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Abstract— We present a robotic system that watches a human
using a Kinect v2 RGB-D sensor, detects what he forgot to
do while performing an activity, and if necessary reminds the
person using a laser pointer to point out the related object.
Our simple setup can be easily deployed on any assistive robot.

Our approach is based on a learning algorithm trained in a
purely unsupervised setting, which does not require any human
annotations. This makes our approach scalable and applicable
to variant scenarios. Our model learns the action/object co-
occurrence and action temporal relations in the activity, and
uses the learned rich relationships to infer the forgotten action
and the related object. We show that our approach not only
improves the unsupervised action segmentation and action
cluster assignment performance, but also effectively detects the
forgotten actions on a challenging human activity RGB-D video
dataset. In robotic experiments, we show that our robot is able
to remind people of forgotten actions successfully.

I. INTRODUCTION

The average adult forgets three key facts, chores or events

every day [1]. Hence it is important for a personal robot to be

able to detect not only what a human is currently doing but

also what he forgot to do. For example in Fig. 1, someone

fetches milk from the fridge, pours the milk to the cup, takes

the cup and leaves without putting back the milk, then the

milk would go bad. In this paper, we focus on detecting

these forgotten actions in the complex human activities for

a robot, which learns from a completely unlabeled set of

RGB-D videos.

There are a large number of works on vision-based hu-

man activity recognition for robots. These works infer the

semantic label of the overall activity or localize actions in the

complex activity for better human-robot interactions [2], [3],

[4], assistive robotics [5], [6]. Given the input RGB/RGB-

D videos [7], [8], [9], or 3D human joint motions [10],

[11], or from other inertial/location sensors [12], [13], they

train the perception model using fully or weekly labeled

actions [8], [14], [15], or locations of annotated human/their

interactive objects [16], [17]. Recently, there are some other

works on anticipating human activities for reactive robotic

response [18], [5]. However, to enable a robot to remind

people of forgotten things, it is challenging to directly use
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Fig. 1: Our Watch-Bot watches what a human is currently doing,
and uses our unsupervised learning model to detect the human’s
forgotten actions. Once a forgotten action detected (put-milk-back-
to-fridge in the example), it points out the related object (milk in
the example) by the laser spot in the current scene.

these approaches especially in a completely unsupervised

setting.

Our goal is to enable a robot, that we call Watch-Bot,

to detect humans’ forgotten actions as well as localize the

related object in the current scene. The robot consists of a

Kinect v2 sensor, a pan/tilt camera (which we call camera

for brevity in this paper) mounted with a laser pointer, and a

laptop (see Fig. 2(a)). This setup can be easily deployed on

any assistive robot. Taking the example in Fig. 1, if our robot

sees a person fetch a milk from the fridge, pour the milk, and

leave without putting the milk back to the fridge, it would

first detect the forgotten action and the related object (the

milk), given the input RGB-D frames and human skeletons

from the Kinect; then map the object from the Kinect’s view

to the camera’s view; finally pan/tilt the camera until its

mounted laser pointer pointing to the milk.

In real robotic applications, people perform a very wide

variety of actions. These are hard to learn from existing

videos on the Internet and there are few with annotations

of actions or objects. So we propose a probabilistic learning

model in a completely unsupervised setting, which can learn

actions and relations directly from the data without any

annotations, only given the input RGB-D frames with tracked

skeletons from Kinect v2 sensor.

We model an activity video as a sequence of actions,



(a) Robot System. (b) System Pipeline.

Fig. 2: (a). Our Watch-Bot system. It consists of a Kinect v2 sensor that inputs RGB-D frames of human actions, a laptop that infers the
forgotten action and the related object, a pan/tilt camera that localizes the object, mounted with a fixed laser pointer that points out the
object. (b). The system pipeline. The robot first uses the learned model to infer the forgotten action and the related object based on the
Kinect’s input. Then it maps the view from the Kinect to the pan/tilt camera so that the bounding box of the object is mapped in the
camera’s view. Finally, the camera pan/tilt until the laser spot lies in the bounding box of the target object.

so that we can understand which actions have been taken,

e.g., the example activity contains four actions: fetch-milk-

from-fridge, pour, put-milk-back-to-fridge, and leave.1 For

detecting the forgotten action and reminding, we model the

co-occurrence between actions and the interactive objects,

as well as the temporal relations between these segmented

actions, e.g., action fetch-milk-from-fridge often co-occurs

with and is temporally after action put-milk-back-to-fridge,

and object milk occurs in both actions. Using the learned

actions and relations, we infer the forgotten actions and lo-

calize the related objects, e.g., put-milk-back-to-fridge might

be forgotten as previously seen fetch-milk-from-fridge before

pouring, and seen leaving indicates he really forgot to do,

also milk is the object interacted in the forgotten action.

We evaluate our approach extensively on a large RGB-D

human activity dataset recorded by Kinect v2 [19]. The

dataset contains 458 videos of human daily activities as

compositions of multiple actions interacted with different ob-

jects, in which people forgot actions in 222 videos. We show

that our approach not only improves the action segmentation

and action cluster assignment performance, but also obtains

promising results of forgotten action detection. Moreover,

we show that our Watch-Bot is able to remind humans of

forgotten actions in the real-world robotic experiments.

II. RELATED WORK

Most previous works focus on recognizing human actions

for both robotics [2], [8], [9] and computer vision [20], [21],

[22]. They model different types of information, such as the

temporal relations between actions [23], [24], the human and

the interactive object appearances and relations [25], [24].

Yang et al. [6] presented a system that learns manipulation

action plans for robot from unconstrained youtube videos.

Hu et al. [15] proposed an activity recognition system trained

from soft labeled data for the assistant robot. Chrungoo et

1In the training, we do not know these action semantic labels. Instead we
assign the action cluster index.

al. [4] introduced a human-like stylized gestures for better

human-robot interaction. Piyathilaka et al. [11] used 3D

skeleton features and trained dynamic bayesian networks for

domestic service robots. However, it is challenging to directly

use these approaches for inferring the forgotten actions.

Recently, there are works on anticipating human activities

and they performed well for assistant robots [18], [5]. They

modeled the object affordances and object/human trajectories

to discriminate different actions in past activities and antic-

ipate future actions. However, in order to detect forgotten

actions, we also need to consider actions after it such as

boiling water indicates filling kettle before it.

The output laser spot on object is also related to the

work ‘a clickable world’ [26], which selects the appropriate

behavior to execute for an assistive object-fetching robot

using the 3D location of the click by the laser pointer.

Differently, we keep the laser pointer fixed on top of the

camera, and pan/tilt the camera iteratively to point out the

target object using a real-time view matching.

Most of these works rely on supervised learning given

fully labeled actions, or weakly supervised action labels,

or locations of human/their interactive objects. Differently,

our robot uses a completely unsupervised learning setting

that trains model only on Kinect’s output RGB-D videos.

Our model is based on our previous work [19], which

presents a Casual Topic Model to model action relations in

the complex activity. In this paper, we further introduce the

human interactive object and its relations to actions, so that

the robot can localize the related object. We then design a

robotic system using the model to kindly remind people.

III. WATCH-BOT SYSTEM

We outline our Watch-Bot system in this section (see

Fig. 2). Our goal is to detect what people forgot to do

given the observation of his poses and interacted objects.

The robot consists of a Kinect v2 sensor, a pan/tilt camera

mounted with a laser pointer, and a laptop. The input to our



Fig. 3: Video representation in our approach. A video is first decom-
posed into a sequence of overlapping fixed-length temporal clips.
The human-skeleton-trajectories/interactive-object-trajectories from
all the clips are clustered to form the human-dictionary/object-
dictionary. Then the video is represented as a sequence of human-
word and object-word indices by mapping its human-skeleton-
trajectories/interactive-object-trajectories to the nearest human-
words/object-words in the dictionary. Also, an activity video is
about a set of action-topics/object-topics indicating which actions
are present and which object types are interacted.

system is RGB-D human activity videos with the tracked

3D joints of human skeletons from Kinect v2. Then we use

an unsupervised trained learning model (see Section IV) to

infer the forgotten action and localize the related object in

the Kinect’s view. After that, we map the object bounding

box from the Kinect’s view to the camera’s view. Finally, we

pan/tilt the camera until the laser spot lies within the target

object in its view (see Section V).

Video Representation. To detect the action structure

in the complex activity video, we propose a video rep-

resentation that draws parallels to document modeling in

the natural language [27] (illustrated in Fig. 3). We first

decompose a video into a sequence of overlapping fixed-

length temporal clips. We then extract the human-skeleton-

trajectory features and the interactive-object-trajectory fea-

tures from the clips. In order to build a compact represen-

tation of the activity video, we represent it as a sequence

of words. We use k-means to cluster the human-skeleton-

trajectories/interactive-object-trajectories from all the clips to

form a human-dictionary and an object-dictionary, where

we use the cluster centers as human-words and object-

words. Then, the video can be represented as a sequence

of human-word and object-word indices by mapping its

human-skeleton-trajectories/interactive-object-trajectories to

the nearest human-words/object-words in the dictionary.

Also, an activity video is about a set of action-topics in-

dicating which actions are present in the video, and a set of

object-topics indicating which object types are interacted.

Visual Features. We extract both human-skeleton-

trajectory features and the interactive-object-trajectory fea-

tures from the output by the Kinect v2. The new Kinect v2

has high resolution of RGB-D frames (RGB: 1920 × 1080,

depth: 512 × 424) and improved body tracking of 25 body

joints of human skeletons.

We first extract the human-skeleton-trajectory features of

the clip as in [19]. Then we extract the human interactive-

object-trajectory based on the human hands, image segmenta-

tion, motion detection and tracking. We collect the bounding

boxes enclosing the potential interested objects from super-

pixels output by a fast edge detection approach [28] on both

RGB and depth images. We apply the moving foreground

mask [29] to remove the unnecessary steady backgrounds

and select those segments within a distance to the human

hand joints in both 3D points and 2D pixels.

We then track the bounding box in the clip using SIFT

matching and RANSAC to get the trajectories. We use the

closest trajectory to the human hands for the clip. Finally,

we extract six kernel descriptors from the bounding box of

each frame in the trajectory: gradient, color, local binary pat-

tern, depth gradient, spin, surface normals, and KPCA/self-

similarity, which have been proven to be useful features for

RGB-D data [30]. We concatenate the object features of each

frame as the interactive-object-trajectory feature of the clip.

IV. LEARNING MODEL

We present a new unsupervised model for our Watch-Bot.

The graphic model is illustrated in Fig. 4 and the notations

are in Table I. Our model is able to infer the probability of

forgotten actions using the rich relationships between actions

and objects.

We learn the model from a training set of D unla-

beled videos. Each video as a document d consists of Nd

continuous clips {cnd}
Nd

n=1, each of which consists of a

human-word wh
nd mapped to the human-dictionary and an

object-word wo
nd mapped to the object-dictionary. We assign

action-topic to each clip cnd from K latent action-topics,

indicating which action-topic they belong to. We assign

object-topic to each object-word wo
nd from P latent object-

topics, indicating which object-topic is interacted within the

clip. The assignments are denoted as z
(1)
nd and z

(2)
nd . We use

superscripts (1), (2) to denote action-topics and object-topics

respectively. After assignments, in a video, continuous clips

with the same action-topic compose an action segment. All

the segments assigned with the same action-topic from the

training set compose an action cluster.

As shown in Fig. 4, the generative process of our

model is as follows. In a document d, we choose z
(1)
dn ∼

Mult(π
(1)
:d ), z

(2)
dn ∼ Mult(π

(2)
:d ), where Mult(π) is a multi-

nomial distribution with parameter π. The human-word wh
nd

is drawn from an action-topic specific multinomial distribu-

tion φ
(1)

z
(1)
nd

, wh
dn ∼ Mult(φ

(1)

z
(1)
dn

), where φ
(1)
k ∼ Dir(β(1)) is

the human-word distribution of action-topic k, sampled from

a Dirichlet prior with the hyperparameter β(1). While the

object-word wo
nd is drawn from an action-topic and object-

topic specific multinomial distribution φ
(12)

z
(1)
nd

z
(2)
nd

, wo
dn ∼



Fig. 4: The probabilistic graphic model of our approach.

Mult(φ
(12)

z
(1)
nd

z
(2)
nd

), where φ
(12)
kp ∼ Dir(β(12)) is the object-

word distribution of action-topic k and object-topic p. Here

we consider the same object type like book can be variant in

appearance in different actions such as a close book in fetch-

book and a open book in reading. So we consider the object-

word distribution for different combinations of the action

topic and the object topic.

The co-occurrence such as action put-down-items and

action take-items, object book and action reading, is useful

to recognizing the co-occurring actions/objects and gives a

strong evidence for detecting forgotten actions. We model

the co-occurrence by drawing their priors from a mixture

distribution. In the graphic model, π
(1)
kd , π

(2)
pd decide the

probability of action-topic k and object-topic p occurring

in a document d, where
∑K

k=1 π
(1)
kd = 1,

∑P

p=1 π
(2)
pd = 1.

We construct the probabilities using a stick-breaking process

as in [19], where v
(1)
kd , v

(2)
pd serve as the priors. Then we

draw the packed vector v:d = [v
(1)
:d , v

(2)
:d ] from a multivariate

normal distribution N(µ,Σ), which captures the correlations

between action-topics and object-topics.

The temporal relations between actions are also useful

to discriminating the actions using temporal ordering and

inferring the temporal consistent forgotten actions. So we

model the relative time of occurring actions as in [19]. In

detail, let tnd, tmd ∈ (0, 1) be the absolute time stamp of n-th

clip and m-th clip, which is normalized by the video length.

tmnd = tmd − tnd is the relative time of m-th clip relative

to n-th clip. Then tmnd is drawn from a certain distribution,

tmnd ∼ Ω(θ
z
(1)
md

,z
(1)
nd

), where θ
z
(1)
md

,z
(1)
nd

are the parameters.

Ω(θk,l) are K2 pairwise action-topic specific relative time

distributions defined by a product of a Bernoulli distribution

which gives the probability of action k after/before the action

l, and a normal distribution which estimates how long the

action k is after/before the action l.

A. Learning and Inference

We use Gibbs sampling [31], [32] to learn the parameters

and the infer the hidden variables from the posterior distri-

TABLE I: Notations in our model.
Symbols Meaning

D number of videos in the training database;
K number of action-topics;
P number of object-topics;
Nd number of human-words/object-words in a video;
cnd n-th clip in d-th video;

wh
nd

n-th human-word in d-th video;
wo

nd
n-th object-word in d-th video;

z
(1)
nd

action-topic assignment of cnd;

z
(2)
nd

object-topic assignment of wo
nd

;
tnd normalized timestamp of of cnd;
tmnd = tmd − tnd the relative time between cmd and cnd;

π
(1)
:d , π

(2)
:d the probabilities of action/object-topics in d-th document;

v
(1)
:d , v

(2)
:d the priors of π

(1)
:d , π

(2)
:d in d-th document;

φ
(1)
k

multinomial human-word distribution from action-topic k;

φ
(12)
kp

multinomial object-word distribution from

action-topic k and object-topic p;

µ,Σ multivariate normal distribution of v:d = [v
(1)
:d , v

(2)
:d ];

θkl relative time distribution of tmnd, between action-topic k, l;

bution of our model. The word wh
nd, w

o
nd and the relative

time tmnd are observed in each video. We can integrate

out Φ
(1)
k ,Φ

(12)
kp since Dir(β(1)), Dir(β(12)) are conjugate

priors for the multinomial distributions Φ
(1)
k ,Φ

(12)
kp . We also

estimate the standard distributions including the mutivariate

normal distribution N(µ,Σ) and the time distribution Ω(θkl)
using the method of moments, once per iteration of Gibbs

sampling. The topic priors v
(1)
:d , v

(2)
:d can be sampled by a

Metropolis-Hastings independence sampler [33] as in [19].

Following the convention, we use the fixed symmetric

Dirichlet distributions by setting β(1), β(12) as 0.01.

Then we introduce how we sample the topic assignment

z
(1)
nd , z

(2)
nd . We do a collapsed sampling as in Latent Dirichlet

Allocation (LDA) [27] by calculating the posterior distribu-

tion of z
(1)
nd , z

(2)
nd :

p(z
(1)
nd = k|π

(1)
:d , z

(1)
−nd, z

(2)
nd , tnd)

∝ π
(1)
kd ω(k,w

h
nd)ω(k, z

(2)
nd , w

o
nd)p(tnd|z

(1)
:d , θ),

p(z
(2)
nd = p|π

(2)
:d , z

(2)
−nd, z

(1)
nd ) ∝ π

(2)
pd ω(z

(1)
nd , p, w

o
nd),

ω(k,wh
nd) =

N−nd
kwh + β(1)

N−nd
k +Nwβ(1)

,

ω(k, p, wo
nd) =

N−nd
kpwo + β(12)

N−nd
kp +Noβ(12)

,

p(tnd|z
(1)
:d , θ) =

Nd∏

m

Ω(tmnd|θz(1)
md

,k
)Ω(tnmd|θk,z(1)

md

), (1)

where Nw, No is the number of unique word types in

dictionary, N−nd
kwh /N

−nd
kpwo denotes the number of instances

of word wh
nd/w

o
nd assigned with action-topic k/action-topic

k and object-topic p, excluding n-th word in d-th docu-

ment, and N−nd
k /N−nd

kp denotes the number of total words

assigned with action-topic k/action-topic k and object-topic

p. z
(1)
−nd/z

(2)
−nd denotes the topic assignments for all words

except z
(1)
nd /z

(2)
nd .

In Eq. (1), note that the topic assignments are de-

cided by which actions/objects are more likely to co-

occur in the video (the occurrence probabilities π
(1)
kd /π

(2)
kd ),

the visual appearance of the word (the word distributions



Algorithm 1 Forgotten Action and Object Detection.

Input: RGB-D video q with tracked human skeletons.
Output: Claim no action forgotten, or output an action segment
with the forgotten action and a bounding box of the related object
in the current scene.
1. Assign the action-topics to clips and the object-topics to object-
words in q as introduced in Section IV-A.
2. Get the action segments by merging the continuous clips with
the same assigned action-topic.
3. If the assigned action-topics Ke in q contains all modeled
action-topics [1 : K], claim no action forgotten and return;
4. For each action segmentation point ts, each not assigned
action-topic km ∈ [1 : K] − Ke, and each object-topic pm ∈

[1 : P ]:
Compute the probability defined in Eq. 2;

5. Select the top tree possible tuples (km, pm, ts), and get
the forgotten action segment candidate set Q which contains
segments with topics (km, pm);
6. Select the top forgotten action segment p from Q with the
maximum forget score(p);
7. If forget score(p) is smaller than a threshold, claim no action
forgotten and return;
8. Segment the current frame to super-pixels using edge detec-
tion [28] as in Section III;
9. Select the nearest super-pixels to both extracted object bound-
ing box in q and p.
10. Merge the adjacent super-pixels and bound the largest one
with a rectangle as the output bounding box.
11. Return the top forgotten action segment and the object
bounding box.

ω(k, wh
nd), ω(k, p, w

o
nd)) and the temporal relations (the rel-

ative time distributions p(tnd|z
(1)
:d , θ)). The time complexity

of the sampling per iteration is O(NdD(max(NdK,P )).
For inference of a test video, we sample the unknown topic

assignments z
(1)
nd , z

(2)
nd and the topic priors v

(1)
:d , v

(2)
:d using the

learned parameters in the training stage.

V. FORGOTTEN ACTION DETECTION AND REMINDING

In this section, we describe how we apply our model in our

robot to detecting the forgotten actions and reminding people.

It is more challenging than conventional action recognition,

since what to infer is not shown in the query video. There-

fore, unlike the existing models on action relations learning,

our model learns rich relations rather than the only local

temporal transitions. As a result, those actions occurred with

a relatively large time interval, occurred after the forgotten

actions, as well as the interactive objects can also be used

to detect forgotten actions, e.g., a put-back-book might be

forgotten as previously seen a fetch-book action before a long

reading, and seen a book and a leaving action indicates he

really forgot it.

Our goal is to detect the forgotten action and then point out

the related object in the forgotten action using our learned

model (see Alg. 1). We first use our model to segment the

query video into action segments (step 1,2 in Alg. 1), and

then infer the most possible forgotten action-topic and the

related object-topic (step 4 in Alg. 1). Next we retrieve

a top forgotten action segment from the training database,

containing the inferred forgotten action-topic and the object-

topic (step 5,6 in Alg. 1). Using the extracted object in the

retrieved segment, we detect the bounding box of the related

Fig. 5: Illustration of forgotten action and object detection using
our model. Given a query video, we infer the forgotten action-topic
and object-topic in each segmentation point (t1, t2). Then we select
the top segment from the inferred action-topic’s segment cluster
with the inferred object-topic with the maximum forget score.

forgotten object in the Kinect’s view of the query video (step

8,9,10 in Alg. 1). After that, we map the bounding box of the

object from the Kinect’s view to the camera’s view. Finally,

we pan/tilt camera until its laser pointer points out the related

object in the current scene.

Forgotten Action and Object Inference. We first intro-

duce how we infer the forgotten action-topic and object-topic

using the dependencies in our learned model. After assigning

the action-topics and object-topics to the query video q, we

consider adding one additional clip ĉ consisting of ŵh, ŵo

into q in every action segmentation point ts (see Fig 5). Then

the probabilities of the missing action-topics km with object-

topics pm in each segmentation point ts can be computed

following the posterior distribution in Eq. (1):

p(z
(1)
ĉ = km, z

(2)
ĉ = pm, tĉ = ts|other)

∝ π
(1)
kmdπ

(2)
pmdp(ts|z

(1)
:d , θ)

∑

wh,wo

ω(km, wh)ω(km, pm, wo),

s.t. ts ∈ Ts, km ∈ [1 : K]−Ke, (2)

where Ts is the set of segmentation points (such as t1, t2
in Fig. 5) and Ke is the set of existing action-topics in the

video (fetch-book, etc. in Fig. 5). Thus [1 : K]−Ke are the

missing topics in the video (put-down-items, etc. in Fig. 5).

p(ts|z
(1)
:d , θ), ω(km, wh), ω(km, pm, wo) can be computed as

in Eq. (1). Here we marginalized ŵh, ŵo to avoid the effect

of a specific human-word or object-word.

Note that, in Eq. (2), the closer topics would have

higher probabilities π
(1)
kd , π

(2)
pd to co-occur in this query

video as they are drawn from the learned joint distri-

bution. The action-topics which are more consistent with

the learned temporal relations would have higher probabil-

ity p(ts|z
(1)
:d , θ). The marginalized word-topic distribution∑

wh,wo ω(km, wh)ω(km, pm, wo) give the likelihood of the

topic learned from training data.

Forgotten Action and Object Detection. We then in-

troduce how we retrieve a top action segment from the

training database. We first select the top three tuples

(km, pm, ts) using the above probability. These action seg-

ments consist a forgotten action candidate segment set Q.

We then retrieve the segment from Q with the maxi-

mum forget score(p) = ave(D(fpm, fqf ),D(fpm, fqt)) −



max(D(fpf , fqt),D(fpt, fqf )), where D(, ) is the average

pairwise distances between frames, ave(, ),max(, ) are the

average and max value. The front and the tail of the forgotten

action segment fpf , fpt need to be similar to the tail of the

adjacent segment in q before ts and the front of the adjacent

segment in q after ts: fqt, fqf . The middle of the forgotten

action segment fpm need to be different to fqt, fqf , as it is

a different action forgotten in the video2. If the maximum

score is below a threshold or there is no missing topics

(i.e.,Ke = [1 : K]) in the query video, we claim there

is no forgotten actions.

Then we detect the bounding box of the related forgotten

object in the current scene. We segment the current frame

into super-pixels as in Section III, then search the nearest

super-pixels using the extracted object in the top retrieved

action, finally merge the adjacent super-pixels and bound the

largest one with a bounding box.

Real Object Pointing. We describe how we pan/tilt the

camera to point out the real object. We first compute the

transformation homography matrix between the frame of the

Kinect and the frame of the pan/tilt camera using keypoints

matching and RANSAC, which can be done very fast within

0.1 second. Then we can transform the detected bounding

box from the Kinect’s view to the pan/tilt camera’s view.

Since we fix the position of the laser spot in the pan/tilt

camera view, next we only need to pan/tilt the camera till

the laser spot lies within the bounding box of the target

object. To avoid the coordinating error caused by distortion

and inconsistency of the camera movement, we use an

iterative search plus small step movement instead of one

step movement to localize the object (illustrated in Fig. 2).

In each iteration, the camera pan/tilt a small step towards to

the target object according to the relative position between

the laser spot and the bounding box. Then the homography

matrix is recomputed in the new camera view, so that the

bounding box is mapped in the new view. Until the laser

spot is close enough to the center of the bounding box, the

camera stops moving.

VI. EXPERIMENTS

A. Dataset

We evaluate our Watch-Bot in a challenging human activ-

ity RGB-D dataset [19] consisting of 458 videos of about 230
minutes in total recorded by the Kinect v2 sensor. Each video

in the dataset contains 2-7 actions interacted with different

objects (see examples in Fig. 6). We asked 7 subjects to

perform human daily activities in 8 offices and 5 kitchens

with complex backgrounds and recorded the activities in

different views. It is composed of fully annotated 21 types of

actions (10 in the office, 11 in the kitchen) interacted with 23
types of objects. The participants finish tasks with different

combinations of actions and ordering. Some actions occur

together often such as fill-kettle and boil-water, while some

are not always together. Some actions are in a fix order such

2Here the middle, front, tail frames are 20%-length of segment centering
on the middle frame, starting from the first frame, and ending at the last
frame in the segment respectively.

as turn-on-monitor and turn-off-monitor while some occur in

random order. Also, in the dataset, people forgot actions in

222 videos. There are 3 types of forgotten actions in ’office’

and 5 types in ’kitchen’.

B. Baselines

We compare four unsupervised approaches. They are Hid-

den Markov Model (HMM) [34], LDA topic model [27],

our previous work Causal Topic Model(CaTM) [19] and our

Watch-Bot Topic Model (WBTM). We use the same human

skeleton and RGB-D features introduced in Section III. In

LDA, actions and objects are modeled independently as

the priors of action/object assignments are sampled from

a fix Dirichlet prior and there is no relative time between

actions modeled. For HMM, similarly we set action states

which generates both human and object trajectory features of

each clip, and object states which generates object trajectory

features. Since there is no object modeled in CaTM, we only

evaluate its activity related performance.

In the experiments, we set the number of action-

topics/object-topics and states for HMM equal to or more

than ground-truth action/object classes. For LDA, CaTM and

our WBTM, the clip length is set to 20 frames, densely

sampled by step one and the size of human/object dictionary

is set to 500. The forgotten action candidate set for different

approaches consists of the segments with the inferred missing

topics by transition probabilities for HMM, the topic priors

for LDA. After inference, we use the same forgotten action

and object detection method as introduced in Section V.

C. Evaluation Metrics

We test in two environments ‘office’ and ‘kitchen’. In each

environment, the dataset is split into a train set with mostly

full videos (office: 87, kitchen 119) and a few forgotten

videos (office: 10, kitchen 10), and a test set with a few full

videos (office: 10, kitchen 20) and mostly forgotten videos

(office: 89, kitchen 113). We train the models in the train set

and evaluate the following metrics in the test set.

Action Segmentation and Cluster Assignment. As in

evaluation for unsupervised clustering, we map the action

cluster in the train set to the ground-truth action labels

by counting the mapped frames between action-topics and

ground-truth action classes as in [19] . Then we can use the

mapped action class label for evaluation.

We measure the performance in two ways. Per frame:

we compute frame-wise accuracy (Frame-Acc), the ratio of

correctly labeled frames. Segmentation: we consider a true

positive if the union/intersection of the detected and the

ground-truth segments is greater than 40% as in [23]. We

compute segmentation accuracy (Seg-Acc), the ratio of the

ground-truth segments that are correctly detected and seg-

mentation average precision (Seg-AP) by sorting all action

segments using the average probability of their words’ topic

assignments. All above three metrics are computed by taking

the average of each action class.

Forgotten Action and Object Detection. We measure the

forgotten action detection accuracy (FA-Acc) by the portion



(a) turn-off-monitor (b) take-item

(c) fetch-from-fridge (d) fill-kettle

Fig. 6: Action examples in the dataset. The left is RGB frame and
the right is depth frame with human skeleton (yellow).

TABLE II: Action segmentation and cluster assignment results, and
forgotten action/object detection results.

‘office’(%) Seg-Acc Seg-AP Frame-Acc FA-Acc FO-Acc

HMM 19.4 23.1 27.3 32.2 20.4
LDA 12.2 19.6 18.4 15.7 10.5

CaTM 32.9 34.6 38.5 41.5 -
WBTM 35.2 36.0 41.2 46.2 36.4

‘kitchen’(%) Seg-Acc Seg-AP Frame-Acc FA-Acc FO-Acc

HMM 17.2 18.8 20.3 12.4 5.3
LDA 6.7 17.1 14.4 10.8 5.3

CaTM 29.0 25.5 34.0 20.5 -
WBTM 30.7 28.5 36.9 24.4 20.6

of correct detected forgotten action or correctly claiming no

forgotten actions. We consider the output forgotten action

segments by the compared approaches containing over 50%
ground-truth forgotten actions as correct. We measure the

forgotten object detection accuracy (FO-Acc) by the typical

object detection metric, that considers a true positive if the

overlap rate (union/intersection) between the detected and

the ground-truth object bounding box is greater than 40%.

D. Results

Table II, Fig. 7 and Fig. 8 show the main results of

our experiments. We discuss our results in the light of the

following questions.

How well did forgotten action/object detection per-

form? In Table II, we can see that our model achieves

a promising results for complex activities with multiple

objects in variant environments in the completely unsuper-

vised setting. Our models CaTM and WBTM show better

performance than traditional uncorrelated topic model LDA,

since the co-occurrence and temporal structure are well

learned. They outperform HMM, since we consider both

the short-range and long-range action relations while HMM

only considers the local neighboring states transitions. Our

WBTM model improves the performance over CaTM on

action clustering and forgotten action detection, also is able

to detect the forgotten object, because action and object

topics are factorized and their relations are well modeled.

How important is it to consider relations between

actions and objects? From the results, we can see that

the model which did well in forgotten action detection also

performed well in detecting forgotten object. Since our model

well considers the relations between the action and the

object, it shows better performance in both forgotten action

and forgotten object detection than HMM and LDA which

Fig. 7: Action segmentation Acc/AP varied with the number of
action-topics in ‘office’ dataset.

Fig. 8: Forgotten action/object detection accuracy varied with the
number of action-topics in ‘office’ dataset.

models action and object independently as well as CaTM

which only models the actions.

How successful was our unsupervised approach in

learning meaningful action-topics? From Table II and

Fig 7, we can see that the unsupervised learned action-

topics can be semantic meaningful even though ground-truth

semantic labels are not provided in the training. It can also

be seen that, the better action segmentation and cluster as-

signment performance often indicates better forgotten action

detection performance, since actions in the complex activity

should be first well segmented and discriminated for next

stage forgotten action/object detection.

How did the performance change with the number of

action-topics? We plot the performance curves varied with

the action-topic number in Fig. 7 and Fig. 8. It shows that the

performance does not change much with the action-topics.

This is because a certain action might be divided into several

action-topics but more variations are also introduced.

E. Robotic Experiments

In this section, we show how our Watch-Bot reminds

people of the forgotten actions in the real-world scenarios.

We test each two forgotten scenarios in ‘office’ and ‘kitchen’

respectively (put-back-book, turn-off-monitor, put-milk-back-

to-fridge and fetch-food-from-microwave). We use a subset of

the dataset to train the model in each activity type separately.

In each scenario, we ask 3 subjects to perform the activity

twice. Therefore, we test 24 trials in total. We evaluate three

aspects. One is objective, the success rate (Succ-Rate): the

laser spot lying within the object as correct. The other two

are subjective, the average Subjective Accuracy Score (Subj-

AccScore): we ask the participant if he thinks the pointed

object is correct; and the average Subjective Helpfulness

Score (Subj-HelpScore): we ask the participant if the output



Fig. 9: An example of the robotic experiment. The robot detects the human left the food in the microwave, then points to the microwave.

TABLE III: Robotic experiment results. The higher the better.

Succ-Rate(%) Subj-AccScore(1-5) Subj-HelpScore(1-5)

HMM 37.5 2.1 2.3
LDA 29.2 1.8 2.0

WBTM 62.5 3.5 3.9

of the robot is helpful. Both of them are in 1− 5 scale, the

higher the better.

Table III gives the results of our robotic experiments. We

can see that our robot can achieve over 60% success rate

and gives the best performance. In most cases people think

our robot is able to help them understand what is forgotten.

Fig. 9 gives an example of our experiment, in which our

robot observed what a human is currently doing, realized

he forgot to fetch food from microwave and then correctly

pointed out the microwave in the scene.

VII. CONCLUSION

In this paper, we enabled a Watch-Robot to automatically

detect people’s forgotten actions. We showed that our robot is

easy to setup and our model can be trained with completely

unlabeled videos without any annotations. We modeled an

activity video as a sequence of action segments, which we

can understand as meaningful actions. We modeled the co-

occurrence between actions and the interactive objects as

well as the temporal relations between these segmented

actions. Using the learned relations, we inferred the forgotten

actions and localized the related objects. We showed that our

approach improved the unsupervised action segmentation and

cluster assignment performance, and was able to detect the

forgotten action on a complex human activity RGB-D video

dataset. We showed that our robot was able to remind people

of forgotten actions in the real-world robotic experiments by

pointing out the related object using the laser pointer.
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