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Abstract

The paper presents a radically new approach to real-time dynamic control and active force control of manipula-
tors. In this approach the manipulator control prablcan is refornudated G Lermns of direct coutrol of manipulator
molion in operalionad space, the space tnwhich the lask is originally described., rather than condrolling the task’s
correspording joinl space motion oblained after geomelric and kincinatic transformation. The control method
is based on the construction of the manipulator cad effector dynamic wodel operational space. The general-
ized end cffector forces are selecled as the commund veclor i a cantrol system desiqued for the decoupling of
the end-cfJector motion i operational space. Fozces are actually produced by the wanipulator joint-based ac-
tuators. These jotnt Jorces are oblatned by a stmple foree ransforaalion Jrom the operational space command
veetor. Dynanic control in operational space constidutes a unificd approach fo motion and active force conlrol
using « unificd foree command vector. It is also ¢ powerfal method for the control of redundant wanipulators,
and is the basts for the application to a robot ar— of @ unique real-time obstacle avatdance approach based on
the artificiad potential ficld concepl. A two-leocl conlrol archilecture has been designed to improve the system
real-time performance.  This method has heen tmplemncuted i the COSMOS system for a PUMA 560 robot
using two processors. Compliance, contact, sliding and insertion operations ustng wrist and finger sensing

have been demonstrated.
1. Introduction

Conventional manipulator control, which provides only lincar feedback compensation to control joint positions
independently. cannot meet the high accuracy ead performance needed in precision wmanipulator tasks. Ad-
dressing this problen, el rescarch has heen divected at developing and modelling the dynamic equations of
joint motion. Typical models relate joint variables to generalized torques and by necessity foree the resulting

control scheme Lo have Ltwo levels:

o The first level requires coordinate transformations to convert the task description from operational space

to jJoinl space;
o The second level makes use of the arnn’s dynamic wodel to caleulate generalized force commands.

This liest stage of transforming (he task deseription is time cousumning and prone (o preblems near kinematic
singnlaritios. Additionally, dealing with the dynamic compensation problem leads to high computational
complexity in real-time control. Tu fact. the very approach of joint space coutrol is ill-suited for active foree

control, an ability which is crucial i robot. asscubly tasks.

Robol collision avoidance, on the other Tand, has typically been a component of higher levels of control in
hicearchical robot control systems. 1 has been treated as a planning problem, and rescarch in this arca has
focused on the developnient of collision-free path planuing algorithins.

Thie operational space formulation presented in this paper enables the development. of a wuified approach to
real-time dynamic control and active foree control of inanipulators, and a real-tiue collision avoidance method
based on the artificial potential field coneept. This formulation has its roots in the work ot end-effector motion
coutrol and obstacle avoidance [IChatib and Le Maitre 78b] that we implemented for an MA23 maunipulator in
1978. 1t has been formalized by constricting its basic tool, the end-elfector equalions of motion in operational
Spice ]](ll:\iil) 8()].

2. Opecrational Space Formulation

Lol Ty @y ..., T be the e configuration parameters of the end-effector, deseribing its position and orienta-
tion iu a frame of veference Ry, An operational coordinate system is a set x of 1y independent end-cffector
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couliguration paramncters. The geowetric and kinematic models of a manipulator are:

G(a); (1)
x = J(q) q; (2)

X

il

|

where q is the veetor of the n joint coordinates, and J(q) the Jacobian matrix.

Lot us first consider the case of non-redundant manipulators, f.e. 1 = ny, and use a set of independent. param-

cters, te. operalional coordiuales, to represent the end effector configuration. Let g, and g; be respectively
ay

the minimal and maximal-bonnds of ¢;. The point q in joint space is confined to the hyperpavallelepiped:

D, = 11['_1‘«5{}- (3)

LR

Let 134, be the domain obtained from Dy by excluding the singular points in the kinematic model (2) and such

that the vector function G of (1) is one-to-one. Let Dy designate the domain:
D, = G(D,). (4)

CFor a non-redundant. manipulator, the independent paranieters @y, Ea. ... ey, form a.scel of configuration
pacancters in the domaiu D, of the operational space and thus constitute a system of ceneralized coordinates.
The kinetic energy of the holouomic articulated mechanism is a quadratic foru of the generalized velocilies:

T(x,x) = l;FcTA(x)ic; (5)

where A(x) designates the g X g synunetric matrix of the quadratic form, 2.2, the Xinetic energy matrix.

Using the Lagrangiau formalistu, the end-effector equations of motion ave given by:

d OL oL _
dt 9% ax

= T; (6)

where the Lagrangian L(x, ) is: .

L(x,x) = T(x,x) — U(x); (7)
aud (7(x) represents the potential cnergy due to gravily. I is the operational force veetor. Let p(x) be the
veclor of gravity forces:

A (x) /
)= -5 (8)

dJdx

The end-cffector equations of motion can be developed [Khatib 80, Khatib 83] and written in the forin:
A(x)X - px, x) 4+ p(x) = F; (9)
where je(x, %) represents the weetor of end-clfector centrilugal and Coriolis forces given by:
/Li(i,k) =xTI(x)%x; (i=1L,...,mq); (10)

where the components of the mg X my matrices TT;(x) are the Christoffel symbols @ ;i given as a function of
the partial derivatives of A(x) w.r.t. the generalized coordinates x by:
R P e I i
Tijk = P e e e B (11)
2 Jry A dr;
These lorces are related to the manipulator cud-clfector, and are distinet from similac forees that arise when
viewing the manipulator motion in joint space. The manipulator equatious of motion in joint space are given
by:
Ala)d + bla,q) + gla) = T; (12)
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“where b(q, q). g(q), and T, respectively, represeut the Soriolis and centrifugal, gravity, and generalized forces
in joint space; and A{q) is the 7 X 2 joinl space kiuetic energy matrix.

Exploiting the identity between the kinetic energy quadratic forms with respect to joint. and operational
velacitios, we established [Khatih 80, Khatib 83] the relationships hetween the components of the joint space
dynaniic model and those of the operational space dynamic model. These are:

A(x) =J T(q)A(aq)J l(q);
n(x, %) = J T(q)b(q,q) - Ala)h(q. q); (13)
p(x) = J T(a)g(a);

'
i

where:

h(q.q) = J(@)a. (14)

In the foregoing relations, A, p have been expressed in terms of joint coordinates. The dowain D, of ()

can then be extended to the domain Dy defined by:
Dx = G(Dq)v (IS)

where D, i the domain resulting from D, of (3) by excluding the kincmatic singularities in (2). [ndeed, the
restriction to a domain where G s one-to-one then becomes unnecessary.

The control of manipulators in operational space is based on the selection of T oas a command veetor. Ta
order to produce this command, specilic forces T'must be applied with joiut-based actuators. The relationship
between T and the generalized joint forces T can be obtained by exploiting the identity hetween the victual
waork of T in an clementary displaceinent ax and the virtual work of T'in the corresponding displacament oq,
according (o the virtual work principle. Using equation (2) this leads to:

r=J"(q) F. (16)

3. End-Effector Control

While in metion, a manipulator cud-cflector is subject to the highly noulinear forces mentioned carlier. These
vonlinearities can he conpensated for by dynamic decoupling in operational space using the end-effector
cquations ol wotion (9).

Active foree control has been treated within the fraunewaork of ajoint space control system [Craig and Raibert
79, Salisbury 80]. However. wrist or finger sensing. the desired end-cllector contact forces, and the end-eflector
sliffess and dynanics involved in this problem are closely linked to the end-elfector and 1= dynaunic behavior

in operational space.
With end-cllector dynamic decoupling, active foree control can be naturally integrated into the control system
by simply incorporating it into the operational force command vector:

P =TF, +TFa; (17)

where F,,, By, are the operational command vectors of motion and active force control, respectively. I, is
given by:
F,. = A(X)F;, + p(x, %) + p(x); (18)

where F2 represents the command vector of the decoupled end-cffector, which becowes equivalent to a single

™m

wnil mass. For a desived molion of the end-clfector, this commaud veetor is given by:

F: = %y — ko (x - xa) — €(% - %a)- (19)

™.

where x4, %4 and %¢ are respectively the desired position, velocity and acceleration of the cud-ceffector. k,

and € are the position and velocity gains.
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For tasks that involve large end-effector motion toward a goal position without path specification, the following
command vector [Khatib, Llibre, and Mampey 78a, Khatib 85a:

F, = —€(% - vxq); (20)
where:
' . k;p
Xg = ?(xd - x);
(21)
v = min(l, hf—),
%T x4

allows a straight line motion of the end-cffector at a given speed V.. The velocity vector x is in fact
controlled to be pointed toward the goal position while its magnitude is limited to Vipa.. The end-cffector will
then travel at that speed, in a straight line, except during the acceleration and deceleration segments. This
scheme is particularly useful in the collision avoidance approach presented in §6. It is shown in Figure 1 in
addition to other forces described in §6.

FIRAS

1A%

v
. m. Decoupled
FOM T G x

End- Effector

v v

Figure 1. End-effector Control for a Goal Pousition

The operational command vector Foiu (17) is generated by the corresponding joint forces resulting from the
force trausformation (16). Let us designate by [qq| aud [§?] the n(n — 1)/2 x 1 and 7 x 1 column matrices:

laal = [d1d2 19z ---dn 1 (}n]T; .
-2 2 2 2T (22)
[@%) = lay dz--- 4.l
The joint forces corresponding to gu(x,x) can be written in the form:
b(a,4) = Ba)[aal + C(a)[@’]; (23)

where ﬁ(q) and € (q) are, respectively, the 7 x n(n — 1)/2 and n x 7 matrices of the joint forces under the
mapping into joiut space of the end-clfector Coriolis and ceutrifugal forces (see Appendix I). The joint torque
vector correspouding to the operational space command veetor (17) can then be developed as:

L= J"(Q)[AQ@F, + Fo + Bla)[adl + C(a)[@’] + g(a); (24)

In order to simplify the notation, A has been also used here to designate the kinetic energy matrix when
expressed as a function of the joint coordinate vector q.

The dynamic decoupling of the end-cllector can thus be obtained using the configuration-dependent dynamic
coellicients A(q). I‘f(q). (i'(q) and g(q). By isolating these coellicients, end-cllector dynaunic deconpling and
control can be achicved ina two-level control systen acchitecture. The load of real-time computation of these
cocflicicuts can then be paced by the rate of confignration changes, whiclt is much lower than that of the
mechanism dynamics. Furthermore, the rate of computation of the end-cllector position cau be reduced by
integrating an operational position estimator into the control system.  TFinally, the control system has the
following architecture:
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» A low rate parameter evaluation level: updating the cnd-effector dynamic coefficents, the Jacobian matrix,
and the geometric model.

e A high rate servo control level: computing the command vector using the cstimator and the updated
dynainic cocilicents.

By decoupling the end-efficctor motion, compliance in a given direction in the operational space is directly
controlled by the position gain matrix. Active force control in a given direction is then simply achicved by
sctting the end-cffector stiffness in that direction to zero and sclecting the corresponding force servo using the
matrix § (sce Figure 2).
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TFigure 2. Operational Space Control System Architecture
4. Redundant Manipulators

For a redundant manipulator, the end-effector configuration parancters dou’t constitute a generalized coor-
dinate system.  Although the dynamic behavior of a redundant manipulator system cannot be represented
by a dynamic model developed with respect to an end-cffector configuration coordinate system, the dynaunic
behavior of the end-cffector can still be deseribed and its equations of motion in opera ional space can still be
established. While these equations of motion can be used to achieve the coutrol of the cad-cffector motions
and active forees, the stabilization of the redundant wechauism nust be based ou the manipulator joiut space
dynamic model. '

Using the dynamic model (12) and the relation:
% = J(q)a -+ hiq,q); (29)

we established [Khatib 80] the following cquations of motion for a redundant manipulator system:

A (X)X A+ pre(x, %) 4 pe(x) = T (26)
where:
Aca) = (@A @) (@) b
pe(a.q) = 7 (a)b(a,q) = A (a)h(q. 4); (27)
p.(a) = J" (a)g(a);
with:

7 1 T
la) = A" @)@ (a). (28)
J_(q) is actually a pscudo-inverse of the Jacobian matrix corresponding to the solution that minimizes the
manipulator’s kiuetic energy.

The end-effector dynamic decoupling aud control can be then obtained using a control systern similar to that

of (24): - -
T, = JT(q)[A (Q)F + Fol + B (q)faal + ¢ (a)la®] + gla); (29)

- 169 — 15th ISIR



where B3, (q) and C,(q) have similar cxpressions to B(q) and C(q), with A(q) being replaced by A, (q). Under
this comand vector, the manipulator is subject to the dissipative forces Tyia due to the x term 1n Fi :

Ly, = D(a)q; (30)
with:
D(q) = -&JT(q)A (a)J (a). (31)

D(q) is an n X n negative semi-definite matrix of rank . Although the stability condition [Mingori 70]:
4" D(a)a < 0; (32)

of the articulated wechanical system (12) under the previous command is satisfied, this redundant mechanism
ca still deseribe movements that are solutions of the equation [Rumiantsev 70]:

4" D(a)q=0; (33)

Asymptotic stabilization of the system can be achieved by the addition of dissipative forces proportional to q
[Khatib 80]. These forces can be selected from the null space of the Jacobian matrix J(q), in order to climinate
their influence on the end-eflector behavior. Using the dynamic model (12), this corresponds to applyiug the
additional stabilizing joiut forces:

.= &AL - J(a)(a)la (34)
The application of T, will not affect. the resulting end-clfector operational forces. By grouping the term
&, A(Q) T (q)1(a)]q of (34) with the dissippative forces in F:., the joint force command vector can be written
in che form:

T = JT(q)[A(Q)F;, 4 Fal - SA(Q)a + B (a)[ad) + Co(a)[a®] + s(a); (35)
with:
F:u = X4 — kl,(x -- Xd) - f()'( - ).((1) -+ f,,?.(; (30)
for a desire:d motiou, and:
F;, = —&(x — vxq) + &% (37)

for a goal position, where v is defined as in (21). The nnll space of the Jacobian malrix can also be used in the
oplimization of additional objectives. Tn redundaut manipulator coutrol, the null space has been used in order
Lo achiieve goals such as avsidanee of joint limits [Licgois 1977, Fournier 1980]. obstacle avoidance [Hanafusa,
Yoshikawa, and Nakamuara 'I‘.)Sl], or minimizing the actuador joint forces [Hollerbach aud Suhi l‘.).‘%fxl. With the
command vector (35), the matrix D(q) in the new expression for the dissipative joint forees Py hecomes:

Diq) = - [(& - NI QA (q) T {a) 4 & A(a)] (38)
D(q) is now a negative definite matrix and the closed Toop system is asymptoticaly stable.

5. Singular Configurations

A sinqular confiquration is a conliguration q al which the end-eflector Toses the ability to move along or rotate
abont a given direction of the Cartesian space. In such a conliguration, the manipulator’s mobilily locally
deercases. To each singular coufiguration corresponds a singular “direction” in operational space. [t ix for
that direction, ju fact, that the effector presents indinite inertial mass for dirplacements or infinite inertia for
rolations. Its movements remain free in the subspace orthogonal to this direction. The basic concept in our
approach to the prablenn of kinematic singularitios can he formulated as follows:al « singular configuration, the
manipulator can be treated as a redundant wechantsue with respeel Lo Lhe end-cffector molion tu the subspace

of operational space orthogonal to its sigular direction.

The equations of motion of the end-eflector in that sub-space are similar Lo those of (26.27). The cud-cllector
dyuaniic decoupling and control as well as the stabilization of the mechanism can be achicved similacly to the
case of redindant manipulators in the previons section. Tn addition, joint forces from the Jacobian nall space
can be used (o seleet the desired configuration of the manipulator amony the various confignartions that the

arm can take for a given motion of the end-cffector.

15th ISIR - 170 -



6. The Artificial Potential Field Approach

The operational space control approach enabled the developent. of a unique obstacle avoidance schetie based
on the use of potential functions around obstacles, rather than actual path planning. The philosophy of the
artificial potential field approach can be schematically described as follows: The manipulator moves in a field
of forccs. The position to be rcached is an attractive pole for the end-effector, and obstacles arc repulsive
surfaces for the manipulator parts.

Obstacles are deseribed by composition of primitives. The control of a given point of the manipulator vis-
A-vis an obstacle is achieved by submitting it to a Force Inducing an Artificial Repulsion from the Surface
(FIRAS, from the French). These forees are created by an artilicial potential field obtained as a function of
the normal distance to the obstacle’s surface. Collision avoidance for moving obstacles is obtained using a
continnously time-varying potential ficld. The manipulator obstacle avoidauce .problem has been formulated
in terms of collision avoidance of links {Khatib $5a), rather than points. Link collision. avoidance is achicved
by coutinuously controlling the link’s closest point to the obstacle. The potential field approach has also been
used to satisly the manipulator internal joint coustraints.

With this approach, the problein can be treated in two stages:

e at high level control, generating a global strategy for the maunipulator’s path in terins of intermediate
soals (rather thau finding au accurate collizlon-free path);

= at the low level, producing the appropriate conunands to attain cach of these goals, taking into account the
detailed geometry and motion of manipulator and obstacle, and making usc of real-time obstacle sensing
(low level vision and proximity sensors).

7. Applications

This approach has been implemented in an experimental manipulator programing system COSMOS (Control
i Operational Space of a Manipulator-witli-Obztacles System). Using a PUMA 560, demonstrations of real-
tine end-cffector motion and active force control operations have been performed. These include contact,
shide. insertion, and compliance operations [Khatib 85b], as well as real-time collision avoidance with links and
moving obstacles. I the current multiprocessor implementation (PDP 11/45 and PDI 11/60), the rate of the
servo control level s 225 1z while the coefliciens evaluation level runs at 100 Hz.

8. Conclusion B

We Lawve presented the operational space fornmlation and constructed its basic tool, the end-cffector equations
of motion. A unified approach to mwotion and active force control of wanipulator systems hias been developed,
and atwo-level control system architectire lias heen designed in order to achieve higher real-time performance.
We have alzo presented the extension of this forumlation to veduudant. manipulator mechanisms, and have
discussed the principal coucepts in dealing with kinematic singularity problems. Further, we have deseribed
the artificial potential field approach for veal-time collision avoidance. Through the results of our preliminary
iplementation, we have shown the operational space formulation to be an effective means of achieving high
dynamnic performance in both real-time motion control and active force control of robot. manipulators, leading
to an increased capability for more advanced assembly tasks in more complex environments.
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Appendix I

Let B(q) and C(q) be, respectively, the nox n(n — 1)/2, and o x 2, wadrices of the joint space Coriolis and
centrifugal forces defined by:

bla,q) = Bla)laal + Cla)la’]; (A1)
The matrices l}(q) and (:‘(q) of the joint forces under the mapping into joint space of the end-cflector Coriolis

and centrifugal forces bq, q) are related to B(q) and C(q) by:

B(aq) = B(q) = I (q)A(a) I (a);

. . r (A2)
Cla) = Cla) = S (a)A(q) IT2(q):

where the matrices 1 (q) and ITy(q), respectively nox n(n = 1)/2 and 1 x n, arce:
T@)a = M(a)lad) -+ I2(a){a’] (43)
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