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1 Network Architecture

We use the ImageNet pretrained GoogLeNet [8], from the bottom conv1 to the inception_4a
layer, but we used stride 2 for the bottom 2 layers and 1 for the rest of the network. We
followed the convention of [6, 7] to normalize the features, which we found to stabilize
the gradients during training. Since we are densely extracting features convolutionally, we
implement q channel-wise normalization layer which makes all features have a unit L2 norm.
After the inception_4a layer, we place the correspondence contrastive loss layer which takes
features from both images as well as the respective correspondence coordinates in each image.
The correspondences are densely sampled from either flow or matched keypoints. Since
the semantic keypoint correspondences are sparse, we augment them with random negative
coordinates. When we use the active hard-negative sampling, we place the K-NN layer which
returns the nearest neighbor of query image keypoints in the reference image.
We visualize the universal correspondence network on Fig. 1. The model includes the hard
negative mining, the convolutional spatial transfomer, and the correspondence contrastive
loss. The caffe prototxt file and the interactive web visualization using [3] is available at
http://cvgl.stanford.edu/projects/ucn/.

2 Convolutional Spatial Transformer

The convolutional spatial transformer consists of a number of affine spatial transformers.
The number of affine spatial transformers depends on the size of the image. For each spatial
transformer, the origin of the coordinate is at the center of each kernel. We denote xs

i , y
s
i

as the x, y coordinates of the sampled points from the previous input U and xt
i, y

t
i for x, y

coordinates of the points on the output layer V . Typically, xt
i, y

t
i are the coordinates of

nodes on a grid. θij are affine transformation parameters. The coordinates of the sampled
points and the target points satisfy the following equation.
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To get the output Vi at (xt
i, y

t
i), we use bilinear interpolation to sample values U around

(xs
i , y

s
i ). Let U00, U01, U10, U11 be the U values at lower left, lower right, upper left, and

upper right respectively.
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The gradients with respect to the input features are

∂L

∂V c
i

∂V c
i

∂U c
00

= ∂L

∂V c
i

(x1 − x)(y1 − y)

∂L

∂V c
i

∂V c
i

∂U c
10

= ∂L

∂V c
i

(x1 − x)(y0 − y)

∂L

∂V c
i

∂V c
i

∂U c
01

= ∂L

∂V c
i

(x0 − x)(y0 − y)

∂L

∂V c
i

∂V c
i

∂U c
11

= ∂L

∂V c
i

(x0 − x)(y1 − y)

Finally, the gradients with respect to the transformation parameters are
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3 Additional tests for semantic correspondence

PASCAL VOC comparison with FlowWeb We compared the performance of UCN
with FlowWeb [10]. As shown in Tab. 1, our approach outperforms FlowWeb. Please note
that FlowWeb is an optimization in unsupervised setting thus we split their data per class
to train and test our network.

Qualitative semantic match results Please refer to Fig 2 and 3 for additional qualitative
semantic match results.
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aero bike boat bottle bus car chair table mbike sofa train tv mean
DSP 17 30 5 19 33 34 9 3 17 12 12 18 17
FlowWeb [10] 29 41 5 34 54 50 14 4 21 16 15 33 26
Ours-RN 33.3 27.6 10.5 34.8 53.9 41.1 18.9 0 16.0 22.2 17.5 39.5 31.5
Ours-HN 35.3 44.6 11.2 39.7 61.0 45.0 16.5 4.2 18.2 32.4 24.0 48.3 36.7
Ours-HN-ST 38.6 50.0 12.6 40.0 67.7 57.2 26.7 4.2 28.1 27.8 27.8 45.1 43.0

Table 1: PCK on 12 rigid PASCAL VOC, as split in FlowWeb [10] (α = 0.05, L = max(w, h)).

4 Additional KITTI Raw Results

We used a subset of KITTI raw video sequences for all our experiments. The dataset has
9268 frames which amounts to 15 minutes of driving. Each frame consists of Velodyne scan,
stereo RGB images, GPS-IMU sensor input. In addition, we used proprietary segmentation
data from NEC to evaluate the performance on different semantic classes.

Scene type City Road Residential
Training 1, 2, 5, 9, 11, 13,

14, 27, 28, 29,
48, 51, 56, 57,
59, 84,

15, 32, 19, 20, 22, 23,
35, 36, 39, 46,
61, 64, 79,

Testing 84, 91 52, 70, 79, 86, 87,

Table 2: KITTI Correspondence Dataset: we used a subset of all KITTI raw sequences to
construct a dataset.

We excluded the sequence number 17, 18, 60 since the scenes in the videos are mostly static.
Also, we exclude 93 since the GPS-IMU inputs are too noisy.
In Figure 5, we plot the variation in PCK at 30 pixels for various camera baselines in our
test set. We label semantic classes on the KITTI raw sequences and evaluate the PCK
performance on different semantic classes in Figure 4. The curves have same color codes as
Figure 5 in the main paper.

5 KITTI Dense Correspondences

In this section, we present more qualitative results of nearest neighbor matches using our
universal correspondence network on KITTI images on Fig. 6.

6 Sintel Dense Correspondences

In this section, we present more qualitative results of nearest neighbor matches using our
universal correspondence network on Sintel images on Fig. 7.
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Figure 1: Visualization of the universal correspondence network with the hard negative
mining layer and the convolutional spatial transformer. The Siamese network shares the same
weights for all layers. To implement the Siamese network in Caffe, we appended _p to all
layer names on the second network. Each image goes through the universal correspondence
network and the output features named feature1 and feature2 are fed into the K-NN layer
to find the hard negatives on-the-fly. After the hard negative mining, the pairs are used to
compute the correspondence contrastive loss.

5



Query Ground Truth Ours HN-ST VGG conv4_3 NN Query Ground Truth Ours HN-ST VGG conv4_3 NN

Figure 2: Additional qualitative semantic correspondence results on PASCAL [4] correspon-
dences with Berkeley keypoint annotation [1].

Query Ground Truth Ours HN-ST VGG conv4_3 NN Query Ground Truth Ours HN-ST VGG conv4_3 NN

Figure 3: Additional qualitative semantic correspondence results on Caltech-UCSD Bird
dataset [9].
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Figure 4: PCK evaluations for semantic classes on KITTI raw dataset
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Figure 5: PCK performance for various camera baselines on KITTI raw dataset.

Query keypoints at frame t Predicted keypoint matches at frame t + 1

Figure 6: Visualization of dense feature nearest neighbor matches on the KITTI dataset [5].
For each row, we visualize the query points (left) on the image It at frame t and the nearest
neighbor matches (right) on the image It+1 at the next frame t+ 1.
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Query keypoints at frame t Predicted keypoint matches at frame t + 1

Figure 7: Visualization of dense feature nearest neighbor matches on the Sintel dataset [2].
For each row, we visualize the query points (left) on the image It at frame t and the nearest
neighbor matches (right) on the image It+1 at the next frame t+ 1.
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