

Semantic Structure From Motion

Sid Yingze Bao and Silvio Savarese

Electrical and Computer Engineering, University of Michigan at Ann Arbor

Source code and data: <http://www.eecs.umich.edu/vision/projects/ssfm/index.html>

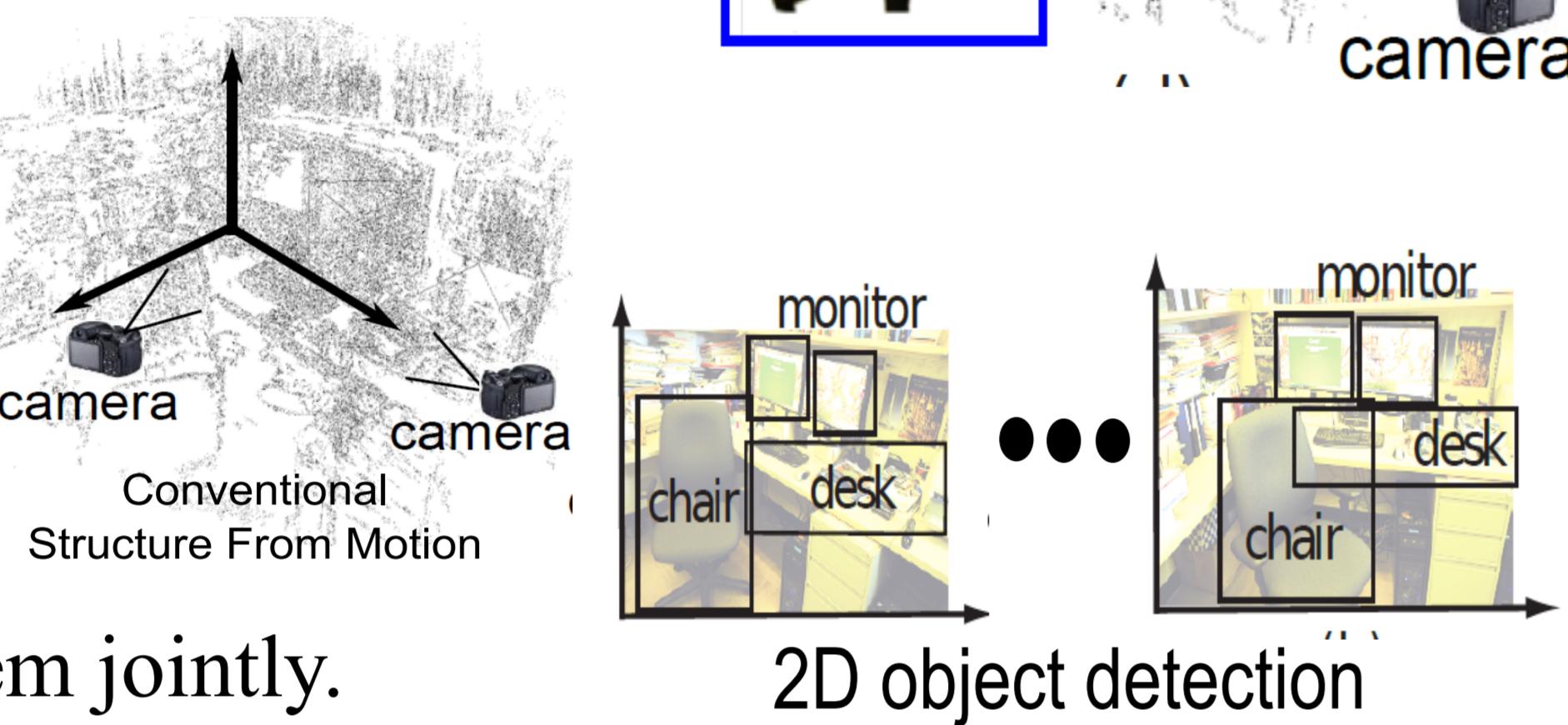
Introduction

Goal:

Estimate 3D location and pose of objects, 3D location of points, and camera parameters from 2 or more images.

Motivation:

- Most 3D reconstruction methods do not provide semantic information.
- Most recognition methods do not provide geometry and camera pose.
- We propose to solve these two problems jointly.



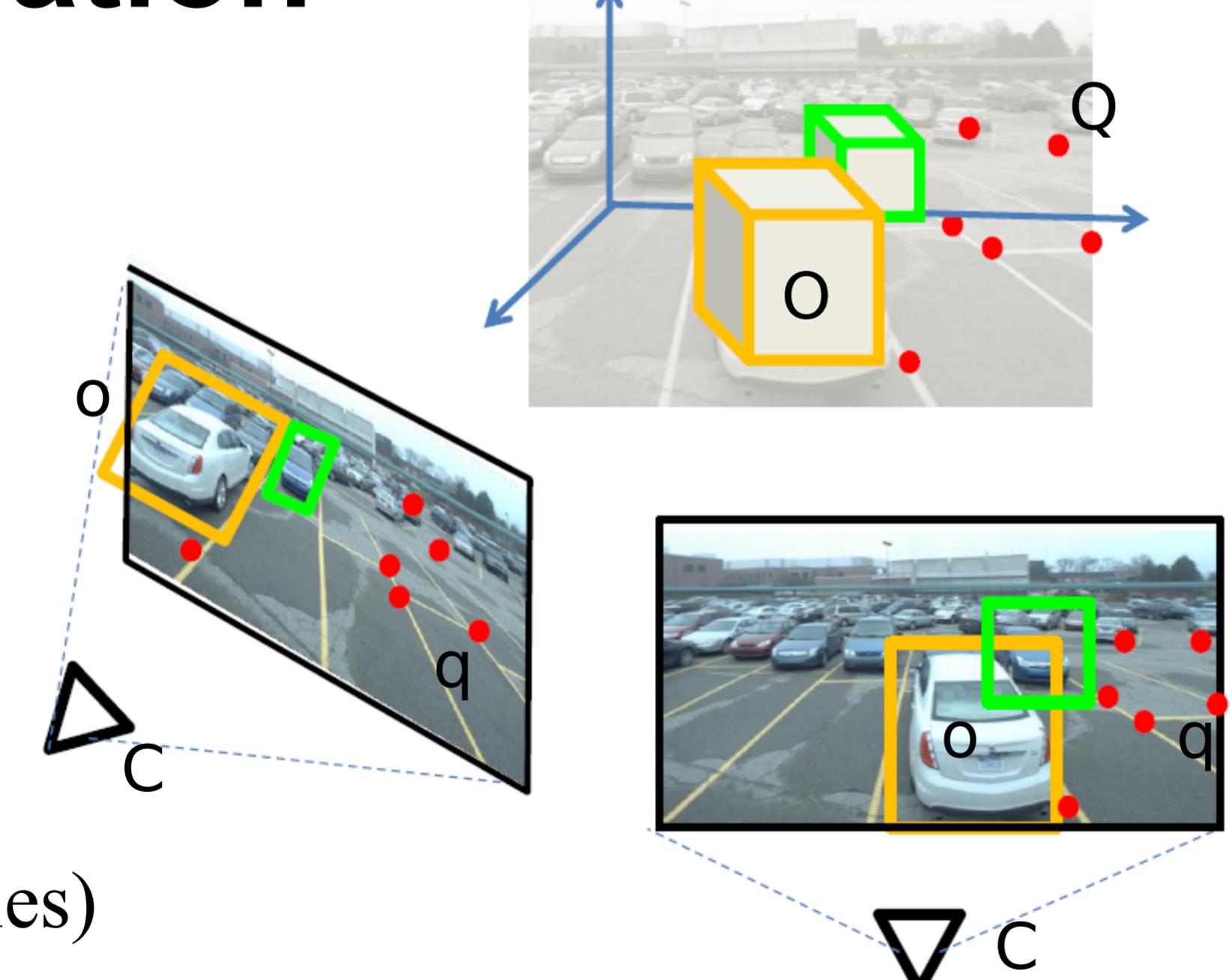
Advantages:

- Improve camera pose estimation, compared to feature-point-based SfM.
- Improve object detections given multiple images, compared to independently detecting objects from each single image.
- Establish object correspondences across views.

SSFM Problem Formulation

Measurements

- q : point features (e.g. DOG+SIFT)
- u : point matches (e.g. threshold test)
- o : 2D objects (e.g. [2])



Model Parameters (unknowns)

- C : camera (K is known)
- Q : 3D points (locations)
- O : 3D objects (locations, poses, categories)

Intuition:

In addition to point features, measurements of objects across views provide additional geometrical constraints that allow to relate cameras and scene parameters.

Reference

- [1] N. Snavely, S. M. Seitz, and R. S. Szeliski. Modeling the world from internet photo collections. IJCV. 2008.
- [2] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence of Pattern Analysis, 2009.
- [3] Gaurav Pandey, James McBride, and Ryan Eustice. Ford campus vision and lidar data set. International Journal of Robotics Research. 2011

Model Overview

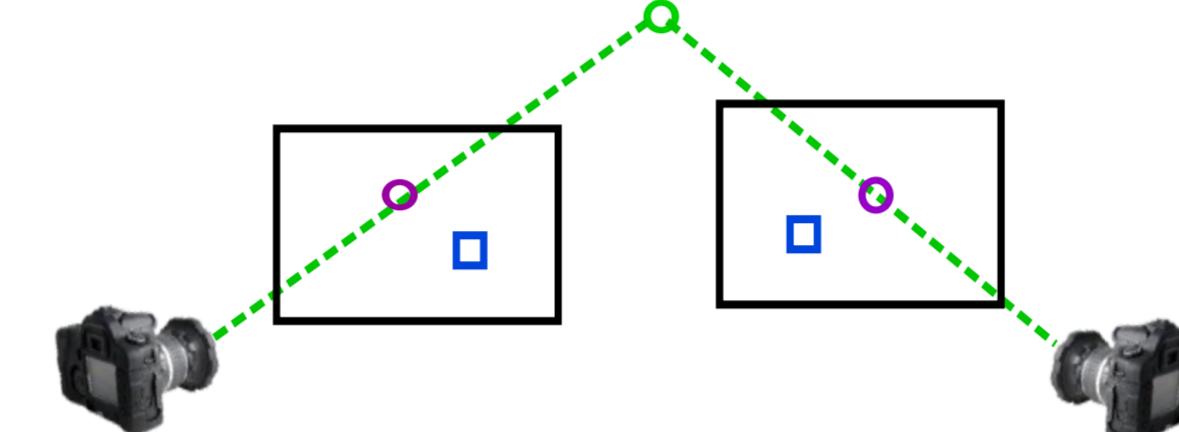
$$\{O, Q, C\} = \arg \max P(q, u, o | C, O, Q) \\ = \arg \max P(q, u | C, Q)P(o | C, O)$$

Assumption:

Given camera hypothesis, objects and points are independent

Point Likelihood $P(q, u | C, Q)$

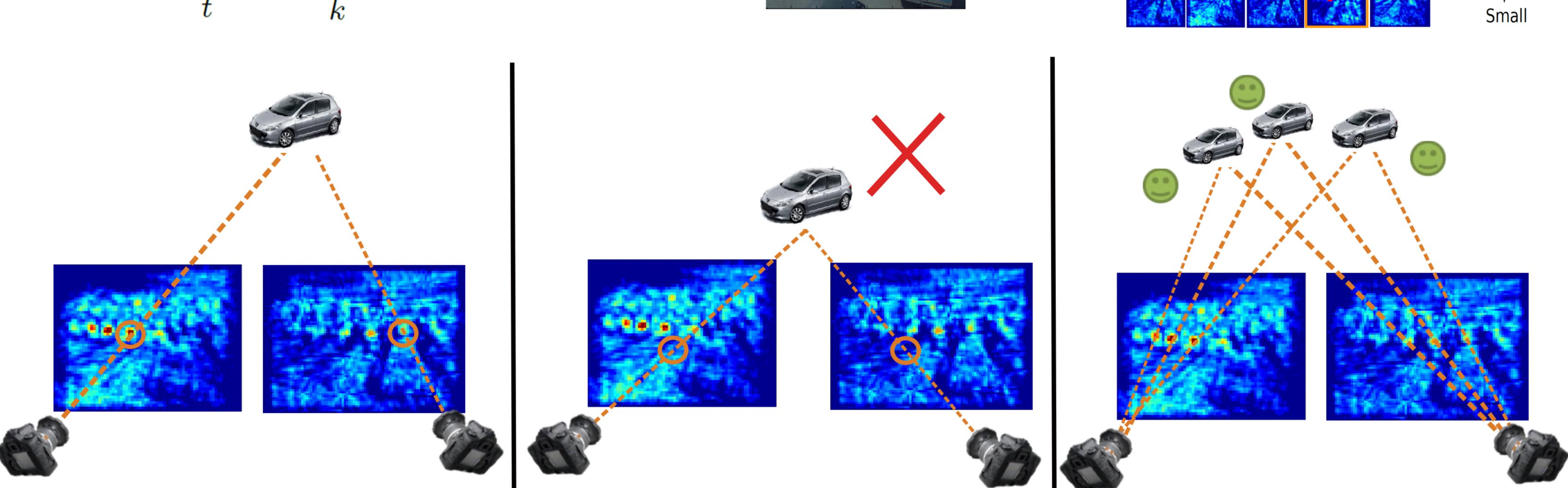
$$P(q, u | Q, C) \propto \prod_{i=1}^{N_Q} \prod_{k=1}^{N_k} \exp(-(q_i^k - q_{u_i}^k)^2 / \sigma_q)$$



Object Likelihood $P(o | C, O)$

- Estimate 3D object likelihood by 2D projection appearance:

$$P(o | O, C) \propto \prod_{t=1}^{N_t} P(o | O_t, C) \\ \propto \prod_{t=1}^{N_t} \left(\prod_{k=1}^{N_k} \left(1 - \prod_{i=1}^{N_t} (1 - P(o | O_t, C^k)) \right) \right)$$



Joint Likelihood Maximization

Main challenge:

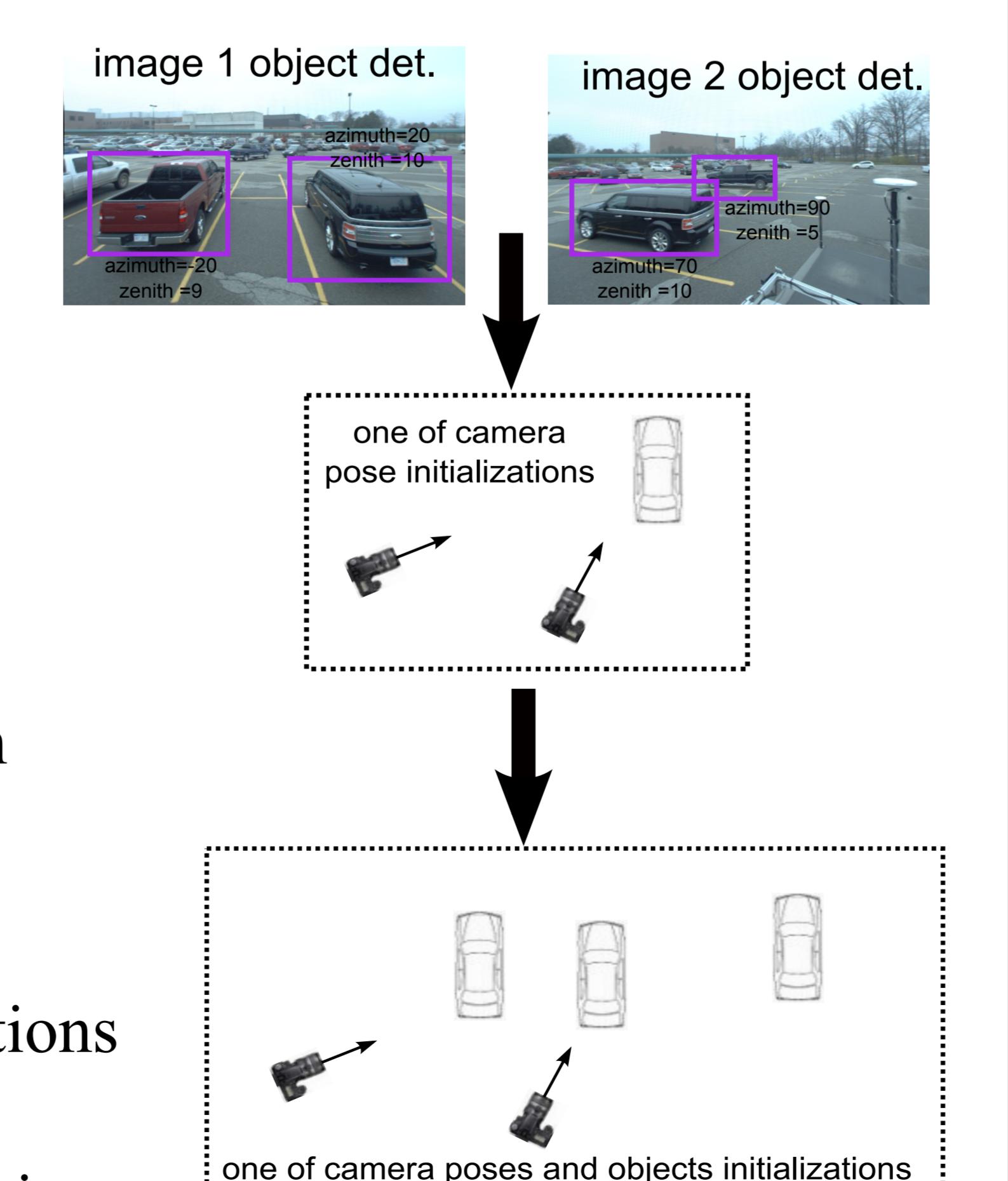
High dimensionality of unknowns \Rightarrow
Sample $P(q, u, o | C, O, Q)$ with MCMC

Parameter Initialization

- Use object detection scale and pose to initialize cameras relative poses
- Theorem: camera parameters can be estimated given:
 - 3 objects with scale;
 - 2 objects with pose;
 - 1 object with scale and pose.

Monte Carlo Markov Chain

- Sampling starts from different initializations
- Proposal distribution $P(q, u, o | C, O, Q)$
- Combine all samples to identify the maximum



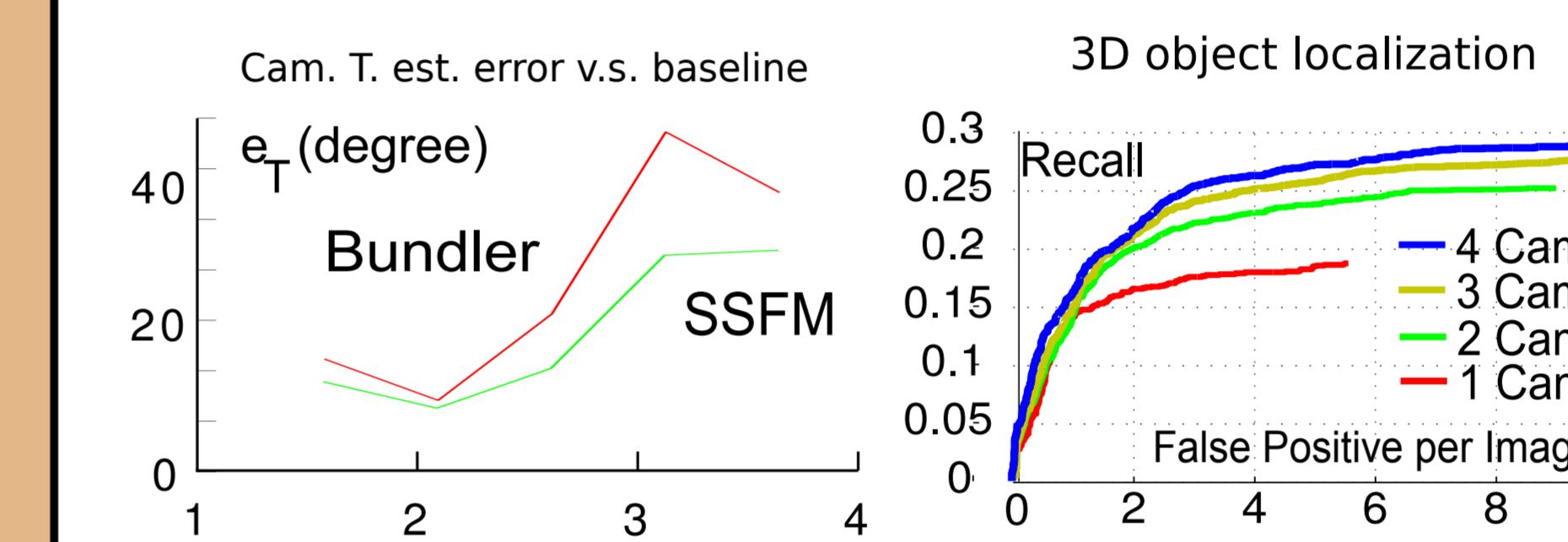
Results

Comparison Baselines

- Camera Pose Est.: Bundler [1]
- Object Detection: LSVM [2]

1. Car Dataset [3] (available online)

- Images and Dense Lidar Points
- ~500 testing images in 10 scenarios

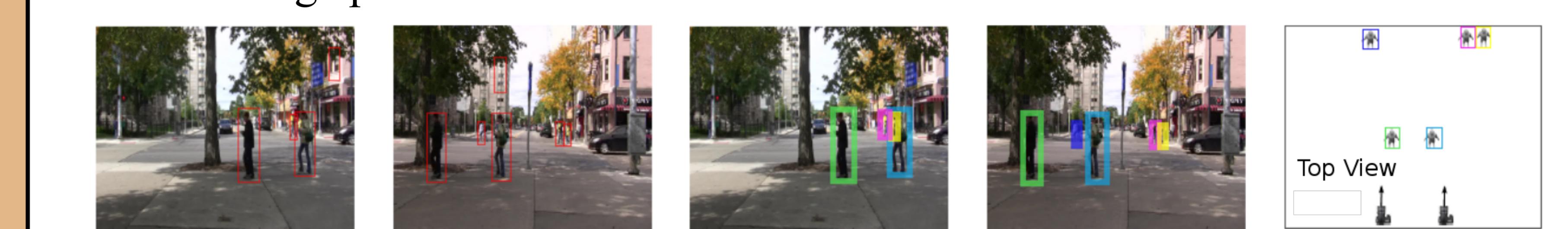


2. Kinect Office Dataset (available online)

- Images and calibrated Kinect 3D range data
- Mouse, Monitor, and Keyboard
- 500 images in 10 scenarios

3. Person Dataset

- A pair of stereo cameras
- 400 image pairs in 10 scenarios



Acknowledgement

We acknowledge the support of NSF CAREER #1054127 and the Gigascale Systems Research Center. We thank Mohit Bagra for collecting the Kinect dataset and Min Sun for helpful feedback.