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Abstract

We focus on modeling human activities comprising mul-
tiple actions in a completely unsupervised setting. Our
model learns the high-level action co-occurrence and tem-
poral relations between the actions in the activity video.
We consider the video as a sequence of short-term action
clips, called action-words, and an activity is about a set
of action-topics indicating which actions are present in the
video. Then we propose a new probabilistic model relat-
ing the action-words and the action-topics. It allows us to
model long-range action relations that commonly exist in
the complex activity, which is challenging to capture in the
previous works.

We apply our model to unsupervised action segmentation
and recognition, and also to a novel application that detects
forgotten actions, which we call action patching. For evalu-
ation, we also contribute a new challenging RGB-D activity
video dataset recorded by the new Kinect v2, which con-
tains several human daily activities as compositions of mul-
tiple actions interacted with different objects. The extensive
experiments show the effectiveness of our model.

1. Introduction

We consider modeling human activities containing a se-
quence of actions (see an example in Fig.[I), as perceived
by an RGB-D sensor in home and office environments. In
the complex human activity such as warming milk in the ex-
ample, there are not only short-range action relations, e.g.,
microwaving is often followed by fetch-bowl-from-oven, but
there are also long-range action relations, e.g., fetch-milk-
from-fridge is strongly related to put-milk-back-to-fridge
even though several other actions occur between them.

The challenge that we undertake in this paper is: Can
an algorithm learn about the aforementioned relations in
the activities when just given a completely unlabeled set
of RGB-D videos?

Most previous works focus on action detection in a su-
pervised learning setting. In the training, they are given
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Figure 1: Our goal is to automatically segment RGB-D videos
and assign action-topics to each segment. We propose a com-
pletely unsupervised approach to modeling the human skeleton
and RGB-D features to actions, as well as the pairwise action co-
occurrence and temporal relations. We then show that our model
can be used to detect which action people forgot, a new application
which we call action patching.

fully labeled actions in videos [23} 29, 31]], or weakly su-
pervised action labels [9, [7]], or locations of human/their
interactive objects [21, 135 25]. Among them, the tempo-
ral structure of actions is often discovered by Markov mod-
els such as Hidden Markov Model (HMM) [34] and semi-
Markov [12,|32]], or by linear dynamical systems [3]], or by
hierarchical grammars [27} 37,120, 39, [2]], or by other spatio-
temporal representations [15} 26| [17, [19]. Most of these
works are based on RGB features and only model the short-
range relations between actions (see Section |Z| for details).

Different from these approaches, we consider a com-
pletely unsupervised setting. The novelty of our approach
is the ability to model the long-range action relations in
the temporal sequence, by considering pairwise action co-
occurrence and temporal relations, e.g., put-milk-back-to-
fridge often co-occurs with and temporally after fetch-milk-
from-fridge. We also use the more informative human skele-
ton and RGB-D features, which show higher performance
over RGB only features for action recognition [18}, 42} [22].



In order to capture the rich structure in the activity, we
draw strong parallels with the work done on document mod-
eling from natural language (e.g., [6]). We consider an ac-
tivity video as a document, which consists of a sequence
of short-term action clips as action-words. And an activity
is about a set of action-topics indicating which actions are
present in the video, such as fetch-milk-from-fridge in the
warming milk activity. Action-words are drawn from these
action-topics and has a distribution for each topic. Then we
model the following (see Fig. [2):

* Action co-occurrence. Some actions often co-occur
in the same activity. We model the co-occurrence
by adding correlated topic priors to the occurrence
of action-topics, e.g., fetch-milk-from-fridge and put-
milk-back-to-fridge has strong correlations.

* Action temporal relations. Some actions often causally
follow each other, and actions change over time during
the activity execution. We model the relative time dis-
tributions between every action-topic pair to capture
the temporal relations.

We first show that our model is able to learn meaningful rep-
resentations from the unlabeled activity videos. We use the
model to temporally segment videos to segments assigned
with action-topics. We show that these action-topics are se-
mantically meaningful by mapping them to ground-truth ac-
tion classes and evaluating the labeling performance.

We then also show that our model can be used to de-
tect forgotten actions in the activity, a new application that
we call action patching. We show that the learned co-
occurrence and temporal relations are very helpful to infer
the forgotten actions by evaluating the patching accuracy.

We also provide a new challenging RGB-D activity
video dataset recorded by the new Kinect v2 (see examples
in Fig.[8), in which the human skeletons and the audio are
also recorded. It contains 458 videos of human daily activi-
ties as compositions of multiple actions interacted with dif-
ferent objects, in which people forget actions in 222 videos.
They are performed by different subjects in different envi-
ronments with complex backgrounds.

In summary, the main contributions of this work are:

* Our model is completely unsupervised and non-
parametric, thus being more useful and scalable.

* Our model considers both the short-range and the long-
range action relations, showing the effectiveness in the
action segmentation and recognition, as well as in a
new application action patching.

* We provide a new challenging RGB-D activity dataset
recorded by the new Kinect v2, which contains videos
of multiple actions interacted with different objects.

2. Related Work

Most previous works on action recognition are super-
vised [21} 9] 26} 23, [29] 35 7} 24]. Among them, the linear

models [34} 12132} 3] are the most popular, which focus on
modeling the action transitions in the activities. More com-
plex hierarchical relations [27, [37, 20} 39] or graph rela-
tions [2] are considered in modeling actions in the complex
activity. Although they have performed well in different ar-
eas, most of them rely on local relations between adjacent
clips or actions that ignore the long-term action relations.

There also exist some unsupervised approaches on action
recognition. Yang et al. [43] develop a meaningful repre-
sentation by discovering local motion primitives in an unsu-
pervised way, then a HMM is learned over these primitives.
Jones et al. [13]] propose an unsupervised dual assignment
clustering on the dataset recorded from two views.

Different from these approaches, we use the richer hu-
man skeleton and RGB-D features rather than the RGB ac-
tion features 38l [14]. We model the pairwise action co-
occurrence and temporal relations in the whole video, thus
relations are considered globally and completely with the
uncertainty. We also use the learned relations to infer the
forgotten actions without any manual annotations.

Action recognition using human skeletons and RGB-D
camera have shown the advantages over RGB videos in
many works. Skeleton-based approach focus on propos-
ing good skeletal representations [31, [33, 136, 42, 22].
Besides of the human skeletons, we also detect the hu-
man interactive objects in an unsupervised way to pro-
vide more discriminate features. Object-in-use contextual
information has been commonly used for recognizing ac-
tions [18} 19} 125, 139]]. Most of them depend on correct ob-
ject tracking or local motion changes. They lost the high-
level action relations which can be captured in our model.

Our work is also related to the topic models. LDA [6]
was the first hierarchical Bayesian topic model and widely
used in different applications. The correlated topic mod-
els [4} [16] add the priors over topics to capture topic corre-
lations. A topic model over absolute timestamps of words
is proposed in [40] and has been applied to action recog-
nition [10]. However, the independence assumption of dif-
ferent topics would lead to non smooth temporal segmen-
tations. Differently, our model considers both correlations
and the relative time distributions between topics rather than
the absolute time, which captures richer information of ac-
tion structures in the complex human activity.

3. Overview

We outline our approach in this section (see approach pi-
pline in Fig. [2). The input to our system is RGB-D videos
with the 3D joints of human skeletons from Kinect v2.
We first decompose a video into a sequence of overlapping
fixed-length temporal clips (step (1)). We then extract the
human skeleton features and the human interactive object
features from the clips (introduced in Section. @ which
show higher performance over RGB only features for action
recognition [18} 42} 22].
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Figure 2: The pipeline of our approach. Training (blue arrows) follows steps (1), (2), (3), (4). Testing (red arrows) follows steps (1), (3),
(5). The steps are: (1) Decompose the video into a sequence of overlapping fixed-length temporal clips. (2) Learn the action-dictionary
by clustering the clips, where the cluster centers are action-words. (3) Map the clips to the action-words in the action-dictionary to get
the action-word representation of the video. (4) Learn the model from the action-word representations of training videos. (5) Assign

action-words in the video with action-topics using the learned model.

In order to build a compact representation of the action
video, we draw parallels to document modeling in the natu-
ral language [6]] to represent a video as a sequence of words.
We use k-means to cluster the clips to form an action-
dictionary, where we use the cluster centers as action-words
(step (2)). Then, the video can be represented as a sequence
of action-word indices by mapping its clips to the nearest
action-words in the dictionary (step (3)). And an activity
video is about a set of action-topics indicating which ac-
tions are present in the video.

We then build an unsupervised learning model (step (4))
that models the mapping of action-words to the action-
topics, as well as the co-occurrence and the temporal re-
lations between the action-topics. Using the learned model,
we can assign the action-topic to each clip (step (5)), so that
we can get the action segments, the continuous clips with
the same assigned topic.

The unsupervised action-topic assignments of action-
words are challenging because there is no annotations dur-
ing the training stage. Besides extracting rich visual fea-
tures, we well consider the relations between action-topics.
Different from previous works, our model can capture
long-range relations between actions e.g., put-milk-back-
to-fridge is strongly related to fetch-milk-from-fridge with
pouring and drinking between them. We model all pair-
wise co-occurrence and temporal casual relations between
occurring action-topics in the video, using a new probabilis-
tic model (introduced in Section ). Specifically, we use a
joint distribution as the correlated topic priors. They esti-
mate which actions are most likely to co-occur in a video.
And we use a relative time distributions of topics to capture
the temporal causal relations. They estimate the possible
temporal ordering of the occurring actions in the video.

Figure 3: Examples of the human skeletons (red line) and the ex-
tracted interactive objects (green mask, left: fridge, right: book).

3.1. Visual Features

We describe how we extract the visual features of a clip
in this sub-section. We extract both skeleton and object fea-
tures from the output by the Kinect v2 [[I]], which has an im-
proved body tracker and higher resolution of RGB-D frame
than the Kinect v1. The skeleton has 25 joints in total. Let
Xe = {=§, 25, -+, 255} be the 3D coordinates of 25 joints
of a skeleton in the current frame. We first compute the
cosine of the angles between the connected parts in each
frame: «; = piy1 - pi/|pit1] - |pi], where p; = z;41 — a;
is the body part. The change of the joint coordinates and
angles can well capture the human body movements. So
we extract the motion features and off-set features by
computing their Euclidean distances D(, ) to previous frame

r c—1 and the first frame 7, f¢*; in the clip:

c,c—1»
o1 = {D(af, oL, foen = {D(af, af7h)
25

fé”,1 = {]D)(xf,mzl) 12217 ffﬁ = {]D(af,ail) i=1-
Then we concatenate all f7._, f._y, f&q, f¢ as the hu-
man features of the clip.

We also extract the human interactive objects based on
the human hands, motion detection and edge detection. The
interactive objects can help discriminate the different hu-
man actions with similar body motions such as fetch-book
and turn-on-monitor. To detect the interactive objects, first
we segment each frame into super-pixels using a fast edge
detection approach [8]] on both RGB and depth images. The
image segmentation provides richer candidate super-pixels

25
=1



Figure 4: The graphic model of LDA (left) and our model (right).

rather than pixels to further extracting objects. Second we
use a moving targets detection approach [28] to detecting
foreground mask by removing the unnecessary steady back-
grounds. Third we consider the interactive objects should
be close to tracked human hands. Combining above three
facts, we extract features from the image segments with
more than 50% in the foreground mask and within a dis-
tance to the human hand joints in both 3D points and 2D
pixels (see examples in Fig. [3). Then we extract six ker-
nel descriptors from these image segments: gradient, color,
local binary pattern, depth gradient, spin, surface normals,
and KPCA/self-similarity, which have been proven to be
useful features for RGB-D scene labeling [41]. We con-
catenate the human features and the object features as the
final feature vector of a clip.

4. Learning Model

In order to incorporate the aforementioned properties of
activities for patching, we present a new generative model
(see the graphic model in Fig. @ right and the notations in
Fig.[5|and Table[I). The novelty of our model is the ability
to infer the probability of forgotten actions in a complex
activity video.

Consider a collection of D videos (documents in the
topic model). Each video consists of N, action-words
{wna}Y4, mapped to the action-dictionary. Consider K la-
tent action-topics, 2,4 is the topic assignment of each word,
indicating which action-topic the action-word w,,q4 belongs
to in the video. Then continuous action-words with the
same topic in a video consist an action segment, and the
segments assigned with the same topic from different videos
consist an action-topic segment cluster.

The topic model such as LDA [6]] has been very common
for document modeling from language (see graphic model
in Fig. @}left), which generates a document using a mixture
of topics. To model human actions in the video, our model
introduces co-occurrence and temporal structure of topics
instead of the topic independency assumption in LDA.

Table 1: Notations in our model.

Symbols Meaning

D number of videos in the training database;

K number of action-topics;

Ny number of words in a video;

Wnd n-th word in d-th document;

Znd topic-word assignment of w,,4;

tnd the normalized timestamp of of w,, 4;

tmnd = tmd — tnq the relative time between w,, 4 and w,q;
.4 the probabilities of topics in d-th document;

V.4 the priors of 7.4 in d-th document;

bk the multinomial distribution of the word from topic k;
Ly 2 the mutivariate normal distribution of v.4;

Or1 the relative time distribution of ¢,,,,, 4, between topic k, [;

N, Mapped Action Words

[+ ] s o] 2 |
w, —t — W

md ‘mnd nd
Action Words assigned with Action Topics
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Figure 5: Notations in a video.

Basic generative process. In a document d, the topic
assignment z,4 is chosen from a multinomial distribution
with parameter 7.4, 24, ~ Mult(m.q), where 7.4 is sam-
pled from a prior. And the word w,,4 is generated by a topic-
specific multinomial distribution ¢, ,, Wan ~ Mult(¢.,, ),
where ¢, ~ Dir(f) is the word distribution of topic k,
sampled from a Dirichlet prior with the hyperparameter 5.

Topic correlations. First we consider correlations be-
tween topics to model the probabilities of co-occurrence of
actions. Let 74 be the Kprobability of topic k occurring in
document d, where > ;_; mrg = 1. Instead of sampling
it from a fix Dirichlet prior with parameter o in LDA, we
construct the probabilities by a stick-breaking process:

k—1
1
Trd = Y(Vka) 11;11 V(via), ¥(vra) T+ oxp(—vra)’
where 0 < U(vgq) < 1is a classic logistic function, which
satisfies U(—vgq) = 1 —U(vgq), and vgg serves as the prior
of 4. The vector v.4 in a video are drawn from a mutivari-
ate normal distribution N (p, X), which captures the corre-
lations between topics. In practice, v.q = [v14, - , VK —1.d]
is a truncated vector for K — 1 topics, then we can set
Tkd = 1 — Z,f:_ll Thd = HkK:_ll U (—vgq) as the proba-
bility of the final topic for a valid distribution of 7.4.
Relative time distributions. Second we model the rel-
ative time of occurring actions by taking their time stamps
into account. We consider that the relative time between
two words are drawn from a certain distribution according
to their topic assignments. In detail, let ¢,,4,tnq € (0,1)
be the absolute time stamp of n-th word and m-th word,
which is normalized by the video length. t,,,,q4 = tind — thd
is the relative time of m-th word relative to n-th word (the
green line in Fig. E]) Then t,,,,,q is drawn from a certain
distribution, tynqg ~ Q(0s,,,.2,,), Where 0, . . are the
parameters. (6y;) are K? pairwise topic-specific relative
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Figure 6: The relative time distributions learned by our model on
training set (the blue dashed line) and the ground-truth histogram
of the relative time over the whole dataset (the green solid line).

time distributions defined as follows:

Ot = L oe NOOL) it =0,
ST = b N(t8,) i <0,

An illustration of the learned relative time distributions
are shown in Fig.[6] We can see that the distributions we
learned can correctly reflect the order of the actions, e.g.,
put-back-to-fridge is after pouring and can be before/after
microwaving, and the shape is mostly similar to the real dis-
tributions. Here the Bernoulli distribution by, ; /1—by, ; gives
the probability of action k after/before the action . And
two independent normal distributions NV (t|9;l) /N(t0,,)
estimate how long the action k is after/before the action ]
Then the order and the length of the actions will be captured
by all these pairwise relative time distributions.

5. Gibbs Sampling for Learning and Inference

Gibbs sampling is commonly used as a means of statis-
tical inference to approximate the distributions of variables
when direct sampling is difficult [5} [16]. Given a video,
the word w,,4 and the relative time %,,,,4 are observed. In
the training stage, given a set of training videos, we use
Gibbs sampling to approximately sample other hidden vari-
ables from the posterior distribution of our model. Since
we adopt conjugate prior Dir(3) for the multinomial dis-
tributions ®, we can easily integrate out ¢, and need not
to sample them. For simplicity and efficiency, we estimate
the standard distributions including the mutivariate normal
distribution N (u, ) and the time distribution £2(6y,;) by the
method of moments, once per iteration of Gibbs sampling.
And as in many applications using the topic model, we use
fixed symmetric Dirichlet distributions by setting 8 = 0.01.

In the Gibbs sampling updates, then we need to sample
the topic assignment z,,4 and the topic prior v.4. We can do
a collapsed sampling as in LDA by calculating the posterior

lSpe(:ially, when k£ = [, If two words are in the same segments, we
draw t from a normal distribution which is centered on zero, and the vari-
ance models the length of the action. If not, it also follows Eq. (I} indi-
cating the relative time between two same actions. We also use functions
tan(—7/2 4+ 7t)(0 < t < 1),tan(w/2 + 7t)(—1 < ¢t < 0) to feed ¢ to
the normal distribution so that the probability is valid, that summits to one
through the domain of ¢.

distribution of z,,4:
D(2nd = k|T.dy 2—nd, tnd) X Traw(k, Wpa)p(tnalz.4, 0),
N4

N+ NB’

0) = [ [ 2(tmndl0z,.0) 2 tnmalO 2,0,

w(k, wna) = (@)

p(tnd|zzd7

where N is the number of unique word types in dictionary,
N k_u?d denotes the number of instances of word w,,q as-
signed with topic &, excluding n-th word in d-th document,
and N, ™ denotes the number of total words assigned with
topic k. z_,q denotes the topic assignments for all words
except Zpq.

Note that, in Eq. (), mxq is the topic prior generated
by a joint distribution giving which actions are more likely
to co-occur in the video. w(k,wyq) is the word distri-
bution for topic k giving which topic the word is more
likely from. And p(t,q4|z.4,0) is the time distribution giv-
ing which topic-assignment of the word is more causally
consistent to other topic-assignments.

Due to the logistic stick-breaking transformation, the
posterior distribution of v.4 does not have a closed form. So
we instead use a Metropolis-Hastings independence sam-
pler [L1]]. Let the proposals g(v’;|v.q, i, 2) = N(v|p, X)
be drawn from the prior. The proposal is accepted with
probability min(A (v}, v.q), 1), where

* M, * *
p(v:d|ﬂ’ E) Hn:dl p(znd|vzd)q(vid|v:d7 1y E)
(U~d|ﬂa E) H,Affl p(znd|U:d)Q(v;*d|U:da s E)

_ H P(znalvly) _ ﬁ(@)zfglé(z,m,k)7
P(zndlva) (= Ta

which can be easﬂy calculated by counting the number of
words assigned with each topic by z,4. Here the function
d(x,y) = lif only if z = y, otherwise equal to 0. The time
complexity of the sampling per iteration is O(N3K D).

Given a test video, we fix all parameters learned in the
training stage and only sample the topic assignments 2,4
and the topic priors v.q.

A0, v.0) =

5.1. Action Segmentation and Recognition

After we learn the topic-assignment of each action-word,
we can easily get the action segments by merging the con-
tinuous clips with the same assigned topic. Also the as-
signed topic of the segment indicate which action it is and
these segments with the same assigned topic consist an
action-topic segment cluster.

5.2. Action Patching

We also apply our model in a new significant applica-
tion, called action patching. It reminds people of forgot-
ten actions by output a segment containing the forgotten ac-
tion from the training set (illustrated in Fig.[7). It is more
challenging than conventional similarity search, since the
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Figure 7: Illustration of action patching using our model.
Given a test video, we infer the forgotten topic from all miss-
ing topics in each segmentation point (¢1,t2 as above) using the
learned co-occurrence and temporal relations of the topics. Then
we select the top segment from the inferred action-topic’s segment
cluster by ranking them using a frame-wise similarity score.

retrieved target is not shown in the query video. Therefore,
learning the action co-occurrence and the temporal relations
is important in this application.

Different from existing models on action relations learn-
ing, our model learns all the pairwise relations rather than
only the local and the past-to-future transitions. This is very
useful to patching, since those actions occurred with a rela-
tively large time interval with or actions occurred after the
forgotten actions are also helpful to detect it, e.g., a put-
back-book might be forgotten as previously seen a fetch-
book action before a long reading, and seen a leaving action
indicates he really forgot to put-back-book.

Our model infers the forgotten action using the probabil-
ity inference based on the dependencies. After assigning the
topics to the action-words of a query video ¢, we consider
adding one additional action-word w into the video in each
segmentation point 5. Then the probabilities of the miss-
ing topics k., in each segmentation point can be compared
following the posterior distribution in Eq. (2):

P(2i = km, to = tslother) o mp, ap(tlz:a,0) Y w(km, w),

w

st. ts €Ts, km €[1: K| — K,

where T} is the set of segmentation points (¢, t2 in Fig.
and K. is the set of existing topics in the video (fetch-
book.etc. in Fig. []). Thus [1: K] — K, are the miss-
ing topics in the video (turn-off-monitor,etc. in Fig. [J).
p(ts|z.a,0), w(km,w) can be computed as in Eq. (2). Here
we marginized w to avoid the effect of a specific action-
word. Note that, 7,4 gives the probability of a missing
topic in the video decided by the correlation we learned in
the joint distribution prior, i.e., the close topics have higher
probabilities to occur in this query video. And p(ts|z.q4,6)
measures the casual consistency of adding a new topic.
Then we rank the pair (k,,,ts) using the above score
and select the top ones (three in the experiments). The seg-
ments with the selected topics k,, in the training set con-
sist a candidate patching segment set. Finally, we select
the top one from the candidates to output by comparing

their frame-wise distances. In detail, we consider that the
front and the tail of the patching segment f,r, f,¢ should
be similar to the tail of the adjacent segment in ¢ before ¢,
and the front of the adjacent segment in g after t,: fg, fy7-
At the same time, the middle of the patching segment f,,,
should be different to f,, f,y, as it is a different action for-
gotten in the video)| So we choose the patching segment
with the maximum score: ave(D(fpm, for)s D(fpm, fqr))—
maz(D(fpr, for), D(fpts fqr)), where D(, ) is the average
pairwise distances between frames, ave(, ), max(, ) are the
average and max value. If the maximum score is below a
threshold or there is no missing topics (i.e., K, = [1 : K])
in the query video, we claim there is no forgotten actions.

6. Experiments
6.1. Dataset

We collect a new challenging RGB-D activity dataset
recorded by the new Kinect v2 cameraﬂ Each video in the
dataset contains 2-7 actions interacted with different objects
(see examples in Fig. [8). The new Kinect v2 has higher
resolution of RGB-D frames (RGB: 1920 x 1080, depth:
512 x 424) and improved body tracking of human skele-
tons (25 body joints). We record 458 videos with a total
length of about 230 minutes. We ask 7 subjects to perform
human daily activities in 8 offices and 5 kitchens with com-
plex backgrounds. And in each environment the activities
are recorded in different views. It composed of fully anno-
tated 21 types of actions (10 in the office, 11 in the kitchen)
interacted with 23 types of objects. We also record the au-
dio, though it is not used in this paper.

In order to get a variation in activities, we ask partici-
pants to finish task with different combinations of actions
and ordering naturally. Some actions occur together often
such as fetch-from-fridge and put-back-to-fridge while some
are not always in the same video (see more examples on our
website). Some actions are in fix ordering such as fetch-
book and put-back-book while some occur in random order.
Moreover, to evaluate the action patching performance, 222
videos in the dataset has action forgotten by people natu-
rally and the forgotten actions are annotated.

6.2. Experimental Setting and Compared Baselines

We evaluate in two environments ‘office’ and ‘kitchen’.
In each environment, we split the data into a train set with
most full videos (office: 87, kitchen 119) and a few for-
gotten videos (office: 10, kitchen 10), and a test set with a
few full videos (office: 10, kitchen 20) and most forgotten
videos (office: 89, kitchen 113). We compare seven unsu-
pervised approaches in our experiments. They are Hidden

2Here the middle, front, tail frames are 20%-length of segment center-
ing on the middle frame, starting from the first frame, and ending at the
last frame in the segment respectively.

3The dataset and tools are released at http://watchnpatch.cs.
cornell.edu
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Figure 8: Action examples in our dataset. The left is RGB frame
and the right is depth frame with human skeleton (yellow). The
full action classes are shown on our website.

Markov Model (HMM), topic model LDA (TM), correlated
topic model (CTM), topic model over absolute time (TM-
AT), correlated topic model over absolute time (CTM-AT),
topic model over relative time (TM-RT) and our causal topic
model (CaTM), that is the correlated topic model over rel-
ative time. All these methods use the same human skele-
ton and RGB-D features introduced in Section 31l We
also evaluate HMM and our model CaTM using the pop-
ular features for action recognition, dense trajectories fea-
ture (DTF) [38]], extracted only in RGB Videosﬂ named as
HMM-DTF and CaTM-DTFE.

In the experiments, we set the number of topics (states
of HMM) equal to or more than ground-truth action classes.
For correlated topic models, we use the same topic prior in
our model. For models over absolute time, we consider the
absolute time of each word is drawn from a topic-specific
normal distribution. For models over relative time, we use
the same relative time distribution as in our model (Eq. (II[)).
The clip length of the action-words is set to 20 frames,
densely sampled by step one and the size of action dic-
tionary is set to 500. For patching, the candidate set for
different approaches consist of the segments with the in-
ferred missing topics by transition probabilities for HMM,
the topic priors for TM and CTM, and both the topic pri-
ors and the time distributions for TM-AT, TM-RT, CTM-AT
and our CaTM. Then we use the same ranking score as in
Section[5.2]to select the top one patched segments.

6.3. Evaluation Metrics

We want to evaluate if the unsupervised learned action-
topics (states for HMM) are semantically meaningful. We
first map the assigned topics to the ground-truth labels for
evaluation. This could be done by counting the mapped
frames between topics and ground-truth classes. Let k;, ¢;
be the assigned topic and ground-truth class of frame ;.
The count of a mapping is: my. = %
> 0(ki, k)o(c4, ¢) is the number of frames assigned with
topic k as the ground-truth class ¢ and normalized by the
number of frames as the ground-truth class c: ), d(c;, ¢).
Then we can solve the following binary linear programming

, Where

4We train a codebook with the size of 2000 and encode the extracted
DTF features in each clip as the bag of features using the codebook.

to get the best mapping:

max E LhkeMke,
x

k,c
s.t. Vk, Zxkc =1, Ve, Zxkc >1, xp.€{0,1},
c k

where x. = 1 indicates mapping topic k to class c, other-
wise zx. = 0. And ZC Zre = 1 constrain that each topic
must be mapped to exact one class, >, 2. > 1 constrain
that each class must be mapped by at least one topic.

We then measure the performance in two ways. Per
frame: we compute frame-wise accuracy (Frame-Acc), the
ratio of correctly labeled frames. Segmentation: we con-
sider a true positive if the overlap (union/intersection) be-
tween the detected and the ground-truth segments is more
than a default threshold 40% as in [27]. Then we compute
segmentation accuracy (Seg-Acc), the ratio of the ground-
truth segments that are correctly detected, and segmenta-
tion average precision (Seg-AP) by sorting all action seg-
ments output by the approach using the average probability
of their words’ topic assignments. All above three metrics
are computed by taking the average of each action class.

We also evaluate the patching accuracy (P-Acc) by the
portion of correct patched video, including correctly output
the forgotten action segments or correctly claiming no for-
gotten actions. We consider the output action segments by
the algorithm containing over 50% ground-truth forgotten
actions as correctly output the forgotten action segments.

6.4. Results

Table [2] and Fig. [0 show the main results of our exper-
iments. We first perform evaluation in the offline setting
to see if actions can be well segmented and clustered in
the train set. We then perform testing in an online setting
to see if the new video from the test set can be correctly
segmented and the segments can be correctly assigned to
the action cluster. We can see that our approach performs
better than the state-of-the-art in unsupervised action seg-
mentation and recognition, as well as action patching. We
discuss our results in the light of the following questions.

Did modeling the long-range relations help? We stud-
ied whether modeling the correlations and the temporal re-
lations between topics was useful. The approaches consid-
ering the temporal relations, HMM, TM-RT, and our CaTM,
outperform other approaches which assume actions are tem-
poral independent. This demonstrates that understanding
temporal structure is critical to recognizing and patching
actions. The approaches, TM-RT and CaTM, which model
both the short-range and the long-range relations perform
better than HMM only modeling local relations. Also, the
approaches considering the topic correlations CTM, CTM-
AT, and our CaTM perform better than the corresponding
non-correlated topic models TM, TM-AT, and TM-RT. Our
CaTM, which considers both the action correlation priors



Table 2: Results using the same number of topics as the ground-
truth action classes. HMM-DTF, CaTM-DTF use DTF RGB fea-
tures and others use our human skeleton and RGB-D features.

‘office’ Seg-Acc Seg-AP Frame-Acc  P-Acc
(%) Offline Online Offline Online Offline Online

HMM-DTF| 15.2 9.4 214 207 20.2 159 236
HMM 18.0 140 259 248 247 213 333
™ 9.3 9.2 20.9 19.6 203 13.0 133
CTM 10.0 59 18.1 15.8 20.2 164 133
TM-AT 8.9 3.7 254 19.0 18.6 13.8 120
CTM-AT 9.6 6.8 253 19.8 19.6 155 108
TM-RT 308 309 29.0 30.2 38.1 364 395
CaTM-DTF| 282 27.0 283 274 374 340 337
CaTM 306 329 331 346 399 385 415

‘kitchen’ Seg-Acc Seg-AP Frame-Acc  P-Acc
(%) Offline Online Offline Online Offline Online

HMM-DTF| 4.9 3.6 18.8 5.6 123 9.8 2.3
HMM 20.3 15.2 20.7 13.8 21.0 18.3 7.4
™ 7.9 4.7 21.5 14.7 20.9 11.5 9.6
CTM 10.5 9.2 20.5 14.9 18.9 15.7 6.4
TM-AT 8.0 4.8 21.5 21.6 20.9 14.0 7.4
CTM-AT 9.7 10.0 19.1 22.6 20.1 16.7  10.7
TM-RT 323 26.9 234 23.0 35.0 312 183
CaTM-DTF| 26.9 23.6 18.4 17.4 333 299 165
CaTM 332 290 26.4 25.5 37.5 340 205

0.35
O_M
0.25 W
0.

90 12 14 16 18 01 0 12 14 16 18
Topics Topics
OHMM B8TM %CTM < TM-AT % CTM-AT # TM-RT £ CaTM

Figure 9: Online segmentation Acc/AP varied with the number of
topics in ‘office’ dataset.

and the temporal relations, shows the best performance.

How successful was our unsupervised approach in
learning meaningful action-topics? From Table[2] we can
see that the unsupervised learned action-topics can be se-
mantically meaningful even though ground-truth semantic
labels are not provided in the training. In order to qualita-
tively estimate the performance, we give a visualization of
our learned topics in Fig.[I0] It shows that the actions with
the same semantic meaning are clustered together though
they are in different views and motions. In addition to the
one-to-one correspondence between topics and semantic ac-
tion classes, we also plot the performance curves varied
with the topic number in Fig.[9] It shows that if we set the
topics a bit more than ground-truth classes, the performance
increases since a certain action might be divided into mul-
tiple action-topics. But as topics increase, more variations
are also introduced so that performance saturates.

RGB videos vs. RGB-D videos. In order to compare
the effect of using information from RGB-D videos, we
also evaluate our model CaTM and HMM using the pop-
ular RGB features for action recognition (CaTM-DTF and

put-back-to-fridge =) motion —> time

turn-on-monitor

mode 2
Figure 10: Visualization of the learned topics using our model.
For better illustration, we decompose the segments with the same
topic into different modes (shown two) and divide a segment into
three stages in time. The clips from different segments in the same
stage are merged by scaling to the similar size of human skeletons.

HMM-DTF in Table2). Clearly, the proposed human skele-
ton and RGB-D features outperform the DTF features as
more accurate human motion and object are extracted.
How well did our new application of action patch-
ing performs? From Table 2] we find that the approaches
learning the action relations mostly give better patching per-
formance. This is because the learned co-occurrence and
temporal structure strongly help indicate which actions are
forgotten. Our model capturing both the short-range and
long-range action relations shows the best results.

6.5. Sharing the Learned Topics

In order to make our learned knowledge useful to robots,
we also share the learned topics to RoboBrain [30], a large-
scale knowledge engine for robots. Our learned action top-
ics are represented as nodes in the knowledge graph for
robots and these nodes are connected with edges of our
learned co-occurrence and temporal relations.
7. Conclusion

In this paper, we presented an algorithm that models the
human activities in a completely unsupervised setting. We
showed that it is important to model the long-range relations
between the actions. To achieve this, we considered the
video as a sequence of action-words, and an activity as a set
of action-topics. Then we modeled the word-topic distribu-
tions, the topic correlations and the topic relative time dis-
tributions. We then showed the effectiveness of our model
in the unsupervised action segmentation and recognition, as
well as the action patching. For evaluation, we also con-
tributed a new challenging RGB-D activity video dataset.
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