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Abstract

The paper discusses compliant motion control using
Active Observers (AQBs) applied in robotic manip-
ulators. Stochastic estimation strategies for haptic
manipulation are introduced. Stability and robust-
ness analysis is made as a function of stiffness mis-
matches. Real time adaptation is discussed.

1 Introduction

Many robotic tasks are not appropriately imple-
mented due to the lack of unifying and systematic
methodeclogies in the control design. Often, the con-
trol synthesis is based on engineering expertise and
experience rather than systematic scientific meth-
ods. A survey of robust control techniques includ-
ing feedback linearization [8] linear H.., optimal con-
trollers {9], PD and PID control schemes {1] can be
seen in [7].

To design a control system, approximate and lin-
earized models are frequently considered, allowing
the extenstve and rich theory of linear systems to be
applied. Inaccurate models have to be tested to eval-
uate the control performance. The control design
has to guaraniee practical system stability linked
with acceptable performance. Too sub-optimai solu-
tions are unacceptable, even if stability and robust-
ness requirements are fulfilled. To achieve a simple
and modular cantrol synthesis, decentralized control
should be applied, decoupling the overall systerm {nto
several subsystems, in which autonomous local con-
trollers are designed. These subsystems typically
correspond to one or few DOF of the control sys-
tem. Unlike the centralized control approach that
is more complex and system dependent, the cou-
plings among subsystems are neglected. If the na-
ture of the task creates strong couplings, without
additional techniques decentralized control methods
have poor results and may be even prohibitive. Sen-
sor (e.g. force) based tasks give information about
environment effects on the robot, being appropriate

0-7803-7860-1/03/$17.00 © 2003 IEEE

for adaptive control strategies. Compliant motion
tasks require special attention, since the task con-
straints change abruptly {between contact and non-
contact states) and the model parameters may have
wide variations, particularly for very stiff and un-
structured environments. In the sequel, a decentral-
ized compliant motion controller is proposed for a
robotic manipulator. The influence of modeling er-
rors and couplings is reduced through feedback lin-
earization techniques and AOBs. This controller has
been successfully applied in haptic manipulation® [6].

2 Manipulator Dynamics

The manipulator dynamics describes the motion of
a manipulator subject to applied torques and exter-
nal forces. Given a set of generalized coordinates ¢
(usually, joint angles for revolute joints) describing
the robot’s pose, the well-known robot dynamics is
given by

M(g)§+v(g. )+ glg) =T ity

M{g) is the mass matrix, v{g, ¢) is the vector of Cori-
olis and centripetal forces, g(g) is the gravity term
and T is the generalized torque acting on g. Defining
the Jacobian J{(q) as '

X = J(g)a (2)
with X the Cartesian position,
§=J"NX - Jq). (3)

Applying (3) in (1) and knowing the relation between
the joint torque 7 and the Cartesian force F at the
end-effector, 7 = JTF, (1} can be written in Carte-
sian coordinates as

AX + Vi(q,d) + g=(q} = F, (4)

1In this context, haptic manipulation means that a robotic
manipulator is controlled by haptic devices.
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Position Controlled Robot
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Figure 1: Modification of the desired plant through
feedback.

with
A=J"TMJ™, (5
V. =V(g,4) - AJ¢ (6)

and
gz = J‘_TQ'(Q)' {7

An external force F. appears always at the end-
effector whenever the robot is in contact. Hence,
{4) can be written as

AX +Ve(q,d) + gz(q) = Fe— F. — Fy,  (8)
where F; aund Fy are respectively the forces due to
the commanded torgue and friction.

3 System Plant

A control architecture robust to model uncertainties
should be designed to accomplish enhanced perfor-
mance in compliant motion tasks. If the desired sys-
tem plant is

X=7, (9)
F, should be?

Fo=F.+ Fp 4+ Volg,d) + G(9) +Af. (10

Equation (9) defines a decoupled system for each
Cartesian dimension with unitary mass. The estima-
tion of Fe, F,, affects the control strategy, as will be
explained in Section 5. The terms Vi(q, q), §=(q) and
A can be computed for a given robot. F T is difficult
to obtain. However, if low velocities are associated
with the contact task, £ as well as V; (q,q) can be
neglected. The estimation errors present in {10) cor-
rupt (9). To increase robustness to model errors, the
desired plant poles at the origin are "shifted” to the
left using feedback, as shown in Figure 1. For a crit-
ically damped response (damping factor { = 1) with
time constant 7, the feedback is given by
K'2

2
Ky = = and Ky = E (11)

2The symbol " means estimate.

The problem of this approach is that the force con-
trolled robot becomes a position controlled robot.
External forces (e.g. human contact) applied to the
robot’s body experience a very stiff contact due to
position feedback. Eliminating the position lcop and
inserting the deadtime and the system stiffness, the
plant represented in Figure 1 becomes

KyeoTe
GO = e Ty 12

If Ty is small, (12) can be approximated by

Ks e sTg

GQ(S) = 3(5+K2)

(13)

for a wide range of frequencies. Its equivalent tem-
poral representation is

i+ Koy = Keu(t — Ty), (14)

where y is the plant output (Cartesian force at the
rabot’s end effector), and w is the plant input (force).
Defining the state variables ; = y and za = g, {14)
can be written as

1=l SR e
(19)

In compact form,

= Az(t} + Bu(t - T.
{%%ij 4) (16)

Discretizing (16) with sampling time h, the equiva-
lent discrete time system is

ek = Przrp—1 + Trup_1
r, ’ , 17
{ i = Crzrg, a0
with
Ty=(d—Dh+7, (18)
o<’ <h, (19)
Trg = [ Tk Up-q 0 Bh—2 g ]T . (20)
$®, I'y Ty -+ 0
O ¢ 1 --- 0
Qo= ¢ Lo, (21)
0 o o ... 1
0 0 0 -0
r,=[0 0 0o 1]" (22)
and
C.=[10 0 0j. (23)
@, Dp and Ty are given by {24) to (26), respectively
[2),
By = " = ¢(h), (24)
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h—1’
r°=[n #(N) drB (25)

and
T = ¢(h— 'r’)'/; P(A)dA B. (26)

zx has two states representing the force and force
derivative. The other states appear due to dead-
time. The continuous state transition and command
matrices are

1 l—ekl{zt 0
Bt = K2 and B = .27
— Kt
0 e K,

From (27), the computation of ®;, I’y and I is
straightforward.

4 AOB Design

Knowing the discrete state space representation (17),
the theory of AOBs introduced in (3] can be applied
in a straightforward way to achieve robust adaptive
control in the presence of uncertainties. The AQB
uses discrete Kalman techniques to estimate the sys-
tem state and its disturbances. The main goal is to
fit a physical system (i.e. its input/output behav-
lor) into a linear mathematical inodel, rather than
o fit a mathematical model into a physical system.
A special Kalman filter (AOB) has to be designed to
achieve a model reference adaptive control architec-
ture. The desired closed loop system is imposed to
the state estimation. An extra state p;, (called active
state) is generated to eliminate an equivalent distur-
hance referred to the system input®. This equiva-
lent disturbance exists whenever the physical system
is different from the desired model. The first-order
AOB algorithm (AOB-1) is summarized in Section
4.1.

4.1 AOB-1 Algorithm

Controlliing the system of (17) through state feedback
from an observer and inserting pg in the loop, the
overall system can be described by

arp | _ | % T Trk-1
P 0 1 Pr-1

+ [ P ]uk_l te  (28)

and -
Y =Ch [ Trk—1 Pr-1 ] + ks (29)
where
Tri-1
1 =rp_p~ | Ly 1 b . 30
U1 Tkl[ ][Pk—a] (30)

3The general AOR algorithm uses N extra states to de-
scribe py (4], [3].

Force Controlled Robot

Ji T+ STl e e P X, Ve
pE iyl bty ey i

,- ~ 1T
I [a:?‘,k Pk] J AQOB

Figure 2: Compliant motion control with the AOB
in the loop. L,y is the first element of L, and f; 1s
the force input.

The stochastic inputs £ and 7 represent respec-
tively model and measure uncertainties. The state
estimate of (28) is based on the desired closed loop
(i.e. P =ps and F,p = 2,p). It is

-'%r k q)r ~ FrLr 0 Zr k1
Iy = e 1
{Pk] [ 0 1”}%—1](3)
r. .
g | Rt Kelow — 9k),

with
s &, ~I'vLy O :Er,k-—l Ty
Sl e a i

and

-

(32)

C.=[C 0]. (33)

The Kalman gain A} reflects the uncertainty asso-
clated to each state based on model and measure
uncertainties. It is computed from

-1
Ki=PuCT(C, P CT + R, (34)

with
P =@, P @7 + Q1 (35)
and
By = Py — Ki G5 Pig. (38)
$,, is the augmented open loop matrix,
@, = [ o 1 ] (37)

Q1 is the system noise matrix and represents model
uncertainty. It is given by

Qe ,: [ Q‘a"" ng ] . (38)

The measurement noise matrix Ry represents mea-
sure uncertainty. Py is the mean square error matrix.
Its initial value should reflect at least the uncertainty
in the state estimation. It should not be lower than
the initial matrix @. Figure 2 shows the control
architecture with the AOB in the loop.
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5 AOB Estimation Strategies for Haptic
Manipulation

Model reference adaptive control appears if Qp_, 1s
much smaller than @, . In this case, the estima-
tion for the system state follows the reference model.
Everything that does not fit in the z,.; model goes
to px. However, for compliant motion tasks (with
or without haptic devices), the estimation of force
(first state) from the model is very inaccurate, since
the system stiffness K, may have abrupt and un-
predictable changes. Providing methods for on-line
estimation of K, [6] and increasing Q@ _, for the first
state creates beiter conditions to estimate the force.
Knowing the structure of (Jg, the relation between
Ry and ) makes the estimates more (R Jow) or less
(R, high)} sensitive to measures, These stochastic
parameters are a powerful tool in the control design,
creating enough space to explore complex estimation
strategies for highly unstructured tasks.

6 Pole Placement for Haptic Manipula-
tion

In force-based tasks, force overshoots/undershoots
are usually undesired. Hence, the state feedback
gain L, can be computed by Ackermann’s formula
to achieve a critically damped system ({ = 1). The
other poles due to deadtime should be mapped far
away from the dominant poles, to neglect their influ-
ence in the system response. In our setup they were
mapped at z = 0. The closed loop time constant =,
should be related to the open loop (plant) time con-
stant 7,. 7. should be small enough to enable the task
execution with comfortable performance. However,
it should not be too small to avoid saturation effects
in the command effort. In our setup, r. = 37,. The
closed loop settling time is about 5 x 7. (0.375 [s]),
which is adequate for human-controlled tasks. Math-
eratically,

Lr=]0 0 1]W,'P(2,).  (39)

W, is the reachability matrix,
We=[Tr @rI, oI ] (40)

and P(®,) is the characteristic polynomial in ®,,

P(3.) = 7 + a: 97" + 029, (41)
with?

a1 = —2e~CWnhops (mwnh) (42)
and

ay = e~ HKwok, {43)

4For a critically damped system 7¢ = 1/1y.

e Tl Y Plant LRekl o Yk
M Active Observer
. B —J
Yk -ie,k

Figure 8: LTF compuiation with the AOB in the
loap.

6.1 Free Space Behavior

The AOB contro! architecture is kept even for free
space conditions (no coutrol switching). In this case,
the force output is always zero. Hence, from {31},
yx = 0. For steady state conditions (Erx = &r k-1,
rr is constant as well as K), straightforward
analysis of (31) gives®

Grx = [[— I —KxCp) (@ — ToL)]™" (44)
(I - KpCOT e

and
B = Pre—1 — KpCridr k. {45)

1t can be inferred from (44)-(45) that &,z converges
to a known constant value and the gy derivative is
also constant. The Cartesian velocity X, follows the
input

re~ L[ &p Dr ] (46)

that changes linearly with time (See Figure 2).

7 AOB Stability and Robustness

This section analyzes relative stability of AOB based
controllers in the presence of model errors. The loop
transfer function® (LTF) of the control system has
to be derived. A schematic representation of it is
depicted in Figure 3. Applying uj to the plant input
and considering all other inputs zero (necessary to
compute the LTF), {28)-(29) can be written as

Tek = PLep—1 + Pk (47)
and
e = Ce, (48)
with r
Tek = [ Trk Pk } : (49)

5In {44), K has only the Kalman gains that affect 2,
and 7 is the identity matrix. In (45), K, is the Kalman gain
of the fy state.

5The loop transfer function is the product of the transfer
functions of forward and feedback loops. Special attention
should be made when observers are in the loop {5].
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The real system matrix ¢ is equal to the nominal
matrx ®,, (i.e. the one used in the design) plus the
unknown error A® due to unmodeled terms. Math-
ematically,

® =P, + AD. (50)

The ADB state estimaie is7 of form

Fok = Pelo 1 + Kilun — C (e 1), (51)

T

with @, = &, — 'L, I' = [I‘r l}] and
L = [ L. 0 ] Defining the estimation error e
as

€k = Tep ~ Teis (52)

Ik and e can be written as

Zex | _ | Mia KxC? Ze k-1
e My (I-KO)@ €k_1
N { K. CT

(I - KxC)T ] Yk~1, (53)

where
Mg =@, - TL+ K O(AD+TL) (54)

and
My = (I — K ,C){A® +TL). (55)

Once the LTF output is Ld, g,

Ve={L 0][5”;:]. - (56)

The transfer function of the state space equations
(53} and (56) is the LTF, Hyrp(z), given by

Hup()=[ L 0][f-¢2"1] 7 v2"1,  (57)

in which ¢ and v are the state transition and com-
mand matrices of (53), respectively, and [ is the iden-
tity matrix. Knowing Hirr(2), it is straightforward
to compute Nyquist/Bode plots and the respective
phase and gain margins®.

8 Ezxperimental Setup

The slave robot is a PUMA™ 560, which has a stiff
JR3 force sensor on the end-effector. The PUMA has
6 DOF and is connected to a computer (Pentivm II
333 [MHz], QNX real-time O8) through a TRC205
controller and a ServoToGo™ board. The sampling
time is h = 2 {ms] (f; = 500 [Hz]). The deadtime
was obtained experimentally. It is

Ty = 3 % h. (58)

TSee (31) for vy = 0.

#1n the MatlabT™ environment, the LTF representation in
state space or transfer function is ail that is needed to have
Nyquist/Bode plots.

The working space has objects with different stiff-
nesses. When the robot is manipulating, the system
stiffness is approximately given by the object stiff-
ness, since the JR3 sensor and the robot are very
stiff. Table 1 presents experimental values.

book desk
3000 6000

free space sponge
K, [N/m) 100 300

Table 1: Object Stiffnesses. In free space, the mini-
mum velue of K represents the one used in the con-
troller.

8.1 AOB Stochastic Matrices

For each Cartesian dimension, the AOB stochastic
matrices are

167% .- 0 0
0 10712 9 0
Q=1 : : » o (59)
0 10712 0
] ] 1075

Ry = 85 and Py = @u. This design entails the
following steady-state Kalman gains:

Kex10°~[109 11 09 09 09 09]°.
(60}

8.2 Robustness

In compliant motion tasks it is impertant to ana-
lyze robustness when there are stiffness mismatches.
From {18), (19) and {58), d = 3 and 7/ = h. Hence,
from (25), ¢ = [0 0 ]T. Moreover, ®; given
by (24) does not depend on K. If K, changes to
K+ AK,, Ty changes to T'y + AT (see (26)), where

AK,
Al = X, Iy. {61)
From (21),
0 A 0 -2 0
¢ 0 0 .--0
AP = 1 e e (62
¢ 0 0O 0
0 0 0 0
Knowing (37),
AP, D
I

Using {53), stability can be analyzed based on the
stiffness mismatch. Figure 4 shows that robust-
ness increases with K;. For a nominal stiffness
K; = 100 |[N/m} the control structure is stable up
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Figure 4: Robustness results. Relative stability with
stiffness ervors. (a) Gain Morgin. {b) Phase Margin.

to AK, =~ 800 [N/m]. This means that if no K,
adaptation is performed, the overall system is unsta-
ble in contact with stiff surfaces like a book or desk
{see Table 1). Methods for on-line stiffness estima-
tion are proposed in [6).

8.3 Real Time Issues

This section analyzes properties of AOB based con-
trollers for on-line stiffness adaptation. In haptic
tasks, the system stiffness is function of the environ-
ment. Contact/non-contact states with stiff objects
are critical, since -the stiffness changes are big. To
achieve force responses independent of the contact
object, K, has to be estimated on-line, to adapt the
AOB accordingly.

Control Adaptation. The feedback gain L, of
the controller can be easily adapted for new envi-
ronment stiffresses without a complete computation
of Ackermann’s formula. It can be shown [4] that for
a nominal stiffness K, with correspending feedback
gains

L=l L s I ], (64)

if K, changes AKj;, the new L, vector should be
computed from

! L
L= [ WYBETK) (FakyRy B 0 ] :
(65)
The feedback gains of the state variables due to dead-
time do not change. Only a proportional factor needs
to be computed to update L, for the "core state”.

State Estimation. When K, changes AK,, the
®, matrix changes to ®, + A®,. Only two elements
of this matrix have to be recomputed. The Kalman
gains Ky are obtained on-line from (34)-(36). The
state estimate of the AOB in (31) needs to be up-
dated, reflecting the changes in @,, L, and K.

9 Conclusions

The paper presents a decentralized compliant mo-
tion control with AOBs. No control switching be-
tween contact/non-contact states is required. Esti-
mation strategies for haptic manipulation have been
proposed. If the system model is inaccurate, sensor-
based estimations should be followed. Stability and
robustness analysis have shown that on-line stiffness
adaptation is necessary if the robot manipulates stiff
objects. Moreover, robustness increases with the
nominal value of K ;. Real-time methods have heen
presented to adapt the state estimation and the con-
trol gains when the stiffness changes.
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