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Advantages:

- Improve camera pose estimation, compared to feature-point-based SFM.

- Improve object detections given multiple images, compared to independently
detecting objects from each single images.

- Establish object correspondences across views.

SSFM Problem Formulation X

Measurements

- q: point features (e.g. DOG+SIFT)

- u: point matches (e.g. threshold test)
- 0: 2D objects (e.g. [2])

Model Parameters (unknowns) “
- C: camera (K is known) b )
- Q: 3D points (locations) |
- O: 3D objects (locations, poses, categories)

Intuition:
In addition to point features, measurements of objects across views provide add-
itional geometrical constraints that allow to relate cameras and scene parameters.
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Monte Carlo Markov Chain

- Sampling starts from different initializations = o
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