. The allocation of forces is based on the
minimization of the total joint actuator efforts. For
serial structures, the effective inertial characteristics
of a combined macro/micro-manipulator are shown
to be dominated by the inertial characteristics of the
micro-manipulator. A new approach for a dextrous
dvnamic coordination of such mechanisms based on
treating the combined system as 2 single redundant
manipulator while minimizing of the deviation from
{he neutral (mid-range) joint positions of the micro-
manipulator is proposed.

Introduction

In quest of higher capabilities and increased per-
{ormance, robot systems are advancing beyond the
traditional single six-degree-of-freedom serial chain
mechanism. Recent research and ongoing devel-
opments show a clear trend toward robot systems
with mechanical stuctures involving & larger number
of degrees of {reedom distributed between multiple
arms and lightweight micro-manipulators.

The investigation of control strategies for the co-
ordination of multiple mechanisms has received in-
creased attention in recent years. Alford and Belyen
(1984) studied the coordination of two arms. Their
control system is organized in 2 master/slave fash-

ion, and a motion coordination procedure is used
{o minimize the error in the relative position be-
tween the two manipulator effectors. Zheng and
Luh (1986) have treated the two manipulators as a
“eader” and a “follower™” system. The joint torques
of the follower are obtained directly from the con-
straint relationships between the two manipulators,
thereby producing a coordinated control of the sys-
tem. Hayati (1936) investigated the problem of
motion and force control of multiple manipulators.
In his approach, the load is partitioned among the
arms. Dynamic decouplirg and motion control are
then achieved at the level of individual manipulator
effectors. In the force control subspace, the mag-
nitude of forces is minimized. In relation with the
general problem of objact grasping various other cri-
terion have been proposed for an optimal selection of
internal forces (Salisbury and Craig 1932, Kerr and
Roth 1986, Nakamure, Nagai, and Yoshikawa 1987).
Tarn, Bejczy, and Yun (1937) developed the closed
chain dynamic medel of a two-manipulator system
with respect to a selzcted set of generalized joint
coordinates. Nonlinezr feedback and output decou-
pling techniques were then used to linearize and con-
trol the system in tesx coordinates.

Joint space dynamic models only provide a descrip-
tion of the interaction between joint motions. The
control of object motion and active forces requires
the description of how motions along different axes
are interacting. and how the apparent or equivalent
inertia or mass of the object varies with configura-
tions and directions. In this paper, the operational
space framework which focuses on the dynamics of
the manipulated objzct is extended to the case of a
multi-effector robot system. The approach is based
on the augmented obycct concept (Khatib 1987b).

The devclopment and use of lightweight stuctures to
improve robot’s accuracy and dynamic performance
is another area of growing interest. The capabil-
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ity of a manipulator to perform fine motions can
be significantly enhanced by incorporating a set of
small lightweight links —a micro-manipulator- into
the manipulator mechanism (Hollis, 1985; Reboulet
and Robert 1986; Tilley, Cannon, and Kraft 1986;
Cai and Roth, 1987). Clearly, the high accuracy
and greater speed of a micro-manipulator is useful
for small range motion operations during which the
arm is held motionless. During force control opera-
tions, a micro-manipulator can also be used to over-
come manipulator errors in the directions of active
force control by using end-effector force sensing to
perform small and fast adjustments (for example, in
high speed edge tracking operations).

However, the improvement of the dynamic perfor-
mance with lightweight links is not limited to small
range motion tasks or to force control operations.
In this paper we will show that with an adequate
control strategy, the dynamic performance of robot
svstems incorporating lightweight structures can be
greatly increased in all manipulation tasks, including
large range motion operations.

1 Single Manipulator System

In this section, we summarize the operational space
framework for a single manipulator.

1.1 Effector Equations of Motion

The effector position and orientation, with respect
to a reference frame Ro of origin O is described
by the relationship between Ro and a coordinate
frame R of origin ©® attached to this effector. ®
is called the operational point. It is’with respect to
this point that translational and rotational motions
and active forces of the effector are specified. An
operalional coordinate system associated with an m-
degree-of-freedom effector and a point @, is a set
x of m independent parameters describing the effec-
tor position and orientation in a frame of reference
Ro. For a non-redundant n-degree-of-freedom ma-
ripulator, i.e. n = m, these parameters form a set of
of generalized operational coordinates. The effector
equations of motion in operational space are given
by (Khatib, 1980 and 1987a)

A(x)R + T(x)[EK] + p(x) = F; (1)

where A(x) designates the kinetic energy matrix,
and p(x) and F are respectively the gravity and the
generalized operational force vectors. [T1(x) repre-
sents the m x m(m + 1)/2 matrix of centrifugal and
Coriolis forces. The elements of the matrix [T(x) can
be obtained from the Christoffel symbols x; ;i given

as a function of the partial derivatives of A(x) with
respect to the generalized coordinates x. With J{(q)
being the Jacobian matrix associated with the gen-
eralized operational velocities X, the kinetic energy
matrix associated with the operational coordinates
x is related to the n x n joint space kinetic energy
matrix, A(q) by

A(x) = I T(@)A(a)d ™ (a): (2)

The generalized joint forces I' required to produce
the operational forces F are

T = J7(q)F; (3)
This relationship is the basis for the actual control

of manipulators in operational space.

1.2 Control in Opcrational Space

The dynamic decoupling and motion control of the
manipulator in operational space is achieved by se-
lecting the control structure

F = A(x)F* + [I(x)[xx] + B(x); (4)
where, K(x), ﬁ(x), and pP(x) represent the estimates
of A(x), II(x), and p(x). The system 1 under the
command 4 can be represented by

I.% = G(x)F* + ¢(x, %) + d(t); (5)

where I, is the m x m identity matrix, and

G(x) = AT X)A(x); (6)

(x, %) = AT MK +B(x)]. (7)
with

f(x) = [I(x)-T(x) (8)

p(x) = B(x)—p(x) (9)

d(t) includes unmodeled disturbances. With a per-
fect nonlinear dynamic decoupling, the end-effector
becomes equivalent to a single unit mass, I, mov-
ing in the m-dimensional space,

I.x=F". (10)

F* is the input of the decoupled end-effector. Tkis
provides a general framework for the sclection of var-
jous control structures (Slotine, Khatib, and Ruth
1987).
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1.3 Redundant Manipulators

A set of operational coordinates, which only de-
scribes the end-effector position and orientation, is
obviously not sufficient to completely specify the
configuration of a redundant manipulator. There-
fore, the dynamic behavior of the entire system can-
not be described by a dynamic model in operational
coordinates. The dynamic behavior of the end-
cffector itself, nevertheless, can still be described,
and its equations of motion in operational space can
still be established. In fact, the structure of the ef-
fector dynamic model is identical to that obtained
in the case of non-redundant manipulators (equa-
tion 1). In the redundant case, however, the matrix
A should be interpreted as a “pseudo kinetic energy
matrir’. This matrix is related to the joint space
kinetic energy matrix by

AQ) = (@A™ (@I T (@) (11)

Another important characteristic of redundant ma-
nipulator is concerned with the relationship between
operational forces and joint forces. In the case where
n = m, an operational force vector F' is produced by
the unique joint force vector JTF. The additional
{freedom of redundant mechanism results in an infin-
ity of possible joint force vectors. This due to the
fact that some joint force vectors will only act inter-
nally. Those are the joint forces acting in the null
space associated with JT and defined by some gener-
alized inverse PT. A straightforward static analysis
would lead to an infinity of generalized inverse ma-
trices. However, a generalized inverse that is consis-
tent with the system’s dynamics is unique (Khatib
1987a) and given by

J(a) = A7 (@I (@)A()- (12)

J(q) in equation 12 is actually a generalized inverse
of the Jacobian matrix corresponding to the solution
that minimizes the manipulator's instantaneous ki-
retic energy. The relationship between forces is

T = JT(QF + I — JT(@)T" (@)iFo; (13)

where I, is the n x n identity matrix and T, is an
arbitrary joint force vector. Joint forces of the form
[I. = JT(q)JT(q)]T, correspond to a zero opera-
ticnal vector.

1.4 Control of Redundant Manipulators

Similar to the case of non-redundant —anipulators,
the dynamic decoupling and control of the end-
eflzctor can be achieved by selecting an operational
zemmand vector of the form 4. The manipulator

joint motions produced by this command vector are
those that minimize the instantanecous kinetic energy
of the mechanism. Analysis shows the system to be
stable; however, while the end-effector is asymptoti-
cally stable, the manipulator joints can still describe
internal motionsin the nullspace. Asymptoticstabi-
lization of the entire system can be achieved by the
addition of dissipative joint forces. In order to pre-
clude any effect of the additional forces on the end-
effector and maintains its dynamic decoupling, these
forces must be selected to only act in the nullspace
of the Jacobian matrix. These additional stabilizing
joint forces are of the form

T, = I, = JT(q)T" (q)IT. (14)

In the actual implementation, the global control vec-
tor will be developed in a form that avoids the ex-
plicit evaluation of the expression of the generalized
inverse of the Jacobian matrix.

1.5 Basic Jacobian

Different kinematic models and different Jacobian
matrices are associated with different selections of
systems of operational coordinates. The kinematic
characteristics of a manipulator, which are indepen-
dent of the selected system of operational coordi-
nates, are described by the model

MEZS (15)

This model establishes the relationship between gen-
eralized joint velocities q and the end-effector linear
and angular velocities v and w. The matrix Jo(q),
termed the basic Jacobian, is defined independently
of the particular set of parameters used to describe
the end-effector configuration. The Jacobian matrix
J(q) associated with a given selection, x, of opera-
tional coordinates can then be expressed in the form
(Khatib 1980)

J(a) = E(x)Jo(a)- (16)

The matrix £(x) is dependent on the type of coor-
dinates selected to represent the position and orien-
tation of the effector.

1.6 Effect of a Load

The kinetic energy matrix A(x) associated with the
operational coordinates x describes the inertial char-
acteristics of the effector as perceived at the point ®.
The addition of a load will result in an increase in
the total kinetic energy. Let me arnd I; be the mass
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and inertia matrix of the load with respect to Re.
The additional kinetic energy due to the load is

Tc = -;-[*mCVTV + OJTIL‘-‘/]; (17)

where v and w are the vectors of linear and angular
velocities. The generalized operational velocities x
are related to the linear and angular velocities by
the matrix E(x). The kinetic energy due to the load
can be written in the form

T, = %J‘(TAc(x)k; (18)

where the matrix of kinetic energy with respect to x
is

Ar(x) = ETT(x)McE7 (x); (19)
with

mel O ]; (20)

A{C:[ s L

where I and 0 are the unit and zero matrices of ap-
propriate dimension.

Lemma 1 The kinetic energy matriz of the effec-
{or and load system ts the matriz

Acﬁeclor-{-lo&d(x) = Aeﬂ'ector(x) + AC(X)-

This is a straightforward implication of the evalua-

tion, with respect to the operational coordinates, of
the total kinetic energy of the system.

2 In-Parallel Structures

Let us consider the problem of manipulating an ob-
ject with a system of N robot manipulators, as il-
lustrated in Figure 1. The effectors of each of these
manipulators are assumed to have the same number
of degrees of freedom, m, and to be rigidly connected
to the manipulated object. Let ® be the selected op-
erational point attached to this object. This point
is fixed with respect to each of the effectors. Let
Az (x) be the kinetic energy matrix associated with
the object’s load alone, expressed with respect to ©
and the operational coordinates x. Being held by
N effectors, the inertial characteristics of the object
as perceived at the operational point are modified.
The N-effector/object system can be viewed as an
augmented object representing the total inertias per-
ceived at ®. Let A;(x) be the kinetic energy matrix
associated with the i*® effector.

Theorem I The kinetic energy matriz of the aug-
mented object 1s

N
Aa(x) = Ae(x) + ) Au(x).

(=1

This results from the evaluation of the total kinetic
energy of the N eflectors and object system ex-
pressed with respect to the operational velocities,

N
1.7 . 1.1 .
T= 7% Ac(x)x + E 5 Ai(x)x

i=1

A

Figure 1: A Multi-Effector/Object System

2.1 Augmented Object Model

The system considered here is the system resulting
from rigidly connecting an object, to the effectors of
N n-degree-of-freedom manipulators. In the case of
nonredundant manipulators, the number of degrees
of freedom, ng associated with the combined system
can be shown (KKhatib 1987b) to be equal to 3 in the
planar case and to 6 in the spatial case. Thus, the
number of operational coordinates, m, is therefore
equal to the number of degrees of freedom, ng, of
the mechanism. These coordinates form, therefore,
a set of generalized coordinates for the system. The
kinetic energy matrix of the system expressed with
respect to the generalized operational coordinates x
is given in Theorem 1. The augmented object equa-
tions of motion are

Ao(x)% + He(x)[xX] + pa(x) = Fe: (21)
where the matrix, [1g(x), of centrifugal and Corielis

forces also possesses the additive property

N
Melx) = Me(x) + Y TL(x); (22)

1=1
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where I1¢(x) and I1;(x) are the m x m(m +1)/2 ma-
trix of centrifugal and Coriolis forces associated with
Ac(x) and A;(x) respectively. The gravity vector is

N
Po(x) = pc(x) + Y pi(x), (23)

i=1

where ps(x) and p;(x) are the gravity vectors as-
sociated with the object and the it® effector. The
generalized operational forces Fg are the resultants
of the forces produced by each of the N effectors at
the operational point ®.

N
Fg =y F. (24)

i=1

The cfiector's operational forces F; are generated by
the corresponding manipulator actuators. The gen-
eralized joint force vector I'; corresponding to F; is
given by

I = J(q) Fi

where q, and J,T(q,-) are, respectively, the vector of
joint coordinates and the Jacobian matrix computed
with respect to x, and associated with the i*® ma-
nipulator. The dynamicdecoupling and motion con-
trol of the augmented object in operational space is
achieved by selecting a control structure similar to 4,

Fo = Ae(x)F; + [o(x)[}X] + Po(x).  (25)

2.2 Allocation of Effector Forces

The control structure 25 provides the net force F,
ta be applied to the augmented object at ®. The
criterion fcr distributing this force between effectors
will be based on the minimization of total actuator
activities. The force vector, F;, to be produced by
the i*® effector will be selected to be aligned with
F- and acting in the same direction,

F;, = o;Fg; with o; > 0. (25)

In addition, the set of IN positive numbers a; must

satisly
N

doei=1 (27)

th

The actuator joint forces required by the 1'* manip-

vlator is
T
I‘, = O,‘J' (q‘) F@.
The problem now is to find the set of N positive
aumbers. a;, @2,...,an such that the overall effort
of the actuators is minimized. Let us consider the

vector of joint forces 7; corresponding to the total
operational forces Fgq

7 = JI(q) Fo;

T; represents the actuator joint forces that would be
assigned to the i*" manipulator, if this manipula-
tor alone were to produce the total operational force
Fg. Let 7 be the 7" component of ;. Actuator
joint forces are limited. Let 7;; be the magnitude of
the maximal bounds on the j'* actuator force of the
i'"® manipulator. The number [7;;|/7;; represents a
measure of the effort that will be required by the
7' actuator if the i*® manipulator alone produced
the total operational forces Fg. The effort of the i*t

manipulator can be characterized by
ro = max{|7;|/7i; 1
j

which corresponds to the greatest effort. r; is a pos-
itive number, which would be greater than one if the
requested joint forces cannot be achieved by the ith
manipulator alone. In order to minimize the overall
effort, the weighting numbers oy, a9, ..., and an
will be selected so that the effort is equally dis-

tributed, that is
Q@T] = @272 = ... = ONTN.-

Using equation 27, this corresponds to the solution

_ Bi )
T BB+ + BN

(28)

@y

where TN
G = ——. (29)

Ti

3 In-Serial Structure

In this section, we analyze the dynamic character-
istics of the system resulting from the combination
in-serial of two manipulators. The manipulator con-
nected to the ground will be refered to as the “heavy-
weight” manipulator. It has ny degrees of freedom
and its configuration is described by the system of
ny generalized joint coordinates qj;. The second
manipulator, refered to as the “light-weight” manip-
ulator, has ny degrees of freedom and its configura-
tion is described by the generalized coordinates qr.
The resulting structure is an n-degree-of-freedom
manipulator with n = nyy + ny. Its configuration
is described by the system of generalized joint coor-
dinates q = [q}ri q'{]T. If m represents the number
of effector degrees of {freedom of the combined struc-
ture, n; and np are assumed to obey

ny > 1and np > m. (30)
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This assumption states that what is considered to be
the “light-weight” manipulator must possess the full
{reedom to move in the operational space, and can
possibly have a redundant structure. The “heavy
weight” manipulator must have at least one-degree-
of-freedom, and can also be redundant.

3.1 Kincematics

The kinematics of the two manipulators, considered
separately, are described with respect to the refer-
ence frames Ry and Rgr. The coordinate frames
associated with their operational points, @y and
®L. are denoted Roy and Rer respectively. The
transformation matrix describing the rotation be-
tween the frames Roy and Rog is Sp(an)- Sc(ac)
is the transformation matrix associated with Ror
and Rer. The operational coordinates are xyg and
xr, and Jy(qn) and Jp(qr) are the respective Jaco-
bian matrices. If Jorr(an) and Jor(qr) are the ba-
sic Jacobian matrices associated with two individual
manipulators, the basic Jacobian matrix associated
with the in-serial combination can be expressed as

Jo(a) = [Jor(a) Ju(a); (31)

where
Jon(q) = [(IJ —.Ia]JOH(QH); (32)
Ju(q) = Qam)dorlar) (33)

7 is the cross product operator on the position vector
associated with the ‘lightweight” manipulator and
expressed in Roy, and

e[ 2] o

3.2 Dynamics

The kinetic energy matrix, A(q), of the combined
system can be decomposed in diagonal blocks corre-
sponding to the dimensions of the two manipulators’
individual kinetic energy matrices

Aq) = [ﬁ:l /fl’]. (35)

It can be easily shown that the matrix A of di-
mensions ny X np in equation 35 is identical to
the kinetic energy matrix Ar associated with “light-
weight” manipulator, .e. Ay = Ap. The inverse of
the kinetic energy matrix A(q) is

An 71“]

O (36)

The operational space pseudo kinelic energy matriz
Ao associated with the linear and angular velocities
is defined by (Jo A’ng)". Using equations 31, 32,
and 33 the inverse of this matrix can be written as

AZ' = Ay + Acs (37)
where
Ae = JoAcIs: (38)
Ayl = QagtT; (39)
and i =
A = [Zi Al —h;‘Z‘]' (o)

Lillipsoid of Incrtia: Aa

1/ Amta(As)

1 hmer(Ao)

1/ Amin(AsL)

Ellipsoid of Incrtia: Aa

Figure 2: Reduced Effective Inertia

Theorem 2: (Reduced Effective Inertia). The op-
erational space pseudo kinetic energy matrices Ao
(combined mechanism), and Aor, (“light-weight”
mechanism) verify

_ ! < Ae(Ao) <1 k=1,2,...,m
1+ [[Ac]l- Me(Aor) ~ Ae(Aor)

Figure 2 illustrates the inertial characteristic stated
in this theorem: the effective inetrias, in all direc-
tions, of the entire system are smaller than or equal
to those of the “light-weight” mechanism. The proof
involves the two steps:

Step 1: (FEigenvalue Characteristic) This first
step is based on an important characteristic of sym-
metric matrices. It is possible to show that (Wilkin-
son, 1965): If M and M+E are n x n symmetric
matrices, then for k=1,2,...,n

M (M) + A(E) < 2 (M + E) < M(M) + M(E);

where A;(.) denote the k" largest eigenvalue of (.),
e ()< o < ()

Applying this relation to equation 37 for k£ =
1,2,...,m, and noting that Aq and Aoz are simi-
lar (equations 33 and 39) positive definite matrices
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with the identical eigenvalues l//\k(!\g,}), yields

1 < Ae(Ao)
14+ M (Ac) Ae(AoL) =~ Me(Aor) =

1
14+ A(Ac)- Me(Aol)

(41)

Step 2: (Positive Semidefinition of Ac). Let us
consider the symmetric matrix

E CT
w=[E %]

If E is a nonsingular matrix, M can be decomposed
(Bruch and Prelett, 1971) following

Af = I o][E 0 I E-'CT
~|CcE"' I||0 D-CE~'CT||o0 I

(42)
Applying this decomposition to the matrix Ac ( An
is nonsingular, since A~! is nonsingular), and using
the relationships between the block matrices result-
ing from AA™! = I, yields

- _[ .1 0][4x o)[1 A;'AL
s | ] | R S

Like A, the diagonal block Ac is positive defi-
nite. The decomposition 43 shows A¢ to be positive
semidefinite, A, (A¢) = 0 and A (A¢) > 0. The ma-
trix Ac which results from a congruence transforma-
tion (equation 38) of Ac is similarly defined, i.¢. pos-
itive semidefinite with An(xc) =0 and ,\I(Xc) > 0.
Substituting this result in equation 41 completes the
preof of the Theorem. :

3.3 Dextrous Dynamic Coordination

The previous result on the reduction of the effective
inertial characteristics at the effector of a redundant
manipulator is very useful in approaching the con-
trol problem associated with coordinating a manip-
ulator and a micro-manipulator system. The basic
idea in our control strategy is to treat the manipu-
lator and micro-manipulator as a single redundant
syvstem. This approach for the control of the ma-
nipulator and micro-manipulator system will clearly
result in a substantial increase of the dynamic per-
formance of the svstem. Theorem 2 shows that the
dynamic characteristics of the combined system can
be made to be comparable to (and, in some cases,
better than) those of the micro-manipulator. The
problem, however, is that this type of control can-
not be directly applied to the macro/micro motion

coordination problem. In effect, given the mechani-
cal limits on the range of joint motions of the micro-
manipulator, such a controller would rapidly lead to
joint saturation of the micro-manipulator degrees of
freedom.

The dextrous dynamic coordination we proposed,
which is essentially based on the framework of re-
dundant manipulator control in operational space,
involves the minimization of the deviation from the
neutral (mid-range) joint positions of the micro-
manipulator. This minimization will be achieved
using joint forces selected from the null space as-
sociated with the mapping between operational and
joint forces. This will preclude any effects of the ad-
ditional forces on the primary task. Let g; and g, be
the upper and lower bounds on the 1** joint position
q:. We construct the potential function

g +q;

VDextmus(Q) = kd Z (qi - —'2_)7; (44)

i=ny+1

where kg is a constant coefficient. The gradient of
this function

I'Dextrous = =V VDextrous; (45)

provides the required attraction (Khatib 1986) to the
mid-range joint positions of the micro-manipulator.
The interference of these additional torques with the
end-effector dynamics is avoided by selecting them
from the null space. This is

I"ﬂd = [Iﬂ - JT(Q)jT(Q)]rDextrous~ (46)

The avoidance of joint limits is achieved using an
“artificial potential field” function. It is essential
that the range of motion of the joints associated with
the micro-manipulator accommodate the relatively
slower dvnamic response of the arm. A sufficient
motion margin is required for achieving dextrous dy-
namic coordination.

4 Conclusion

The augmented object model proposed in this pa-
per constitutes a natural framework for the dynamic
modelling and contrcl of multi-effector/object sys-
tems. In this approach, the control structure ornly
uses the necessary forces, i.c. net force, required
to achieve the dyvnamic decoupling and control of
the system. Compared to control structures where
joint motions or effector motions are individually de-
coupled and controlled, the proposed control system
presents a significant reduction in actuator activities.
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Indeed, in this approach, the inertial coupling, cen-
trifugal, and Coriolis forces acting on one effector are
used to compensate for parts of the coupling forces
acting on the others. The actuator joint force ac-
tivity is further minimized by the criterion used for
the allocation of effector forces. The methodology
developed in this framework constitutes a powerful
tool for dealing with the problem of object manip-
ulation in a multi-fingered hand system. The ex-
tension of the augmented object concept to systems
involving combinations of redundant manipulators is
presented in (Khatib 1987a).

The inertial analysis of combined manipulator and
micro-manipulator system has shown that the dy-
namic performance of the combined system can be
made to be superior to that of the micro-manipulator
considered alone. Treating the manipulator and
micro-manipulator as a single redundant system, the
proposed deztrous dynamic coordination is based on
minimizing the deviation from the neutral (mid-
range) joint positions of the micro-manipulator. In
order to preclude any effects of the additional forces
on the primary task, this minimization is achieved
using joint forces selected from the null space asso-
ciated with the mapping between operational and
joint forces.
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