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Abstract

This paper presents a task-level control methodology for the general class
of holonomically constrained multibody systems. As a point of departure,
the general formulation of constrained dynamical systems is reviewed with
respect to multiplier and minimization approaches. Subsequently, the opera-
tional space framework is considered and the underlying symmetry between
constrained dynamics and operational space control is discussed. Motivated
by this symmetry, approaches for constrained task-level control are presented
which cast the general formulation of constrained multibody systems into a
task space setting using the operational space framework. This provides a
means of exploiting task-level control structures, native to operational space
control, within the context of constrained systems. This allows us to natu-
rally synthesize dynamic compensation for a multibody system, that properly
accounts for the system constraints while performing a control task. A set of
examples illustrate this control implementation. Additionally, the inclusion of
flexible bodies in this approach is addressed.

Keywords: task-level control, constrained multibody dynamics, operational
space, null space, flexible/rigid multibody system
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1 Introduction

The control of multibody systems is of interest to a number of research communities
in a variety of application areas. In particular, the robotics community has focussed
on the control of high degree-of-freedom robotic systems. Typically, this has involved
the control of serial and branching chain systems. The traditional approach for
controlling these systems has been joint space (ie., configuration space) control.
The operational space approach was introduced by Khatib [15] [16] to simplify the
control problem by specifying a task space rather than a joint space control objective.
Task space is used interchangeably with operational space to refer to the space of
motion control coordinates. As one simple example, the task space for controlling
a robot arm can be defined as the Cartesian space used to describe the position
of the end effector. Using the operational space approach the configuration space
dynamics of a multibody system are mapped into an appropriate task space. This
is advantageous for control purposes since the operational space method provides
task-level dynamic models and structures for decoupled task and posture control.
This allows for posture objectives to be controlled without dynamically interfering
with the primary task(s).

The benefits of operational space control have been primarily exploited for serial
and branching chain systems. However, there has been substantially less emphasis
on the use of operational space control for closed chain or parallel systems, like
the structures of Figure 1 [6]. Closed chains are a subset of the larger class of
holonomically constrained systems which include biomechanical structures such as
the knee and shoulder complex of Figure 2. Rather than loop closures these examples
involve constraints internal to the branching chains [8] [11], expressed as algebraic
dependencies between the generalized coordinates.

Figure 1: Parallel mechanisms consisting of serial chains with loop closures described
by a set of holonomic constraints. (Left) A spatial positioning platform [6]. (Right)
Bilateral representation of a parallel-serial robotic shoulder mechanism [19].

This paper addresses the use of task-level approaches for the control of holo-
nomically constrained multibody systems. As a point of departure, the general
formulation of constrained dynamical systems is reviewed. This entails an elabora-
tion of multiplier and minimization forms of the constrained multibody equations
of motion. The basis for task-level control is then presented with a review of the
operational space method. Operational space dynamic consistency provides a mech-
anism for exploring the underlying symmetry between task and constraint dynamics.
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Figure 2: Holonomic constraints provide more physiologically representative models.
(Left) The tibia translates as a function of knee flexion [8]. (Right) The shoulder
girdle (scapula and clavicle) is kinematically coupled to the glenohumeral joint [11].

Formulations for constrained task-level control are then be presented, punctuated
with a set of examples. Finally, the inclusion of flexible bodies in this approach is
discussed.

2 Constrained Dynamics

The subsequent sections review the dynamical formulation of constrained multibody
systems. This review covers the well known method of Lagrange multipliers, a
multiplier elimination method, and the less well known minimization formalism of
Gauss’ Principle. This latter formalism naturally leads to an explicit solution of
the constrained dynamical system and the subsequent formulation of a generalized
constrained equation of motion. The multiplier form, the eliminated multiplier form,
and the generalized constrained form will each be used in Section 5 to formulate
novel methods for constrained operational space control.

2.1 Unconstrained Systems

The equations of motion for a multibody system that is unconstrained with respect
to configuration space are expressed in standard form as [3],

M (q) q̈ + b(q, q̇) = f (q, q̇) + B(q, q̇)T u (1)

where q is the n×1 vector of generalized coordinates, u is the k×1 vector of control
inputs, B(q, q̇)T is the n×k matrix mapping control inputs to generalized actuator
forces, M (q) is the n×n mass matrix, b(q, q̇) is the n× 1 vector of centrifugal and
Coriolis terms, and f (q, q̇) is the n × 1 vector of generalized applied forces. For
conciseness we will often refrain from explicitly denoting the functional dependence
of these quantities on q and q̇. This practice will also be employed with other
quantities as well.
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Throughout this paper we will use a modified and more specialized form of (1)
common in robotics [5],

τ = M(q) q̈ + b(q, q̇) + g(q) (2)

where τ is the n × 1 vector of generalized actuator forces (torques) and g(q) is the
n×1 vector of gravity terms. The form of (2) assumes that the generalized actuator
forces can be directly interpreted as control inputs; that is, τ = BT u = u, ie.
BT = 1. Additionally, the generalized applied forces are assumed to be restricted to
gravity terms; that is, f(q, q̇) = −g(q). This second assumption is relatively minor
and will not limit the generality of the approaches presented in this paper. The first
assumption regarding the control inputs restricts our examination to fully actuated
systems. However, this limitation can be overcome by introducing a selection matrix
(similar to BT in mapping actuator control inputs to generalized actuator forces).
We utilize this for a partial examination of under-actuated systems in Section 5.

2.2 Multiplier Form of the System Dynamics

We introduce a set of mC holonomic and scleronomic constraint equations, φ(q) = 0,
that are satisfied on a p = n−mC dimensional manifold, Qp, in configuration space,
Q = R

n. The gradient of φ yields the mC × n constraint Jacobian matrix, Φ.
Adjoining the constraints to (2) by introducing a set of constraint forces yields the
dynamic equation,

τ = Mq̈ + b + g − τC (3)

subject to,
Φq̈ + Φ̇q̇ = 0 (φ = 0, Φq̇ = 0) (4)

where τC is the vector of generalized constraint forces. The variation of the con-
straint equations yields δφ(q) = Φ δq = 0, which implies δq ∈ ker(Φ). The operator
ker() represents the kernel of a matrix and in this context will be synonymous with
the null space of a matrix throughout this paper. Since the constraints do no virtual
work under these constraint consistent virtual displacements we have,

τC⊥ δq ∀ δq ∈ ker(Φ) (5)

The ker(Φ) represents the tangent space of the constrained motion manifold, Qp, at
a point, q, in configuration space. The constraint consistent virtual displacements,
δq, lie in this tangent space and the generalized constraint forces, τC , are orthogonal
to it. This is illustrated in Figure 3. Based on this, the following is implied,

τC ∈ ker(Φ)⊥ = im(ΦT ) (6)

where the operator im() represents the image of a matrix and in this context will
be synonymous with the range of a matrix throughout this paper.

Thus, the generalized constraint force can be represented as a linear combination
of the columns of ΦT . That is, τC = ΦT λ, where λ is a vector of unknown
Lagrange multipliers. The constrained multibody equations of motion, expressed in
the familiar multiplier form, are thus,

τ = Mq̈ + b + g − ΦT λ (7)

subject to (4).
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Figure 3: The configuration space constrained motion manifold, Qp. All constraint
consistent virtual variations, δq, lie in the tangent space of Qp and are orthogonal
to the constraint forces.

2.3 Elimination of Multipliers

The Lagrange multipliers can be eliminated from (7) by first expressing the zeroth
order variational equation,

τC · δq + (τ − Mq̈ − b − g) · δq = 0 (8)

By restricting the variations to constraint consistent virtual displacements we have,

τC · δq + (τ − Mq̈ − b − g) · δq = 0
∀ δq ∈ ker(Φ)

(9)

Recalling (5) we note that the generalized constraint forces produce no virtual work
under virtual displacements that are consistent with the constraints. Thus, the term
τC · δq vanishes from (9) and we have the following orthogonality relation,

(Mq̈ + b + g − τ ) · δq = 0
∀ δq ∈ ker(Φ)

(10)

We now define a matrix, C ∈ R
n×p, whose columns span the null space of Φ. This

implies that im(C) = ker(Φ). Thus, ΦC = 0 and CT ΦT = 0. In this manner C
orthogonally complements Φ. That is,

im(C) = ker(Φ) = im(ΦT )⊥ (11)

Geometrically, im(C) represents the tangent space of the constrained motion mani-
fold, Qp (see Figure 3). These geometric properties are discussed in further detail in
[2][14]. While not required for the subsequent analysis we specify that the columns
of C be mutually orthogonal and thus form an orthogonal basis, C, for the null space
of Φ. The constraint consistent virtual displacements, δq ∈ ker(Φ), can then be
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expressed in terms of the virtual displacements of a minimal set of p independent
coordinates, qp,

δq = C δqp (12)

Using this relationship we can express (10) over all possible variations of a minimal
set of coordinates,

(CT Mq̈ + CT b + CT g − CT τ ) · δqp = 0

∀ δqp ∈ R
p

⇓
CT τ = CT Mq̈ + CT b + CT g

(13)

Noting that q̇ = Cq̇p and q̈ = Cq̈p + Ċq̇p we can express (13) as,

τp = Mp(q) q̈p + bp(q, q̇p) + gp(q) (14)

where,
Mp(q) = CT MC

bp(q, q̇p) = CT b + CT MĊq̇p

gp(q) = CT g

τp = CT τ

(15)

The approach outlined here is well known in multibody dynamics and is consistent
with the projection method of [2]. This approach was also used by Russakow et
al. for application to serial-to-parallel chain manipulators [25]. We note that (14)
includes a mix of our initial set of n generalized coordinates, q, as well as the
minimal set of p independent coordinates, qp. Since the constraints are holonomic
we would expect there to be a mapping, in principle, which could be derived from
the constraints that would yield q = q(qp). In this case C could be computed
explicitly from the mapping rather than computing the null space of Φ; that is,
C = ∂q/∂qp. Additionally, the terms in (14) could be expressed as functions of
qp rather than q. Since qp are independent coordinates the constraints would be
implicitly addressed and the resulting system would be unconstrained with respect
to configuration space. However, finding the mapping q = q(qp) would be difficult
in general. In such cases a null space method or a coordinate partitioning method
[29] would need to be used to compute C.

Additionally, the generalized coordinates, qp, and the generalized forces, τ p, do
not necessarily have a natural and physically intuitive meaning, making it difficult to
standardize their use in a numerical algorithm. This is in contrast to the coordinates,
q, which are chosen specifically to describe the system in the most natural and
physically intuitive manner. It is usually desirable to select q in a manner that
preserves the physical meaning of the generalized forces as torques about individual
joints. Often when using a minimal set of coordinates this is not the case, since a
single generalized coordinate may influence multiple joint displacements. Therefore,
from an algorithmic perspective it is often preferable to deal with a non-minimal
but standardized set of generalized coordinates (like joint angles) that are amenable
to numerical formulation, and compute the dynamic terms corresponding to that
kinematic parametrization. Equation (14) can then be used, as is, parameterized in
terms of q.
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2.4 Minimization Form of the System Dynamics

By expressing the zeroth order variational equation (9) we arrive at an orthogonality
relation (10). Higher order variations yield similar orthogonality relations. In the
particular case of second order variations, known as virtual accelerations, we can
arrive at a minimization principle. This was first demonstrated by Gauss [9] and
later investigated by Gibbs [10] in modified form. We begin by first expressing the
second order variational form of (3),

τC · δq̈ + (τ − Mq̈ − b − g) · δq̈ = 0 (16)

The virtual accelerations, δq̈, refer to all acceleration variations which satisfy the
constraints while time, position, and velocity are fixed. Since we are assuming
scleronomic constraints we only need to be concerned with position and velocity
remaining fixed. Given δq = 0 and δq̇ = 0 the variation of (4) yields,

δ(Φq̈ + Φ̇q̇) = Φ δq̈ = 0 (17)

which implies that δq̈ ∈ ker(Φ). Under this condition (16) can be restricted to
constraint consistent virtual accelerations,

τC · δq̈ + (τ − Mq̈ − b − g) · δq̈ = 0
∀ δq̈ ∈ ker(Φ)

(18)

Recalling (5) we have,
τC⊥ δq̈ ∀ δq̈ ∈ ker(Φ) (19)

Thus the term τC · δq̈ vanishes from (18) and we have the following orthogonality
relation,

(Mq̈ + b + g − τ ) · δq̈ = 0
∀ δq̈ ∈ ker(Φ)

(20)

subject to (4). At this point we introduce the Gauss function, G, defined as a mass-
weighted distance measure between the constrained and unconstrained accelerations,

G � 1
2
(q̈ − q̈�)

T M (q̈ − q̈�) (21)

where q̈� is the unconstrained acceleration of the system. That is, q̈� is the gener-
alized acceleration that the system would exhibit in the absence of constraints,

q̈� = M−1(τ − b − g) (22)

Taking the gradient of G with respect to q̈ yields,

∂G
∂q̈

= M(q̈ − q̈�) = Mq̈ + b + g − τ (23)

Substituting (23) into (20) yields,

∂G
∂q̈

· δq̈ = 0 ∀ δq̈ ∈ ker(Φ) (24)
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Figure 4: The Gauss function, G, is minimized subject to the constraints. At the
solution point, q̈, the gradient of G is orthogonal to the space of virtual accelera-
tions. Geometrically, the solution minimizes the distance (mass-weighted) to the
unconstrained acceleration, q̈�.

This implies that the solution of the constrained multibody dynamics problem yields
a stationary value of G over the set of constraint consistent accelerations, or,

δG = 0 ∀ δ | δq̈ ∈ ker(Φ) (25)

subject to (4). This is illustrated geometrically in Figure 4 and expresses Gauss’
Principle of Least Constraint [4] [24] [28]. These conditions require that the actual
generalized acceleration, q̈, result in a stationary value of the Gauss function, G,
and be consistent with the constraints. Moreover, since G is a quadratic form and
M is symmetric positive definite, q̈ must minimize G subject to the constraints.

2.5 Solution of the Constrained Dynamics Problem

As we have seen, the problem of constrained multibody dynamics can be stated
as a multiplier problem or a minimization problem. Both of these statements are
equivalent. That is, the solution of the multiplier problem minimizes the Gauss
function, G, over the set of constraint consistent accelerations and the solution of
the minimization problem satisfies the multiplier equations.

We can arrive at an explicit solution of the constrained dynamics problem. Using
(22) we can express (7) and (4) as,

M(q̈ − q̈�) = ΦT λ

Φq̈ + Φ̇q̇ = 0
(26)

It is straightforward to solve this system. The solution yields,

q̈ = −M−1ΦT (ΦM−1ΦT )−1(Φq̈� + Φ̇q̇) + q̈�

λ = −(ΦM−1ΦT )−1(Φq̈� + Φ̇q̇)
(27)
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We now express the mass-weighted (right) inverse of Φ,

Φ̄ = M−1ΦT (ΦM−1ΦT )−1 (28)

where ΦΦ̄ = 1 and, equivalently, Φ̄T ΦT = 1. We then have,

q̈ = −Φ̄Φ̇q̇ + (1− Φ̄Φ)q̈� (29)

Defining the n × n constraint null space matrix, Θ � 1− Φ̄Φ, we can write,

q̈ = −Φ̄Φ̇q̇ + Θq̈� (30)

Since this solution satisfies Gauss’ Principle we know that it minimizes G while
satisfying the constraints. The mass weighted inverse, Φ̄, of the constraint matrix
therefore yields the solution of (4) which minimizes G.

It is noted that Φ and Θ satisfy the condition ΦΘ = 0 and, equivalently,
ΘT ΦT = 0. Further, if we form the projection matrix P T = P which projects any
vector in R

n onto the null space of Φ we have,

P T = CCT = 1− ΦT (ΦΦT )−1Φ (31)

where C is the matrix, defined in Section 2.3, which spans the null space of Φ. The
expression for P T in (31) has a similar form as the expression,

ΘT = 1− Φ̄Φ = 1− ΦT (ΦM−1ΦT )−1ΦM−1 (32)

Consequently P T = CCT can be regarded as a kinematic constraint null space
projection matrix and ΘT can be regarded as a mass-weighted constraint null space
projection matrix. The physical and geometric meaning of Φ and Θ will be discussed
further in Section 4.

2.6 Generalized Constrained Equation of Motion

Given the explicit solution of the constrained dynamics problem (27) we now wish
to express an alternate form of the constrained dynamical equations of motion. We
begin by expressing λ in (27) as,

λ = −H[ΦM−1(τ − b − g) + Φ̇q̇] (33)

where H is the mC × mC constraint space mass matrix which reflects the system
inertia projected at the constraint,

H � (ΦM−1ΦT )−1 (34)

Substituting (33) into (7) yields,

Mq̈ + b + g = −ΦT HΦ̇q̇ + (1− ΦT HΦM−1)τ + ΦT HΦM−1(b + g) (35)

We now define the mC × 1 vector of centrifugal and Coriolis forces projected at the
constraint,

α � HΦM−1b − HΦ̇q̇ (36)
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and the mC × 1 vector of gravity forces projected at the constraint,

ρ � HΦM−1g (37)

We also note that,

ΘT = 1− ΦT Φ̄T = 1− ΦT HΦM−1 (38)

Substituting these expressions into (35) we have the concise expression which we
will refer to as the generalized constrained equation of motion,

ΘT τ = Mq̈ + b + g − ΦT (α + ρ) (39)

An alternative means of deriving this equation involves directly mapping the
configuration space equation (7) into the constraint null space using ΘT ,

ΘT τ = ΘT Mq̈ + ΘT b + ΘT g − ΘT ΦT λ (40)

Noting that ΘT ΦT = 0 and manipulating we have,

ΘT τ = Mq̈ + b + g − ΦT Φ̄T
Mq̈ − ΦT Φ̄T

b − ΦT Φ̄T
g

= Mq̈ + b + g − ΦT HΦq̈ − ΦT (α + ρ) − ΦT HΦ̇q̇
(41)

Substituting in our constraint condition, Φ̇q̇ = −Φq̈, yields,

ΘT τ = Mq̈ + b + g − ΦT (α + ρ) (42)

3 Task Space Dynamics

In the previous section we considered configuration space descriptions of the dy-
namics of constrained multibody systems. Our objective is to reformulate these
descriptions in the context of task space. This will provide the foundation for con-
strained task-level control to be discussed in the next section. As a starting point
we begin with a review of the basic operational space framework [15] [16].

The operational space framework addresses the dynamics and control of branch-
ing chain robots. Given a branching chain system the initial step involves defining a
set of mT task, or operational space, coordinates, x. The function x(q) represents a
kinematic mapping from the set of generalized coordinates to the set of operational
space coordinates. The operational space coordinates can represent any function
of the generalized coordinates but typically are chosen to describe the set of con-
trol coordinates associated with a motion control task. Figure 5 illustrates simple
branching chain systems where the operational space coordinates are chosen to be
the Cartesian coordinates associated with positioning the terminal point(s) of the
chain. Further, by taking the gradient of x we have the relationship,

ẋ = J(q) q̇ (43)

where J(q) is the mT × n task Jacobian matrix. This relationship applies to both
kinematically non-redundant and redundant systems. In the case of non-redundant
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Figure 5: (Left) A simple task description for a serial chain where the operational
space coordinates describe the Cartesian position of the terminal point of the chain.
(Right) A branching chain where the operational space coordinates describe the
positions of both terminal points.

systems the inverse of this relationship is well defined outside of singularities. For
such cases we have,

q̇ = J−1ẋ (44)

In the redundant case we can define the right inverse of J as,

{J# |JJ# = 1} (45)

The solutions to Jq̇ = ẋ are thus given by,

q̇ = J#ẋ + Nq̇o (46)

where N � 1 − J#J and qo is an arbitrary vector in R
n.

At this point we can address operational space kinetics. In the non-redundant
case any generalized force can be produced by an operational space force, f , acting
at the task point along the task coordinates. Figure 5 illustrates the action of the
operational space force for the intuitive case of Cartesian positioning tasks. The
generalized force is then composed as JT f . In the redundant case an additional
term needs to complement the task term in order to realize any arbitrary generalized
force. We will refer to this term as the null space term and it can be composed as
NT τ o, where NT is the null space projection matrix. An arbitrary generalized
force, τ , can then be expressed as,

τ = JT f + NT τ o = Mq̈ + b + g (47)

We can pre-multiply (47) by JM−1 and rearrange to get,

ẍ = JM−1JT f + JM−1NT τ o − JM−1b − JM−1g + J̇ q̇ (48)
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where we note that ẍ = Jq̈ + J̇ q̇. We can now impose the condition that the term
associated with the null space, NT τ o, does not contribute to the operational space
acceleration. This is referred to as dynamic consistency [16] and is expressed as,

JM−1NT τ o = JM−1(1 − JT JT#)τ o = 0, ∀ τ o ∈ R
n (49)

We can solve for J# under this condition and denote this solution as J̄ , the dynam-
ically consistent (right) inverse of J [16],

J̄ = M−1JT (JM−1JT )−1 (50)

This represents a unique right inverse of J where, by construction, the null space
projection matrix, NT = 1 − JT J̄

T , is guaranteed not to influence the task accel-
eration. Under this condition we can manipulate (48) to arrive at,

f = (JM−1JT )−1ẍ + (JM−1JT )−1(JM−1b − J̇ q̇)

+(JM−1JT )−1JM−1g
(51)

This expresses the operational space dynamical equation,

f = Λ(q) ẍ + μ(q, q̇) + p(q) (52)

where Λ(q) is the mT × mT operational space mass matrix, μ(q, q̇) is the mT × 1
operational space centrifugal and Coriolis force vector, and p(q) is the mT × 1
operational space gravity vector.

Λ(q) = (JM−1JT )−1

μ(q, q̇) = J̄
T
b(q, q̇) − ΛJ̇ q̇

p(q) = J̄
T
g(q)

J̄
T = ΛJM−1

(53)

Thus, the overall dynamics of our multibody system can be mapped into task
space using J̄

T ,

τ = Mq̈ + b + g
J̄T

→ f = Λ ẍ + μ + p (54)

In a complementary manner the overall dynamics can be mapped into the task
consistent null space (or self-motion space) using NT .

We can design the control for our system in task space coordinates using (52).
Additionally, we can specify the null space behavior of our system with the term
NT τ o. The null space control term is guaranteed not to interfere with the task
dynamics of (52) due to the condition of dynamic consistency. This allows for
decoupled control design. Finally, the overall control torque applied to the system
is composed as in (47).

4 Task and Constraint Symmetry

There are parallels between the structure of the constrained multibody dynamics
problem, in both the multiplier and minimization forms, and the operational space
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formulation. These parallels are derived from the common mathematical description
used for tasks and constraints. Both utilize a Jacobian representation (constraint
matrix, Φ, or task Jacobian, J).

Despite the common form used in specifying tasks and constraints, the mech-
anism by which tasks and constraints are satisfied differs. Tasks are achieved by
means of a control input, whereas constraints are imposed by the physical struc-
ture of the multibody system. Nevertheless, due to their common mathematical
form there are similarities between the structure of task dynamics and constrained
dynamics.

Equation (39) provides a unique perspective into constrained dynamics. The
projection matrix, ΘT , filters out the component of the generalized force which acts
in the direction of the constraint force. That is,

ΘT τ = τ − ΦT Φ̄
T
τ (55)

Consequently, only the component of the generalized force which influences the
motion of the system is preserved. Equivalent motion control [13] is produced by
all choices of τ which differ by a vector lying in the im(ΦT ). We also note that the
complementary spaces defined by im(ΦT ) and im(ΘT ) are orthogonal in a mass-
weighted sense, 〈

ΦT ,ΘT
〉

M−1
= ΦM−1ΘT = 0 (56)

Similarly, the projection matrix, NT , filters out the component of the generalized
force which produces acceleration in the task direction. That is,

NT τ = τ − JT J̄
T
τ (57)

Consequently, only the component of the generalized force which influences the
internal self-motion of the system is preserved. We also note that the complementary
spaces defined by im(JT ) and im(NT ) are orthogonal in a mass-weighted sense,〈

JT , NT
〉

M−1
= JM−1NT = 0 (58)

To summarize, in the case of constrained motion a projection matrix, ΘT , is
used to project the overall dynamics into the constraint null space. This preserves
only the dynamics which influences the constrained motion of the system. In the
case of task space dynamics a projection matrix, NT , is used to project the overall
dynamics into the task null space. This preserves only the dynamics which influences
the task consistent self-motion of the system. In this respect tasks can be viewed as
rheonomic servo (control) constraints [1] [3] [23] which enforce some motion control
objective.

In addition to the symmetries between the constraint and task null space pro-
jection matrices there are properties shared by the constraint matrix and the task
Jacobian with regard to the minimization of scalar “energy” measures (the Gauss
function and the kinetic energy). Specifically, we can seek a solution to the kinematic
relationship, Jq̇ = ẋ, which minimizes the kinetic energy,

T =
1
2
q̇T Mq̇ (59)
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The solution to this constrained minimization problem is straightforward and yields,

q̇ = M−1JT (JM−1JT )−1ẋ (60)

Noting that the dynamically consistent inverse of J is given by,

J̄ = M−1JT (JM−1JT )−1 (61)

we have that q̇ = J̄ ẋ yields the kinetic energy minimizing solution of (43).
Similarly, we can seek a solution of the acceleration expression,

Jq̈ = ẍ − J̇ q̇ (62)

which minimizes the acceleration energy, defined as the following mass-weighted
quadratic form,

1
2
q̈T Mq̈ (63)

This yields,
q̈ = M−1JT (JM−1JT )−1(ẍ − J̇ q̇) (64)

and we have that q̈ = J̄(ẍ − J̇ q̇) yields the acceleration energy minimizing solution
of (62).

The dynamically consistent inverse, J̄ , of the task Jacobian therefore yields task
consistent solutions which minimize both the kinetic energy and acceleration energy
of the system. This is analogous to the manner in which the mass-weighted inverse,
Φ̄, of the constraint matrix yields a constraint consistent solution which minimizes
the Gauss function.

The symmetry between constraint dynamics and task dynamics will be exploited
for the purposes of control in the following section.

5 Constrained Task-Level Control

In previous work the control of constrained systems has been examined from a con-
figuration space perspective, particularly with regard to contact control in robot
manipulators [20][21]. We will present an operational space methodology for ad-
dressing constrained systems, thus providing a means of applying operational space
control structures to these systems.

5.1 Direct Task Space Mapping of Constrained Dynamics

This formulation involves directly mapping the generalized constrained equation
of motion (39) into operational space coordinates using the dynamically consistent
inverse of the task Jacobian. Alternately, we will make use of the constrained
equation of motion in which the Lagrange multipliers have been eliminated through
the introduction of a minimal set of independent coordinates (14). As with (39)
this equation can be directly mapped into operational space coordinates using the
dynamically consistent inverse of the task Jacobian.

We begin by recalling the generalized constrained equation of motion (39),

ΘT τ = Mq̈ + b + g − ΦT (α + ρ) (65)
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Figure 6: A multibody system with loop constraints. The task coordinates, x, are
assigned to a point on one of the links. The objective is to control the constrained
system using task-level commands.

We can relate a set of task coordinates, x, to the set of generalized coordinates, q,
by,

ẋ = Jq̇ (66)

Mapping (65) into any appropriate task space via the dynamically consistent inverse
of J yields,

J̄
T ΘT τ = Λ(q) ẍ + μ(q, q̇) + p(q) + γ(q) (67)

where,
Λ(q) = (JM−1JT )−1

μ(q, q̇) = J̄
T
b − ΛJ̇ q̇

p(q) = J̄
T
g

γ = −J̄
T ΦT (α + ρ)

J̄
T = ΛJM−1

(68)

In applying (67) it is important to note that actuation may not exist at all of
the physical joints described by the generalized coordinates. This is particulary true
in the case of constrained systems such as parallel mechanisms where many of the
joints are passive. We can resolve this fact in our control by using a selection matrix.
Given a selection matrix for the actuated joints, S ∈ R

k×n, we can express (67) as,

J̄
T ΘT ST τ k = Λẍ + μ + p + γ (69)

where τ = ST τ k, and τ k is the k × 1 vector of generalized forces acting at the k

actuated joints. The matrix J̄
T
ΘT ST has dimensions of mT × k. Thus, k ≥ mT

is a necessary condition for the system to yield a solution of τ k for an arbitrary
acceleration, ẍ.
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In practice we can design task motion control using estimates of the operational
space dynamic properties. This yields the following dynamic compensation equation,

J̄
T ΘT ST τ k = Λ̂f � + μ̂ + p̂ + γ̂ (70)

where f � is the input of the decoupled system and we use the notation̂ to represent
estimates of various quantities. Any suitable control law can be chosen to serve as
this input. In particular, we can choose a linear control law of the form,

f � = Kp(xd − x) + Kv(ẋd − ẋ) + ẍd (71)

The procedure applied to (39) can also be applied to (14). In this case, however,
the task space mapping is associated with the minimal set of generalized coordinates,
qC . We begin by recalling (14),

τp = Mp(q) q̈p + bp(q, q̇p) + gp(q) (72)

We can relate a set of task coordinates, x, to the coordinates, qp, by,

ẋ = Jq̇ = Jp (q) q̇p (73)

where,
Jp (q) = JC (74)

is the task Jacobian with respect to the minimal set of coordinates. We can map
(72) into any appropriate task space via the dynamically consistent inverse of Jp.
This yields [25],

f = Λ(q) ẍ + μ(q, q̇p) + p(q) (75)

where,
Λ(q) = (Jp M−1

p JT
p )−1

μ(q, q̇p) = J̄
T
p bp − ΛJ̇p q̇p

p(q) = J̄
T
p gp

J̄
T
p = ΛJp M−1

p

(76)

We can express (75) in terms of the generalized forces,

J̄
T
p τp = J̄

T
p CT τ = Λẍ + μ + p (77)

Given a selection matrix for the actuated joints, S ∈ R
k×n, we can express (77) as,

J̄
T
p CT ST τ k = Λẍ + μ + p (78)

where τ p = CT τ = CT ST τ k. The matrix J̄
T
p CT ST has dimensions of mT × k.

Again, k ≥ mT is a necessary condition for the system to yield a solution of τ k for
an arbitrary acceleration, ẍ.

Using estimates of the operational space dynamic properties we have the follow-
ing dynamic compensation equation,

J̄
T
p CT ST τ k = Λ̂f � + μ̂ + p̂ (79)

where f � can be given by (71).
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5.2 Task/Constraint Partitioning of Dynamics

In this formulation the multiplier form of the constrained equation of motion (7) is
mapped into operational space using the dynamically consistent inverse of a Jacobian
which characterizes both task and constraints [7]. The resulting operational space
equation is then partitioned into an equation corresponding to task motion control,
and an equation corresponding to constraint forces.

We begin by recalling the multiplier form of the constrained equation of motion
(7),

τ + ΦT λ = Mq̈ + b + g (80)

Again, we can relate a set of task coordinates, x, to the set of generalized coordi-
nates, q, by,

ẋ = J q̇ (81)

in addition to the constraint condition,

φ̇ = Φq̇ = 0 (82)

We can concatenate (81) and (82) into a single vector,

˙̌x =
(

ẋ

φ̇

)
=

(
J
Φ

)
q̇ = J̌ q̇ (83)

where we use the notationˇ to represent a quantity that is formed from the compo-
sition of task and constraint terms.

The active generalized force can be decomposed into a task space component
and a null space component as in (47),

τ = J̌
T
f̌ + Ň

T
τ o =

(
JT ΦT

) (
f
f C

)
+ Ň

T
τ o (84)

where f C is the component of the applied operational space force acting along the
constraint direction. Equation (80) can thus be written as,

J̌
T

(
f
f C

)
+ Ň

T
τ o + J̌

T
(

0
λ

)
= Mq̈ + b + g (85)

We can now map (85) into operational space using the dynamically consistent inverse
of J̌ . This yields,(

f
f C

)
+

(
0
λ

)
= Λ̌(q)

(
ẍ
0

)
+ μ̌(q, q̇) + p̌(q) (86)

where the constraint condition, φ̈ = 0, has been imposed. We have the following
definitions,

Λ̌(q) �
(

JM−1JT JM−1ΦT

ΦM−1JT ΦM−1ΦT

)−1

μ̌(q, q̇) � Λ̌
(

JM−1b − J̇ q̇

ΦM−1b − Φ̇q̇

)

p̌(q) � Λ̌
(

JM−1g

ΦM−1g

)
(87)
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While (86) expresses the combined task-constraint dynamics of our system it is
useful to partition the dynamics in the following manner,(

f
f C

)
+

(
0
λ

)
=(

Λ̌11 Λ̌12

Λ̌21 Λ̌22

) (
ẍ
0

)
+

(
μ̌1

μ̌2

)
+

(
p̌1

p̌2

) (88)

From this partitioning we have an equation corresponding to task motion control,

f = Λ̌11ẍ + μ̌1 + p̌1 (89)

and an equation corresponding to constraint forces,

f C + λ = Λ̌21ẍ + μ̌2 + p̌2 (90)

The constraint force vector, λ, will always arise so as to satisfy (90), as dictated
by constraint consistency. The component of applied operational space force, f C ,
acting along the constraint direction has no impact on the motion control of the
task. Its only effect is on the constraint forces (values of λ) that arise. Thus,
all choices for f C result in equivalent motion control of the system [13]. However,
specific choices can be made to optimize the control with regard to desired constraint
forces or to account for certain joints being unactuated. As an example of the latter
case we may impose the condition that certain joints are unactuated. The following
condition expresses the absence of actuation at those joints,

S̃(JT f + ΦT f C) = 0 (91)

where S̃ ∈ R
(n−k)×n is a selection matrix for the unactuated joints. That is, S̃

selects the unactuated joints from the overall generalized force vector. Equation
(91) would thus complement (89) and (90).

Using estimates of the operational space dynamic properties we have the follow-
ing dynamic compensation equation,

f = ̂̌Λ11f
� + ̂̌μ1 + ̂̌p1 (92)

where f � can be given by (71). The constraint force control term, f C , can be
resolved by using,

f C + λ = ̂̌Λ21f
� + ̂̌μ2 + ̂̌p2 (93)

in the case that the control is chosen with regard to optimizing the resulting con-
straint forces, or, by using (91) in order to account for certain joints being unac-
tuated. Figure 7 depicts an operational space tracking controller for a constrained
system based on this partitioning approach.

5.3 Conditions on Motion Control

Figure 8 illustrates the necessary conditions for fully controlling the multibody sys-
tem with respect to the system degrees of freedom and the task coordinates. For
the system to be motion actuated the number of actuators must equal or exceed the
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Figure 7: An operational space tracking controller for a constrained system. The
desired task is tracked using appropriate dynamic compensation which accounts for
the constraints. The terms τ o and f C are chosen as part of the overall control
design. An active applied torque is delivered to the plant.

 

 

Figure 8: The relationship between the number of generalized coordinates - n,
degrees of freedom - p, constraints - mC , task coordinates - mT , and null space
coordinates - N . The system is task actuated if k � mT and motion actuated if
k � p where k is the number of actuators.
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number of degrees of freedom, p. For the system to be task actuated the number of
actuators must equal or exceed the number of task coordinates, mT .

There are other conditions in addition to those stated above. Regarding task
actuation, in the first formulation of Section 5.1 the matrix J̄

T ΘT ST must be full
rank. Similarly, in the second formulation of Section 5.1 the matrix J̄

T
p CT ST must

be full rank. Finally, in the formulation of Section 5.2 the matrix S̃ΦT must be full
rank.

5.4 Examples

The following examples focus on task motion control of constrained systems using
the control decomposition that has been presented in Section 5.2.

5.4.1 Redundant chain with internal constraints

A redundant serial chain mechanism is depicted in Figure 9. We will impose con-
straints between the first three joints. These can be thought of as either servo
constraints, if they are enforced by the controller, or constraints associated with the
structure of the mechanism itself. The later case could, for example, correspond to
a geared transmission (not shown in the figure) in which the second and third joints
are coupled to the first joint. As an example of this we could specify the following
set of constraint equations,

φ(q) =
(

q2 − 1
3q1

q3 − 2
3q1

)
(94)

We now define a task to control the terminal point of the chain; that is, x � rE .
This represents an actual rheonomic servo constraint since it will be enforced by
the controller. In this case the component of applied operational space force, f C ,
acting along the constraint direction will be chosen to be zero. If we interpreted
the constraints in (94) to be servo constraints they would be incorporated into x
rather then φ. This would change the control torques since the constraints would
be enforced by the controller rather than the internal structure of the mechanism.

The 2-dimensional null space is controlled to minimize the gravity effort, defined
as U � ‖g(q)‖2. Our control torque is then,

τ = JT f − KNŇ
T ∂U

∂q
(95)

where f is given by (92) and KN is a null space gain. All joints are assumed to
be actuated so no selection matrix needs to be introduced. Simulation plots for the
system under a goal position command are shown in Figures 9 and 10. A linear
(PD) control law is used as the input of the decoupled system (71). A small amount
of damping was applied in the null space to damp out oscillations. In Figure 10
we note that the gravity effort is minimized in a manner consistent with the task
and constraints. We also see that the time histories of the first three joint torques
exhibit some spikes due to the rapid and drastic changes in configuration induced
by the gravity effort minimization.
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Figure 9: (Left) Redundant chain with internal joint constraints. The constraints
kinematically couple the first three joints. The terminal point of the chain is being
controlled. In this case n = 6, mT = 2, and mC = 2. (Right) Time response of the
task coordinates. The control gains are Kp = 100, Kv = 20, and KN = 0.1.

Figure 10: (Left) Time response of first three joints for the constrained redundant
chain. Constraints are enforced consistent with (94). (Right) The 2-dimensional
null space is being controlled to minimize gravity effort, U = ‖g(q)‖2. The null
space term, −KNŇ

T∇U , executes a task and constraint consistent minimization.
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Figure 11: (Left) Parallel mechanism consisting of serial chains with loop closures.
The three elbow joints are actively controlled while the remaining joints are passive.
(Right) The orientation of the platform is commanded to rotate while its center is
to remain fixed. In this case n = 9, mT = 3, mC = 6, and k = 3.

5.4.2 Mechanism with loop closures

A parallel mechanism is depicted in Figure 11. The constraint equations describe
the loop closures and are given by,

φ(q) =

⎛
⎝ rp1 − rl1

rp2 − rl2

rp3 − rl3

⎞
⎠ (96)

The task is defined to control the active elbow joints; that is, x � ( q2 q4 q6 )T .
This corresponds to,

J =

⎛
⎝ 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0

⎞
⎠ (97)

Due to the passive nature of all other joints the component of active force, f C ,
acting along the constraint direction is chosen to be zero. This can be derived from
the condition of (91), where,

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(98)

Since S̃JT f = 0,
f C = −(S̃ΦT )−1S̃JT f = 0 (99)

There is no null space in this particular example so our control torque is given
by τ = JT f , where f is given by (92). Figure 12 shows simulation plots for the
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Figure 12: (Left) Time response of the elbow joints moving to a goal. (Right)
Time response of the control torques during goal movement. Zero control torque is
produced at the passive joints. The control gains are Kp = 100 and Kv = 20.

system under a goal position command. A linear (PD) control law is used as the
input of the decoupled system.

In a second case we will define the task to control the position and orientation
of the platform (see Figure 11); that is, x � ( q7 q8 q9 )T . In this case f C 
= 0
since S̃JT f 
= 0. The orientation is commanded to rotate while the center of the
platform is commanded to remain fixed. A linear (PD) control law is used as the
input of the decoupled system. Figure 13 shows simulation plots for the system
under a goal position command.

5.4.3 Underactuated redundant chain

A redundant serial chain with an unactuated joint is depicted in Figure 14. The
task is defined to control the terminal point of the chain, that is x � rE . Since
the number of actuators, k = 2, is less the number of degrees of freedom, p = 3,
the system is under-actuated with respect to configuration space but sufficiently
actuated with respect to the task dimension, mT = 2. With joint 1 unactuated we
have,

S̃ =
(

1 0 0
)

(100)

Simulation plots for the system under a goal position command are shown in
Figure 14 and Figure 15. A linear (PD) control law is used as the input of the
decoupled system. The time response of the joint angles shows undamped null
space oscillation due to the unactuated joint.

6 Inclusion of Flexible Bodies

The previous sections have detailed the control of constrained multibody systems
where the bodies are rigid. These methods can be extended to handle constrained
systems involving a mix of flexible and rigid bodies. The method of absolute nodal
coordinates described by Shabana [26] has a demonstrated efficacy in application
to flexible/rigid multibody systems. Using this method the flexible subsystems
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Figure 13: The orientation of the platform is commanded to rotate while its cen-
ter is to remain fixed. (Left) Time response of the platform orientation. (Right)
Time response of the control torques during goal movement. Zero control torque is
produced at the passive joints. The control gains are Kp = 100 and Kv = 20.

are described using finite element nodal coordinates with respect to an absolute
global coordinate system. For the rigid body subsystems we can choose generalized
coordinates that describe relative joint motion. Coupling the flexible and rigid
subsystems together results in a constrained dynamical system with graph topology.

The approaches presented in the previous sections offer a natural means of ad-
dressing the control of such systems. In this case the generalized coordinates con-
sist of passive coordinates (finite element nodes) and active coordinates (actuated
joints). The objective is to control certain rigid body coordinates as well as certain
flexible body coordinates in order to achieve an overall task objective (see Figure
16). It is noted that there may be certain limitations regarding the degree to which
the flexible coordinates can be controlled. This will be discussed in Section 6.3.

6.1 Flexible Body Dynamics

Kübler et al. [17] [18] provide an excellent description of the absolute nodal coor-
dinate method with regard to flexible/rigid multibody systems. A brief review is
presented here.

For a given flexible body subsystem a Lagrangian or material description is cho-
sen which relates all quantities to the reference configuration, X, of the system with
domain Ωo. Using a nonlinear finite element approach a set of shape or interpolating
functions, {N1, · · · , Ns}, associated with a particular finite element discretization
of s nodes can be chosen.

In the case of 8 node isoparametric hexahedral elements (see Figure 17) the
interpolating functions are given as [12],

Na(ξ) =
1
8
(1 + ξaξ)(1 + ηaη)(1 + ζaζ) for a = 1, 2, · · · , 8 (101)

where ξ =
(

ξ η ζ
)T are the coordinates of the intrinsic element parameter

space. For the higher order 27 node hexahedral element, Lagrange polynomials can
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Figure 14: (Left) Under-actuated redundant chain. Joint 1 is unactuated (passive).
In this case n = 3, k = 2, and mT = 2. (Right) Time response of the task
coordinates for the under-actuated system moving to a goal location. The control
gains are Kp = 100 and Kv = 20.

be used to construct the interpolating functions [12]. Defining the shape matrix,
N ∈ R

3×3s,

N �

⎛
⎝ N1 0 0 · · · Ns 0 0

0 N1 0 · · · 0 Ns 0
0 0 N1 · · · 0 0 Ns

⎞
⎠ (102)

the displacement field, u(X , t) ∈ R
3, is given by u = Nd, where d ∈ R

3s is the
vector of nodal displacements. The current material configuration is then given by
x(X, t) = X +u(X, t). The weak form statement (summation convention applied)
of the elastodynamics problem is,

δdj(Mjk d̈k + kj + gj) = 0 (103)

where,

Mjk =
∫
Ωo

ρoNijNikdV

kj =
∫
Ωo

∂Nij

∂Xk
(δil +

∂Nil

∂Xk
dk)SlkdV

gj = −
∫
Ωo

ρoNijbidV −
∫

∂Ωo

NijpidA

(104)

The term ρo is the material density field in the reference configuration, bi are the
body forces (eg. gravity), pi are the surface forces, δil is the Kronecker delta, and
Slk is the second Piola-Kirchoff stress tensor. The system can thus be stated as,

Md̈ + k + g = 0 (105)

or more generally as,
Md̈ + k + g = f (106)
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Figure 15: (Left) Time response of the joint angles for the under-actuated redundant
chain showing undamped null space oscillation due to the unactuated joint. (Right)
Time response of the control torques during goal movement. Zero control torque is
produced at the passive joints. The control gains are Kp = 100 and Kv = 20.

where f ∈ R
3s is a vector of external control forces applied at the nodes. The

terms M ∈ R
3s×3s, k ∈ R

3s, and g ∈ R
3s are the mass matrix, stiffness vector,

and body/surface force vector respectively. It is noted that due to integration with
respect to the reference configuration, Ωo, the mass matrix, M , is constant. The
stress tensor, S, is highly nonlinear however.

Different constitutive models can be applied yielding alternate weak form state-
ments. In particular, viscous effects are important for some systems. Structural
damping models are discussed in [18], however we will not consider these detailed
constitutive models since it is assumed that the basic mathematical structure of
(106) can still be achieved with these models. For the remainder of this section
we will focus on the mathematical structure of (106) rather than the constitutive
specifics of the terms.

6.2 Subsystem Assembly

We can assemble a set of rigid and flexible subsystems into single constrained system.
First, we specify the dynamics of a set of y unconstrained rigid body subsystems,

τ 1 = Mr1 q̈1 + b1 + gr1

...
τ y = Mry q̈y + by + gry

(107)
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Figure 16: A rigid/flexible multibody system with constraints between the bodies.
A set of nodal displacements are assigned as the task coordinates.

Next, we specify the dynamics of a set of z flexible subsystems which have been
discretized using absolute nodal coordinates,

f1 = Mf1 d̈1 + k1 + gf1

...

f z = Mfz d̈z + kz + gfz

(108)

The sets of equations given by (107) and (108) can be assembled into a single system
equation of the form,

τ = Mq̈ + b + g (109)

where,
M = diag(Mr1 , · · · , Mry , Mf1 , · · · , Mfz)

τ =
(

τT
1 · · · τT

y fT
1 · · · fT

z

)T

q̈ =
(

q̈T
1 · · · q̈T

y d̈
T

1 · · · d̈
T

z

)T

b =
(

bT
1 · · · bT

y kT
1 · · · kT

z

)T

g =
(

gT
r1

· · · gT
ry

gT
f1

· · · gT
fz

)T

(110)

We have M ∈ R
n×n and τ , q̈, b, g ∈ R

n where,

n =
y∑

i=1

nri +
z∑

i=1

nfi

nfi = 3si

(111)
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Figure 17: Isoparametric elements showing the mapping from the intrinsic param-
eter space, ξ, to the physical space, X. (Top) An 8 node hexahedral element
(Bottom) A higher order 27 node hexahedral element.

Imposing a set of mC holonomic constraint equations to establish system connec-
tivity yields the familiar equation,

τ = Mq̈ + b + g − ΦT λ (112)

subject to,
Φq̈ + Φ̇q̇ = 0 (113)

6.3 Control Issues

We can apply the same control methodology to the constrained flexible/rigid multi-
body system described in Section 6.2 that was applied to the constrained rigid
multibody system addressed earlier in this paper. A number of issues need to be
recognized however. Typically, flexible body subsystems will be passive. That is,
there will be no control forces, f , applied at the nodes. While a selection matrix,
S, can be used to specify the actuated coordinates, the rank conditions given in
Section 5.3 must still be satisfied (in addition to the condition on the number of
actuators) to control the task nodal coordinates. Satisfying these rank conditions
is problematic because the nodes in the flexible body subsystems are not kinemati-
cally coupled, as the bodies in the rigid body subsystems are, but rather elastically
coupled. Sparseness of the mass matrices and task Jacobians of the flexible body
subsystems is a consequence of this lack of kinematic coupling.

In rigid body systems, kinematic coupling allows a desired acceleration at the
task control point to be achieved despite the lack of actuation at certain joints. This
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can be realized by recalling (69),

J̄
T ΘT ST τ k = Λẍ + μ + p + γ (114)

The matrix J̄
T ΘT ST must be full rank for there to be solution of actuator general-

ized forces to achieve an arbitrary task acceleration, ẍ. Kinematic coupling results
in a dense task Jacobian and mass matrix, whereas elastic coupling in flexible sys-
tems results in a sparse task Jacobian and mass matrix. In this case, if the actuated
nodal coordinates do not correspond to the nodal coordinates that constitute the
task then the term J̄

T ΘT ST will be rank deficient. While this fact precludes finding
a control input to achieve the desired task nodal accelerations at a given instant,
control inputs may still exist that achieve the desired task nodal displacements in
static equilibrium.

An additional consideration is that the task nodal displacements will typically
be comprised of large rigid body displacements and small material deformations. As
a practical matter if the specified desired nodal displacements involve large defor-
mations the elastic forces will be large and the corresponding control input will be
prohibitively large, particularly for stiff materials. Finally, it should be emphasized
that applying this in an actual control system for a flexible/rigid multibody system
requires sensing at the nodes of the flexible bodies.

7 Summary and Conclusions

In this paper we have presented a task-level methodology for the control of con-
strained multibody systems. This methodology exploits the natural symmetry be-
tween constrained dynamics and task space dynamics to synthesize dynamic com-
pensation which properly accounts for the system constraints while performing a
control task. The presence of passive joints in the constrained system has also been
accommodated. A set of examples demonstrated the efficacy of this methodology in
simulation. As a practical matter it is assumed that the controller has access to the
system state (via a forward dynamics solver in the simulated case or via sensors in
the physical case) and estimates of the dynamic properties of the physical system.

Application to flexible/rigid multibody systems was also addressed. The absolute
nodal coordinate method can be used to describe the flexible bodies in conjunction
with generalized coordinates that describe relative joint motion for the rigid bodies.
A standard assembly procedure can be employed and connectivity constraints im-
posed to form a constrained flexible/rigid multibody system. The task-level control
approaches presented here can then be applied in the same manner as with con-
strained rigid multibody systems. Since the nodes describing a flexible body are
typically passive and elastically coupled there are limitations in controlling flexible
body nodes as part of the task however. This is in contrast to passive joints between
kinematically coupled rigid bodies.

The task-level constraint based control methods addressed here can be applied
to motion control which involves contact with the environment. A particular ap-
plication area for this is locomotion in robotic systems. The contact kinematics
associated with intermittent foot/ground contact during gait can be modeled using
constraints, as was done by Schiehlen [27]. The robot controller can thus employ
a constraint based approach where transitions between different contact conditions
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can be detected and accommodated. This approach is applicable to a host of tasks
outside of locomotion and represents a general methodology for constrained motion
control.
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