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Abstract. In the supplementary material, we provide the following items:
1) Experiments on joint (vs single) feature learning,
2) Experiments on Brown el. and and Mikolajczyk&Schmid Benchmarks,
3) More details about the dataset, including pixel alignment procedure,
sample data, and coverage,
4) Evaluation of surface normal estimation on NYUv2 dataset,
5) Joint embedding of synthetic cubes and images,
6) Illustration of pose induction via tSNE embeddings of more ImageNet
classes and MIT Places.
7) More details on the training procedure,

1 Joint Feature Learning

We investigated different aspects of joint learning the representation and infor-
mation sharing among the two supervised tasks in Tables 1 and 2. To quantify
the amount of information shared among the matching and pose estimation
tasks, we trained a single-task network dedicated to each problem; their error
for their respective task is reported in “Direct” row of the Table 1. “Transduc-
tion” provides the error rate when a linear classifier was trained on the frozen
representation of one task to solve the other task. The fact that the Transduc-
tion setup achieves a reasonable performance suggests the two problems have a
great deal of shared information in their representations. Table 2 compares the
performance of single vs multi-task networks. The multi-task network performs
comparable to its dedicated counterparts showing it encoded both problems with
no performance drop.

2 Brown et al. Benchmark.

We evaluated the performance of our representation on the benchmarks of Brown
et al. [3] and Mikolajczyk & Schmid [9] (next subsection). Compared to our
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Table 1: Information Sharing Among Supervised Tasks
Matching (FPR) Pose (Error)

Direct 23.54% 16.58◦

Transduction 30.06% 24.50 ◦

Chance 95% 90 ◦

Table 2: Joint vs Individual Learning
Matching (FPR) Pose (Error)

Pose-Net - 16.58◦

Matching-Net 23.54% -

Joint-Net 23.0% 17.78 ◦

dataset, these benchmarks mostly include narrower baselines (except for a sub-
set of [9]), and therefore, do not pronounce wide baseline handling abilities; our
method also sees more training data than the baselines. However, these bench-
marks would reveal 1) if our representation was performing well only on street
view scenery, and 2) if wide baseline handling capability was achieved at the
expense of lower performance on small baselines.

We compared our results with six baselines, including Zagoruyko & Ko-
modakis’s [15] and MatchNet [6], against their most similar descriptor dimen-
sionality (512) and network architecture to ours. For this experiment, we mixed
our training dataset with the corresponding training split of Brown’s (see Ta-
ble 3). Our representation outperforms the baselines, except for two splits from
the Yosemite National Park that are substantially foliage covered (for which we
speculate that the foliage coverage is reason since our ConvNet is mostly agnos-
tic with respect to foliage as trees are uninformative for matching and pose in
street view scenery).

Table 3: Evaluations on Brown’s Benchmark [3].
FPR@95 (↓) is the metric.
Train Test MatchNet Zagor. Simonyan Trzcinski Brown Root-SIFT Ours

[6] siam [15] [11] [12] [3] [2]

Yos ND 7.70 5.75 6.82 13.37 11.98 22.06 4.17
Yos Lib 13.02 13.45 14.58 21.03 18.27 29.65 11.66
Lib ND 4.75 4.33 7.22 14.15 N/A 22.06 1.47
ND Lib 8.84 8.77 12.42 18.05 16.85 29.65 7.39

Lib Yos 13.57 14.89 11.18 19.63 N/A 26.71 13.78
ND Yos 11.00 13.23 10.08 15.86 13.55 26.71 12.30

mean 9.81 10.07 10.38 17.01 15.16 26.14 8.46

Table 4: Evaluation on Mikolajczyk &
Schmid’s [9]. The metric is mAP(↑).

Transf.
1 2 3 4 5

Magnitude

SIFT [8] 40.1 28.0 24.3 29.0 17.1
Zagor. [15] 43.2 37.5 29.2 28.0 16.8

Fischer et al [5] 42.3 33.9 26.1 22.1 14.6

Ours-rectified 46.4 41.3 29.5 23.7 17.9
Ours-unrectified 51.4 37.8 34.2 30.8 20.8

Mikolajczyk & Schmid Benchmark. The evaluation results on the bench-
mark of Mikolajczyk & Schmid [9] are provided in Table 4 using the standard
protocol [9,15]. Following [15,5], we performed the matching on MSER features.
The last two rows show our results on the MSER patches with and without recti-
fication (i.e., skipping MSER rectification). Our representation outperforms the
baselines in both cases, while not performing the rectification actually improves
the performance.
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3 Dataset and Data Collection Details

Our dataset was collected from a broad geographical area spanning multiple
cities. Some representative city locations from which data was collected are
shown in Figure 1.

Paris
Paris

Florence

San Francisco

New York

Chicago

Amsterdam

Fig. 1: Some of the areas from which we have collected our dataset.

Sample images from our dataset that were used for training the pose estima-
tion and patch matching network are shown in Figures 2,3. Each row in the figure
shows a single target location from different viewpoints. The target location is
marked with a red dot.

3.1 Pixel Alignment and Pruning

The data collection system required integration of multiple resources, including
GPS from street view, elevation maps, and 3D models. Any slight inaccuracy in
the metadata or 3D models can cause a pixel misalignment in the collected im-
ages. Therefore, we performed the following pose-processing procedure to cancel
some of these errors.

We wish to verify if the center of images in a bundle show the same physical
target and adjust them if necessary. The collected image bundles can show large
(often > 100◦) viewpoint changes, while the existing registration methods do
not handle such large angular changes in unconstrained scenes. To solve this
issue, we utilize the metadata again: we extract the relative pose of the cameras
to the desired physical point’s surface normal (acquired from the 3D models).
Then a homography transformation is applied to project one patch in the bundle
onto another in a way that the local image planes on which the desired physical
point lies are parallel. This cancels the perspective transformation caused by the
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Fig. 2: Sample images from our dataset. Each row shows one image bundle showing one target. The
marker is on the center pixel and should show the target point. The columns show different views.
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Fig. 3: Sample images from our dataset. Each row shows one image bundle showing one target. The
marker is on the center pixel and should show the target point. The columns show different views.
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baseline change (see ‘Warped’ in Figure 4). Thus, the registration transformation
between the two rectified images can be effectively approximated by a similarity
transformation. To avoid a quadratic complexity with respect to the number of
images, we select the most frontal view for each target point and align the rest
of the images of the target with respect to it.

Since the patches often show non-planarity, we found employing a nonrigid
transformation (we used SIFT flow [7]) for registration of the rectified patches to
be more robust. We use RANSAC to fit a similarity transformation to the result-
ing flow field and apply the inverse of the rectification transformation to find the
translation vector which should be applied on the original image to perform the
alignment (see ‘Aligned’ in Figure 4). We use only the translation component for
performing the alignment since we want to preserve the original camera rotation
information to use it in training. Finally, to remove the remaining unreliable
and occluded patches, we extract two registration metrics (Structural Similarity
Index which measures the pixel similarity among registered images, and magni-
tude of the estimated transformation) and threshold the dataset based on them
(see ‘Occluded’ in Figure 4-b).
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Fig. 4: Pixel alignment process for two sample targets. Blue arrow shows the adjustment vector
between the initial and updated position of the center. (b) shows a case with occlusion (view 4).

3.2 Noise Statistics

A user study through Amazon Mechanical Turk was performed to quantify the
amount of noise in the final dataset. 15124 random pairs of matching patches
from the dataset were annotated by three Turkers to identify if they have at least
25% overlap in their content, and if not, what the reason was. Also, to quantify
the magnitude of pixel misalignment, they were asked to click on the pixel in
the 2nd patch which corresponds to the center pixel of the 1st patch.

About 68% of the pairs were found to have at least 25% overlap (by majority
voting). For the subset with less than 25% overlap, the originating issues were
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identified as: 49.5% due to inaccuracies in meta-data and 3D models, 27.7% due
to tree occlusion, 16.5% due to other occlusions, and 6.1% other reasons. In
heavily tree occluded areas (e.g., Washington D.C. suburb), the percentage of
matching pairs reduced to 58%. Such areas can be easily avoided by geo-fencing
(e.g., by collecting data from downtowns since they show more buildings than
trees compared to suburbs).

The mean and standard deviation of the magnitude of misalignment (defined
as the magnitude of the vector connecting the center of the 2nd patch to the pixel
location where the Turkers clicked) was 16.12 (≈ 11% of patch width) and 11.55
pixels, respectively.

In our training dataset, we did not perform any manual filtering or geo-
fencing on top of the automatically collected data since the amount of noise
appeared to be within the robustness tolerance of ConvNets as their training
converged and well performed on the carefully filtered test set.

4 Surface Normal Estimation

Estimating surface normals is a fundamental problem in 3D computer vision. We
evaluated the usefulness of the representation learned by our method for surface
normal estimation on the standard NYU2 benchmark [10,4,13]. The dataset
contains 795 training images and 654 testing images.

In this work, our goal is not to develop the best method for a specific task,
but rather to investigate how useful are features learned by training for pose-
estimation for various 3D tasks without the requirement for fine-tuning. For
this task, we employed two methods to read the surface normal value out of the
representation of an image/patch: a linear classifier and nearest neighbors. While
running our experiments, we noticed that the surface normal estimation in the
NYU dataset is heavily biased as most pixels belong to one of the three categories
of ceiling, floor, and walls. This inevitably means that the prediction results
would be dominated by performance on such categories. In order to account
for this, we propose the use of reporting binned errors. The binned errors are
calculated by first binning pixel wise surface normals into 20 bins (in a manner
similar to [13]) and calculating the error within each bin. Then we calculate
the average statistics such as the mean or the median across the bins. The
idea of using binned error is similar to the idea of reporting mean of the class
accuracies in classification tests. In addition to this setup, we also report numbers
according to the standard benchmark evaluation of pixelwise median error and
the percentage of pixels that were within 11.5o, 22.5o and 30o respectively.

4.1 Prediction via Linear Classification

In previous works, such as [13,14], coarse surface normals were estimated by
predicting normals on a 20x20 spatial grid. The normal of each grid block is
predicted by solving a 20 way classification problem, where the 20 classes corre-
spond to 20 pre-calculated surface normal clusters. The final estimate is provided
by up sampling this 20x20 grid into the full image resolution.



8 Zamir, Wekel, Agarwal, Wei, Malik, Savarese

Table 5: Evaluation of surface normal estimation on the NYU2 dataset using the 20-way classifi-
cation setup. We trained a linear classifier on top of the representations to perform the estimation.
Classification accuracy and angular error is reported on individual (20x20) grid locations. The an-
gular error is calculated as the angular distance between the predicted and ground truth surface
normal clusters. We report accuracies with and without binning.

No Binning Binned

(Higher Better) (Error: Lower Better) (Higher Better) (Error: Lower Better)
Net Accuracy Mean Median Accuracy Mean Median

Agrawal et al. [1] 23.3 18.9 15.9 14.0 22.7 19.1
Wang et al. [14] 18.0 21.3 18.9 10.5 23.6 24.7
AlexNet 25.4 18.8 14.2 17.6 21.6 15.3
Random (statistically informed) 9.2 25.0 24.9 5.0 27.2 25.2

Ours 27.3 17.7 13.5 17.4 20.7 15.3

Table 6: Evaluation of surface normal estimation on the NYU2 dataset using the common eval-
uation protocol affected by dominating wall, ceiling, and floor pixels. We used 1-NN technique on
each representation to predict the normals. We report the pixelwise median error and the percentage
of pixels that were within 11.5o, 22.5o and 30o respectively. Our method outperforms the feature
learning approaches of Agrawal et al [1] and of Wang et al. [14] and is comparable to layer 7 features
of AlexNet trained for Imagenet classification using this evaluation setup.

.

(Lower Better) (Higher Better)
Net Median 11.5o 22.5o 30o

Agrawal et al. [1] 20.2 29.1 54.5 67.9
Wang et al. [14] 20.4 28.9 54.0 67.7
AlexNet 19.7 30.3 55.7 69.5

Ours 19.6 30.7 55.6 68.8

Following a similar experimental setup, we first report the accuracy of pre-
dicting surface normals on 20x20 grids. We trained a linear classifier on top of
our representation as well as the methods of [1,14] and AlexNet trained for Ima-
geNet. We report the classification accuracy in individual grid locations and the
mean/median angular error in the estimated surface normals. The angular error
is calculated as the angular distance between the predicted and ground truth
surface normal clusters. We report accuracies with and without binning in Table
5 indicating that our representation outperforms AlexNet and [1,14].

4.2 Prediction via Nearest Neighbors

In addition to results presented above, we also used 1-Nearest Neighbor to com-
pute the pixel wise surface normal errors. For each image in the test set, we
found the closest image in the training set using each representation. The sur-
face normals of this closest image were taken as the predicted surface normals for
the query image. The pixel wise error in surface normal estimation for various
CNNs is reported in Table 6. The results are consistent with the experiments
using a linear classifier.
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5 Joint Embedding of Synthetic Cubes and Images

In order to further investigate the nature our representations, we performed a
joint tSNE embedding of synthetic cubes along with a single car category from
the EPFL dataset (see Figure 5). This plot is closely related to the Cube�Object
nearest neighbor results provided in Figure 8 of the main paper (here we show
all images but using a lossy 2D embedding; in Figure 8 of the main paper, the
full dimensional representation was used for retrieving nearest neighbors, but
only a few sample queries could be shown).

If a representation mostly encodes semantic (or low level appearance) infor-
mation, then cars and cubes should cluster into two different parts of the feature
space, whereas if it encodes more geometric information, the organization should
be based on pose. Figure 5 shows that our method embeds cubes and cars ac-
cording to their geometric pose. In addition, in our feature space, cars and cubes
are close together and one is enclosed by the other, whereas the baselines lin-
early separate them and put them far apart. This indicates that, as compared to
other representations, ours predominantly capture geometric information over
semantics or low-level appearance. It should be noted that synthetic cubes were
sampled uniformly in the pose space, whereas cars in the EPFL dataset are not
sampled uniformly (no camera pitch). Due to this, many cubes do not have a
corresponding car and the tSNE plots are slightly skewed.

tSNE on Affinity Matrix: the tSNE embeddings in Figure 5 are plotted in
an affinity space. That is, given N car and M cube images, we compute the
representation of each image and form a (N + M) × M affinity matrix where
element (i, j) is the l2 distance between the representations of the ith image and
jth cube. In other words, the representation of all of the car and cube images are
cast based on the cube collection as the reference. We then perform the tSNE
embedding on this (N + M) × M affinity matrix with each row being the M
dimensional representation of the image, rather than its original representation.

We adopted this approach in order to enable the tSNE plots to bring out the
geometric encoding aspect and not be dominated by the appearance/semantic
information in the representation. For performing a successful pose estimation,
encoding of both geometric and appearance information is essential 1. However,
when a tSNE plot is formed, the user does not have any control over specifying
whether the geometry or the appearance factor (or both) should govern the
embedded space. In general, all of the manifolds existing in a representation
contribute to the final 2D embedding. The workaround of finding the tSNE
embedding on a unified affinity space lowers the impact of appearance as the
appearance of all cubes are roughly the same while their pose covers a wide

1 For instance, if the pose estimation is being performed based on vanishing points,
then besides extraction of at least 3 vanishing points from the input images, the
correspondences among vanishing points needs to be done as well. Therefore, the
representation must encode some appearance information in order to enable finding
the correspondences among vanishing points.
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range. All of the plots in Figure 5 (including the baselines) are formed using this
approach.
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Fig. 5: tSNE embedding of the synthetic cubes and one category of EPFL dataset. Our representa-
tion shows a geometric organization while the baselines perform a clear semantic/appearance based
separation.

6 Illustration of Pose Induction via tSNE Embeddings of
more ImageNet Classes and MIT Places

We only trained our network for estimating 6-DOF pose on street view scenes.
However, it appears that our representation learned something generic about the
geometry of objects (see the discussion on unsupervised evaluations in section
4 of the main paper). This is elucidated by tSNE embeddings of objects in
the Imagenet dataset (Figures 6,7). These embeddings show that the feature
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Fig. 6: tSNE of more ImageNet categories of our representation vs various baselines.

space produced by our network performs pose induction for unseen object classes
without any additional training.

However it should be noted that a purely geometric approach is sometimes
insufficient for a full object pose estimation, such as, distinguishing between
front and back the car. Such knowledge is dependent on semantics and not
merely geometry. It is therefore not surprising that our method puts such poses
close to each other. In addition, one more mode of confusion of our method
is putting together poses that are apart by 90 degrees. If the pose is indeed
estimated based on vanishing points (see section 4.2 of the main paper), it is
to be expected that objects 90 degrees apart in azimuth would have the same
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AlexNet (ImageNet)

Wang & Gupta Ours

Agrawal et al.

Fig. 7: tSNE of more ImageNet categories of our representation vs various baselines.

vanishing points and therefore it would require the knowledge of semantics to
tease these poses apart. Since our method shows such confusion, it supplies
further support that our method may performs pose estimation analogous to a
method that would estimate pose based on vanishing points.

In addition to pose induction on imagenet, our method also performs pose
induction on scene categories outside our street view dataset. For instance in
Figure 8, the images of MIT places datasets (category library) are embedded ac-
cording to pose. Finally, additional visualization of embedding of image patches
from our dataset using our representation and AlexNet’s (trained on Imagenet)
are shown in Figure 9.
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AlexNet (ImageNet) Ours

Right Facing

Left Facing

MIT Places Database

Fig. 8: tSNE of our representation vs AlexNet (ImageNet) on a non-streetview dataset: MIT Places
Benchmark (class ‘library’ which is one of the pose rich categories). Our network shows a clear
pose based embedding, unlike AlexNet trained on ImageNet. For both networks, the descriptor was
computed over the entire image, and not patches.

(a)
(b)

Right Facing Left Facing

Ours

AlexNet

Fig. 9: This figure shows the same tSNE plot as the one in Figure 7 of the main paper, as well
as AlexNet’s tSNE for the sake of comparison. The AlexNet is trained on ImageNet and shows a
non-geometric organization.
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7 Additional Training Details

For pose training we followed a curriculum strategy where we first trained only
for angles within [−90◦, 90◦] and then extended to all the angles. We found that
this performed slightly better than directly training for all angles. We also ex-
perimented with employing quaternions, but found that predicting Euler angles
performed better (quantitative results in the main paper).
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