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Abstract

The paper presents a radically new approach to real-tirne dynamic control and active force
control of manipulators. In this approach the manipulator control problern is re formu-
lated in terms of diveet control of manipulator molion in operational space, the space
in which the task is originally described, rather than controlling the task’s correspond-
ing joint space motion oblained after geomcetric and kincmatic trans formation. This
approach leads to high per formance position/[orce control which is the esscntial tool
for ertending robot capabilitics in per forming more advanced assembly tasks. We also
present, a unique real-time obstacle avoidance method for mobile robots and manipulators
bascd on the “arli ficial potential ficld approach”. These methods have been implcmented
on a 'UMA 560 robot at the Stanford Artificial Intclligence Laboratory.

. Introduction

Conventional manipulator control, providing linear feedback compensation Lo control joint
positions independently, is unable Lo meet the high accuracy and performance required in
precision manipulator tasks.  Addressing this problem, much rescarch has been dirccted at
developing and modelling the dynamic cquations of joint motion. Typical models relale
joinl variables Lo generalized lorques and by necessity force the resulting control scheme
to have Ltwo levels:
e  Lhe first level requires coordinale transformations Lo converl the deseriplion of
a desired path from Cartesian Lo joint space; :
e the second lovel makes use of the arm’s dynamie model to caleulate generalized
force commands,

This first stage of control, the Lransformation from a Carlesian description of Lthe path into
joinl trajectorics, is very Lime consuming and prone Lo problems al kinemaltic singularilics.
Considering the dynamic compensation problem, this leads to high compulational corn-
plexity in real-time control.

On the other hand, these lypes of joint space control approachs are ill suited Lo aclive
force conlrol, which is crucial for Lthe extension of robol capabilities in performing more
advanced assembly tasks.

In manipulator control, the predominant concern is thal the end effector motion and the
active lorces respond accurately Lo the desired task. At the level of joint motions, concern



is limited o issues of the global stability of the articulated mechanism and the satisfaction
of the constraints under which it must operate.

The operational space control approach has ils rools in the work on end-clfector motion
control and obstacle avoidance [1,2], that.we implemented in 1978 at the “Laboratoire
d’Automatique de Montpellier” in France for an MA23 manipulator. This approach has
been forinalized by constructing its basic tool, the equalions of motion in the operational
space of the manipulator end-cfleetor (3]

9. Mathematical Models

The end cffector configuration is represented by m paramelers describing its position and
oricntation in a frame of reference /2. These e parameters will be called Fnd £ ffector
Con figuration Paramcters and represented by z. The geometric and kinemalic models of
a manipulator are:

z=Gq) (1)
r=J(q)q (2)

where g is the vector of the o joint coordinates, and J(q) the Jacobian matrix. The dynamic

model ean be wrilten in the form:
Alq)i + blq, q) — g(q) = U (3)

where A(q) is the n X n kinelic energy matbrix, b(q, q) is the centrifugual and Coriolis forces
column matrix and g(q) is the gravity forees column matrix. I"is the » X | column malrix

ol generalized forees.
3. End Elfector Dynamic Model

Delinition: An Operational Coordinate System is acoordinale system formed by an indec-
pendent set of mg end eflector conliguration paramelers.

Lot us consider the case of non-redundant manipulators, i.c. n = my, and use a set
of independent parameters, .. operational coordinates, Lo represent the end ceffector
configuration. Lel g, and g; be respectively the minimal and maximal bounds of ¢;. The
movement of the point g in joinl space is conlined Lo the hyperparallelepiped:

Dy = H[.‘.’.,"r’i] (1)

Lel I):f’ be the domain oblained from Dg by excluding the singular points in the kinemalic
model (2) and such thal the vector function ¢ ol (1) is one-to-one. Lel DY designate the
domain:

Dt = G(DY) | (5)

In DI, the independent paramelers Ty, Tgy..e Tm, constitute a set of configuralion
paramelers for the manipulator. Therefore, they constibule asel of generalized coordinates.



The end cllector dynamic model of a non-redundant manipulator in thec domain D} is given
by [4]:

A(2)i + p(z,2) - plz) = F » (6)

A(z), u(z, ) and p(z) represent respectively the kinelic encrgy matrix, the centrifugal and
Coriolis forces column matrix and the gravity forces column malrix. [ is the mg X 1
opcerational forces column malrix. The operalional space dynamic parameclers arc rclated
to Lhe joint space dynamic parameters by [4]:

A(z) = ST (q)Aa)S ™ (q) .
plz, ) = J T (q)blq, q) — Aa)h(g, 7) (7)
p(z) = J T (q)g(a)

where

Wa,q) = J(a)a; | (8)

. Since the evaluation of the matrices A, g, p in the foregoing expressions has been oblained

in terms ol the joint coordinates, the domain DI of applicability ol the dynamic model (6)
. - .

may be extended to the domain D, defined by:

DL = G(D,) (9)

=, . . . X . . . - - .
where D7 is the domain resulting from Dg of (4) when the singular points in the kinemalic
model are excluded. [ndeed, the restriction to a domain where G'is one-to-one then becomes

HNNeeessary. -

1. Decoupling of I5nd Elfector Motions

The dynamic model (6) provides a deseriplion of the dynamic behavior of the end effector
motions in operational space. The control of the manipulator for 2 desired motion in this
space becomes feasible by selecting I as control veelor. In order to produce this control
veetor of operational forees, specilic forces I musl be applied with joinl-based actualors.
The relationship between & and the joint forces I' may be oblained by exploiting the
identily between the virtual work of /7 in an clementary displacement §z and the virtual
work of I in the corresponding displacement dq, according Lo the virtual work principle.
Using cquation (2) this leads to:

r - JT(q) (L0)

r . . 3 - hd . . i 3
“The decoupling of Lhe end effector motion in the domain D of the operational space is
achiceved by cmploying the following structure of control:

P = Nz)Fm + p(z, 7) — p(z) - (11)

where I, represents the command veetor of the decoupled end-effeclor which - becomes



equivalent to a ;inglc mass. The control system is shown in Figure 1 where K and §
ropresent the g X mg constant gain matrices and the subscript ¢ denotes the desired

molion.

BEHY + 7 .r r "
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o=, i) - ¢{s)

1end cffector molion decoupling.
Iigure 1

7. Redundant Manipulators

In the case of redundancy, the operational coordinates can't constitute n generalized coor-
dinate system sinee their number is less than the manipulator dof, i.c., mg < n. Therefore,
the manipulator’s dynamic behaviour cannol be deseribed by a dynamie model worked out
in the operational space. However, cquations of motion in this space may be oblained for
the end elfector. These cquations are [4]:

A(2)E + polz, 7)) — pe(2) = F (12)
wilh
Ad(q) = M@ A (T @™
l‘-r(‘lt ‘I) = '_,_T(‘l)b(‘h ‘I) - A,(q)h(q, Q) “3)
pe(a) = J " (a)ola)
where

I(q) = A~ () T (@)A-(q) (14)

J(q) is actually a right pseudo-inverse of the Jacobian matrix corresponding Lo Lhe solution
that minimizes the manipulator’s kinelic cnergy. The system’s asymplolic stabilizalion
may be achieved by the addition ol dissipative forces proportional to ¢ in the control law

(11).



8. Singular Configurations

A singular con figuration is a confliguration ¢ from which the end clfector cannot move
along or rotale around a given direction of the Cartesian space. In such a configuration,
the manipulator’s mobility locally decreases. To a singular configuralion corresponds a
singular dircclion attached to the end cffector. It is for that direction in fact that the
clfector presents an infinite inertial mass {for a displacement or an infinite inertia for a
rotation. Its movements remain free in the sub-space orthogonal to this dircction. At a
singular configuration, the manipulator can be treated as a redundant system with respect
to the end clfcctor motion in the sub-space orthogonal Lo its singular dircclion.

9. Active Force Control

In previous approachs [5,6], the aclive force conlrol problem has been treated within the
frame ol 2 joinl space control system. lowever, the wrist or finger sensing, end-cflector
desired contact forces, and end-cffector stilfness and dynamics involved in this problem are
closely linked to the operational space. Active force control can be naturally integrated in
the operational space control system using Lhe same operational force command vector. By
decoupling the end-elfector motion, compliance in a direction of the operational space is
directly controlled by the position gain matrix K, (sce figure 2). Active force control in a
direction is then simply achieved by setting the end-effector stilfness in thal direction to zero
and sclecting the corresponding force servo using the matrix §. The system stabilizalion
is obtained by maintaining the damping € in both position and force control.

10. Real-Time Implementation
The control law (11) may be written in the lform [4):
= JT (M) ' + i!(q)[f](}] 1 C‘((])[(}z] - q(q) (15)

Where the matrices () and -C(q) have respectively the dimensions n X n(n — 1)/2 and
.. <Y *
n X n. [qq] and [¢7] are delined by:
T . .
[9q) = [aya2_a14y: - -1 4nl (6
IS AR (16)
(@) = (a7 42---4n]
In this new control structure the end-cffector dynamic decoupling is oblained using
the end-effector dynamic parameters (D) A(q), 3(q), C(q) and g(q), which are
conliguration-dependant.  With respeet Lo the servo control rate, the 1KEDP parameclers
can be computed al a relatively low ralte. This, with the integration ol an operational
posilion/velocity estimator, leads to a two-level control system architecture (see figure 2):
e low rale parameter cvaluation level: updaling the 155D, the Jacobian mabrix
and the geomelrie model;
e high rale scrvo control level: computing the command vector using Lthe cs-
timator and the updated paramelers.
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Figure 2

19. Real-Time Obstacle Avoidance

The operational space control approach enabled the development of a unique obslacle
avoidance scheme based on the use ol potential functions around obstacles, rather than
actually planning paths. The philosophy of this approach can be schematieally deseribed
as Tollows: The manipulator moves in a ficld of forces. The posilion to be reached s
an altractive pole for the end ¢ ffector, and the obstacles are repulsive sur faces for the
wmanipulator parts [2]. Obstacles are described by composition of primifives. Analylic
cquations representing envelopes best approximaling the primitives' shapes have been de-
veloped (parallelepiped, cone, eylinder, cle.). The control of 2 given point of the manipulator
visdevis an obstacle is achieved by submibling it to a loree Inducing an Artificial
Repulsion from the Surface (FIRAS, from the french). These forees are created by an
arlificial potential field V obtained as a Ffunction of the normal distance to the obstacle’s
approximating surface p [3]:

(;‘-T - ,,'Tz,)z: il 1ol < lool;

_ 0, il ol > 1pal; |
where po represents the limit distance of the polential field influence. p is asily oblained
using a variational procedure. Considering the small amount. of ealeulation ncaeded, Lhis
method allows obstacle avoidance Lo oceur in real Lime as an inlegral part of the servo-
control. Collision avoidance, traditionally considered as a high-level planning problem, can
be clfectively distributed belween different levels of control.. This allows real-lime robot
operations in complex environments.

V(p) = (47)

11. Applications

An experimental manipulator programming system “COSMOS” (Control in Operational
Space ol a Manipulator-with-Obstacles System) has been designed at the Stanford Artificial



Intclligence Laboratory for implementation of the opcrational space control approach for
the Unimation PUMA 560 arms. In the absence of an effective force control, a simplified
end eflcetor dynamic model of the PUMA arm is used: The COSMOS system is currently
implemented on a PDP 11/45 computer that is interfaced Lo a PUMA 560. The PDP 11/23
and VAL arc disconnected, and only the joint microprocessors in the PUMA controller
arc uscd for motor current control. The PUMA is cquipped with a six degree of freedom
force wrist that is interfaced to the PRI 11/45 via an A/D convertor. The PUMA is also
interfaced to a Machine Intelligence Corporation vision module.

In the current COSMOS implementation, the servo control level rateis 125 [Tz while Lhe rate
of the parameter cvaluation level is 40 11z, With the new multiprocessor implementation
(PDP 11745 and PDP 11/60), COSMOS is expecled Lo achieve a dynamic aod kincmatic
update rate of 100 Iz and a posilion/lorce servo rate of 300 Ilz. :

Demonstrations of real-time end effector free and constrained motion including contact,
slide and compliance operations as well as real-time collision avoidance with links and
moving obstacle have been performed with the COSMOS system.

12. Conclusion

The operational space formulation has been shown to be an clfeclive means of achieving
high dynamic performance in real-Lime motion conlrol and active foree control ol robot
manipulators for complex asscmbly lasks.  In addition, the complex transformation of
the task into joint coordinates, required in conventional joinl space control approaches, is
climinated. This leads Lo a reduclion in the amount of computation and avoids singularity
problems. In a complex environment, the artificial potential field approach coustitules
a unique ool for real-time obstacle avoidance.  Collision avoidance, generally Lreated at
the highest level of control, has been demonstrated here Lo be an offective component of

low-level real-Llime control.
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