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SYNOPSIS Rescarch in manipuliator control has focused on thé development and application of dynamic models of manipulators.
Typical models relate joint variables w generalized torques and by uccessity force the resulting control scheme to have two levels. The
fiest level requires coordinate teansformations o convert Lhe description of u desired path from Cartesian Lo joint space. The sccond
level makes use of the arm’s dynamic model to calculate generalized torque commands. This first stage of coutrol, the transformation
from a Caricsian description of the path into joint Lrajectories, is very time consuming and pronce Lo problems at kinematic singularitics.
We propose a new control scheme which is based on the construction of a dynamic model of a manipulator in operational space (task
space) rather than joint space. This allows a simple force transfornuition to replace the diflicult conversion of the Cartesian path ints
joint coordinates. A Tund:amental advantage of this approach is that the dyuamic behavior of the system is controlled in the samec space
«s the path's description, allowing an exact statement of error dynamics in Cartesinn space. The system leads to a reduction in the
amount of computation and avoids singularity problems. It is also a powerful mecthod to control redundant manipulators, and is the
basis for a unique obstacle avoidance scheme. This mcthod has been used to control a PUMA 600 at Stanford University.

1. Introduction

Coaventional manipulator control, providing linvar feedback com-
pensation to control joint positions independently, is unable to mect
the high accuracy and performance required in precision manipulator
tasks. Addressing Lhis problem, research has been directed at devel-
oping and modeclling the dynamic cquations of joint motion. Based
on these models, the dynaruic control problem has been formulated
in terms of controtling the behaviour of the manipulator in joint
space. However, manipulator action is cssentially characterized by
the variation, as much in space as in time, of its end eflector position
and oricntation, and the forces and torques it exerts on the environ-
ment. The end elfector is, in truth, the part of the manipulator most
closcly linked to the task. In manipulator control, the predominant
concern is that the end effector motion and the exerted forces and
torques respond accurately to the desired task. At the level of joint
motions, concern is limited to issucs of the global stability of the
articuliated mechanism and the satisfaction of the constraints under
which it must operate. Approachs to cnd clfector motion control
[,2,3] require task transformation and dynamic compeasation, and
this leads Lo high computational complexity. Fnd clfector dynamic
modeling and real-titmie control in the prescace of obstacles and con-
steaints constitute the central objective of the work [4] presented in
this paper.

2. Mathematical Modecis

The end clfector configuration is represented by m parameters
describing its position and orientation in i frame of reference .
Iind fJector Configurction
The geowmetric and kincmatic

These m paramecters will be cadled
Paramecters and represcuted by z.

models of wmanipualator are:

z = Ga) (1)
J{a) ¢ (2)

where ¢ s the veetor of the njoint coordinates, and J(g¢) the Jacobian

I ==

matrix.  For diflerent choices of representation of x, dillerent
Jacobians can be defined. An important particular Jacobian, termed

the basic Jacobian, is defined independently from the pararacters
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(1) = sotasi ()

where v and w are respectively the lincar and the angulac velocity
vectors w.r.t. fig.
The dynamic model can be written in the form:

Alq)i+ bq,q) —glg) =T

with:
bg,q) = Bla){ag] + Cla)le’]
[‘.IQI = E‘i.}‘hzq\q-sz' - (5)

(") =la} 2.
where A(q), B(q) and C(q) are respectively the n X n kinetic energy
marrix, the n X a{n — 1)/2 matrix of Coriolis forces, and the n X' n
matrix of centrifugal forces; g{q) is the gravity forces colurnn muatrix.

3. Opeccational Coordinates

Delinition: An Operationa! Coordinate System is a coordinate sys-
tem formed by an dudependent set of mg end cllector conliguration
parameters.

Carlesinn coordinates (z, 7, =) are the most common representation
for end clfector positiou, whercas several dilfercnt represcatations

All oricatation

for the oricotation parameters.

have been used
deseriptions, other than those using angular parameters, acc redun-
angle representations of the rotation, and norc
wanimal represcatation, will be singular in certain

This type of singularity is edled a singularity of

dant. Fuler
generidly any
configurutions.
represcutation. M. Renmud {50 has proposed representation based
on the parunetess of Olide Rodrigues (POR), also called Buler
parameters, Paesaing this appronch, we demonsteated 4] the exis-
Lenes of 4 svatems of 3 PO for which some important mathematical
operators are invacinnd, and such that the end cffector rotution can
be described by one of then: for any configuration. By continuously

sclecting among the 4 systems, we obtain a representation vsing a

won-fixed sct of 3 independent parameters. The invariance property
makes Lhe selection chinges ia this represcatation Leansparent to the

virious associted matheresdtioad models.



4. Iind Eflector Dynamic Model

Let us coasider the case of non-redundant manipulators, i.c. n
mg, and use a sct of independent parameters, ie. opcrational coor-
dinates, to represent the cnd effector configuration. Lot g, and g; be
respectively the minimal and maximal bounds of ¢;. The movement
of the point q in joint space is confined to the hyperparallelepiped:

Dy = H[‘];r (A (6)
In the operational space 7™, the moverment of the point z is within
the domain D, deduced from (1) and (6):

D: = G(Dy) (7)
Let D,'l be the domauin obtained from Dy by excluding the singular

points in the kinematic model (2) and such that the vector function
G of (1) is one-to-once. Let DI designate the domain:

Dl =G(p})

In DL, the independent parameters Z,,T

(8)
2, - -y T, CONstitute a set of
conliguration paramcters for the manipulator. Therefore, they con-
stitule a set of generalized coordinates. The manipulator’s kinetic
energy is a quadratic form of the gencralized velocities, since the
articulated systcm is supposed holonomic. Its expression in terms of
the operational coordinates and vclocitics is:

T,(z, I) —I A(I)I 9)

where A{z) designates the symmctnc matrix of the quadratic form.
Lagrange’s cquations are:

d ab oL
( 0::
where the Lagrangua.n I{z,z)is
Yz, z) = Te(z,z) - U(z)
U{z) represents the gravity potential cnergy and F is Lthe ith
tional force. Let 5z, ) be the column matrix:
AT, aT,
dxy ITen,

Let p(z, z) be the column matrix:

Fis (1 <1< my)

(10)

(1)

opera-

(12)

zz) = [3=

#(z,z) = A=)z - n(z, )

and
o) = (). )y (1)

The end effector dynamic model of a non-redundant manipulator in
the domain DL may now be expressed using cquations (13) and (14):

Mz)z + p(z, 1) — p(z) = F (15)
A(z), u(=, i) and p(z) represent respectively the kinctic cnergy
maatreix, the centrifugal and Coriolis forces column matrix and the

gravity forces column matrix. # s the my operational forces column
taatrix.

5. Decoupling of Iind Effcctor Motions

The dyn:unic model (15) provides a deseription of the dynamic be-
havior of the end cllector motions in operational space. The con-
trol of the saanipulator for i desired motion in this space becores
feasible by sclecting F' as control vector. I order to produce this
control veetor of operational forces, specitic forees I must be applied

with joint-based actuators. The relationship between F and the joint
forces I may be obtained by exploiting the identity between the vir-
tual work of F in an clementary displacement § and the virtual
work of ' in the corresponding displacement 8q, according to the

virtual work principle. Using cquation (2) this leads to:
'=JT(q) F (16)
The decoupling of the cnd ellector motion in the domain D! of the

opcrational space is achicved by cmploying the following structure
of control:

= Mz)Fon + p(z, z) — p(z)

where F,,, represents the inpnt to the decoupled system.

(1n

It is com-

(13)

puted as a function of the desired motion (denoted by the subscript
4) and the actual motion, as shown in Figure 1 where K and €
represent the mg X mg constanl gain matrices.

6. Derivation of the Dynamic Model Cocflicient Matrices
Exploiting the identity between the kinetic cnergy quadratic forms
T.(z, ) and T,(q,¢) defined by:
. 1.1 .
Tole, a) = 59 Ala)ss
as well as relation (2), straightforward manipulation yields:
Alg) = JT(q)A(z)/ (9)
In the domain D;, the matrix A(z) is given by:
Az) = J~T(q)A(g)I ~(q) (20)
Lxpansion of the quantitics appearing in equation (13) and use of
the above cxpression for A lead to:
- . . . . - =T .
M=)z = I (9)Ala)a — Ma)h(a.q) + J  (q)Ale)a
2(z,2) = J (g, q) + I (9)A(a)a

(18)

(19)

(21)

where
h(a,9) = J(a)a; (22)
and the clement I; of the column mateix I(q, ¢) is defined as:
1. - . .
;= —-qTA «@)e; 1 <i<n) (23)

2
Lhc subscript ., indicates the partial derivative with rcqpecf. to the

k joint coordinate. Further observing that:

8g,4) = Al9)q — 1(4,3) (24)

the column matrix pu(z,z) may be written as:
w(z, %) = J T (q)b(g, 4) — Ala)A(q, ) (25)

The matrix p(z) of gravity forces is given by:
p(z) = T "(q)e(e) (26)

The evaluation of the matrices A, p,p in the foregoing expressions
having been obtained in termns of the joint coordinates, the domain
D} of applicability of the dynamic model (15) may be extended to
the domain D] defined by:

D, — G(D;) @7)
where D is the domain resulting from Dy of (6) when the singular
points in the kinematic model are excluded. ludeed, the restriction
to a domain where C is one-to-one then becomes unnecessary.

7. New Control Law Structure

Using cquations (16), (25), and (26) the vector I' corresponding to
the coutrol law (17) becormes:

I = JT(q)A(g)Fum(a) + ¥g,3) — 9(q) (28)
with
bq,q) = JT(a)lq, ) (29)
which may be written in the form:
Ka,2) = Bla)lad] + C(a)[4") (30)

The 7 X n(n — 1)/2 matrix i}(q) and n X n matrix é(q) arc given
by:
B(q) = B(q) - I (@MIT(0) 31)
Cle) = C(q) - " (a)A(9)112(q)
where the matrices 114(q) and I1,(q) have respectively the dimensions
n X n(n —1)/2 aud n X n and arc defined by:

h(a,q) = M(9)laq} + I2(9)(a”) (32)
The control law (28) becoines:
U = JT(q)A(q)Fm + Blg)lad) + C(a)a") — 9(a) (33)

8. Singular Configurations

The end cffector dynamic paramecters (KEDPs) do not all tend
to inlinity when the system’s configuration tends to a singular
i when  det[J(q)] 0. Indeed, a singular

configuration i.c., =
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configuration is a configuration g from which the end clfector cannot
move along or rotale around any given direction of the Cartesian
space. In such a configuration, the manipulator's mobility locally
decreases (Lthe degree of mobility of the end effector is the rank of
the basic Jacobian [6]. To a singular configuration corrcsponds a
singular direction attached to the cnd effector. It is for that dirce-
tion in fact that the cflfcctor prescnts an ianfinite inertial mass for
a displacement or an infinite inertia for a rotation. s movements
will thus remain free in the sub-space orthogonal to this direction.
The boundary values of the EEDPs in such a configuration arc then
obtained by writing their expressions in it coordiuate system having
the singular direction as one of its axes. la a singular configuration
the transposed matrix JT(q) used in force mapping (16) exists; the
inverse Jlacobiun required in the arra solution docs not. Lct us cx-
amine the system’s asymptotic stability in a singulac configuration.
According to the control law (33), the manipulator is subject to the
dissipative forces Mg, due to an = term in Fo:

Paio = Dla)q (€8}

D(q) = €017 (q)A(a)J(a) (35)
where &g is a positive constant (€ = €ol). Except in the singular
configurations, the rank of the n X n matrix D(g) is n and it is
positive delinite. Its rank decreases in the singular positions, and
D(q) simply becomes non-negative definite. Although the stability
condition of the articulited system [7):

7' D(q)qi <0 (36)

i3 still met, the system could describe, in this case, movements that
are asolution of the equation [8]:

.T .
q D(q)g =0 (37)
Having an n-dimensiwaal coutrol vector of joint forces, the system’s

asymptotic stabilization may be achicved by the addition of dissipa-
tive lorces proportional to q.

9. lmplementation Problems

Obtaining the EEDDPs, clements of the A(q), I_I(q) and C'(q) matrices,
in an cxplicit form requires complex analytical manipulations that
sould be performed easily by an inleractive program for the
automatic gencration of these expressions. Research in this dircction
is currently planned. Storage znd real-time look-up of the BEDPs in
the conliguration space appears as an interesting alternative Lo the
analytical form calculation. However, for the EEDPs storage, » much
larger space is required in comparison with the already large joint
dyuamic pariancters storage space [9]- Indeed, in the end eflector
case, Aq), 13(q) and Clq) arc « function of n — 1 joint coordinates
whereas in the joint case, A(q), 3(q) and C(q) arc renerally a func-
tion of i — 2 coordinates [1]. Thus, for the conditions considered by
Raibert (Ze, & quantification levels) 2000KB are required tnstead of
250K B. :
10. Dynamic Propertics

A detailed anadysis of the EEDRP expressions for various operational
coordinate svstems his been carcied out and several basic propertics
were found [4]. They enable the control law (33) W be expressed in
a form auch that its paciuncters are a fuaction of only n — 2 joint
coordinates. For example, let us consider the end elfector dynamic
model associated with the 3 POR representation. Let ¢~ be the vector
{q2 qz2-- Aq.._l)T and ./“(q-) be the basic Jacobian matrix writlen in
the coordinate system Ry attachad to the fiest Lok, It can be shown
that the Jacobian associated with the POR may be obtained from
Jolg™) by:

J(q) = 2q)Jole’) (38)

where )(q) is an nmg X g matrix given in teras of the rotation
mmatrix between the fixed referential frame Ry aund Ry, and of an
operator associated with the 3 POR [4]. The control law (33) then

becotnes:

U= J7(a Yola )Fin + Bola Maal + Colg Na"] = (g e(qr) (39)
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with

2
- - - w
oo T (@) [F + - x- (10)

The :natrices Ao(q’), l_jo(q.) and (-/'o(q‘) have the same definition as
in (20) and ($1,32) with J7(q) in (20,22,31) being replaced by JJ (7).
1H(g") and t{q) arc n X 3 and 3 X | matrices such that:

a(q) = (¢ )v(q1) (41)

w is the angular velocity vector and x = (000 25 26)T. The ex-
- 3 - - - -
pression - x in (40) results from the relationship between the an-

gular acccleration and the POR acceleration. The structure of the
control system (41) is showa in figure 2. The EEDPs storage space is
thus reduced to the samemagnitude as the joiat dynamic paciuncters
storace space.  Hlowever, rather than using a large amount of
memory, a better compromise between mermory, computing volume
and accuracy may be obtained by multivariable wapproximation tech-
niques.

1. Mualtivariable Approximation

Let Ei(q.) designate the 4-variable function represcnting the it*

EEDP, qind =7 the sought approximation poly nowial. Considering E¥
as « Tunction of sote coordinates and parameterized with respect to
the others, leads Lo dilferent solutions Lo Lthe approximation. For cach
solution the Z* polynomial cocllicients are paramectrized with respect
to a subsct of the coordinates and stored in the related subspace. A
comparative study that considered different polynomial development
bases for various variable selections has been carried out. In regacds
to the parametrization problem, this study showed that a good com-
promisc would be to consider Z% Lo be a funclion of ¢y and g3, and
parametrized with respect to g4 and q5, i.c. Efl“qs(q—_-,q;). The
proposed solution consists of finding the (k+ 1)(k + 2)/2 cocflicients
ag; of the approximation defined by:

£k
Zroalro )= D ai

§=20 j=1

ax

(12)
This approximation will be called te the order k. ry represents the
length of the vector linking the origin of the frame systear Ry to
the origin of R4 and zq represcuts its projeclion on the z axis of Ro.
The variables (rg, 29) rather than (g2, ¢3) were chiosea because of their
advantage regarding the approximation accuracy. However, (rg, 29)
tnay have identical values in different munipulatoc configurations.
An important property concerniug the EEDI® values in certain sym-
metrical azm configuratioas [1] resolves this non-bijectivity problem.
The approximation order k& may he limited to 3. o the case of the
robot Renault VRO, for exanple, this produces a global relutive er-
ror (mean squares) of less than 1%, ln comparison with the storage-
look-up method (with 8 quantification levels), this solution enables a
reduction of 84%in memory space and increases the approximation
accuracy 5 timmes, with the cost of @ multiplications and 9 additions
per pariancter. For a 6 dof manipulator, 38K B are necessary to store
the polynomiad coeflicicats approximating its (about 60) EKDPs. The
computing volutne needed to obtain the BED s from the approxima-
Ltion cocllicients s 540 multiplications and 510 additions.

12. Redundant Representatjons

The BEDPs in the control law (39) arc linked to the basic Jacobian
matrix. It therefore becomes easy to deduce a control law for the
rotation vector w. When the end cffector desired orientation varia-
tion is deseribed by a redundant representation, it may be replaced
by the corresponding variation of the angular rotation vector which
is controllable. The problem Lo be solved is then to lind the vectors w,
w and the angular error vector §é correspanding to the desired rota-
tion. This is an inversion pr-oblvm. We show in [1] the existence of
a left tnverse whose calculation i straightforward for various redun-

dant represcentations. This ensily resolves the previous problem.
3.

In the cane of redundancy, the operational coordinates can’t con-

Redundant Manipuliators

stitute a generadized coordinate system since their number is less than

the manipnlator dof, f.c., mg < n. Therefore, the manipulator’s



dynamic behaviour cannot be described by a dyaamic model worked
out in the operational space. However, dynamic cquations of motion
in this space may be obtained for the end cffector. Using the dynamic
modcl (4-5) and the relation:

= J(q)q+ h(q,q) (43)
these equations are [4):
A(x)z + pu,(z,2) — pfz) = F (44)
with
Aola) = ()4~ () (a)]~*
#o(a.9) = J (a4, 9) — A{a)h(g,9) (15)
p-(a) = J " (q)a(q)
where

Jq) = A7 (a)4 T (9)A.(q) (46)

J(q) is actually a right pscudo-inverse of the Jacobiar matrix cor-
responding to the solution that minimizes the wanipulator's kinetic
cnergy. An asymptotic stability analysis similar Lo that made in sce-
tion 7 shows that in the redundant casc the control law must include
supplementary dissipative lorces proportional to q.

14. Obstacles
The opcrational space control approach cnabled the development of
3 unique obstacle avoidance scheme based on the use of potential
functions around obstacles, rather than actually planning paths. The
philosophy of this approach can be schematically described as fol-
lows: The manipulator moves in a field of forccs. The position to be
reached is an altractive pole for the end cffcctor, and the obstacles
are repulsive surfaces for the manipulator parts[10]. Obstacles arc
described by composition of primilives. Analyvlic equations repre-
senting cnvelopes best approximating the primitives’ shapes have
been developed (parallelepiped, coune, cylinder, cte.). The control
of a given point of the manipulator vis-i-vis an obstacle is achieved
by submitting it to a Force Inducing an Artificial lepulsion from
the Surface (FIRAS, from the french). These forces are created by
an artificial potential ficld V obtained as a function of the normal
distance to the obstacle’s approximating surface el

V(p) —_ {(;17 - é)zv 'r ;Pl < ‘/’0'; (47)

0, il le] > lpol;

wherc pg represents the limit distance of the potcatial ficld influcnce.
p is casily obtained using a variational procedure. Cousidering the
small amount of calculation needed, this method allows obstacle
avoidance to occur in real time as aa iategral part of the servo-

control.
15. Applications

An experimental manipulator programming system “COSMOS” has
been designed at the Stanford AL Laboratory for umplementation
of the presented control method for the PUMA arwms. In the abscnce
of an elfective force control, a simplificd end elfcctor dynamic model
of the PUMA 600 arm is used. Demonstrations of compliance of the
PUMA cnd clfector in a line, plane, circle and sphere, aad of motions
with obstacles (including mobile obstacles) detected by an MIC vision
module have been performed. COSMOS, written in PASCAL, is
implemented on a PDI11/45 computer. The servo rate is 50HYZ.

16. Conclusion

The end eflfector dynamic model constitutas an effective tool for the
analysis and control of manipulator behavior in operational space.
A ncw control law structure to decouple the end cllfector motion
has been developed.  Using several basic dynamic propertics and
multivariable approximation techniques, the real-time tmplementa-
tion problem has been solved. The amount of calculation needed
to decouple the end effector motion has been shown to be of the
same magnitude as that for joint motion decoupling, while allowing
the arm solution to be replaced by a simple force transformation;
this represents a large reduction in computation. In addition, the
singularity problem is avoided. The formulation of the control law
in terms of the basic Jacobian matrix permits the extension of this

control mcthod to redundant representations of the rotation. It has
also been extended to redundant maanipulators, and would be highly
suitable to application in multi-chained mechanisims [t l]. Collision
avoidance, generally treated at the highest level of control, has been
demonstrated hcre to be an effective componcut of low-level real-
time control. By its natuce, operational space control is well suited
to both the stipulation and satisfaction of geometric constraigls on
arm movement, and the conteol of applied forces. This approach, and
morc geacerally all dynamic approachs, require effective foree control.
Incorporation of joiat force sensing feedback is indispensable.
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Figure 1. End effector motion decoupling.

Figure 2. New coatrol system itnplementation (POR).



