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Abstract—This article presents two methods for selecting actuators based on the dynamic loading
criteria which yield a manipulator with a desired level of dynamic performance. Here, dynamic
performance is measured in terms of a robot’s acceleration and force capabilities, which describe its
ability to accelerate the end-effector and to apply forces to the environment, given the limitations on
its actuator torques. The Dynamic Capability Equations are used to model the relationship between
actuator torque capacities and the acceleration and force capabilities, because they treat linear and
angular quantities in a consistent and physically meaningful way. This article discusses actuator
selection for a single configuration, as well as for multiple configurations.
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1. INTRODUCTION

The actuators in a robot are key factors in determining its dynamic performance. It
is important to choose motors with enough torque capacity to give the mechanism
a level of performance sufficient to perform the desired tasks. This article presents
two actuator selection methods which produce a manipulator with a desired level of
dynamic performance.

Many different criteria are involved in the selection of actuators, such as power
requirements, reliability, weight and cost. This article explores the dynamic
loading/performance criteria, which is especially important in the design of high-
performance manipulators [1]. Here, dynamic performance is measured in terms of
arobot’s acceleration and force capabilities. They describe a manipulator’s ability to
accelerate its end-effector and to apply forces to the environment at the end-effector.
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These capabilities determine a mechanism’s capacity for manipulating grasped and
non-grasped objects.

The model which relates acceleration and force capabilities to the actuator torque
capacities is referred to as the Dynamic Capability Equations. A key feature in the
development of these equations is the treatment of linear and angular quantities in
a manner which resolves the inhomogeneities or differences in units between linear
and angular motions.

The challenge in actuator selection is caused by the difficulty in isolating the
actuator torque capacities in the model, which can be expressed as:

f(Tbounda .. ) = 07 (1)

where the vector f is a function of the vector containing the bounds on the actuator
torque capacities, Ypound, as well as other manipulator parameters. Isolating Yhound
would yield:

f( . ) = Y‘bounda (2)

easily solvable for the correct actuators. However, a solution such as (2) has not
been found. This article presents two iterative solutions.

In the following sections an overview of the Dynamic Capability Equations and
hypersurface is given first. The actuator selection methods are then developed
for a single configuration and then for multiple configurations of a manipulator.
Examples of the single and multiple configuration cases are presented next. Only
non-redundant manipulators are considered here.

2. DYNAMIC PERFORMANCE

In this section the relationship between dynamic performance and actuator torque
capacity is discussed. There have been many important studies of this relationship,
resulting in a number of different characterizations, including: the dynamic ma-
nipulability ellipsoid [2], the acceleration hyperparallelepiped 3], the acceleration
radius [4], the Dynamic Load Carrying Capacity (DLCC) [5] and Acceleration Set
Theory [6].

In the studies mentioned above, except for the DLCC, a geometric representation
of the actuator torque bounds is mapped into accelerations using relations from
the dynamic model. Figure 1 shows examples of two of these studies, the
dynamic manipulability ellipsoid and the acceleration parallelepiped, for a 2-d.o.f.
manipulator. The acceleration parallelepiped [3] is the image in acceleration space
of the rectangular torque bounds. It represents all possible achievable end-effector
accelerations. The rectangle and parallelepiped are not centered at the origin and
operational point because of the effect of gravity. The dynamic manipulability
ellipsoid is the image in acceleration space of the dashed circle inscribed within
the torque bounds.
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Figure 1. 2-d.o.f. accelerations.

In Fig. 1, the circle inscribed within the acceleration parallelepiped represents
an isotropic or balanced acceleration capability. Its image in actuator space is
an ellipsoid. The radius of the circle, referred to as the isotropic or balanced
acceleration, ||v||p, is limited by the smallest actual achievable acceleration. The
balanced acceleration gives the magnitude of acceleration which is guaranteed
to be achievable in every direction. The contact point between the circle and
parallelepiped defines the limiting or worst-case direction of motion, indicated by
the vectors shown in Fig. 1. The side of the parallelepiped in contact gives the
limiting actuator, the motor which saturated attempting to produce the balanced
acceleration in the worst-case direction.

The analyses discussed up to this point cannot be directly applied to the 3-d.o.f.
manipulator shown in Fig. 2. This is because its end-effector motions are described
in terms of linear and angular quantities. Mixing these quantities into one
representation of acceleration, a sphere for instance, yields a radius or balanced
acceleration with mixed units, which has no physical meaning. It is unclear
how to interpret the dynamic manipulability ellipsoid for the 3-d.o.f. mechanism.
Acceleration Set Theory [6] does not address the inhomogeneity problem. The
acceleration hyperparallelepiped mixes linear and angular accelerations along its
edges and faces, making it difficult understand. The issues surrounding the unitary
inhomogeneity problem have been the subject of a large body of work including
[7-10].

The DLCC study [5] is unaffected by the inhomogeneity problem; however, it
only considers the performance required to move in one direction along a particular
path. Here, a description of the performance in every direction is preferred.

In order to address the inhomogeneity problem, linear and angular quantities
are kept separate in the development of the Dynamic Capability Equations. A
consequence of this approach is that acceleration capability cannot be measured
by a single number, the radius of a circle or sphere. The proposed analysis
produces a curve which describes the relationship between balanced linear and
angular accelerations.

In addition, the Dynamic Capability Equations also describe for capability, as well
as the effect of end-effector velocities on the acceleration and force capabilities. The
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Figure 2. 3-d.o.f. accelerations.

velocity effects include the speed—torque curve, which describes the reduction of
torque capacity due to rotor velocity, and the Coriolis and centrifugal forces.
The Dynamic Capability Equations are:

9] 22 [nfn]
A . C , +F < T, 3
[”w”]+ (o112 llw)?) M 3)
where
Tbound
T = —G. 4
|:Tb0und] G ()

A and F are 2n x 2 matrices, for an n-d.o.f. manipulator, obtained from the
inertial properties and the manipulator Jacobian. C is a vector derived from
the Coriolis/centrifugal terms and the speed—torque curves, and G contains the
gravity forces. The manipulator is assumed to have n actuators, thus Ypouna has
dimension n. v and w are the linear and angular end-effector velocity vectors, and
v and @ are the corresponding accelerations. The vectors F and M represent the
contact forces and moments at the end-effector. Equation (3) is considered row by
row or element by element. The Dynamic Capability Equations are discussed in the
Appendix and in [11-13].

A section of the Dynamic Capability Hypersurface defined by (3), obtained using
loll = |F|l = IM ] = 0, is shown in Fig. 3. The surface was obtained using the
model for the PUMA 560 given in [14]. The worst-case directions of motion are
shown as the line segments emanating from the end-effector of PUMA 560 in Fig. 4.
The limiting actuator is indicated by the numeric label, 2, on the surface of Fig. 3.

The curve in the ||v],-||@]||, plane of Fig. 4, gives the combinations of the
magnitudes of linear and angular acceleration achievable in every direction, at zero
velocity, which saturate the second actuator. The limiting case is to accelerate in the
worst-case directions, labeled v and @ in Fig. 4, with the magnitudes indicated by
the curve.
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Figure 3. PUMA 560 dynamic capability surface.

Figure 4. Worst-case motion directions.

Table 1.
Statistical surface configurations

Joint Angle set

1 {0}

2 {45°,0°, —45°, —90°, —135°, —180°}
3 {—45°,0°,45°,90°, 135°}

4 {0°,90°, 180°,270°}

5 {90°, 45°, —45°, —90°}

6 {0}

The remainder of the surface describes the bounds on acceleration capability when
accelerating from a particular linear velocity. The shape of the surface indicates that
acceleration capability decreases to zero as linear velocity increases. The limiting
case is when the velocity is in the v direction shown in Fig. 4.

The workspace of a manipulator can be characterized by statistically analyzing
the Dynamic Capability Hypersurface at several different configurations. The
statistical hypersurfaces are generated using the distance to each surface along lines
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Figure 5. PUMA 560 statistical surface.

Figure 6. Statistical surface configurations.

extending radially out from the origin. Sections of the statistical hypersurfaces,
where ||@| = || F|| = M| = 0, are shown in Fig. 5 for 480 configurations in the
workspace of the PUMA 560 manipulator. The dots in Fig. 6 show the operational
point for these configurations, which are generated from permutations of the joint
angles shown in Table 1.

The innermost and outermost curves in Fig. 5 show the outlines of the minimum
and maximum surfaces. The minimum surface is small because some of the
configurations in the set are close to kinematic singularities. The curves nearest
the maximum and minimum represent the deviation surfaces, and the remaining
curves show the average surface.

3. ACTUATOR SELECTION

A number of actuator selection methods have addressed dynamic performance.
Many of these are based on the characterizations discussed in Section 2. These
include [15], which is nearest to the proposed method, but it does not address
the inhomogeneity problem. A path-based optimization driven by the DLCC is
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presented in [16]. A method based on Acceleration Set Theory is discussed in [17];
however, it is only applicable to 2-d.o.f. manipulators. Shiller and Sundar [18] use
optimization and the Acceleration Parallelepiped to find actuators which decrease
the time taken to traverse a particular path.

The idea behind the development of the Dynamic Capability Equations and
hypersurface was to describe manipulator performance given a set of actuators;
given Yyouna find |||, @], | F I, [M ||, |lv]l and ||@]|. In this section, the goal is to
choose the actuators given a desired level of performance. The desired performance
is specified by performance points:

pi = (191, 1oy IF i 1M 1L, vlli, e@ll:), )

p; represents a desired point on the Dynamic Capability Hypersurface. Several
performance points are used to describe the desired shape of the hypersurface.
The proposed actuator selection methods insure that all points lie on or beneath
the hypersurface. However, the proposed procedures cannot currently satisfy a
performance point where neither ||v|| or ||@]| is equal to zero.

Substituting a performance point into the Dynamic Capability Equations yields:

||:>||l-] > [nfn,-] [mund]
Al . +C s )+ T +G < . 6
|:||w”l (”v”l ”w”l) ”M ”l Y‘bound ( )
Also note that
A= A(rnmotor(Yqbound)v Imotor(Tbound)v .. -)’ (7)
C = C(mmotor(Tbound)v Imotor(Tbound)v .. -)’ (8)
G = G(mmotor(Tbound)v Imotor(Tbound)v .. -)’ (9)

where My,otor and Inoror contain the mass and inertias of the actuators’ rotors and
stators. Given a particular configuration and set of actuators, (6) can be evaluated to
determine whether the actuators satisfy the performance point.

It is difficult to isolate Ypouna in (6) because A and C are highly nonlinear functions
see Appendix. This complicates actuator selection, making it necessary to use an
iterative solution, two of which are discussed in the next sections.

3.1. Actuator selection heuristic

The advantage of the heuristic is that it selects actuators from a discrete list.
Thus it can find a set of real actuators, from real actuator data, which satisfy the
performance requirements. Any actuators can be included in the list; however, the
performance of the procedure is dependent upon the entries.

A flow chart of the heuristic is shown in Fig. 7. First, the mass properties of
the actuators are set to zero. The initial actuators are chosen as the smallest ones
which can compensate for gravitational forces. Equation (6) is then evaluated for
each performance point. If all points are satisfied, the procedure stops. If not, the
limiting actuator for the least satisfied performance point is changed to the closest
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Figure 7. Actuator selection heuristic.

actuator with a higher torque capacity. Equation (6) is reevaluated and the process
begins again.

There are many variations on this heuristic which may yield different solutions
than the proposed method. The important aspect of the procedure is that at each
iteration changes are made based on the limiting actuator information.

3.2. Actuator optimization procedure

The optimization procedure finds actuators which yield a Dynamic Capability
Hypersurface that fits the performance points as closely as possible. This method
requires the definitions for Mmotor(Yoound)> Imotor (Ybound) and any other actuator-
dependent quantities in (6).

This method also requires a means for determining the extent to which a
performance point is satisfied. This is accomplished by assigning a magnitude,
the scalar «;, to each performance point:

aipi = a; ([0l @i, 1F o IM i, 0], l@ll:)- (10)
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Substituting (10) into the Dynamic Capability Equations yields

||v||l-] 2 2 o [ 1F 1l ] [mund]
oAl +aC(|v|7, llell;) + o F + G < . 11
[nwni FC (Il o) Ml Youna | OV
The relations in (11) are quadratic with respect to «;. The performance point is
satisfied when the smallest positive root for «; obtained from (11) satisfies:

o > 1. (12)

The scalar «; can also be used in the heuristic procedure, where the least satisfied
performance point yields the smallest value for «;.
The limits on the range of the torque capacity of each actuator are expressed as:

Y‘min < Y‘bound < TmaXa (13)

considered element by element. One possibility for defining Yy, is to use the
actuators chosen during the start of the heuristic procedure.
The cost function for this optimization should minimize the size of each actuator:

TOUH TOUH
cost = —undi 4 —Pounds (14)

min min,,
in, ’Y‘ .

The square of each term can also be summed; however, this will result in a larger
weighting for the larger terms in the cost function. If all of the actuator torques have
the same units, then the normalization in (14) can be omitted.

In summary, the decision variables for the optimization are { Yoound, - - - » Y bound, »
oy, ..., o} where k is the number of performance points. The cost function is given
in (14), and the constraints on the optimization are given in (13), (12) and (11). One
set of the relations in (11) and (12) is needed for each performance point. Note that
this procedure is only guaranteed to find locally optimal solutions.

3.3. Single configuration example

In this example actuators are chosen to improve the performance of the PUMA
560 manipulator shown in Fig. 4, which is reproduced in Fig. 8 by the surface
labeled ‘a’. The desired level of performance is specified by the following
performance points:

pi = (9.8m/s*, 0, 0, 0, 0, 0), (15)
p2 = (0, 75rad/s, 0, 0, 0, 0), (16)
ps = (0, 0, 1m/s, 0, 0, 0), (17)

indicated by the symbol ‘®@’ in Fig. 8.

The heuristic chose actuators from the list given in Table 2. The actuators for
the PUMA 560 were included in the heuristic actuator selection. Also note that the
PUMA 560 model used here [14] only allowed for changes in the peak torque, rotor
inertia and the max rotor angular velocity.
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Figure 8. Actuator selection for PUMA 560.

Table 2.
List of possible actuators

New PUMA 560 original

Peak torque Max speed Rotor inertia Peak torque Max speed Rotor inertia
(N'm) (rad/s) (kgm?) (Nm) (rad/s) (kgm?)
0.0004 2000 1.1e—8

0.004 1780 2.7e—8

0.01 1371 4.8e—8

0.1 548 9.4e-17

0.2 1885 1.6e—7 0.26 302 3.3e-5
0.4 1414 2.7e-17 0.30 302 3.5e-5
0.6 1204 3.6e—7

0.8 1079 1.4e—6 1.46 90 2.9e—4
1.2 922 2.0e—6 1.62 114 2.9e—4
1.6 859 2.5e—6 1.69 100 4.1e—4

The optimization used linear interpolation between the actuators in Table 2 to
define the continuous actuator properties, Mmotor (Yoound) and Imotor (Ybound) in (7),
(8) and (9). The PUMA 560 motors were omitted from the optimization actuator
list in order to obtain actuator properties which change monotonically with peak
torque. A non-monotonic list causes problems for the optimization routine when
linear interpolation is used.

Figure 8 shows that the heuristic and optimization procedures can select actuators
which satisfy the desired performance. Labels ‘b’ and ‘c’ in Fig. 8 indicate the
surfaces obtained using the optimization and heuristic actuator selection methods.
The result of the optimization fits the performance points closer than that of the
heuristic. Note that the surfaces ‘b’ and ‘C’ are comprised of several ‘patches’;
there is at least one limiting actuator for each surface patch.

Also notice that, excluding the PUMA 560 actuators, a comparison of the motors
chosen by the heuristic and optimization (Table 3), and the set of possible actuators
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Table 3.
Actuator selection results

Joint Peak torque (N m)
Original Heuristic Optimization
1 1.46 1.6 1.3
2 1.69 1.2 1
3 1.62 0.4 0.4
4 0.30 0.1 0.04
5 0.26 0.1 0.08
6 0.26 0.004 0.003

(Table 2), shows that the heuristic found the best actuators it could. For instance, for
the first joint, the heuristic chose a 1.6 N m actuator, which is as close as is possible
to the 1.3 Nm actuator found by the optimization. This is also true for the other
actuators chosen by the heuristic. In this way the optimization can be used to check
the results of the heuristic procedure.

Another interesting result is that all except one of the new actuators chosen by
both procedures have a lower peak torque than the original actuators. However, the
large differences between the properties of the new and original actuators make it
difficult to discern whether the results are solely due to poor selection of actuator
torque capacity.

3.4. Workspace considerations

Actuator selection can be carried out on performance points that are referenced to
the statistical hypersurfaces. Much of the methods discussed in Sections 3.1 and 3.2
remain the same, except for the constraint in (12). For instance, when considering
the average statistical hypersurface, (12) becomes:

> wjay /Z w; > 1, (18)
J J

where the subscripts i and j indicate the performance point and the configuration.

w; represents the weighting for the jth configuration, which is w; = 1 for a
standard average. Similar expressions can be developed for the other statistical
hypersurfaces.

In the heuristic procedure, (18) is used to determine whether a performance
point is statistically satisfied. The decision variables for the optimization are
{Ybound,s - - - » Ybound, » X115 - - - » Ap}, Where k and p are the number of performance
points and configurations. The cost function is given in (14), and the constraints are
(18), (13) and (11); one (18) for each performance point and one set of the relations
in (11) for each configuration—performance point pair.

Figures 9 and 10 show the results of the statistical actuator selection using the
heuristic and optimization procedures for the configurations shown in Fig. 6, and
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Figure 10. Statistical actuator selection: optimal.

the performance points given in (15), (16) and (17). These points are indicated
by the ‘©’ in Figs 9 and 10. The actuator list given in Table 2, excluding the
PUMA 560 actuators, was used for the selection. Both Figs 9 and 10 show that
the average statistical hypersurface satisfies the performance points. However, the
optimization procedure yielded an average surface closer to the performance points
than the heuristic.

4. CONCLUSIONS

This article presented a heuristic and an optimization procedure for selecting
actuators which provide a desired level of manipulator dynamic performance.
Dynamic performance was measured in terms of a manipulator’s acceleration and
force capabilities. The Dynamic Capability Equations were used as the model for
actuator selection. The key feature in the development of these equations is that they
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treat linear and angular quantities in a consistent and physically meaningful manner.
The selection algorithms were developed for single and multiple configurations of
the manipulator.
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APPENDIX: DYNAMIC CAPABILITY EQUATIONS

This appendix summarizes the results from the development of the Dynamic
Capability Equations. More in depth discussions are given in Refs [11, 12]. The
development begins with the operational space equations of motion [14]:

AV +u+p+F. =F (A1)
where:
A v .
#:[w]:Jq, (A.2)
and:
f‘
F. = |:./\/l ] , (A.3)

and A is the pseudo-kinetic energy matrix representing inertial properties. x and p
are the vectors of Coriolis, centrifugal and gravity forces. F and F, are vectors of
end-effector forces and moments generated by the actuators and by contact with the
environment. J is the manipulator Jacobian and q is the vector of generalized/joint
speeds. Note that # contains an independent set of coordinates. An end-effector
load is included in the dynamic model.

The bounds on the actuator torque capacities are expressed as:

_Tbound < Y < Y‘bounda (A4)

where Y is the vector of actuator torques and each element in Yyoung iS @ constant.
The relationship between joint and end-effector forces is:

r =J'F, (A.5)
and the relationship between joint and actuator torques is:
r=G'r, (A.6)

where G is a matrix describing the transmission system and is assumed to be
invertible. Equations (A.5) and (A.6) give the actuator Jacobian, J,, defined as:

Jo=JG™', where Y =JF. (A7)
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Combining equations (A.1), (A.4) and (A.7) yields the desired constraint equations:

Tlower < Evv + Eww + g]:f + EMM +h< Tuppera (A8)

where:
E=[E, E,]=J A, (A.9)
E=[Er Exl =1y, (A.10)

and:

h=J'u, (A.11)
Tupper = Y‘bound - JaTP, (AIZ)
Tlower = _Tbound - JaTP (A13)

Inclusion of the speed-torque curve velocity information is discussed in detail in
Refs [11, 12].

The analysis of balanced motions and forces using (A.8), yields simple formulas
for the elements of A and FF in (3):

Ay
and (A14)
Ai+n,1
and
Fi1
and (AIS)
IE‘H»n,l
where i = (1,...,n), v and F have dimension r. G in (4) is defined as:
JT
G:[ af ] (A.16)
_Ja |Y

Analysis of the velocity effects depends on the performance point. The vector of
velocity dependent terms can be expressed as:

-r AT _
v H, v
h = : , (A.17)
_v _T _v_
| L@ | @ |
where:
H:, H;
H, = v ""“’]. (A.18)
! |:Hrfvw H.fw
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If |w] = 0, then:
Cj = A maxullvl?, (A.19)
Ciin = —AjminvllV]I7, (A.20)
where A maxy and A j yin, are the maximum and minimum eigenvalues of H .
If |v|| = O, then:
Cj = *jmmoll®l?, (A21)
Cjin = —hjminoll@ll}, (A22)

where Ajmaxe and Ajmine are the maximum and minimum eigenvalues of Hj,,.
Further details of the velocity solution are given in [11, 12].
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