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Abstract

In this paper, we discuss issues related to the description of
manipulator end-effector tasks that involve constrained motion
and active force control. A generalized task specification ma-
trix is uscd in the development of a unified approach for mo-
tion and force control of manipulators in the opcrational space
framework. \We also present the extension of this formulation
to redundant manipulator systems. The end-effector equations
of motion in operational space of a redundant manipulator are
established, and its behavior with respect to generalized joint
forces is described. The end-effector is controlled by an opera-
tional space control system based on these equations of motion.
Asymptotic stabilization of the mechanism is achieved by the
use of dissipative joint forces sclected from the null space of
the Jacobian transpose matrix, consistent with the manipulator
dynamics.

Introduction

Joint space dynamic models have been the basis for various ap-
proaches to dynamic control of manipulators. However, task
specification for motion and applied forces, dynamics, and force
sensing feedback are closely linked to the manipulator end-effec-
tor. The dynamic behavior of the end-effector is one of the
most significant characteristics in evaluating the performance
of robot manipulator systems. The issue of end-effector mo-
tion control has been investigated and algorithms resolving end-
effector accelerations have been proposed [Takase 1977; Khatib,
Llibre, and Mampey 1978; Hewit and Padovan 1978; Renaud,
and Zabala-Iturralde 1979; Luh, Walker, and Paul 1980]. In ma-
nipulator force control, accommodation [Whitney 1977], joint
compliance {Paul and Shimano 1976], active compliance [Salis-
bury 1980), passive compliance, and hybrid position/force con-
trol (Craig and Raibert 1979] are among the various methods
that have been proposed.
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Active force control has been generally based on kinematic con-
siderations, and has been treated within the framework of joint
space control systems. The opcrational space formulation [Kha-
tib 1980, Khatib 1983], which establishes the end-effector equa-
tions of motion, has provided a framework in which this type of
control [Khatib 1985, Khatib and Burdick 1986] can be naturally
addressed.

Treated within the framework of joint space control systems, re-
dundancy of manipulator mechanisms has been generally viewed
as a problem of resolving the end-effector desired motion into
joint motions in the sense of some criteria.  The manipula-
tor redundancy has been aimed at achicving goals such as the
minimization of a quadratic criterion {\Whitney 1969, Renaud
1975], the avoidance of joint limits [Liegois 1977, Fournier 1980},
the avoidance of obstacles, [Hanafusa, Yoshikawa, and Naka-
mura 1981, Kircanski and Vukobratovic 1984, Espiau and Boulic
1983], kinematic singularities [Luh and Gu 1985], or the mini-
mization of actuator joint forces {Hollerbach and Suh 1985).

By establishing the end-effector equations of motion and describ-
ing its behavior with respect to generalized joint forces, the con-
trol of a redundant manipulator is formulated here in terms of
finding the opcrational end-effector forces and generalized joint
forces that allow the end-cffector to respond to the desired task,
while cnsuring asymptotic stabilization of the mechansim. The
unified approach for motion and active force control is extended
to redundant manipulator systems.

Generalized Task Specification Matrix

The end-cflector motion and contact forces are among the most
important components in the planning, description, and control
of assembly operations of robot manipulators. Tl end-effector
configuration is represented by a set of parameters specifying its
position and oricntation. In free motion operations, the number
of cnd-cffector degrees of freedom, mo, is defined [Khatib 1980]



as the number of independent parameters required to completely
specily. in a frame of reference Ro, its position and oricntation.
A sct of such independent configuration parameters form a sys-
tem of opcrational coordinafes.

In constrained motion operations, the displacement and rota-
Lions of the end-effector are subjected to a set of gecometric con-
straints. These constraints restrict the freedom of motion (dis-
placements, and rotations) of the end-effector. It is clear that
ecometric constraints will affect only the freedom of motion of
the end-eflector, since static forces and moments at these con-
straints can still be applied. The number of degrees of freedom
of the constrained end-affector is given by the difference between
mg and the number of the independent equations specifying the
geometric constraints, assumed to be holonomic.

An interesting description of the characteristics of end-effectors
and their constraints uses a mechanical linkage representation
[Fournier 1980, Mason 1981]. The end-effector, tool, or manipu-
lated object forms, with the fixture or consirained object, a pair
of two rigid bodics linked through a joint. A constrained mo-
Lon task can be described, for instance, by a spherical, planar,
cylindrical, prismatic, or revolute joiat.

lHowever, when viewed from the perespective of end-eflector con-
trol. two clements of information are required for a complete
description of the task. These are the vectors of total force and
moment that are to be applied in order to maintain the imnosed
constraints. and the specification of the end-eflector motion de-
grees of freedom and their directions.

Let {4 be the vector, in the frame of reference Ro(O, Xo. Yo. Zo).
of forces that are to be applied by the end-effector. The posttion
frecdom, if any, of the constrained end-effector will thercfore lie

in the subspace orthogonal to fg.

A convenient coordinate frame for the description of tasks in-
volving constrained motion operations is a coordinate frame
R (O.xg.ys.27) obtained from Rg by a rotation transforma-
tion described by Sy such that gy is in alignment with fa. For
tasks where the freedom of position motion is restricted to a
single direction orthogonal to fy, one of the axes Ox or Oy will
be selected in alignment with that dircction, as shown for the

task represented in Figure 1.

Figare 1. Onc-degrec-of-freedom Position Afofion.

To a task specified in terms of cnd-cflector position motion and
applicd force in the coordinate frame R, we associate the po-
sition spccification matrix

o 0 O
E! = 0 Oy 0 M (1)
0 0 0

where o, and o, are binary numbers assigned to the valuc 1
when a (ree motion is permitted following the Ox axis and/or
the Oy axis respectively, and zero otherwise. The subspace of
force control is described by the matrix associated with ; and
defined by

)—j/ =1I- E/; (2)

where T designates the 3 x 3 identity matrix.

et us now consider the case of tasks that involve constrained
rotations and applicd moments of the end-effector. Let 74 be the
vector, in the frame of reference Ro(O, x0. Yo.20), of moments
that are to be applied by the cnd-effector, and R, (O, X, ¥r.Zr)
be a coordinate frame obtained from Ro(O, xo. ¥o. zg) by a ro-
tation S, that brings £, inta alignment with the task torque
vector T4. In R,, the rotation freedom of the end-cffector lics in
the subspace spanned by {x,.y,}. Similarly to T, and ¥, we
define with respect to R, the rotation and moment specification
matrices ©, and Z,.

For tasks that involve end-effector motion (position and orien-
tation) and applied forces (forces and torques) described in the
{rame of reference R, we define the generalized task specification

STE,S 0
Q:(lo” ); 3)

malriz

ST, S,

T

with which is associated the matrix

~ sTY, s 0
_ (21121
a= (VY ags) 8

The construction of this matrix has been motivated by the aim
of formulating cfficiently the manipulator dynamic control ar-
chitecture in a coordinate frame that is independent of the task
specification. Control systems using specifications based on the
matrices Iy and £, will involve costly transformations of ge-
ometric, kinematic, and dynamic quantities to task coordinate
{rames.

Following the task specifications, §2 can be a constant, configu-
ration-varying, or time-varying matrix. A non-constant gen-
eralized task specification matrix corresponds to specifications
{hat involve changes in the direction of the applied force vector
and/or moment vector, ¢.g. moving the end-effector while main-
taining a normal force to a non-planar surface. (1 has been here
expressed with respect to the frame of reference Rq. For con-
trol systems implemented for tasks specified with respect to the
end-cffector coordinate frame, Q will be specified with respect
to that coordinate frame as well.

Unified Motion and Force Control
For a non-redundant manipulator, the end-eflector equations of

motion with respect to a system x of operational coordinates
can be written as [Khatib 1980, Khatib 1983
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A(x)X + p(x,x) + p(x) = F;

where A(x) designates the kinetic energy matrix, and n(x, x)
he vector of end-effector centrifugal and Coriolis for-

reprcscnls 1
d the generalized

ces. p(x) and F are respectively the gravity an
operational force vectors.

With respect to a system of n joint coordinates q, the manip-
ulator cquations of motion in joint space can be written in the

form

(6)

where b{q.q). g(q). and [, represent the Coriolis and centrifu-
gal. graviwy. and generalized forces in joint space; and A(q) is
the n x n joint space kinctic energy inatrix, which is related to

A(x) by

A(Q)q + b(q.@) +gla) =T,

o
o

A(q) = JT(@)A(x)I(a) (7)

where J(q) 1s the Jacobian matrix.

Free Motion Operations

The control of manipulators in operational space is based on
the sclection of F as a command vector. These generalized op-
erational forces are generated Ly joint-based actuators. The
generalized joint force vector T' corresponding to F is given by

(8)

In free motion operations, the dynamic decoupling and motion
control of the manipulator in operational space is achieved by

sclecting the control structure

r=J7(q) F.

F = A(x)Fq + u(x, X) + p(x); (9)
where F2, represents the command vector of the decoupled end-
eflector.

Using equation (8), the joint forces corresponding to the opera-
Lional command vector F in (9) can be written as

T = JT(qQ)A(x)F;, +b(q,q) +g(a) (10)

where E(q,d) is the vector of joint forces under the mapping
into joint space of the end-effector Coriolis and centrifugal force

vector pfx.x).
Constrained Motion Operations

The matrix Q defined above specifies, with respect to the frame
of reference Ro, the directions of motion (displacement and rota-
tions) of the end-effector. Forces and moments arc to be applied
in or about directions that are orthogonal to those motion di-
rections. These are specified by the matrix 2.

An important question related to the specifications of axes of
rotations and applied moments is concerned with the compati-
bility between these specifications and the representation used
in the description of the end-effector orientation. The specifi-
cation of axes of rotation in the matrix T, are only compatible
with jnstantancous angular rotations, which cannot be obtained
“roin a sot of orientation configuration parameters. Representa-

“1ens of the end-effector orientation such as Euler angles, direc-

tion cosines, or Euler parameters, arc indeed incompatible with
specifications provided by ..

However, instantancous angular rotations have been used in the
control of end-cffector orientation. An angular rotation error
vector 66 that corresponds to the error between the actual ori-
entation of the end-effector and its desired orientation can be
formed {rom the orientation description given by the sclected
representation [Luh, Walker, and Paul 1980, Khatib 1980}. With
lincar and angular velocities is associated the matrix Jo(q),
termed the basic Jacobian, dcfined independently of the par-
ticular sct of parameters used to describe the end-cflector con-

(1) = sot@a

For end-cffector motions specified in terms of Cartesian coor-

figuration

(1)

dinates and instantanecous angular rotations, the dynamic de-
coupling and motion control of the cnd-cflector can be achieved
[Khatib 1980] by

[ = JT(qQ)Ao(x)F5, + bo(q. 4) +g(a); (12)

\:’hcrc Au(q) and So(q,t}) arc defined similarly to A(q) and
b(q.q) with J(q) being replaced by Jo(q).

Similar control structures can be used to achieve dynamic decou-
pling and motion control with respect to descriptions using other
representations for the orientation of the end-cffector. This re-
sults from the possibility of expressing the Jacobian matrix J(q)
associated with a given representation of the end-effector orien-
tation z, as a function of the basic Jacobian by a rclationship

of the form

J(q) = E:.Jo(a); (13)

where the matrix E;, is simply given as a function of z, [Khatib
1950]. v

The unified operational command vector for end-effector dy-
namic decoupling, motion, and active force control can be writ-

ten as

F=Fq+F.+Feg (14)

where F,., F., and F., are the operational command vectors
of motion, active force control, and centrifugal, Coriolis, and
gravity forces given by

Fo = Ao(q)QF,;
F. = 0F; + Ao(Q)F
Fr.cg = bO(Qv ('1) + g(q);
where F? represents the vector of end-effector velocity damping

that acts in the subspace of force control. The joint force vector
correspanding to F in (14), is

(15)

T = JT(q)[Ao(Q)(QF;, + QF;) + QF:] + bo(a.4) + g(a)-
(16)
A more detailed description of the components involved in this
control system, real-time implainentation issues, and experimen-
tal results can be found in [Khatib 1985, Khatib and Burdick
1986).

Redundant Manipulators

The configuration of a redundant manipulator cannot be speci-



fied by a sct of parameters that only describes the end-effector
An indcpendent set of end-cffector
en-

position and orientation.
configuration parameters, therefore, does not constitute a g
ecralized coordinate system for a redundant manipulator, and
the dynamic behavior of the entire redundant system cannot be
represented by a dynamic model in coordinates only of the end-
effector configuration. The dynamic behavior of the end-effector
itself. nevertheless, can still be described, and its cquations of
motion in operational space can still be cstablished.

Let us first consider the end-effector dynamic response to the
application. on the end-effector, of an operational force vector
F. The joint forces corresponding to F are still given by (8).
Using the dynamic modecl (6) and the relation

x = J(q)q + h(q.q) (17)
we established [Khatib 1980] the following cquations
A(Q)x + #e(q,q) + pe(q) = F (18)

T @ = @A @I @I
po(q.4) = JT(@)b(a.q) — A(@)h(q. 9); (19)
p-(q) = JT(q)g(q):
with

J(q) = A"Y(q)/T(D)A-(a)- (20)
J(q) is actually a generalized inverse of the Jacobian matrix
corresponding to the solution that minimizes the manipulator’s
instantaneous kinetic energy.

Equation (18) describes the dynamic behavior of the end-effector
when the manipulator is submitted to a generalized joint force
vector of the form (8). The m x m matrix A.(q) can be inter-
preted as a pseado-kinclic energy matriz corresponding o the
end-effector motion in operational space. p,(q, §) represents the
Centrifugal and Coriolis forces acting on the end-eflector, and
p-(q) the gravity force vector. )

Let us now consider the case where an arbitrary joint force vector
is applicd to the redundant mechanism. Equation (18) can be
rewritten as

JT(@)[A(Q)q + b(q.q) + g(a)] = F- (21)
Substituting equation (6) yields
F=J7(q)l. (22)

The matrix J7(q) describes how the joint space manipulator
dynamic forces are reflected at the level of the end-effector.

Lemma

The unconstrained end-cffector (18) 1s subjected to the opera-
tional force F if and only «f the manipulator (6) is submitled to
the generalized jornt force vector

[ = JT(Q)F + [l — JT(0)J7 ()]s (23)

where I, the 1: x n tdenlily matriz, J(q) is the mafriz giren m
(20). and T, 1s an arbitrary join! force veclor.

When the applied joint forces [ are of the form (23), it is
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straightforward from equation (22) to verify that the only forces
acting on the end-cflector are the operational forces F produced
by the first term in the expression of T Joint forces of the form
[Ia = JT(q)JT(Q)]T, correspond in fact to a null operational
force vector.

The uniqueness of (23) is essentially linked to the use of a gener-
alized inverse J(q) that is consistent with the dynamic equations
of the manipulator and end-cffector. The form of the decompo-
sition (23) itself is general. A joint force vector I' can always
be decomposed in the form (23), and various expressions for T
associated with various generalized inverses J(q) can be estab-

lished.

Let I’(q) bea generalized inverse of J(q) and lct us
manipulator to the joint force vector

submit the

T = JT(Q)F + [l — JT(QPT ()T (24)
If, for any To, the end-cflector is only subjected to F, equation
(24) yields

J(@)A™ (@) = U@ (@I (@IPT(a); (25)

which implics the identity between P(q) and J(q)-
Control of Redundant Manipulators

Similar to the case of non-redundant manipulators, the dynamic
decoupling and control of the end-effector can be achieved by
selecting an operational command vector of the form (9). The
corresponding joint forces are

T = JT(q)A.(@Q)F; + b.(a,d) +g(a) (26)

where g, (q.q) is defined similarly to g(q‘ q)-
Stability Analysis

Under the command vector (26), and with the assumption of a
sation (or non-compensation) of the centrifu-

“perfect” compen
ed to dissipa-

gal and Coriolis forces, the manipulator is subject
tive forces Ty, duc to the velocity damping term (—k.x) in F7

these forces are

Lu, = D(a)&; (27)

with .
D(q) = —k,JT(q)A (2)/(a): (28)
D(q) isan n xn negative semi-definite matrix of rank m. Al-

though the manipulator is stable, since the condition

a" D(Q)a <0 (29)
is satisfied, this redundant mechanism can still describe move-
ments that are solutions of the equation

q" D(q)q = 0.

An example of such a behavior is shown in Figure 2a. The
end-cflector of a simulated three-degree-of-frecdom planar ma-
nipulator is controlled under (26). The end-eflector goal position
coincides with its current position, while the three joints are as-
sumed to have initially non-zero velocities (0.5rad/s has been
used).

(30)

Asymptotic stabilization of the system can be achieved by the
addition of dissipative joint forces [Khatib 1980]. These forces
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Figure 2: Stabilization of a Redundant Manipulator.

can be selected to act in the null space of the Jacobian matrix
[Khatib 1985]. This precludes any cffect of the additional forces

on the end-cffector and maintains its dynamic decoupling. Using.

(23) these additional stabilizing joint forces are of the form

A A CINANCY)) o (31)
By selecting
L, = -k A(q)q; (32)
the vector ', becomes
Lo, =T, +J7(q)A.(q)F..; (33)
with
F,. = kx. (34)

Finally. the joint force command vector can be written as
[ =J7(@)A(a)(F,, + F..)+ T, +b,(q.4) +gla)  (35)

Under this form, the evaluation of the explicit expression of the
generaiized inverse of the Jacobian matrix is avoided. The ma-
tr.x D(q) corresponding to the new expression for the dissipative
joint forces Ty,, in the command vector (35) becomes

D(Q) = —[(ku - kuq)JT(Q)Ar(Q)J(Q) + quA(Q)]~ (36)

Now. the matrix D(q) is ncgative definite and the system is
asymptotically stable. Figure 2b shows the eflects of this stabi-
lization on the previous example of a simulated three-degree-of-
freccdom manipulator.,

Constrained Motion Control

The extension to redundant manipulators of the results obtained
in the case of non redundency is straightforward. The general-
ized joint forces command vector becomes

T = JJ(q)[A.0(q)(QF;, + QF] + F.,) + QF)

+T, +b,o(q,q) +g(q); (37)
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where A,o(q) and l—),o(q, q) are defined with respect to the basic
Jacobian matrix Jo(q).

Conclusion

A methodology for the description of end-cflector constrained
motion tasks based on the construction of the generalized task
specification matrix has been proposed. For such tasks where
both motion and active force control are involved, a unified ap-
proach for end-effector dynamic control within the {ramework of
the operational space formulation has been presented. The use
of the generalized task specification matrix has provided a more
eflicient control structure for real-time tmplementations.

Also, the end-cflector equations of motion for a redundant ma-
nipulator system have been established, and an operational spa-
ce control system for end-effector dynamic decoupling and con-
trol has been designed. The expression o joint forces of the
nullspace of the Jacobian matrix consistent with the end-effector
dynamic behavior has been identified and used for the asymp-
totic stabilization of the redundant mechanism. The resulting
control system avoids the explicit evaluation of any generalized
inverse or pscudo-inverse of the Jacobian matrix. Joint con-
straints, collision avoidance, and control of manipulator pos-
tures can be naturally integrated in this framework of opera-
tional space control systems.
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