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The Dynamic Capability Equations: A New Tool for
Analyzing Robotic Manipulator Performance

Alan Bowling and Oussama Khatib

Abstract—Dynamic capability equations (DCE) provide a new descrip-
tion of robot acceleration and force capabilities. These refer to a
manipulator’s ability to accelerate its end-effector and to apply forces to
the environment at the end-effector. The key features in the development
of these equations are that they combine the analysis of end-effector
accelerations, velocities, and forces, while addressing the difference in
units between translational and rotational quantities. The equations
describe the magnitudes of translational and rotational acceleration and
force guaranteed to be achievable in every direction, from a particular
configuration, given the limitations on the manipulator’s motor torques.
They also describe the effect of velocities on these capabilities contributed
by the Coriolis and centrifugal forces, as well as the reduction of actuator
torque capacity due to motor speed. This article focuses on nonredundant
manipulators with as many actuators as degrees of freedom.

Index Terms—Acceleration, dynamic performance, dynamics, end-ef-
fector, force, manipulator, robotics.

I. INTRODUCTION

The purpose of the proposed performance analysis is to provide tools
to aid in the design and control of robots. The aspects of manipulator
performance considered here are the acceleration and force1 capabil-
ities. They describe a robotic manipulator’s ability to accelerate its
end-effector, and to apply forces to the environment at the end-effector,
given its actuator torque limitations. These capabilities determine a
mechanism’s capacity for manipulating grasped and nongrasped ob-
jects, and comprise what is referred to as dynamic performance or dy-
namic manipulability. The discussion in this paper is focused on nonre-
dundant robotic manipulators which have as many actuators as degrees
of freedom (DOFs), although this method can apply to other types of
manipulators. The three main contributions of the proposed analysis
concern the following:

1) unification of acceleration, velocity, and force analysis;
2) treatment of translational and rotational properties;
3) description of worst-case dynamic capabilities.

Unification of Performance Analyses: The proposed unification
provides a common framework for characterizing the tradeoffs be-
tween a manipulator’s different capabilities. In contrast, almost all
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1In this paper, the term “force” is meant to refer to forces and moments, unless
otherwise indicated.

studies of manipulator performance isolate acceleration, velocity,
and force in their analysis. These quantities are related to actuator
torques in the equations of motion, and thus can be combined into one
performance analysis by considering their equivalent actuator torques.
The torque requirements for each quantity are compared against the
available torque in order to determine the extent of the manipulator’s
capabilities; see Section III. The motivation for combining these
analyses stems from the fact that many tasks involve simultaneously
applying forces while sustaining motion. For instance, consider the
task of polishing the surface of a cylinder or manipulating an object by
pushing or pulling it. It is also desirable to include a velocity analysis,
since the robot may be in motion while performing these tasks.
Treatment of Unit Inhomogeneity: Few studies of the acceleration

and force capabilities have addressed the difference in units between
translational and rotational motions and forces, which creates difficul-
ties for many performance analyses. A number of studies raise con-
cerns about the validity of analyses which do not adequately address
the unit-inhomogeneity issue, including [1]–[4]. The dynamic capa-
bility equations (DCE) discussed herein were developed to treat this
issue. The approach followed here is to map representations of transla-
tional and rotational quantities with different units into representations
of actuator torques with the same units so that they can be compared,
similar to what is done in the unification discussed above. As evidenced
in [1]–[4], the unit-inhomogeneity issue can complicate a performance
analysis, and thus, a careful treatment is required in order to obtain
useful results. This is discussed further in Section IV.
Worst-Case Dynamic Performance: The proposed analysis also

provides a description of the worst-case combinations of a manip-
ulator’s dynamic capabilities. The worst case is examined, because
it provides a lower bound on the manipulator’s capabilities, which
allows for a concise summary of the system’s performance. This is
discussed further in Section II. This approach yields a description
of the magnitudes of end-effector acceleration and force that the
mechanism is guaranteed to be capable of producing in or about
any direction, given the limitations on its actuator torque capacities.
Worst-case velocities are also considered, whose impact is felt through
the centrifugal and Coriolis forces, and the decrease in actuator torque
capacity with motor speed described by the speed-torque curve [5].
The remainder of this paper presents a detailed development of the
DCE, along with an example of their use in evaluating the dynamic
performance of robotic manipulators.

II. BACKGROUND

The prior works most closely related to the proposed analysis con-
sider dynamic effects on performance, which include the inertial prop-
erties and the limitations or bounds on the amount of torque the actu-
ators can produce. The inertial properties, as perceived at the end-ef-
fector, describe the resistance to acceleration experienced by a force
acting at the end-effector [6]–[10]. In contrast, the proposed study and
others like it investigate the actuator effort required to accelerate the
end-effector. These analyses explore the mapping between end-effector
acceleration space and actuator torque space, obtained from the equa-
tions of motion, using different representations of available torque and
attainable acceleration. Fig. 1 illustrates the various representations
used in these studies, and highlights their differences for a 2-DOF
planar manipulator example.
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Fig. 1. Analysis of manipulator performance.

The bounds on actuator torque capacity, or torque bounds, are repre-
sented by the rectangle in actuator space shown in Fig. 1. These bounds
are mapped into end-effector acceleration space yielding the acceler-
ation parallelepiped [11] or polytope shown at the end-effector of the
manipulator.

The vector within the parallelepiped shows one possible transla-
tional acceleration of the operational point, which is represented by the
small circle at the end-effector. Any such acceleration vector that can
be drawn within the parallelepiped is attainable. The parallelepiped’s
shape indicates an imbalance in acceleration capability, in that larger
accelerations are achievable in some directions than in others.

Another approach shown in Fig. 1 involves the dashed circle in actu-
ator space, which is mapped into the dashed ellipse in the end-effector
acceleration space, yielding the dynamic manipulability ellipsoid [12],
[13]. The solid circle in the end-effector acceleration space represents
the isotropic acceleration that is mapped into the solid ellipse in actu-
ator space, used in this paper and in [11], [12], [14], and [15].

The radius of the solid circle in Fig. 1 is referred to as the balanced
translational acceleration and is similar to the acceleration radius in
[14]; however, the acceleration radius applies to a range of config-
urations. It represents the largest translational acceleration which is
guaranteed to be achievable in every direction. This measure is used
because it is obtained by mapping accelerations into actuator torques,
which facilitates the unification of performance analyses and treatment
of unit inhomogeneities discussed herein.

The vector within the parallelepiped in Fig. 1 is theworst-case trans-
lational acceleration, which represents the magnitude and direction of
the smallest acceleration of the operational point that can be achieved.
The torque bound in contact with the ellipse indicates the limiting actu-
ator, which saturates attempting to provide the worst-case acceleration.
The worst-case translational acceleration direction, limiting actuator,
and balanced translational acceleration, exemplify the key results from
the proposed analysis.

Herein, additional balanced quantities will be examined: the bal-
anced acceleration, balanced force, and balanced velocity. The bal-
anced acceleration refers to either or both of the balanced transla-
tional and rotational accelerations, and likewise for the other terms.
The spirit of this terminology also applies to references to accelera-
tion, force, or velocity not explicitly modified by the terms “transla-
tional” and “rotational.” In this paper, forces and velocities are consid-
ered within the context of dynamic performance. However, these quan-
tities are usually investigated from a kinematic viewpoint; kinematic
velocity studies include the manipulability ellipsoid [16] and velocity
polytope [17], and kinematic force studies include the force ellipsoid
and polytope, found in [18] and [19], respectively.

Most analyses examine only one of acceleration, velocity, or force,
with the exception of [6] and [15], which considered accelerations and
velocities together. However, these studies did not directly address the

unit-inhomogeneity issue, and neither do most studies. Exceptions in-
clude a kinematic study in [20] which eliminates the rotational veloc-
ities by referencing the Jacobian to the translational velocities of mul-
tiple reference points on the end-effector. Scaling factors were used in
the kinematic studies [21], [22]; however, they can be somewhat ar-
bitrary and may not adequately address the problem [2]. Translational
and rotational velocities were separated for the special case of manipu-
lators with spherical wrists in [23]. A more general separation of trans-
lational and rotational quantities is used herein, in [7] for the inertial
properties, and in [24] for velocity polytopes.

III. UNIFICATION OF PERFORMANCE ANALYSIS

The mappings of accelerations, velocities, and forces into actuator
torques are defined by the equations of motion

E
_vvv

_!!!
+ E

f

m
+C(vvv; !!!) + g = � (1)

where vvv 2
r and !!! 2

p are the end-effector translational and
rotational velocities, and _vvv 2

r and _!!! 2
p are the associated

end-effector accelerations with respect to an inertial reference frame.
f 2 r andm 2

p are the end-effector contact forces and moments.
E 2

n�n; E 2
n�n; g 2

n; � 2
n, and C(vvv; !!!) 2 n are

the inertia matrix, force transmission matrix, gravity forces, actuator
torques, and the Coriolis and centrifugal forces and other velocity-de-
pendent terms. The robot is assumed to have n DOF and n = r + p.
Equation (1) is developed in detail in Appendix I.

The development of (1) depends on the existence of an invertible
actuator Jacobian, Ja 2 n�n, expressed as

vvv

!!!
= Ja _��� (2)

where _��� 2
n are the motor speeds. Thus systems with a nonsquare

or singular actuator Jacobian cannot directly apply the analysis as pre-
sented herein. Redundant, underactuated, overactuated, or redundantly
actuated manipulators have a nonsquare actuator Jacobian. General-
ized inverses are usually employed in this situation; however, each one
will yield a different description of manipulator capabilities, and it is
usually unclear which to choose. A more complete description can be
obtained by augmenting the actuator Jacobian, adding or subtracting
rows, in order to obtain a square matrix. Singularities can be similarly
handled. Much work on redundant manipulators has been done [25]
and will be published later; examination of the other cases is ongoing.

A common problem in analyses dependent on the Jacobian or actuator
Jacobian mapping in (2) is that the results arepoint-specific. The transla-
tional velocityvvv in either Jacobian is referenced to a specific operational
point on theend-effector, and the rotational velocity!!! represents end-ef-
fector rotations about that point. However, different operational points
yield different results which may not be equivalent. These results are not
invariant to translation or relocation of the operational point. It is diffi-
cult to satisfy this type of invariance and still obtain a physically mean-
ingful description of the manipulator capabilities, as suggested in [3].

Equation (1) and the torque bounds include all of the elements con-
sidered in the performance analyses discussed in Section II, except for
the bounds on joint velocities. However, these limits can be incorpo-
rated into the model, currently in a limited way, because they are re-
lated to the torque bounds through the motor speed as described by the
speed-torque curve. Here, it is assumed that the torque bounds can be
modeled using a polynomial function of rotor angular velocity _�i

�bound = �peak + ki( _�i) (3)

where�peak is the constant peak/maximum torque of the ith actuator,
and ki( _�i) is a polynomial excepting the constant term �peak . Equa-
tion (3) can be linear or nonlinear.
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Currently, the speed-torque curve must be approximated using only
the quadratic term in ki( _�i) for compatibility with the centrifugal and
Coriolis forces. Otherwise, only a purely numerical approach can be
used to explore the velocity effects. An operating region can be chosen
where torque capacity is approximately independent of rotor velocity,
ki( _�i) = 0, eliminating the modeling issues; the velocity limits should
then be included as additional constraints in this analysis. �peak can
also chosen by the user. Equation (3) can be expressed as

��peak � �+ k �� k � �peak (4)

which must be satisfied independently, or row by row, as must all in-
equalities developed hereafter; �peak 2

n and k 2 n.

IV. UNIT INHOMOGENEITY

It becomes difficult to assign a physical interpretation to the repre-
sentations in Fig. 1 when both translational and rotational quantities are
involved. The polytope and ellipsoid mix translational and rotational
accelerations, making it difficult to draw conclusions about either. The
ellipsoid approach yields physically inconsistent results when units are
mixed [1], as does the balanced-acceleration approach.

When translational and rotational quantities are mixed, the results
are not invariant to changes in units, which means that a simple scaling
of units can produce different results which are not equivalent to each
other. As suggested in [1], three aspects of invariance can be considered
for a performance analysis: invariance to changes in units, to rotations
of the Euclidean coordinates, and to translation of the origin/opera-
tional point. The DCE satisfy the first two, but not the third, as dis-
cussed in Section III.

The approach followed here is to separate translational and rotational
quantities. Thus the equations of motion (1), combined with the torque
bounds in (4), are expressed as

�upper � Evvv _vvv + E!!! _!!! + Ef f + Emm+ h

�lower � Evvv _vvv + E!!! _!!! + Ef f + Emm+ h (5)

where

E = [Evvv E!!!] E = [Ef Em]

�upper = �peak � g h = C(vvv; !!!)� k

�lower = ��peak � g h = C(vvv; !!!) + k: (6)

The terms that are constant at a given configuration are collected in the
bounds �upper and �lower. As stated earlier, the unit-inhomogeneity
issue is addressed by mapping separate representations of quantities
with different units, into actuator torques having the same units. This
process is discussed next.

V. ANALYSIS OF DYNAMIC PERFORMANCE

A. Overview

The proposed analysis involves specifying the manipulator configu-
ration, acceleration, velocity, and force in the equations of motion (1),
in order to determine the actuator torques required to produce the latter
quantities. The results are then compared against the available torque,
as described by the torque bounds in (4), in order to determine the ex-
tent of the specified motions and forces; this comparison is expressed
in (5). Separate balanced quantities are used to specify all quantities
which have homogeneous units

_vvvT _vvv = j _vj2 _!!!T _!!! = j _!j2

f
T
f = jfj2 m

T
m = jmj2

vvv
T
vvv = jvj2 !!!

T
!!! = j!j2: (7)

j _vj is the balanced translational acceleration, a positive scalar which
constrains the magnitude of the acceleration vector k _vvvk, and likewise

Fig. 2. Torque vector component in direction of � .

for the other balanced quantities. In general, each relation in (7) rep-
resents a sphere of radius j � j.

Each inequality in (5) is considered independently, thus each term
in a single relation can be maximized or minimized, for the upper and
lower bounds respectively, subject to the constraints in (7), to determine
the worst-case contribution from that term. These worst-case contribu-
tions can be summed for each relation, yielding a set of inequalities
describing the extent of the balanced quantities. The terms in a single
inequality all have the same units, so there is no unit problem.

This process sounds simple, yet it may not be intuitively obvious
why it would yield a correct result. The geometric argument presented
in the next sections examines the mappings of balanced quantities into
actuator torques, and in doing so, justifies the proposed process and
provides insights into the character of the problem and its solution. It
also illustrates the unification of performance analyses and treatment
of unit inhomogeneity resulting in the DCE.

Representing each term in (5) as an actuator torque facilitates the
discussion of the geometric argument

�upper � � _vvv +� _!!! +�f +�m +�
h

� (8)

�lower � � _vvv +� _!!! +�f +�m +�
h

� (9)

where� _vvv = Evvv _vvv, and likewise for the other terms, excepting�
h
= h

and �h = h.

B. Geometric Argument: A Simple Example

The geometric argument is best understood using a simple example,
such as the 2-DOF manipulator shown in Fig. 1, assuming that only the
� _vvv term in (8) and (9) is nonzero

�upper � � _vvv � �lower � � _vvv �: (10)

This geometric argument involves visualizing the terms in (10) as geo-
metric objects, and exploring the relationships between them. As dis-
cussed in Section II, the bounds�upper and�lower can be represented
by a rectangle in actuator space, as shown in Fig. 2 for the 2-DOF planar
manipulator. Fig. 2 also shows the torque ellipse obtained by mapping
an acceleration circle into actuator space, as described in

_vvvT _vvv = j _vj2������!
Evvv _vvv = � _vvv

�
T

_vvv EvvvE
T

vvv

�1

� _vvv = j _vj2: (11)

When the torque ellipse is inscribed within the bounds, as shown in
Fig. 2, no larger balanced translational acceleration is attainable. The
proposed analysis is based on exploring the conditions under which
this occurs. This is accomplished by examining the vector � _vvvu1 in
Fig. 2, representing the contact point between the torque ellipse and
upper bound on �1.
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Of the vectors comprising the torque ellipse, � _vvvu1 is the one with
the largest component� _vvv in the direction of the bound that it touches,
�upper . Thus the value of the � _vvv component of vector � _vvvu1 is
unique in the set of values for � _vvv from each vector comprising the
torque ellipse. Due to this uniqueness, maximizing the general form of
� _vvv subject to (7) yields its extreme value (� _vvv )max as well as� _vvvu1.

In order to determine the actual numerical value of (� _vvv )max, the
size of the ellipse must be known a priori. Since this is not known, the
component is maximized considering the balanced acceleration j _vj as
a parameter, not a decision variable, in the optimization; note that the
result must then be expressed in terms of this parameter. Thus, the max-
imization yields the form of the extreme value, rather than the actual
numerical value of the extremum. This result is compared against the
known numerical value of the bound to determine the actual size of the
balanced translational acceleration j _vj.

The maximum value of the � _vvv component, (� _vvv )max, is unique
and can be found in terms of j _vj as

max
_vvv

� _vvv := Evvv _vvv

subject to _vvvT _vvv = j _vj2 (12)

where Evvv is the ith row of Evvv . This problem has a closed-form so-
lution, _vvvu1, the worst-case translational acceleration, which is found
using Lagrange multipliers

_vvvu1 = j _vj _vvvu1 = j _vj
E
T

vvv

kEvvv k
� _vvvu1 = Evvv _vvvu1 (13)

where _vvvu1 is a unit vector in the worst-case translational acceleration
direction with respect to the �upper boundary. The details of this so-
lution are given in Appendix II.

When the optimal value (� _vvv )max equals�upper , the torque ellipse
touches the bounds; however, this condition is expressed as in (14) so
that all boundaries can be checked

(� _vvv )max = Evvv _vvvu1 = kEvvv k j _vj � �upper : (14)

Since the torque ellipse touches the bound �upper , the corresponding
actuator �1 is the limiting actuator for the example in Fig. 2. Usually
the limiting actuator is not known beforehand, so all boundaries must
be checked. This involves checking the points where the torque ellipse
would be tangent to each boundary, by maximizing and minimizing
each torque vector component. A torque ellipse within the bounds sat-
isfies

(� _vvv )max

(� _vvv )max

�(� _vvv )min

�(� _vvv )min

=

kEvvv k j _vj

kEvvv k j _vj

kEvvv k j _vj

kEvvv k j _vj

�
�upper

��lower

: (15)

All of the above solutions are unique. The extent of the balanced trans-
lational acceleration is determined by the largest value of j _vj satisfying
all of the relations in (15).

Notice that the examination of each torque vector component corre-
sponds to considering the inequalities in (10) row by row, which jus-
tifies the statement after (4). (� _vvv )max and (� _vvv )min are the worst-
case contributions of the� _vvv term to the inequalities corresponding to
�upper and �lower in (10), respectively, which are used to obtain the
inequalities in (15), as discussed in Section V-A.

C. Geometric Argument: Addressing Unit Inhomogeneity

The results from Section V-B do not directly apply to manipulators
whose end-effector motions are described in terms of translations and
rotations. The overall procedure does apply. Consider the case where
only accelerations are involved

�upper � � _vvv +� _!!! = � �lower � � _vvv +� _!!! = � (16)

Fig. 3. Torque ellipse addition.

Fig. 4. Translational and rotational acceleration torque components.

obtained from (8) and (9). Due to the increased dimension of the actu-
ator motion space, the bounds�upper and�lower are visualized geo-
metrically as a right-angled hyperparallelepiped. Keeping translations
and rotations separate results in two torque ellipsoids, defined as

_vvvT _vvv = j _vj2�������!
_vvv = E

+
vvv � _vvv

�
T

_vvv (E
+
vvv )

T
E
+
vvv � _vvv = j _vj2 (17)

_!!!T _!!! = j _!j2�������!
_!!! = E

+
!!!� _!!!

�
T

_!!! (E
+
!!! )

T
E
+
!!!� _!!! = j _!j2 (18)

where the superscript “+” indicates the Moore–Penrose pseudoinverse,
or left inverse, E+

vvv = (ET

vvv Evvv)
�1

E
T

vvv . These mappings are valid, be-
cause both acceleration vectors are of smaller dimension than the actu-
ator torque vector. The original relationship, Evvv _vvv = � _vvv for instance,
between the n torque vector components and the lower number of ac-
celeration vector components, is defined by n relations, yielding an
overconstrained system. Thus, there exists a one-to-one mapping be-
tween � _vvv and _vvv, and between � _!!! and _!!!, which can be represented
by the pseudoinverse. In general, the mappings in (17) and (18) yield
ellipsoids in actuator space.

The addition of torques in (16) can be represented geometrically by
mapping one torque ellipsoid onto every point on the surface of the
other. This addition results in what is referred to as a torque hypersur-
face, which is difficult to visualize when it exists in a highly dimen-
sioned space. Fig. 3 gives a representation of the torque hypersurface
which is technically inaccurate, yet adequately illustrates the concept.

The bold vector in Fig. 4, denoted �u1, represents the contact
point between the torque hypersurface and boundary �upper shown
in Fig. 3. The dashed ellipse is used to indicate where the torque
hypersurface touches the bound. The composition of �u1 is shown
in Fig. 4. The contribution of each torque ellipse to �u1 corresponds
to the location where each would independently touch the boundary
�upper . Thus, (�1)max = (� _vvv )max + (� _!!! )max, which is unique
because (� _vvv )max and (� _!!! )max are unique, as are all such extreme
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Fig. 5. Dynamic capability curve.

values. The uniqueness of (�1)max implies that �u1 is also unique,
which means the torque hypersurface touches each boundary at only
one point. The form of the extreme values for each torque vector
component can be found as

max
_vvv _!!!

or min
_vvv _!!!

�i := � _vvv +� _!!! = Evvv _vvv +E!!! _!!!

subject to _vvvT _vvv = j _vj2 _!!!T _!!! = j _!j2: (19)

Using Lagrange multipliers yields closed-form solutions to the prob-
lems in (19), which are the worst-case accelerations for each boundary
_vvvui and _!!!ui; see Appendix II. In the solution process, the terms in-
volving translational and rotational acceleration completely decouple,
eliminating the need to separately consider the optimization problems.
These optimizations correspond to independently determining the
worst-case contributions of the � _vvv and � _!!! terms in each relation
of (16), in order to obtain the inequalities in (20), as discussed in
Section V-A.

A torque hypersurface lying within the bounds must satisfy

kEvvv k j _vj+ kE!!! k j _!j
...

kEvvv k j _vj+ kE!!! k j _!j

kEvvv k j _vj+ kE!!! k j _!j
...

kEvvv k j _vj+ kE!!! k j _!j

�
�upper

��lower

: (20)

The extent of the balanced translational and rotational accelerations and
limiting actuator(s) are determined by the largest values of j _vj and j _!j
which satisfy all of the relations in (20). However, note that this does
not result in a single solution for j _vj or j _!j, as occurred in Section V-B.
The result is a curve which defines a relationship between j _vj and j _!j.

This curve is found by overlaying on the same plot in the j _vj-j _!j
space the lines defined by each relation in (20). The lines forming the
innermost envelope around the origin, shown as solid lines in Fig. 5,
yield what is referred to as a dynamic capability curve, which is al-
ways convex and piecewise linear. The completely dashed lines repre-
sent two of the other inequalities in (20). The infinity of solutions for
the balanced accelerations on and beneath this curve are achievable.
Discontinuities appear when the torque hypersurface for different so-
lutions touch different boundaries; Figs. 3 and 4 illustrate one possible
solution. The numeric labels in Fig. 5 indicate the limiting actuators for
the solutions along a segment of the curve.

D. Geometric Argument: Unification of Performance Analyses

This section focuses on adding considerations of force and velocity
to the investigation of acceleration capability discussed in Section V-C,
in order to unify the performance analyses of these quantities. Because
the acceleration and force terms are linear with respect to the accel-
erations and forces, the treatment of acceleration in Section V-C can
easily be extended to include the force terms in (8) and (9)

�upper � � _vvv +� _!!! +�f +�m +�
h

�

�lower � � _vvv +� _!!! +�f +�m +�h �

yielding similar results with similar properties.
The difficulties occur when adding the velocity terms to the anal-

ysis. These problems are due to the nonlinearities in the velocity terms
and the separation of translational and rotational velocities required to
address the unit inhomogeneities. Nonlinearities are evident in the ve-
locity terms expressed as

�
h
= h =

vvv

!!!

T

H1

vvv

!!!

...
vvv

!!!

T

Hn

vvv

!!!

(21)

and likewise for �h = h. The Hi 2 n�n in (21) are symmetric
matrices containing the coefficients of each quadratic form. vvv and !!!

cannot be separated in (21) in order to obtain a simple mapping of
velocity spheres into actuator torques. However, the image in actu-
ator space of the spheres representing balanced velocities must be a
bounded geometric object, because the velocities are represented by
bounded, closed surfaces. Although difficult to visualize, this object
can be used to form a torque hypersurface. Thus, it is still valid to con-
sider where the torque hypersurface will touch the bounds, which leads
to torque vector-component optimizations, just as in Sections V-B and
V-C.

Because the velocity terms are purely quadratic, recalling the discus-
sion of the speed-torque curve, there are always at least two solutions
associated with the extreme value of each torque vector component.
For instance, the extreme value (�

h
)max is obtained from at least two

solutions

(vvvui; !!!ui) = f(vvvui ; !!!ui ); (vvvui ; !!!ui ) . . .g

= f(vvvui ; !!!ui ); (�vvvui ;�!!!ui ) . . .g: (22)

This means that the unit vectors in the worst-case velocity directions,
vvvui and !!!ui, are not unique; the torque hypersurface may touch a par-
ticular boundary at more than one point. Yet, all solutions yield the
same extreme value.

The component optimizations are expressed as

max
_vvv; _!!!;f ;m;vvv;!!!

�i or min
_vvv; _!!!;f ;m;vvv;!!!

�i

subject to _vvvT _vvv = j _vj2 _!!!T _!!! = j _!j2

f
T
f = jfj2 m

T
m = jmj2

vvv
T
vvv = jvj2 !!!

T
!!! = j!j2: (23)

These problems are nonconvex because of the nonlinear equality con-
straints [26]. When using Lagrange multipliers, the acceleration, force,
and velocity terms decouple, allowing closed-form solutions for the ac-
celeration and force terms, but not for the velocity terms. It is unlikely
that a closed-form solution of an optimization with a nonlinear cost
function and nonlinear constraints can be found [26].

Still, some analysis of the velocity terms is desired without resorting
to a purely numerical solution. A numerical solution involves, for ex-
ample, specifying a numerical value for jvj and solving for the largest
numerical value of j!j, yielding a single point as the solution.
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The chosen approach is to add a constraint to (23)

j!j = � jvj (24)

where a specific numerical value is assigned to the positive scalar �.
Varying � from zero to 1 yields the entire solution set. This is akin
to changing variables, specifying only one of the new variables, and
using the resulting equation to define the second. Although seemingly
numerical, each � value yields an optimal value describing an infinity
of solutions, such as

(�
h
)max =

ci jvj
2; � <1

ci j!j
2; � !1

(25)

where ci is a scalar. This solution is given in Appendix III. This ap-
proach is used in a design methodology briefly discussed in Section VI.

Note that if a specific value is assigned to jvj, as in a purely numer-
ical approach, a closed-form solution such as (25) cannot be found, in
general. Only the corresponding numerical value of j!j can be found
using a numerical approach. A linear velocity term in the cost func-
tion of (23), as can be contributed by a linear approximation of the
speed-torque curve, also requires a numerical approach. The constraint
in (24) does not help this case. When the translational and rotational ve-
locity subspaces are decoupled, a closed-form solution can be found.
The decoupled cases include � = 0 and � ! 1, or jw = 0j and
jv = 0j, respectively.

E. Dynamic Capability Equations

A torque hypersurface involving velocity effects for a particular
value of � which lies within the bounds must satisfy

j _vj

j _!j
+

jfj

jmj
+ (jvj2; j!j2) � (26)

where

= �
T

upper ��T

lower

T

: (27)

2 2n�2 and 2 2n�2 are defined as

i = [kEvvv k kE!!! k]

i = [kEf k kEm k] (28)

and i is the ith row of , and likewise for . The vector
(jvj2; j!j2) 2 2n is defined as

i = �
h

max
i+n = � �h

min
: (29)

The relations in (26) are referred to as the DCE. The extent of the
balanced quantities is determined by their largest values which satisfy
(26). Just as in Section V-C, these equations describe relationships be-
tween the balanced quantities. These relationships are explored next.

F. Dynamic Capability Hypersurface

Each relation in the DCE can represent a hypersurface in a six-di-
mensional space due to the six unknown balanced quantities. If the
hypersurfaces are overlaid in the same space, the ones forming the
innermost envelope around the origin, referred to as the dynamic ca-
pability hypersurface, determine the extent of the balanced quantities.
Since the hypersurface cannot be displayed, sections of it are exam-
ined in order to explore its properties. Fig. 6 shows a section where
jfj = jmj = j!j = � = 0 for the PUMA 560 manipulator, at the
configuration shown in Fig. 7. Note that the constraint in (24) yields a
section of the hypersurface.

The limiting actuator is at the second joint, as indicated by the nu-
meric label on the surface of Fig. 6. The worst-case directions are
shown by the line segments emanating from the operational point of

Fig. 6. PUMA 560 dynamic capability surface. This is a section of the dynamic
capability hypersurface obtained using jfj = jmj = j!j = � = 0.

Fig. 7. PUMA 560 worst-case motion directions.

the PUMA 560 in Fig. 7. The PUMA 560 model used to obtain Fig. 6
is given in [27].

The curve in the j _vj-j _!j plane of Fig. 6 is a dynamic capability
curve similar to Fig. 5. Point A represents the intercept on the j _vj
axis, 7.9 m/s2, which is the extent of balanced translational acceler-
ation achievable from rest, if the end-effector does not rotate. Fig. 7
shows the worst-case direction of translational acceleration, _vvvu2. The
worst-case translational acceleration of the operational point from this
configuration, associated with point A, is expressed as

_vvvu2 = j _vj _vvvu2 = (7:9 m/s2) _vvvu2: (30)

An equal or higher level of translational acceleration can be achieved
in every direction other than _vvvu2. The manufacturers of the PUMA
560 claim that it should be able to achieve 9.81 m/s2 acceleration at
the end-effector, so this result is reasonable. Note that _vvvu2 remains the
same for all combinations of acceleration and velocity described by the
surface in Fig. 6. However, the magnitude of the worst-case accelera-
tion j _vj decreases along the surface as velocity and angular acceleration
increase.

Point B represents the intercept on the j _!j axis, 70 rad/s2, which is
the extent of balanced rotational acceleration achievable from rest, if
the end-effector operational point does not translate. Fig. 7 shows the
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worst-case direction of rotational acceleration, _!!!u2. The worst-case an-
gular acceleration of the end-effector about the operational point from
this configuration, associated with point B, is expressed as

_!!!u2 = j _!j _!!!u2 = (70 rad/s2) _!!!u2: (31)

_!!!u2 has properties similar to _vvvu2. The worst-case direction _!!!u2 re-
mains the same for all combinations of acceleration and velocity de-
scribed by the surface in Fig. 6. However, the magnitude of the worst-
case angular acceleration, j _!j, decreases as velocity and translational
acceleration increase.

The remainder of the surface describes the translational velocity ef-
fects on acceleration capability. The shape of the surface indicates that
the balanced accelerations decrease to zero as the balanced translational
velocity increases. Point C in Fig. 6 represents the magnitude of trans-
lational velocity, 0.34 m/s, where all of the available torque from the
limiting actuator is used to compensate for velocity effects and gravity
forces. Therefore, no worst-case accelerations _vvvu2 and _!!!u2 can be ob-
tained. However, accelerations can be obtained in directions other than
worst-case acceleration directions. Fig. 7 shows the worst-case direc-
tions of translational velocity, denotedvvvu2 and�vvvu2 . The worst-case
translational velocities of the end-effector operational point from this
configuration, associated with point C, are expressed as

vvvu2 = fjvj vvvu2 ;�jvjvvvu2 g

= f(0:34 m/s)vvvu2 ;�(0:34m/s) vvvu2 g: (32)

An equal or higher level of translational velocity can be sustained in di-
rections other thanvvvu2 without saturating an actuator. These worst-case
velocity directions remain the same for all combinations of acceleration
and velocity described by the surface in Fig. 6. However, the magnitude
of the worst-case velocity, jvj, decreases along the surface as the bal-
anced accelerations increase. The worst-case translational velocity and
acceleration directions, vvvu2 and _vvvu2, are nearly opposites as expected,
but not exactly opposites, as shown by �vvvu2 .

The nonintercept regions of the dynamic capability surface in Fig. 6
show the achievable combinations of the worst-case accelerations and
velocities, _vvvu2; _!!!u2, and vvvu2. The magnitudes of a particular combi-
nation of the worst-case accelerations and velocities represent a single
point on the dynamic capability surface. In all directions other than the
worst-case ones, higher accelerations are achievable and higher veloc-
ities are sustainable. Thus, the hypersurface describes the lower bound
on the dynamic performance of the mechanism at a particular configu-
ration.

This example allows the following general summary:

• combinations of acceleration, velocity, and force having magni-
tudes that lie on or beneath the dynamic capability hypersurface
are achievable in and about every direction;

• combinations of acceleration, velocity, and force having magni-
tudes that lie above the dynamic capability hypersurface are not
achievable in the worst-case, and possibly other, directions.

Since the dynamic capability hypersurface is difficult to display,
measures are needed to summarize its characteristics. The jvj = j!j =
0 hypersurface section is convex, suggesting that the intercepts can be
used to describe its size, denoted

fj _vj� : j _!j� : jfj� : jmj� : jvj� : j!j�g (33)

although it is difficult to draw conclusions about the shape of the hy-
persurface when velocities are included. The intercepts for the dynamic
capability hypersurface of Fig. 6 are

f7:9 m/s2 : 70 rad/s2 : 126 N : 16 Nm : 0:34 m/s : 2:7 rad/sg:

VI. APPLICATIONS

The DCE have several uses in the analysis, design, and control of
robotic manipulators. A short list of these include the following.

1) Comparing the suitability of different manipulators given the
dynamic performance requirements of the task.

2) Characterizing the dynamic performance of a manipulator over
its workspace or along a path by discretizing the region into a
representative set of configurations, and statistically analyzing
the DCE for the configurations in the set.

3) Motion planning which can use the worst-case direction infor-
mation to avoid low performance configurations in a robot’s
workspace.

4) Selecting actuators for achieving a desired level of dynamic
performance or actuator selection.

Extensive work has been done on the actuator-selection problem. The
idea is to solve the inverse of the problem that was addressed in this
paper, which was to determine the dynamic performance given the
limits on actuator torque. In other words, given , find the balanced
quantities. The actuator-selection problem involves finding the actua-
tors that will provide a desired level of dynamic performance in and
about every direction; given the balanced quantities, find , which de-
termines the size of the actuators.

Optimization and heuristic procedures were developed for this
problem in [28]. The balanced quantities are given in a number of
performance points of a form similar to (33), which specify the desired
shape of the dynamic capability hypersurface. Since the balanced
velocities are specified, it is always possible to determine � in (24) for
each performance point, so the developments discussed in Section V-D
are useful for the actuator-selection method developed in [28].

VII. CONCLUSION

In this paper, the DCE were developed as a tool for analyzing the
acceleration and force capabilities of nonredundant manipulators, in-
cluding velocity effects, at a particular configuration for nonredundant
manipulators with as many actuators as DOFs. This was accomplished
while addressing unit inhomogeneities and unifying the analysis of ac-
celeration, force, and velocity. These developments allowed for the
analysis of any nonredundant mechanism with as many actuators as
DOFs, as was illustrated by the analysis of the 6-DOF PUMA 560
robotic manipulator. In addition, the analysis also yielded insights into
the limiting actuators, the motors which saturate attempting to produce
end-effector motions and forces. The analysis also provided informa-
tion about the worst-case acceleration, force, and velocity directions
which saturate the limiting actuator(s).

APPENDIX I
EQUATIONS OF MOTION

The joint space form of the equations of motion is

A(q) �q + b(q; _q) + ggg(q) + J
T f

m
= � = GT

� (34)

where q is the vector of generalized/joint coordinates, A(q) is the in-
ertia matrix, G is the transmission matrix between joint and actuator
torques, and b(q; _q); ggg(q); �, and � are vectors of Coriolis/cen-
trifugal, gravity, joint, and actuator forces.

The manipulator Jacobian J can be expressed as

###
vvv

!!!
= J(q) _q � = J

T (q) F (35)
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whereF represents the actuator forces as perceived at the end-effector.
Using (34) and (35), the actuator Jacobian Ja can be expressed as

� = J
T
a F = (JG�1)T F: (36)

Equations (34), (35), and (36) yield (1)

E
_vvv

_!!!
+ E

f

m
+C(vvv; !!!) + g = �

where

E = G�T AJ
�1 E = J

T
a

���(q; _q) = G�T (b� AJ
�1 _J _q) g = G�Tggg

C(vvv; !!!) = ��� q; J
�1[vvvT !!!

T ]T : (37)

APPENDIX II
SOLUTION FOR ACCELERATION AND FORCE TERMS

Here the optimization problem for the acceleration and force terms
from Section V is addressed. However, only the acceleration terms from
Section V-C, (19) will be discussed because the analysis of forces is
identical

max
_vvv _!!!

or min
_vvv _!!!

�i := � _vvv +� _!!! = Evvv _vvv + E!!! _!!!

subject to _vvvT _vvv = j _vj2 _!!!T _!!! = j _!j2:

In the Lagrange multiplier method, the critical points satisfy the con-
straints and the following equation:

@�i

@ _#j
= �1

@f

@ _#j
+ �2

@g

@ _#j
(38)

where j = (1; . . . ; n); �1, and �2 are scalars, and

f = _vvvT _vvv � j _vj2 = 0

g = _!!!T _!!! � j _!j2 = 0: (39)

Applying (38) to (19) yields

ET
vvv

ET
!!!

=
2�1I 0

0 2�2I

_vvv

_!!!
: (40)

Equation (40) can be expressed as

E
T
vvv = 2�1 _vvv E

T
!!! = 2�2 _!!!: (41)

Notice that the translational and rotational terms have decoupled. Equa-
tions (39) and (41) yield

�
2

1 =
Evvv ET

vvv

4 j _vj2
�
2

2 =
E!!! ET

!!!

4 j _!j2
: (42)

(�i)max and (�i)min are obtained using the positive and negative roots
for �1 and �2, which are substituted into (41) to obtain the solutions,
or worst-case accelerations, _vvvui; _vvvli; _!!!ui, and _!!!li for the bounds on
the ith actuator, expressed as

_vvvui = j _vj _vvvui = j _vj
ET
vvv

kEvvv k

_vvvli = j _vj _vvvli = j _vj
�ET

vvv

kEvvv k

_!!!ui = j _!j _!!!ui = j _!j
ET
!!!

kE!!! k

_!!!li = j _!j _!!!li = j _!j
�ET

!!!

kE!!! k
(43)

where the subscripts “u” and “l” indicate the upper and lower bounds.
The optimal values can be expressed as

(�i)max = Evvv _vvvui +E!!! _!!!ui = kEvvv k j _vj+ kE!!! k j _!j

(�i)min = Evvv _vvvli + E!!! _!!!li = �kEvvv k j _vj � kE!!! k j _!j: (44)

From here, the elements of in (28) are easy to discern. Similar ex-
pressions can be developed for in (28).

APPENDIX III
SOLUTION FOR VELOCITY TERMS

Here only the maximization problem is discussed, since it is so
similar to the minimization. The velocity portion of the optimization
problem given in (23) is

max
vvv !!!

�
h

:= ###
T Hi ###

subject to vvv
T
vvv = jvj2 !!!

T
!!! = j!j2: (45)

Since vvv and !!! lie on bounded, closed surfaces/curves, forming a com-
pact set, the global maximum and minimum exist.

A. Special Case: Decoupled Subspaces

When Hi is decoupled with respect to vvv and !!!

Hi =
Hi 0

0 Hi

(46)

the problem can be solved using the method of Lagrange multipliers,
see Appendix II, resulting in an eigenvalue problem. The maximum
value has the form

(�
h
)max = vvv

T
ui Hi vvvui + !!!

T
ui Hi !!!ui

= "vvv jv2j + "!!! j!j2 (47)

where "vvv and "!!! are the largest eigenvalues of Hi and Hi . The
worst-case directions are the associated unit eigenvectors~"""vvv and~"""!!! .
The worst-case velocities are defined as

vvvui = fjvj vvvui ; �jvj vvvui g

= fjvj~"""vvv ; �jvj~"""vvv g

!!!ui = fj!j!!!ui ; �j!j!!!ui g

= fj!j~"""!!! ; �j!j~"""!!! g : (48)

B. Special Case: j!j = �jvj

A change of variables using j!j = � jvj to express vvv and !!! in terms
of the unit vectors �vvv and �!!!

vvv

!!!
= jvj

I 0

0 �I

�vvv

�!!!
= jvj

I 0

0 �I
�### (49)

yields

max
�vvv �!!!

�
h

:= jvj2 �###
T Hi(�) �###

subject to �vvvT �vvv = 1 �!!!T �!!! = 1 (50)

where

�
h

= jvj2
�vvv

�!!!

T
Hi �Hi

�H
T

i �2Hi

�vvv

�!!!
: (51)
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Hi(�) has homogeneous units, and jvj is a constant multiplying the
quadratic term, which can now be numerically maximized. Several ini-
tial guesses must be tried to insure the global maximum is found, since
this problem is nonconvex. An alternative to this has been developed,
which is guaranteed to find the global maximum using dialytic elimi-
nation in [29].

The solution ~"""i obtained from either procedure yields

vvvui

!!!ui

= �jvj
I 0

0 �I
~"""i: (52)

The maximum value "i obtained from either procedure yields

(�
h
)max = "i jvj

2
: (53)
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