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Abstract—This article describes an ef� cient recursive algorithm for the computation of the opera-
tional space inertia matrix of an n-link branching robotic mechanism with multiple .m/ operational
points. The proposed algorithm achieves the complexity of O.nm C m3/. Since m can be considered
as a small constant in practice, as the number of links increases, this algorithm performs signi� cantly
better than the existing O.n3 C m3/ symbolic method. The experimental results of this algorithm are
presented using real-time dynamic simulation.
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1. INTRODUCTION

The operational space formulation [1] is an approach for the dynamic modeling
and control of a complex branching (tree-like) redundant mechanism (Fig. 1) at
its task or end-effector level. This formulation is particularly useful for dealing
with simultaneous tasks of multiple end-effectors since its basic structure provides
dynamic decoupling among end-effectors’ tasks and the complex internal dynamics
in their associated null space.

In order for this formulation to be usable in real-time control of a complex n-
link mechanism, however, the complexity O.n3 C m3/ of the existing symbolic
method [1] is not acceptable when n is large. This O.n3/ complexity comes from the
explicit inversion operation of the joint space inertia matrix of size O.n2/, required
for the computation of the operational space inertia matrix.

In this article, we propose an ef� cient recursive algorithm for the computation
of the operational space inertia matrix of an n-link branching redundant robotic
mechanism with m operational points. The proposed algorithm achieves the

¤Present address: 4777 Sawgrass Drive West, Ann Arbor, MI 48108-8612, USA.



704 K.-S. Chang and O. Khatib

Figure 1. A branching robot with a tree-like topology. In its corresponding tree structure, each link
becomes a node and each joint becomes an edge of the tree.

Figure 2. A basic humanoid robotic mechanism.

complexity of O.nm C m3/. Since m can be considered as a small constant in
practice, we obtain the linear running time of O.n/ for this algorithm. Therefore,
the application of this algorithm results in a signi� cant increase in the computational
performance.

Section 2 provides background material describing a modi� ed spatial notation and
basic spatial kinematic and dynamic quantities using this notation. In Section 3, an
ef� cient recursive algorithm is developed based on these spatial quantities and its
O.nm C m3/ complexity is proved. Finally, real-time simulation results with a
basic humanoid redundant robotic mechanism with n D 24 and m D 2 (Fig. 2) are
presented to illustrate the ef� ciency of the proposed algorithm.

2. SPATIAL NOTATION AND QUANTITIES

This section summarizes the modi� ed spatial notation used throughout the article.
In addition, some of the spatial quantities, which are essential for developing the
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proposed algorithm in the next section, are presented using this modi� ed spatial
notation.

2.1. Spatial notation

Spatial notation has been widely used in the modeling of kinematics and dynamics
of complex robotic mechanisms [2–7]. The modi� ed spatial notation and quantities
developed in this section combines various versions of existing spatial notations and
conventional vector notations [8–10] in order to utilize the results from various
researchers in a uni� ed way. In this modi� ed spatial notation, each quantity
incorporates the appropriate linear (placed in upper or upper-left corners) and
angular (placed in lower or lower-right corners) components, and results in a concise
form (6 £ 1 vector or 6 £ 6 matrix).

For example, a spatial acceleration, ai , and a spatial force, fi , of link i are de� ned
as:

ai D
µ

Pvi

P!i

¶
and fi D

µ
fi

N i

¶
;

where vi , !i , fi and N i , are 3£1 linear velocity, angular velocity, force and moment
vectors expressed in frame i, respectively. Also, the spatial inertia matrix of link i

in frame ci , Ici
, is a 6 £ 6 symmetric positive de� nite matrix and de� ned as:

Ici
D

µ
Mi 0
0 Ici

¶
; Mi D mi 13; (1)

where 13 is a 3£3 identity matrix, mi is the mass of link i and Ici
is the 3£3 inertia

tensor matrix of link i in frame ci . The origin of frame ci is located at the center of
mass of link i shown in Fig. 3.

Note that in Fig. 3 the origin of each link frame is located at the joint and any
variable without the reference frame number (front superscript) is expressed in its
own frame. Also, if link i is a leaf (outermost) link, end-effector frame ei is located
at the tip (operational point) of link i (see Fig. 1).

The general joint model, Si , is a 6 £ ni matrix with full column rank, ni , when
joint i has ni d.o.f. .ni 6 6/ [2, 5]. Its columns (unit vectors) make up a basis for
the motion space of joint i. Notice that this matrix is constant since it is expressed
in its own frame. For example, if joint i is a prismatic joint along y-axis and joint j

is a spherical joint, their corresponding general joint models are:

Si D
£
0 1 0 0 0 0

¤T
and Sj D

£
0 13

¤T
:

The 6 £ 6 spatial transformation matrix, h
i X, transforms a spatial quantity from

frame i to frame h:

h
i X D

"
h
i R 0

chri
h
i R h

i R

#

; (2)
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Figure 3. Basic notation.

where h
i R is the 3 £ 3 rotation matrix and chri is the cross-product operator (3 £ 3

skew-symmetric matrix) associated with hri , the 3£1 position vector from the origin
of frame h to the origin of frame i expressed in frame h shown in Fig. 3.

For example, the spatial transformations of accelerations and forces between
frames i and ci are:

aci
D i

ci
XT ai; (3)

fi D i
ci

X fci
: (4)

The 6 £ 6 spatial inertia matrix of link i in frame i can be computed, by spatially
transforming Ici

(1) from frame ci to frame i, as:

Ii D i
ci

X Ici

i
ci

XT ; (5)

where Ii is a symmetric positive de� nite matrix since (5) encapsulates the spatial
counterpart of the similarity transformation and the parallel axis theorem [8, 9]
for Ici

.

2.2. Spatial quantities

In this subsection, we present some of the essential spatial quantities using the
modi� ed spatial notation to support the proposed algorithm developed in the next
section. The force propagator, h

i L, propagates a spatial force from link i to its parent
link h across the actuated joint i in a dynamically consistent manner [5]:

f¤
h D h

i L f¤
i ; (6)

where f¤
h is the resulting propagated spatial force of link h when the propagated

spatial force of link i, f¤
i , is propagated across joint i. Force propagation is

physically valid only if the spatial force is propagated in inward (tip-to-base)
direction. Note that f¤

leaf D fleaf at the beginning of the recursion.
Similarly, the acceleration propagator, shown to be equivalent to the transpose of

the force propagator .h
i LT / [5], propagates a spatial acceleration of link h to its child

link i across the actuated joint i in a dynamically consistent manner [2, 5]:

a¤
i D h

i LT a¤
h; (7)
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where a¤
i is the resulting propagated spatial acceleration of link i when the propa-

gated spatial acceleration of link h, a¤
h, is propagated across joint i. Acceleration

propagation is physically valid only if the spatial acceleration is propagated in out-
ward (base-to-tip) direction. Note that a¤

leaf D aleaf at the end of the recursion.
The force propagator, h

i L, and the acceleration propagator, h
i LT , are de� ned as

[2, 5]:

h
i L D h

i X
£
16 ¡ Si

NSi

¤T
; (8)

h
i LT D

£
16 ¡ Si

NSi

¤
h
i XT ; (9)

where 16 is a 6 £ 6 identity matrix. NSi is the generalized inverse of Si weighted by
the corresponding inertia matrix and de� ned as:

NSi D D¡1
i ST

i IA
i :

The articulated-body inertia matrix of link i, IA
i , introduced by Featherstone [2],

relates the spatial force and acceleration of a link, taking into account the dynamics
of the rest of the articulated body [2, 3, 5]. Using the force propagator (8) and the
acceleration propagator (9), the articulated-body inertia matrix of link h, IA

h , can be
written as:

IA
h D Ih C

X

i

£
h
i LIA

i
h
i LT

¤
; (10)

where Ih is the spatial inertia matrix (5) of link h and i represents the index of
each child link of link h. This recursive equation shows that the articulated-body
inertia of a link is the sum of its own spatial inertia and the dynamically consistent
projection of the articulated-body inertia of each child link. Note that IA

h D Ih if
link h is a leaf link.

Di is the ni £ ni full rank matrix projecting IA
i onto the motion space of joint i

with ni degrees of freedom:

Di D ST
i IA

i Si:

Notice that the force propagator (8) has the same dynamic property as the dynami-
cally consistent null space projection matrix for redundant robotic systems [11, 10].
Both quantities guarantee that the resulting (propagated or projected) quantity does
not produce any coupling effect in their corresponding motion (operational) space.

A 6 £ 6 inertia matrix, Vi relates the propagated spatial acceleration of link i and
the propagated spatial force of the same link at the joint [3–5]:

a¤
i D Vif¤

i : (11)

Finally, the 6 £ 6 operational space inertia matrix, L en , of a single open-chain
mechanism de� ned as [11]:

aen D L¡1
en

fen
; (12)
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can be related to Vn using (2), (3), (4), (11), and (12):

L¡1
en

D n
en

XT Vn
n
en

X; (13)

where end-effector frame en is at the tip of leaf link n.

3. EFFICIENT RECURSIVE ALGORITHM

This section describes an ef� cient recursive algorithm to compute the operational
space inertia matrix L e for branching robotic mechanisms without any explicit
computation of the inverse of the joint space inertia matrix. We will develop this
algorithm from the basic analysis of the physical properties of and the relationships
among forces, accelerations, and inertia matrices. Note that since L e is a function
of con� guration only (14), Pq D 0 can be assumed for the analysis of L e without loss
of generality. The proposed algorithm is shown to be of complexity O.nm C m3/.

3.1. Analysis of operational space inertia matrix

The operational space inertia matrix, L e, of an n-link N -d.o.f. branching redundant
mechanism with m operational points is de� ned as [1]:

L¡1
e D JeA¡1JT

e ; (14)

where L e is an 6m £ 6m symmetric positive de� nite matrix, Je is the 6m £ N

Jacobian matrix and A is the N £ N joint space inertia matrix. Note that m cannot
be greater than n and since each joint can have only up to 6 d.o.f., N D O.n/ and
the size of A is O.n2/.

As in the case of a single operational point (12), L¡1
e relates the forces at the

end-effectors to the accelerations at the end-effectors:

ae D L¡1
e fe; (15)

where ae and fe are 6m £ 1 vertically concatenated vectors of the accelerations and
forces of each end-effector:

ae D

2

64
ae1
:::

aem

3

75 and fe D

2

64
fe1
:::

fem

3

75 : (16)

Also, since L¡1
e is symmetric, it can be expressed in terms of its 6 £ 6 block matrix

components as:

L¡1
e D

2

64

L¡1
e1;e1

¢ ¢ ¢ L¡1
e1;em

:::
: : :

:::

L¡T
e1;em

¢ ¢ ¢ L¡1
em ;em

3

75 : (17)
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From (15)–(17), the additive property of the coupling effect on the ith end-
effector (of leaf link i) can be written as:

aei
D

X

jD1;:::;m

aei ;ej
; (18)

aei ;ej
D L¡1

ei ;ej
fej

; (19)

where aei ;ej
is the coupling acceleration on the ith end-effector by the force of

the j th end-effector. This additive property of the coupling effect shows that the
resulting acceleration of an end-effector is not only dependent on its own force, but
also on the forces of all other end-effectors in the system.

Notice that when the j th end-effector produces the only non-zero force in the
system, we can isolate the coupling effect on the ith end-effector by the force of the
j th end-effector. This can be written, from (18) and (19), as:

aei
D aei ;ej

D L¡1
ei ;ej

fej
; (20)

when fej
6D 0 and fek

D 0 for all k 6D j .
Then, similarly to (11), a 6 £ 6 inertia matrix, Vi;j relates the propagated

spatial acceleration of link i and the propagated spatial force of the link j at the
corresponding joints. This relationship can be written as:

a¤
i D Vi;j f¤

j : (21)

Also, similarly to (13), the 6 £ 6 block inverse operational space inertia matrix,
L¡1

ei ;ej
, can be related to Vi;j using (2), (3), (4), (20) and (21):

L¡1
ei;ej

D i
ei

XT Vi;j
j
ej

X; (22)

where end-effector frames ei and ej are at the tips of leaf links i and j . Note that this
relationship is necessary since the inertial properties are desired at the tips instead
of at the joints.

3.2. Derivation of the recursive algorithm

In this subsection, we will develop a recursive algorithm by separately analyzing the
inertial effects of the block diagonal matrices, L¡1

ei ;ei
, and of the block off-diagonal

matrices, L¡1
ei ;ej

.i 6D j /, of L¡1
e in (17).

3.2.1. Block diagonal matrices. Each block diagonal matrix, L¡1
ei ;ei

, is the inertia
matrix that would occur if link i is the only leaf link with an end-effector. With
this physical insight, L¡1

ei ;ei
can be computed using a trivial extension of the Force

Propagation Method, an O.n/ recursive algorithm to compute the 6 £ 6 inverse
operational space inertia matrix of a single open-chain mechanism de� ned as [3–5]:
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Vi D SiD
¡1
i ST

i C hi

i LT Vhi

hi

i L; (23)

where link i is the only child link of its parent link hi and Vroot D 0.
Using the relationships from (11) and (21), the Force Propagation Method (23)

can be extended immediately for a branching robot by replacing Vi with Vi;i . This
extension enables the outward recursion to pass through all children instead of a
single child:

Vi;i D SiD¡1
i ST

i C hi

i LT Vhi ;hi

hi

i L; (24)

where hi is the parent link of link i. Note that this recursion starts from the root
link with Vroot;root D 0 and ends at the leaf links with end-effectors. Then, the
block diagonal matrices, L ei ;ei

, can be computed by transforming Vi;i of leaf links i

using (22).

3.2.2. Block off-diagonal matrices. The block off-diagonal matrices, L¡1
ei ;ej

.i 6D j /, may be regarded as cross-coupling inertias that are a measure of the inertia
coupling to the ith end-effector from the force of the j th end-effector via the nearest
common ancestor of leaf links i and j . The nearest common ancestor of links i and
j is the � rst common link in two paths: one from link i to the root link and the other
from link j to the root link. For example, in Fig. 1, link h is the nearest common
ancestor of leaf links i and j .

From this physical property of block off-diagonal matrices, we can conceptually
view L¡1

ei ;ej
as an inertial quantity which propagates the spatial force from the j th

end-effector to link h (the nearest common ancestor of leaf links i and j ) and then
propagates the resulting spatial acceleration of link h to the ith end-effector.

With this conceptual view, we will develop a recursive algorithm to compute L¡1
ei ;ej

by � nding the propagation of the spatial force from the j th end-effector to link h

and the propagation of the resulting spatial acceleration from link h to the ith end-
effector. Then, L¡1

ei ;ej
can be computed by relating the resulting spatial acceleration

of link h to the propagated spatial force from the j th end-effector.
First, using (4), (6) and (8), we can propagate the spatial force fej

at the j th end-
effector to any of its ancestor h:

f¤
h D h

j L¤j
ej

Xfej
; (25)

h
j L¤ D

Y

k

hk

k L; (26)

where link k is the descendent links of link h in the path from link h to link j and
link hk is the parent link of link k. h

j L¤ results a compound propagation of the spatial
force from link j to link h [5].

Similarly, using (3), (7), (9) and (26), the propagated spatial acceleration a?
h

of link h can be propagated to the end-effector of any of its descendant leaf
link i:

aei
D i

ei
XT h

i L¤T

a¤
h: (27)
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Table 1.
Recursive algorithm for Le

1. Outward Recursion: Compute the spatial transformation matrices:

hi
i X D

" hi
i R 0

dhi ri
hi
i R

hi
i R

#
: (2)

2. Inward Recursion: Compute the force propagators:

hi
i L D hi

i X[16 ¡ Si
NSi]

T : (8)

3. Outward Recursion: Compute the block diagonal matrices starting with Vroot;root D 0:

Vi;i D SiD
¡1
i ST

i C hi
i LT Vhi ;hi

hi
i L: (24)

4. Outward Recursion: Compute the block off-diagonalmatrices with nearest common ancestor h

of links i and j :

Vi;j D

8
>><

>>:

return; if i D j D h

hi
i LT VT

j;hi
; else if j D h

Vi;hj

hj

j L; otherwise:

(29)

5. Spatial Transformation: Compute L¡1
ei ;ej

from Vi;j of leaf links with end-effectors:

L¡1
ei ;ej

D i
ei

XT Vi;j
j
ej

X: (22)

6. Matrix Inversion: Compute the operational space inertia matrix, Le , by inverting L¡1
e (17).

Now, combining (21), (25) and (27), we can relate aei
and fej

as:

aei
D i

ei
XT h

i L¤T

Äh;h
h
j L¤j

ej
Xfej

: (28)

Then, from (20)–(22) and (28), we can derive Vi;j for the block off-diagonal ma-
trices:

Vi;j D h
i L¤T

Vh;h
h
j L¤; (29)

where h is the nearest common ancestor of leaf links i and j . Note that the re-
cursive version of (29) is presented in Table 1 (step 4). As for the block di-
agonal matrices, the block off-diagonal matrices, L¡1

ei ;ej
.i 6D j /, can be com-

puted by transforming Vi;j of leaf links i and j to the corresponding tips us-
ing (22).

Finally, we can compute the operational space inertia matrix, L e, by inverting L¡1
e

in (17). Table 1 summarizes the recursive algorithm developed in this section. Note
that although most processing occurs along the path from the root link to the leaf
links with end-effectors, the effects of the other links enter through the articulated-
body inertias (10) of the links in the path. Figure 4 illustrates the recursion processes
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Figure 4. Recursion processes of steps in Table 1: (a) outward recursion for hi
i X, (b) inward recursion

for hi
i L, (c) outward recursion for Vi;i and (d) outward recursion for Vi;j .i 6D j/.

of the proposed algorithm for the branching robot shown in Fig. 1. Arrows indicate
the direction of the recursion. Note that there is no computation required among the
nodes connected by dotted lines.

3.3. Computational complexity

This subsection presents the computational complexity of the proposed algorithm
for an n-link branching mechanism with m operational points. From Table 1, steps 1
and 2 can be computed in O.n/ since there are n links in the system. Also, since
step 3 requires one outward recursion involving at most n links, all Vi;i can be
computed in O.n/. In step 4, since there are at most n links to propagate to compute
all m ¡ 1 Vk;j .k 6D j / from each of m end-effector k, all Vi;j can be computed
in O.mn/. Spatial transformations of m.m C 1/=2 block matrices cost O.m2/ in
step 5. In step 6, an inversion of L¡1

e of size O.m2/ requires O.m3/. Then, L e

can be computed in O.nm C m3/. Note that since m can be considered as a small
constant for any realistic robotic mechanism, m D O.1/, the overall running time
of the proposed algorithm is O.n/ in practice. Thus, as the number of links in
a mechanism increases, the proposed algorithm performs signi� cantly better than
the existing O.n3 C m3/ symbolic method [1] which still requires O.n3/ inversion
operations for A¡1 (14).

4. EXPERIMENTAL RESULTS

Using the proposed algorithm, we were able to perform the computation of
the operational space inertia matrix for a complex branching robotic mechanism
(Figure 2) in less than 1 ms using a PC with a 266 MHz Pentium II running under
the QNX real-time operating system. This branching robot has an operational point
at each of its two end-effectors and 24 links connected by 1-d.o.f. joints. This result
implies that the proposed algorithm enables highly redundant robotic mechanisms
such as a humanoid robotic mechanism with multiple operational points to be
ef� ciently controlled at a high servo rate in a low-cost hardware environment.



Operational space inertia matrix 713

Figure 5. Motion sequence — putting a box on the � oor.

Figure 6. Plot — putting a box on the � oor in Fig. 5.

In order to show the effectiveness of the proposed algorithm, we also have con-
trolled this robot under the operational space formulation for branching mech-
anisms [1] using the proposed algorithm with Coriolis, centrifugal and gravita-
tional forces [12]. In the real-time dynamic simulation environment developed
in our laboratory, we have achieved a servo rate of 300 Hz with the set-up
above.

Figure 5 shows the motion sequence that occurred when this robot was com-
manded to put the box on the � oor while being advised to keep its posture the
same as the initial con� guration. The dynamics of the resulting closed-chain mech-
anism is computed using the augmented object model [13]. Notice that the robot
had to adjust its advised posture behavior in the null space without producing any
coupling acceleration at both end-effectors in order not to violate the primary task
behavior in the operational space. This was done automatically without any addi-
tional commands. Figure 6 shows the cubic spline motion of the augmented object
(box).



714 K.-S. Chang and O. Khatib

5. CONCLUSION

We have proposed an ef� cient O.nm C m3/ recursive algorithm for the operational
space inertia matrix of an n-link branching robotic mechanism with m operational
points. Since m can be considered as a small constant in practice, we obtain the
linear running time of O.n/ for this algorithm. Therefore, as the complexity of a
robotic mechanism increases, the proposed algorithm performs signi� cantly better
than the traditional O.n3 C m3/ symbolic method. The real-time simulation results
with a complex redundant robotic mechanism (n D 24, m D 2) illustrate the
ef� ciency of this algorithm.
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