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Manipulator action is primarily characterized by the end-effector motion and exerted forces. The
description of the dynamic behavior of this basic component in the manipulator mechanism has been the impetus for
the work in the operational space formulation. The end-effector equations of motion developed in this formulation
are the fundamental tool for the analysis, design and control of manipulators with respect to their end-effector
performance. Using this end-effector dynamic model, we investigate the dynamic characterization of manipulators
and formalize the problem of dynamic optimization in manipulator design. In manipulator control, we present a
unified approach to real-time dynamic control and active force control. A generalized position and force specification
matrix for task description is used in the formulation of the unified command vector of operational forces. We
also present the extension of this approach to redundant manipulator mechanisms, and discuss kinematic singularity
problems. A two-level control system architecture has been designed to increase the system’s real-time perfarmance

1. Introduction

Research in dynamics of robot mechanisms has largely focused
on developing the equations of joint motions. These joint space
dynamic models have been the basis for various approaches to
dynamic control of manipulators. However, task specification
for motion and applied forces, dynamics, and force sensing
feedback, are closely linked to the end-effector. The dynamic
behaviour of the end-effector is one of the most significant
characteristics in evaluating the performance of robot manip-
ulator systems. The issue of end-effector moticn: control has
been investigated and algorithms resolving end-effector accel-
erations have been developed [Takase 1977; Khatib, Llibre, and
Mampey 1978; Hewit and Padovan 1978; Renaud, and Zabala-
Iturralde 1979; Luh, Walker, and Paul 1980].

Precise control of applied end-effector forces is crucial to ac-
complishing advanced robot assembly tasks. An extensive re-
search effort has been devoted to the study of manipulator
force control. Recently, Whitney [Whitney 1985] presented
a detailed review of the work in force control. Accommo-
dation [Whitney 1977], joint compliance [Paul and Shimano
1976], active compliance [Salisbury 1980], passive compliance,
and hybrid position/force control [Craig and Raibert 1979)] are
among the various methods that have been proposed. Active
force control has been generally based on kinematic consid-
erations, and has been treated within the framework of joint
space control systems. The very approach of joint space con-
trol is ill-suited to the integration of active force control, and
we will show how this problem can be addressed naturally in
the framework of operational space control systems.

The operational space formulation [Khatib 1980, Khatib 1983],
which establishes the end-effector equations of motion, has its
roots in the work on end-effector motion control [Khatib, Lli-
bre, and Mampey 1978] and obstacle avoidance [Khatib and Le
Maitre 1978]. In this paper, we will review the fundamentals
of this formulation, present a unified approach for the control
of motion and applied forces, and describe the two-level con-
trol system architecture that has been designed to increase the
systemn’s real-time capabilities.

Redundancy in manipulator systems has been used to achieve
goals such as the minimization of a quadratic criterion [Whit-
ney 1969, Renaud 1975], the avoidance of joint limits [Liegois
1977, Four- nier 1980], improvement of singularity character-
istics and the avoidance of obstacles [Hanafusa, Yoshikawa,
and Nakamura 1981, Hollerbach 1984, Luh and Gu 1985], and
the minimization of actuator joint forces [Hollerbach and Suh
1985). In this paper, we will present the extension of the oper-
ational space formulation to redundant mechanisms and con-
sider their stability. We will also discuss the problems arising
at kinematic singularities.

Research on the kinematics of articulated mechanisms has de-
veloped means for the analysis of workspace characteristics
[Roth 1976, Shimano 1978], and the evaluation of kinematic
performance [Fournier1980, Paul and Stevenson 1983]. Yoshi-
kawa [Yoshikawa 1983] has proposed a measure of manipulabil-
ity for the evaluation of manipulator kinematic performance.
Kinematic and static force characteristics also have been in-
vestigated [Asada and Cro Granito 1985].

Dynamic characterization is an essential consideration in the
analysis, design, and control of these nonlinear, coupled, and
multi-body mechanisms. Asada proposed the generalized in-
ertia ellipsoid [Asada 1983] as a tool for the characterization
of manipulator dynamics. The measure of manipulability has
recently been extended to a measure of dynamic manipulability
[Yoshikawa 1985].

The dynamic performance is characterized [Khatib and Bur-
dick 1985] by the magnitude of the isotropic acceleration that
is available at the end-effector in a given configuration and
at a given velocity. The dynamic optimization is achieved by
maximizing this criterion throughout the workspace.

2. Operational Space Formulation

Let £,,Z3,...,Tm beasetof m configuration parametersof the
end-effector, describing its position and orientation in a frame
of reference Ro. An operational coordinate system is a set X of
mg independent end-effector configuration parameters.
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Let us first consider the case of non-redundant manipulators
and use a set of independent parameters, i.e. operational coor-
dinates, to represent the end-effector configuration (n = my).
For a non-redundant manipulator, the independent parameters
Z1,%2,...,Tm, form a complete set of configuration parame-
ters in a domain of the operational space [Khatib 1980 and
thus constitute a system of generalized coordinates. The end-
effector equations of motion in operational space can be written
as [Khatib 1980, Khatib 1983]

A@)% + u(x,%) + p(x) = F; (1)

where A(x) designates the kinetic energy matrix, and p(x,x)
represents the vector of end-effector centrifugal and Coriolis
forces. p(x) and F are respectively the gravity and the gener-
alized operational force vectors. The #t* component of pn(x,x)
can be written as

i, %) = X7 TL(x)% (2)

where the components of the mg x mg matrix IL;(x) are the
Christoffel symbols =; jx given as a function of the partial
derivatives of A(x) w.r.t. the generalized coordinates x by:

1 3/\,3 6/\,-k a/\jk
2 a:tk 8::,- - a.’t.‘,' ). (3)

ik =

With respect to a system of n joint coordinates q, the equations
of motion in joint space can be written in the form:

A(q9)a+b(q,q) +g(q) =T; (4)

where b(q, q), g(q), and T, represent the Coriolis and centrifu-
gal, gravity, and generalized forces in joint space; and A(q) is
the n x n joint space kinetic energy matrix, which is related to
A(x) by:

A(Q) = IT(@)A() I (q). (5)

3. End-Effector Motion Control

The control of manipulators in operational space is based on
the selection of F as a command vector. In order to produce
this command, specific forces I' must be applied with joint-
based actuators. With q representing the vector of n joint
coordinates and J(q) the Jacobian matrix, the relationship
between F and the generalized joint forces T' is given by:

X =J7(q)F. (6)

While in motion, a manipulator end-effector is subject to the
inertial coupling, centrifugal, and Coriolis forces. These non-
linearities can be compensated for by dynamic decoupling in
operational space using the end-effector equations of motion
(1). The operational command vector for the end-effector dy-
namic decoupling and motion control is

F = Fm + Fccg; (7)

with
Fo = AX)F.;

Fccy = I‘(x))“) + p(x);

where F;_ is the command vector of the decoupled end-effector.
The end-effector becomes equivalent to a single unit mass mov-
ing in the mo-dimensional space. Using equation (6), the joint
forces corresponding to the operational command vector F in
(7) can be written as

(8)

T = J"(a)A(a)F;, + b(a, &) + g(a); (9)

where g(q,('l) 1s the vector of joint forces under the mapping
into joint space of the end-effector Coriolis and centrifugal force
vector pu(x,X). In order to simplify the notation, the symbol A
has also been used here to designate the kinetic energy matrix
when expressed as a function of the joint coordinate vector q.
b(q, q) is distinct from the vector of centrifugal and Coriolis
forces b(q, q) that arise when viewing the manipulator motion
in joint space. These vectors are related by:

b(q,d) = b(q,4) - J7(a)A(q)h(q, &); (10)

where

h(q,d) = J(a)4 (11)

A useful form of g(q,(’;) for real-time control and dynamic
analysis is

b(q,q) = B(q)[a4] + C(a)l47); (12)

where B(q) and C(q) are the n x n(n—1)/2 and n x n matrices
of the joint forces under the mapping into joint space of the
end-effector Coriolis and centrifugal forces. [qq] and [q?] are
the symbolic notations for the n(n—1)/2 x 1 and n x 1 column
matrices

o .. .. . . 1T

[4d] = [¢1d2 d193---Gn-14n] ; (13)

@)= ¢...¢"
With the relation (12), the dynamic decoupling of the end-
effector can be obtained using the configuration dependent dy-
namic coefficients A(q), B(q), C(q) and g(q). By isolating
these coefficients, end-effector dynamic decoupling and control
can be achieved in a two-level control system architecture. The
real-time computation of these coefficients can then be paced
by the rate of configuration changes, which is much lower than
that of the mechanism dynamics. Furthermore, the rate of
computation of the end-effector position can be reduced by
integrating an operational position estimator into the control
system. Finally, the control system has the following architec-
ture (see Figure 1):

e A low rate parameter evaluation level: updating the end-
effector dynamic coefficents, the Jacobian matrix, and the
geometric model.

e A high rate servo control level: computing the command
vector using the estimator and the updated dynamic co-
efficients.

4. Active Force Control

Tasks are generally described in terms of end-effector motion
and applied forces and torques. Let fg and 74 be the vectors, in
the frame of reference Ro(0,X0,Y¥0,Z20), of forces and torques
that are to be applied by the end-effector. The position of
the end-effector can be controlled for motions specified in the
subspace orthogonal to f4. Let R;(O0,xy,yy,2s) be a frame
of reference resulting from R, by a rotation transformation Sf
such that z; is in alignment with f4. In R, the largest sub-
space of position control is spanned by {xs,ys}. Witha task
specified in terms of end-effector position control in {Xnyf}
and force control following z s, we associate the task specifica-
tion matrix

100
B;={0 1 0]. (14)
000

O = O
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Figure 1. Operational Space Control System Architecture

If, in addition, a free motion (zero controlled force) in a direc-
tion of the subspace orthogonal to fa is specified, the frame of
reference Ry can be selected in order to align its y s axis with
that direction, and the corresponding diagonal element in Xy
will then be zero. For tasks that specify free motions in the
plane orthogonal to f, Xy becomes the 3 x 3 zero matrix.

Similarly, let R+(0,%:,¥r, z.) be a frame of reference obtained
from RO(O,xo,yb,zo) by a rotation S, that brings z, into
alignment with the task torque vector rq. In R, the subspace
of end-effector rotations is spanned by {x,, ¥} The matrix 2,
of task specification associated with this task of rotations and
applied torques described in R, is similar to Zy. Finally, for
general tasks of end-effector position (position and orientation)
and applied forces (forces and torques) described in the frame
of reference Ro we define the generalized position and force
epecification matriz

SsTs .S 0
a ( 0 S,Tz,s,>' (15)

Using 0, the unified operational command vector for end-
effector dynamic decoupling, motion, and active force control
can be written as

F:Fm +F3+Fccg; (16)

where F,,,, F, are the operational command vectors of motion
and active force control, given by:

Fn = AQ)QF7,

~ ~ (17)

F, = QF + A(Q)QF;
where F; represents the vector of end-effector velocity damping
that acts in the direction of fq and about the axis of r4. The
matrix (1 is given by

~ STE S 0
@ ( 0 s?z,s,) ' (18)
where _
Sp=1-%p (19)
s, =1-%,.

The joint force vector corresponding to F in (16), is

I = JT(q)[A(Q)(QF}, + OF;) + OF] + b(a, &) +g(a):

(20)
I designates the 3 x 3 identity matrix. The control system ar-
chitecture is shown in Figure 1, where k, ; denotes the velocity
gain in F%. A more detailed description of this control system
is presented in [Khatib and Burdick 1986).

This approach has been implemented in an experimental ma-
nipulator programming system COSMOS (Control in Opera-
tional Space of a Manipulator-with-Obstacles System). Using
a PUMA 560 and wrist and finger sensing, demonstrations
of real-time end-effector motion and active force control op-
erations have been performed. These include contact, slide,
insertion, and compliance operations [Khatib, Burdick, and
Armstrong 1985], as well as real-time collision avoidance with
links and moving obstacles [Khatib 1985]. In the current mul-
tiprocessor implementation (PDP 11/45 and PDP 11/€0), the
rate of the servo control level is 225 Hz while the coefficient
evaluation level runs at 100 Hz.

5. Redundant Manipulators

For a redundant manipulator, the configuration of the entire
system cannot be specified by a set of parameters that de-
scribes only the end-effector position and orientation. An inde-
pendent set of end-effector configuration parameters, therefore,
does not constitute a generalized coordinate system for a re-
dundant manipulator, and the dynamic behavior of the entire
redundant system cannot be represented by a dynamic model
in coordinates only of the end-effector configuration. The dy-
namic behavior of the end-effector itself, nevertheless, can still
be described in its configuration coordinates, and its equations
of motion in operational space can still be established. While
these equations of motion can be used to achieve control of the
end-effector motions and active forces, further analysis for the
global stabilization of the redundant mechanism is required,
and must be based on the manipulator joint space dynamic
model.

Using the dynamic model (4) and the relation

% = J(q)4+h(q,a); (21)
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we established [Khatib 1980] the following equations of motion
for a redundant manipulator system

Ar(x)% + pe(3,%) + pr(x) = F; (22)
where
Ar(a) = (T(@Aa (@I T (@17
pe(a,@) = JT(a)b(a, &) - A-(a)b(a, ); (23)
p-(q) = I (a)8(a);
with

J(q) = A7 (a)I T (a)A-(q)- (24)

J(q) is actually a pseudo-inverse of the Jacobian matrix cor-
responding to the solution that minimizes the manipulator’s
kinetic energy. Dynamic decoupling and control of the end-
effector can then be obtained using a control system similar to
that of (20)

I = JT(q)[Ar(@)(QF 5 + TF3) + TF:] +b(a,4) + g(q()2;5

where S,(q, q) is the vector of joint forces under the mapping
into joint space of the end-effector Coriolis and centrifugal force
vector p,(x,%). Like b(q, q), the vector b,(q,d) can be ex-
pressed as

B.(a,d) = B.(a)laq + C-(a)ld’)- (26)

Under the command vector(24), the manipulator is subject to
the dissipative forces I'gis due to the % term in F},

T, = D(1)& (27)

with

D(q) = —k,JT(a)Ar(a) I (@)- (28)
D(q) i an n X n negative semi-definite matrix of rank mo.
Although the stability condition [Mingori 1970]

d"D(9)a< (29)

of the articulated mechanical system (4) under the previous
command is satisfied, this redundant mechanism can still de-
scribe movements that are solutions of the equation [Rumiant-
sev 1970)

§"D(q)a =0 (30)

Asymptotic stabilization of the system can be achieved by the
addition of dissipative forces proportional to g [Khatib 1980].
These forces can be selected from the null space of the J acobian
matrix. This precludes any effect of the additional forces on the
end-effector and maintains its dynamic decoupling. Using the
joint space dynamic model (4), this corresponds to applying
the additional stabilizing joint forces

T, = ko Al@ - J(@)J (@& (31)

By grouping the term k.,qA(q)j(q)J(q)]('l of (31) with the dis-
sippative forces in F},, the joint force command vector can be
written in the form

I = JT(a)[A(Q)(QF , + F3) + OF(]

—kqu(q)f';+1~>r(q, q) +gla); (32)

where in the case of a task with specified motion, F: ,is given
by

F:“ =Xq— kP(X - Xd) - k.,().( - 5(4) + kvq)'(; (33)

where x4, X4 and X4 are respectively the desired position, ve-
locity and acceleration of the end-effector, and k, and k, are
the position and velocity gains. The matrix D(q) correspond-
ing to the new expression for the dissipative joint forces I'y;,
in the command vector (32) becomes

D(q) = ~[(ko — kuq) T T (@)Ar(a) (@) + koqA(a)].  (34)

Now, D(q) is a negative definite matrix and the closed loop
system is asymptotically stable.

6. Singular Configurations

A singular configurationis a configuration q at which the end-
effector loses the ability to move along or rotate about some di-
rection of the Cartesian space. In such a configuration, the ma-
nipulator’s mobility locally decreases. To each singular config-
uration there corresponds a singular “Jirection” in operational
space. It is for that direction, in fact, that the end-effector
presents infinite inertial mass for displacements or infinite in-
ertia for rotations. Its movements remain free, however, in the
subspace orthogonal to this direction. The basic concept in
our approach to the problem of kinematic singularities is:

At a singular configuration, the manipulator can be treated as
a mechanism that is redundant with respect to the motion of
the end-effector in the subspace of operational space which 1s
orthogonal to its singular direction.

The equations of motion of the end-effector in that subspace
are similar to those of a redundant mechanism. In addition,
joint forces from the Jacobian null space can be used to select
the desired configuration of the manipulator from among the
various ones it can take for a given motion of the end-effector.

7. End-Effector Dyramic Performance

When evaluating the dynamic performance of a manipulator,
we are primarily concerned with the dynamic characteristics of
the end-effector in the manipulator workspace. In particular,
the end-effector acceleration performance is one of the most
important characteristics in the evaluation of the manipulator
dynamic behavior.

Let us examine the operational command vector F in (7). Only
a fraction of these operational forces, specifically F;, the input
of the decoupled end-effector, contribute to the end-effector ac
celeration. The performance of end-effector motion and force
control are strongly dependent on the magnitudes of the corm-
mand vectors F:, and F, that are available in a given config-
uration and at a given velocity.

Desired end-effector motions and applied forces are s;peciﬁed
in orthogonal subspaces of the operational space. The eval\l_a'
tion of end-effector uniformity and isotropicity characteristics
requires a complete analysis of its behavior in motion and 2P~
plied forces throughout the workspace. Thus, for the most gen-
eral performance analysis of end-effector motion (respectively,
applied forces), the subspace associated with motion (resp- ap~
plied forces) will be expanded to the entire operational space-

For the performance analysis of end-effector applied.force.f*,
only static forces are significant, and the relevant rel.atxonShIP
can be established with respect to the desired applied forces
Fd as 3’)
- 5

Fa=J"7(a)[ - g(a): (

- - . n
For end-effector motion performance, the relationship betwee



F:, and joint forces can be obtained from (9) as

F;, = B(q)[T - b(q,q) - g(a)}; (36)

where

E(q) = [JT(a)A(a)] ™" (37)

Since F}, is the input of the decoupled unit mass end-effector,
the matrix E(q) also establishes the relationship between joint
forces and end-effector accelerations

% = E(q)[T' - b(q, &) - g(q)]- (38)

Using equation (5), E(q) can be written as J(q)A~'(q). Fur-
ther expansion of (38) yields

x —h(q,q) = E(q)[T - b(q, q) - g(a)}; (39)

which can also be obtained from the joint space dynamic model
(4) and equation (21). The measure of dynamic manipulabil-
ity [Yoshikawa 1985] has been based on the relation(39). This
equation relates the manipulator generalized forces T' corrected
for gravity g(q) and the joint space centrifugal and Coriolis
forces b(q,q) to a “pseudo” acceleration vector. This vector
consists of the end-effector acceleration corrected for the vector
h(q,q) of (11), which has been interpreted as a virtual accel-
eration. However, this vector is part of the joint force vector
b(q, q) corresponding to the end-effector centrifugal and Cori-
olis force vector u(x,%).

The initial definition of the measure of dynamic manipulability
is based solely on the matrix E(q) and is therefore not affected
by the particular relationship used between joint forces and
accelerations. Nevertheless, the extension of this measure to
account for actuators and nonlinear forces yields an evaluation
with respect to the pseudo acceleration vector, rather than to
the actual acceleration of the end-effector.

Equations (35) and (36) establish the basic relationships for the
evaluation of end-effector performance in motién and applied
forces. In the following sections, we will focus on manipulator
dynamic optimization with respect to end-effector motion per-
formance. A more detailed treatment is presented in [Khatib
and Burdick 1985].

8. Problem Formulation

Let T'y; and To; be respectively the minimal and maximal
bounds of the it* actuator force I'; at zero joint velocity. In
a configuration q, the minimal value of the amplitude of the
it* joint force that is available to contribute to the end-effector
acceleration at zero joint velocity is given by

~o:(@) = min(|To; — gi(a)l, ITo: — g:(a)])- (40)
Define the n x n joint force normalization matrix, No(q):

No(q) = diag(v0:(q)); (41)

so that the vector of normalized joint forces that are available
for the end-effector acceleration is confined to the unit hyper-
cube Df:

Dy = Ng'(a) ﬁ[—’Yo;(Q),’YO.‘(Q)]~ (42)

Define the mg x mg acceleration weighting matrix W:
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I 0

W= ( n wIm,)' (43)
where I, Im,, and O are the identity and zero matrices with
the dimensions of the end-effector position and orientation sub-
spaces, m, and m,. w is a metric homogeneity weighting coef-
ficient between the linear and angular accelerations of the end-
effector. The minimum available weighted acceleration Wx at
zero joint velocities is then within the hyperparallelepiped Dao:

Dag = Eo(q)Dy; (44)

where
Eo(q) = W E(q)No(q)- (45)

The matrix Eo(q) describes the mapping, at zero joint veloci-
ties, of the unit hypercube of normalized joint forces (42) into
the hyperparallelepiped of weighted accelerations (44). Corio-
lis and centrifugal forces which arise at non-zero joint velocities
modify the values of minimum available joint forces. In addi-
tion, at high velocities the actuator force bounds are modified
in typical actuators. Let q be the vector of maximum operating
joint velocities, and let us designate by I',,; and T.; the lower
and upper bounds of the i** actuator force I'; at these veloci-
ties. The minimal value of the amplitude of the ** joint force
that is available to contribute to the end-effector acceleration
at q becomes

vvi(q) = min(|e;(q) — sign(e.)vi(a)l, [7i(q) — sign(ﬁ)l's'(?)l)
46)
where o, 7;, and v; are the 1" components of the vectors

o(q) =T, - g(a) - E(@@’);
(a) =T, - g(a) - C(@@’); (47)
v(a) = A(B(q))[@ 4

The operator A produces the matrix of the absolute values of
the elements of B (q). vi(q) therefore represents the largest
absolute values of Coriolis force that can occur at the itk joint
during any motion within the limits of maximum operating
joint velocities. At these velocities, the joint force normaliza-
tion matrix and the hyperparallelepiped of minimum available
weighted end-effector acceleration become

N,(q) = diag(v.:(a)); (48)
Duu = Ev(q)Df;

where
E,(qa) = WE(q)No(a)- (49)

9. Dynamic Optimization

In manipulator design, dynamic optimization is aimed at pro-
viding the largest and the most isotropic and uniform bounds
on the end-effector acceleration, or equivalently, on the com-
mand vector F?, (36), at both low and high velocities. The
Eo(q) and E,(q) matrices establish the input/output relation-
ships between the normalized minimum available joint forces
and the end-effector weighted accelerations at zero and max-
imum joint velocities. In a given configuration q, the Eo(q)
and E,(q) matrices are expressed as a function of the manipu-
lator’s kinematic, dynamic, and actuator parameters; e.g. link
lengths, masses, inertias, centers of mass, actuator masses, and
their force and velocity limits. Let n designate the set of these
parameters.
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In the manipulator design process, workspace and kinematic
considerations will be used first to determine the set of pos-
sible kinematic configurations of the mechanism. Kinematic
specifications, in addition to dynamic and structure require-
ments, establish various constraints on some or all of the ma-
nipulator design parameters n. Let {u;(n);1=1,...,n,} and
{vi(n);t = 1,...,n,} designate the sets of equality and in-
equality constraints on the manipulator design parameters 1.

The optimization problem can then be formalized in terms of
finding the design parameters n, under the constraints {u;(n)}
and {v;(n)}, that maximize the volume of the hyperparal-
lelepipeds D;, D4, and minimize the ratio of their largest and
smallest axes. Expressed as a function of the manipulator con-
figuration q and the design parameters n, the matrices Eo(q, 7)
and E,(q,n) are asymmetric. A matrix M can be represented
as the product of an orthogonal matrix with the symmetric
positive semi-definite matrix \/(MMT), i.e. the polar decom-
position. While the orthogonal matrix in this decomposition
describes the rotation properties of vectors under the map-
ping by M, \/(MMT) contains the norm or elongation char-
acteristics of these mapped vectors. The largest eigenvalue of
V(M MT) represents, in fact, the Euclidean norm ||M|| of M.
In addition, the ratio of this eigenvalue to the smallest one,
t.c. the condition number x(M), characterizes the uniformity
of the mapping by M. The condition number has been used
to evaluate the kinematic characteristics in articulated hand
design [Salisbury and Craig 1982].

Finally, the problem of dynamic optimization over the manip-
ulator work space Dy can be expressed as

min &(n) = /D C(a, n)w(a)dq

: ui(n)ZO t=1,...,n
with
vi(n)<0 i=1,...,n,;

(50)

where the function w(q) is used to relax the weighting of the
cost function C(q,n) in the vicinity of the work space bound-
aries and singularities. This cost function is given by:

C(q,n) = HE;(;,—U)” + aox(Eo(q, 7))
1 .
+wu[m + ayx(Ey(q,n))]; (51)

where ag (resp. a,) is the desired relative weighting between
the end-effector acceleration characteristics of isotropicity and
magnitude at zero velocity (resp. maximum operating veloc-
ity). w, controls the relative importance given to dynamic
performance at high velocity.

The optimization of manipulator performance for tasks involv-
ing applied end-effector forces can be similarly formulated, us-
ing the relation (35). In addition, the optimization of end-
effector velocity performance can also be formulated using the
manipulator kinematic model and the actuator velocity char-
acteristics. In the manipulator design process, dynamic, kine-
matic, and applied force characteristics of the end-effector can
be incorporated into a global optimization by extending the
previous cost function.

10. Application

In the following example, a simple two-link arm has been used
[Khatib and Burdick 1985] to illustrate this formulation for the
dynamic optimization of manipulator systems. Both joints are
assumed to be revolute and to have parallel axes of rotation.

l;, m;, ri, and I; are the length, mass, distance vector from
the joint to the center of mass, and the inertia at the center of
mass for the *» link. Gravity acts in the plane perpendicular
to these axes.

The link lengths are constrained to maintain a maximum ex-
tension of {4z, and I is in [I,I]. Each link is constructed
as a solid cylinder, and actuators are located at the joints.
The minimum value of the link cylinder radius is axpressed
as a function of the maximum loading force f,,q.! .ae struc-
tural stress ¢, the length, and the material proper‘ties of the
link. Consequently, link masses and inertias are similarly con-
strained. Actuators are assumed to have symmetrical peak
torques. Their masses and inertias, m,; and I,;, are considered
to be linearly proportional to the peak torque magnitude. In
addition, the joint torques I',; and T,; at maximum operating
joint velocities (2.0 rad /sec) are reduced to 70% of their values
at zero velocity (Lp;, [o;). The set n of design parameters
consists of {l;,m;, I;,r.;, mg;, L;,Lo;,Tos}. The end-effector
equations of motion and the sets of equality and inequality
constraints, u;(n) and v;(n), associated with this mechanism
are given in [Khatib and Burdick 1985].

Figures (2) and (3) illustrate the dynamic performance for two
different arm designs. The parallelepipeds in the upper left
figures (a) depict the boundaries on minimum available end-
effector acceleration at zero joint velocities. The largest circles
that can be inscribed within these boundaries, which represent
the magnitude of available isotropic accelerations, are shown
in the upper right figures (b). The lower figures (c,d) illustrate
these accelerations at maximum operating joint velocities. Let
@o and @, be the average magnitude of available isotropic ac-
celeration over the workspace at zero and maximum joint op-
erating velocities, respectively.

The dynamic performance shown in Figure 2 corresponds to
an initial set of design parameters. These parameters are
based on kinematic, joint inertia, and gravity loading consider-
ations; and the mass and inertia parameters are at their mini-
mums. However, this design yields poor isotropic end-effector
acceleration characteristics. In addition, the magnitude of the
minimum available acceleration at maximum operating veloc-
ity is appreciably reduced. @, and @, are 38.3m/sec’ and
19.0m/sec?, respectively.

Figure 3 shows the results of an optimization of the above arm
with the given constraints. At zero velocity, @o is 59.7m/sec?,
which represents an improvement of 56% over the initial design.
More significantly, at maximum velocity @, is 35.1m/ sec?, an
increase of 85% relative to the initial arm. In this improved
design, the actuator torques required are only 6.0% higher than
those used in the initial design.

11. Conclusion

We have presented the operational space formulation and the
unified approach to motion and active force control of ma-
nipulator systems. A two-level control architecture has been
designed to increase the system’s real-time perforgnance. We
have also presented the extension of this formulation to re
dundant manipulator mechanisms, and have discussed the bs-
sic methodology of dealing with kinematic singularity prob-
lems. Results of the preliminary implementation in COSM_OS
have shown the operational space formulation to be an effective
means of achieving high dynamic performance in real-time mo
tion control and active force control of robot manipulators for
more advanced assembly tasks. In the design of manipulator
systems, the dynamic optimization problem has been forma’
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{, = 0.5m, m; = 12.5kg, r;; = 0.25m, ry, = 0, I, = 1.002kg.m’;
ly = 0.5m, mz =9.5ky, vz = 0.25m, Ty, =0, I, = 0.604kg.m:;
To, = 500Nm, T“ = 350N m, foz = 200Nm, Tvl = 140 N1n.

Figure 2. Initial Design

ized using the end-effector equations of motion in operational
space. The characteristics of the relationship that governs the
transfer of joint forces to end-effector accelerations have been
used for the evaluation of manipulator dynamic performance.
The optimization problem has been expressed as the minimiza-
tion, with respect to the design parameters and constraints, of
a cost function based on these characteristics.

The large isotropic and uniform bounds on end-effector accel-
eration provided by this dynamic optimization will be trans-
lated into a large and well conditioned operational space com-
mand vector. This will provide the control system, in addition
to the forces necessary for end-effector dynamic decoupling,
sufficient operational forces to achieve the desired design per-
for{nance throughout the workspace. The kinematic charac-
terization and optimization of manipulators can be similarly
formulated. A global optimization integrating kinematic and
dynamic criteria can be achieved.
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