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Detecting objects, estimating their pose, and recovering their 3D shape are critical problems in many
vision and robotics applications. This paper addresses the above needs using a two stages approach. In
the first stage, we propose a new method called DEHV - Depth-Encoded Hough Voting. DEHV jointly
detects objects, infers their categories, estimates their pose, and infers/decodes objects depth maps from
either a single image (when no depth maps are available in testing) or a single image augmented with
depth map (when this is available in testing). Inspired by the Hough voting scheme introduced in [1],
DEHV incorporates depth information into the process of learning distributions of image features
(patches) representing an object category. DEHV takes advantage of the interplay between the scale of
each object patch in the image and its distance (depth) from the corresponding physical patch attached
to the 3D object. Once the depth map is given, a full reconstruction is achieved in a second (3D modelling)
stage, where modified or state-of-the-art 3D shape and texture completion techniques are used to
recover the complete 3D model. Extensive quantitative and qualitative experimental analysis on existing
datasets [2-4] and a newly proposed 3D table-top object category dataset shows that our DEHV scheme
obtains competitive detection and pose estimation results. Finally, the quality of 3D modelling in terms of
both shape completion and texture completion is evaluated on a 3D modelling dataset containing both
in-door and out-door object categories. We demonstrate that our overall algorithm can obtain convincing
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3D shape reconstruction from just one single uncalibrated image.
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1. Introduction

Detecting objects and estimating their geometric properties are
crucial problems in many application domains such as robotics,
autonomous navigation, high-level visual scene understanding,
surveillance, gaming, object modelling, and augmented reality.
For instance, if one wants to design a robotic system for grasping
and manipulating objects, it is of paramount importance to encode
the ability to accurately estimate object orientation (pose) from the
camera view point as well as recover structural properties such as
its 3D shape. This information will help the robotic arm grasp the
object at the right location and successfully interact with it. More-
over, if one wants to augment the observation of an environment
with virtual objects, the ability to reconstruct visually pleasing
3D models for object categories is very important.

This paper addresses the above needs, and tackles the following
challenges: (i) Learn models of object categories by combining
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view specific depth maps along with the associated 2D image of
object instances of the same class from different vantage points.
Depth maps with registered RGB images can be easily collected
using sensors such as Kinect Sensor [5]. We demonstrate that com-
bining imagery with 3D information helps build richer models of
object categories that can in turn make detection and pose estima-
tion more accurate. (ii) Design a coherent and principled scheme
for detecting objects and estimating their pose from either just a
single image (when no depth maps are available in testing)
(Fig. 1b), or a single image augmented with depth maps (when
these are available in testing). In the latter case, 3D information
can be conveniently used by the detection scheme to make detec-
tion and pose estimation more robust than in the single image
case. (iii) Have our detection scheme reconstruct the 3D model of
the object from just a single uncalibrated image (when no 3D
depth maps are available in testing) (Fig. 1c-g) and without having
seen the object instance during training.

In this paper, we propose a two stages approach to address the
above challenges (Fig. 2). In the first stage, our approach seeks to (i)
detect the object in the image, (ii) estimate its pose, and (iii) re-
cover a rough estimate of the object 3D structure (if no depth maps
are available in testing). This is achieved by introducing a new
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Fig. 1. Key steps of our reconstruction algorithm: (a) Single query 2D image. (b) Detected object; the bounding box indicates the location where the object has been estimated
in the image; Our proposed Depth Encoded Hough Voting (DEHV) detector can be used to recognize object class label, roughly estimate the object pose (i.e., object orientation
in the camera reference system), and automatically reconstructs surface elements (3D points) in the camera reference system (c). As figure shows, the reconstruction is
clearly partial and incomplete; (d) Shape recovery: by using the estimated object class label and pose, we propose a novel 2D + 3D ICP algorithm to register the reconstructed
surface elements with one of the 3D models that is available in training; this allows to infer the object 3D structure in regions that are not visible from the query image. (e)
Texture mapping: after performing 3D shape registration, we texture map image texture to the 3D shape model; again, the object texture is incomplete as we cannot map
image texture to occluded surface elements. (f) Texture completion: we use the fact that some object categories are symmetric to transfer image texture to the occluded
regions. (g) Remaining un-textured surfaces elements are completed using image compositing methods inspired by [6].
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Fig. 2. Flow chart showing the process of our proposed system.

formulation of the Implicit Shape Model (ISM) [1] and generalized
Hough voting scheme [7]. In our formulation, depth information is
incorporated into the process of learning distributions of object im-
age patches that are compatible with the underlying object loca-
tion (shape) in the image plane. We call our scheme DEHV -
Depth-Encoded Hough Voting scheme (Section 3.1). DEHV addresses
the intrinsic weaknesses of existing Hough voting schemes [1,8-
10] where errors in estimating the scale of each image object patch
directly affects the ability of the algorithm to cast consistent votes
for the object existence. To resolve this ambiguity, we take advan-
tage of the interplay between the scale of each object patch in the
image and its distance (depth) from the corresponding physical
patch attached to the 3D object, and specifically use the fact that
objects (or object parts) that are closer to the camera result in im-
age patches with larger scales. Depth is encoded in training by
using available depth maps of the object from a number of view
points. At recognition time, DEHV is applied to detect objects
(Fig. 1b), estimate their pose, and simultaneously infer their 3D
structure given hypotheses of detected objects (Fig. 1¢). The object
3D structure is inferred at recognition time by estimating (decod-
ing) the depth (distance) of each image patch involved in the vot-
ing from the camera center. Critically, depth decoding can be
achieved even if just a single test image is provided. If depth maps
are available in testing, the additional information can be used to
further validate if a given detection hypothesis is correct or not.
We summarize the inferred quantities in Fig. 3 and the required
supervision in Fig. 4. Notice that the inferred object 3D structure
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Fig. 3. Estimated quantities in Stage 1.

Stage 1 Stage 2

-List of CAD Models

-Images of object
from multiple views
-Depth maps of object
from multiple views

-Bounding boxes and

pose annotation

Fig. 4. Required degree of supervision in training for each stage.

from stage one is partial (it does not account for the portions of
the object that are not visible from the query image) and sparse
(it only recovers depth for each voting patch). The goal of the sec-
ond stage is to obtain a full 3D object model where both 3D struc-
ture and albedo properties (texture) are also recovered.

In the second stage, the information inferred from stage one
(object location in the image, scale, pose, and rough 3D structure)
is used to obtain a full 3D model of the object. Specifically, we con-
sider a 3D modelling stage where a full 3D model of the object is
obtained by 3D shape recovery and texture completion (Sec-
tion 3.2). We carry out 3D shape recovery (i.e., infer shape from
the unseen regions) by: (i) utilizing 3D shape exemplars from a
database of 3D CAD models which can be collected from [11] and
other online 3D warehouses, or obtained by shape from silhouette
[12] and (ii) applying a novel 2D + 3D iterative closest point (ICP)
matching algorithm which jointly registers the best 3D CAD model
to the inferred 3D shape and the occlusion boundaries of back pro-
jected 3D CAD model to object contours in the image. By choosing
the best fit, our system obtains a plausible full reconstruction of
the object 3D shape (Section 3.3) (Fig. 1d). Object appearance is
rendered by texture mapping the object image into the 3D shape.
Such texture is clearly incomplete as non-visible object surface
areas cannot be texture mapped (Fig. 1e). Thus, we perform texture
completion by: (i) transferring texture to such non-visible object
surface areas by taking advantage of the fact that some object cat-
egories are symmetric (when possible) (Fig. 1f) and (ii) using an er-
ror-tolerant image compositing technique inspired by [6] to fill the
un-textured regions (i.e., holes) (Section 3.4) (Fig. 1g). We summa-
rize the required supervision in Fig. 4.

Extensive experimental analysis on a number of public datasets
(including car Pascal VOC07 [2], mug ETHZ Shape [3], mouse and
stapler 3D object dataset [13]), an two in-house datasets (compris-
ing at most five object categories), where ground truth 3D informa-
tion is available, are used to validate our claims (Section 4).
Experiments with the in-house datasets demonstrate that our
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DEHV scheme: (i) achieves better detection rates (compared to the
traditional Hough voting scheme); further improvement is ob-
served when depth maps are available in testing; (ii) produces con-
vincing 3D reconstructions from single images; the accuracy of
such reconstructions have been qualitatively assessed with respect
to ground truth depth maps; (iii) achieves accurate 3D shape
recovery and visually pleasing texture completion results. Experi-
ments with public datasets demonstrate that our DEHV success-
fully scales to different types of categories and works in
challenging conditions (severe background clutter, occlusions).
DEHV achieves state of the art detection results on several catego-
ries in ETHZ Shape dataset [3], and competitive pose estimation re-
sults on 3D object dataset [13]. We also evaluate the accuracy of
shape completion and quality of the texture completion on the
3D modelling dataset (Section 3.2). Finally, we show typical results
demonstrating that DEHV is capable to produce convincing 3D
reconstructions from single uncalibrated images using Pascal
VOCO07 dataset [2], ETHZ Shape dataset [3], and 3D object dataset
[13] in Figs. 19 and 15.

2. Previous work

In the last decade, the vision community has made substantial
progress addressing the problem of object categorization from 2D
images. While most of the work has focussed on representing ob-
jects as 2D models [14,1,15] or collections of 2D models [16], very
few methods have tried to combine in a principled way the appear-
ance information that is captured by images and the intrinsic 3D
structure of an object category. Works by [17,13,4] have proposed
solutions for modelling the way how 2D local object features (or
parts) and their relationship vary in the image as the camera view
point changes. Other works [18-21] propose hybrid representa-
tions where reconstructed 3D object models are augmented with
features or parts capturing diagnostic appearance. Interestingly,
few of these methods [22,21,23] have demonstrated and evaluated
the ability to recover 3D shape information from a single query im-
age. The work by [22] is the closest to ours in spirit. Authors in [22]
propose to use image patches to transfer metadata (i.e., depth). Un-
like our method, 3D information is not directly encoded into the
model during training. Other works propose to address the prob-
lem of detecting and estimating geometrical properties of single
object instances [24-27]; while accurate pose estimation and 3D
object reconstruction are demonstrated, these methods cannot be
easily extended to incorporate intra-class variability so as to detect
and reconstruct object categories. Unlike our work, these tech-
niques also require that the objects have sufficient “texture” on
their surface to carry out successful geometric registration. Other
approaches assume that additional information about the object
is available in both training and testing (videos, 3D range data)
[28,29]. These approaches tend to achieve high detection accuracy
and pose estimation relying on more expensive hardware plat-
forms, and fail when the additional 3D data is either partially or
completely unavailable. A comprehensive survey of 3D object
detection method is presented in [30].

2.1. 3D modelling

Research on 3D object and scene modelling from images has re-
ceived a large amount of attention in the graphics and vision com-
munity. Such approaches are often referred to as image-based
modelling techniques (IBM). Starting from early work by [31,32],
IBM techniques have been recently employed for successfully
modelling large scale environments such as city environments
from large collection of images on the internet [33,34]. IBM tech-
niques often require different degrees of human intervention [31]

or the assumptions that special equipments are available and/or
cameras are calibrated [35,36].

Even if outstanding results have been produced, many of these
methods make the basic assumption that several images (portray-
ing the object in the scene from different view points) are avail-
able. However, this is not always the case. Recovering scene
geometry from a single view has been initially explored under
the assumption of having users guiding the reconstruction
[37,38] or augmenting the photograph with additional 3D data
[39]. Recently, researchers have proposed to apply machine learn-
ing methodologies for resolving the 3D-2D mapping ambiguity and
obtaining convincing reconstructions of outdoor [40,41] and in-
door scenes [42-45] from just one single image.

Alternative techniques have been proposed for modelling spe-
cific 3D objects (rather than scenes or environments). Again,
depending on the application and the level of accuracy that one
aims to achieve, researchers have proposed methods employing
either external lighting sources such as lamps [46,47], projectors
[48], lasers [49], or a number of calibrated [50] or uncalibrated
views obtained using external devices such as turntables [51]. A re-
cent survey nicely summarizes most relevant works [52] from an
almost endless literature on this topic. Recently, Prasad et al. [53]
have proposed a method to reconstruct deformable object classes
from multiple and unordered images. Due to the absence of reli-
able point correspondences across deformable object instances,
class-specific curve correspondences need to be manually selected.

The reconstruction of an underlying 3D shape model is not al-
ways a necessary step if one wants to render the environment
appearance from just images. These methods fall under the name
of image based rendering approaches (IBR). Works by [54-57]
are among the most notable examples. The lack of the underlying
3D shape model, however, makes it harder for these techniques
to be used in applications where virtual worlds are to be aug-
mented with the reconstructed models.

As opposed to indoor or outdoor scenes where cues such as van-
ishing lines or texture foreshortening are available, fewer methods
have been proposed for recovering 3D models of objects from a sin-
gle image. Researchers mostly focused on recovering 3D shape
models from object contours (silhouettes) extracted or identified
on a single image either automatically [58,59] or through some le-
vel of user intervention [60-62]. These methods, however, often
assume topological properties of objects such as smoothness, con-
vexity, or cylindrical symmetry or heavily relies on user interven-
tion. In our work, we do not want our query objects to be subject to
these constraints. Rather, similar to [40,41], we advocate the usage
of machine learning for solving the daunting task of single view ob-
ject reconstruction with arbitrary topology and minimal user inter-
vention. Very recently, [63,64,21,23] have shown the ability to
reconstruct sparse/partial 3D object points from a single image.
However, none of these methods have been extensively tested so
as to demonstrate that realistic 3D models of objects can be
obtained.

3. Our method

To summarize, our method can be roughly decomposed in a rec-
ognition/reconstruction stage and a 3D modelling stage.

In the recognition/reconstruction stage, Depth-Encoded-
Hough-Voting detectors (DEHV) [64], trained with both object 3D
shape and local diagnostic appearance information, identifies ob-
ject’ locations and classes, and recovers approximate and partial
3D structure information from a single query image (Section 3.1)
(Fig. 1(a-c)).

Because we obtain only a partial reconstruction (object surface
that is not visible from the query image cannot be reconstructed at
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this stage). Thus, we consider a 3D modelling stage where a full 3D
model of the object is obtained by 3D shape recovery and texture
completion (Section 3.2) (Fig. 1d-g).

3.1. Stage 1: Depth-Encoded Hough Voting

In recognition techniques based on hough voting [7] the main
idea is to represented the object as a collection of parts (patches)
and have each part to cast votes in a discrete voting-space. Each
vote corresponds to a hypothesis of object location x and class O.
The object is identified by the conglomeration of votes in the vot-
ing space V(0,x). V(0,x) is typically defined as the sum of indepen-
dent votes p(0,x,f;s;,1;) from each part j, where J; is the location of
the part, s; is the scale of the part, and fj is the part appearance.

Previously proposed methods [1,8-10] differ mainly by the
mechanism for selecting good parts. For example, parts may be
either selected by an interest point detector [1,9], or densely sam-
pled across many scales and locations [8]; and the quality of the
part can be learned by estimating the probability [1] that the part
is good or discriminatively trained using different types of classifi-
ers [9,8]. In this paper, we propose a novel method that uses 3D
depth information to guide the part selection process. As a result,
our constructed voting space V(0,x|D), which accumulates votes
for different object classes O at location x, depends on the corre-
sponding depth information D of the image. Intuitively, any part
that is selected at a wrong scale can be pruned out by using depth
information. This allows us to select parts which are consistent
with the object physical scale. It is clear that depending on
whether object is closer or further, or depending on the actual
3D object shape, the way how each patch votes will change (Fig. 5).

In detail, we define V(0,x|D) as the sum of individual probabil-
ities over all observed images patches at location [; and for all pos-
sible scales s;, i.e,

V(0,x|D) = Z/p(o,x,f,-,sj,l,-mj) ds;
J

=3 [ pOXs. b d)p(ls ) M
J
p(s;lh, d)P(b|d;) ds;

where the summation over j aggregates the evidence from individ-
ual patch location, and the integral over s; marginalizes out the
uncertainty in scale for each image patch. Since fj is calculated
deterministically from observation at location I; with scale s;, and
we assume p(lj|d;) is uniformly distributed given depth, we obtain:

V(0,4D) x 3 / P(0,Xf;,5;, b, dy)p(s;[I.dy)ds;
i

-y / p(0,X(Ci, 53,15, d)p(Cilf) @)
Jid
p(silli, dj)ds;

Voting Space

True
Positive

False
Positive

Here we introduce codebook entry C;, matched by feature f, into the
framework, so that the quality of a patch selected will be related to
which codeword it is matched to. Noting that G is calculated only
using f; and not the location ;, scale s;, and depth d;, we simplify p(C;-
Ifi si. I;, d;) into p(Glf;). And by assuming that p(0,x|.) does not de-
pend on f; given G, we simplify p(0,x|G.f;,s;l;,d;) into
p(0,X(G,s. L ;).

Finally, we decompose p(0,x|.) into p(0|.) and p(x|.) as follows:

(CEDEDY | p(x10.C.5:.8.d)p(OICs 5.1 )

p(Gilfy)p s]\l,,d ) ds;

3)

3.1.1. Interplay between scale and depth

We design our method so as to specifically selects image
patches that tightly enclose a sphere with a fix radius r in 3D dur-
ing training. As a result, our model enforces a 1-to-1 mapping m
between scale s and depth d. This way, given the 3D information,
our method deterministically select the scale of the patch at each
location [, and given the selected patches, our method can infer
the underlying 3D information (Fig. 6). In detail, given the camera
focal length t, the corresponding scale s at location [ = (u, ») can be
computed as s=m(d,l) and the depth d can be inferred from

d=m~(s,). The mapping m obeys the following relations:
v); v=tan(0+ §)t
r v
0 = arcsin (d_ = arctan <?) )
A / 2
dy, = v : d projected onto yz plane

Hence, p(s|l,d) = 6(s — m(d,l)). Moreover, using the fact that there is
a 1-to-1 mapping between s and d, probabilities p(x|.) and p(O|.) are
independent to d given s. As a result, only scale s is directly influ-
enced by depth.

In the case when depth is unknown, p(s|l,d) becomes a uniform
distribution over all possible scales. Our model needs to search
through the scale space to find patches with correct scales. This
will be used to detect the object and simultaneously infer the
depth d =m~(s,I). Hence, the underlying 3D shape of the object
will be recovered.

3.1.2. Random forest codebook

In order to utilize dense depth map or infer dense reconstruc-
tion of an object, we use random forest to efficiently map features
finto codeword C (similar to [8]) so that we can evaluate patches
densely distributed over the object. Moreover, random forest is dis-
criminatively trained to select salient parts. Since feature f deter-
ministically maps to C' given the iy, random tree, the voting score
V(O,x|D) becomes:

Voting Space

AN

True
Positive

False
Positive

Fig. 5. Right panel shows that patches associated to the actual object parts (red boxes) will vote for the correct object hypothesis (red dots) in the voting space on the right.
However, parts from the background or other instances (cyan boxes) will cast votes that may create a false object hypothesis (green dots) in the voting space. Left panel shows
that given depth information, the patches selected at a wrong scale can be easily pruned. As a result, the false positive hypothesis will be supported by less votes. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Illustration of interplay between scale and depth (depth to scale mapping). Top panel illustrates the interplay between scale and depth. We make the assumption that
an image patch (green box) tightly encloses the physical 3D part with a fix size. During training, our method deterministically selects patches given the patch center [, 3D
information of the image, and focal length t. During testing, given the selected image patches on the object, our method directly infers the location of the corresponding
physical parts and obtains the 3D shape of the object. Bottom Panel illustrates the physical interpretation of Eq. (4). Under the assumption that image patch (red bounding
box) tightly encloses the 3D sphere with radius r, the patch scale s is directly related to the depth d given camera focal length t and the center [ = (u, v) of the image patch.
Notice that this is a simplified illustration where the patch center is on the yz plane. This figure is best viewed in colour. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

V(0,4D) x 3 / P(X10,C (), 55, L)p(OIC'(£))
Jid

p(sjlly, dy)ds;

()

where the summation over i aggregates the discriminative strength
of different trees. In Section 3.1.3, we describe how the distributions
of p(x|O.Ci([}).sj,lj) and p(O\C‘(ﬁ-)) are learned given training data, so
that each patch j knows where to vast votes during recognition.

3.1.3. Training the model

We assume that for a number of training object instances, the
3D reconstruction D of the object is available. This corresponds
to having available the distance (depth) of each image object patch
from its physical location in 3D. Our goal is to learn the distribu-
tions of location p(x|.) and object class p(0|.), and the mapping of
Ci(f). Here we define location x of an object as a bounding box with
center position g, height h, and aspect ratio a. We sample each im-
age patch centered at location [ and select the scale s = m(l,d). Then
the feature f is extracted from the patch (I,s). When the image
patch comes from a foreground object, we cache: (1) the informa-
tion of the relative voting direction b as "T”; (2) the relative object-
height/patch-scale ratio w as &; (3) the object aspect ratio a. Then,
we use both the foreground patches (positive examples) and back-
ground patches (negative examples) to train a random forest to ob-
tain the mapping C(f). p(O|C) is estimated by counting the
frequency that patches of O falls in the codebook entry C.
p(x|0,C,s,l) can be evaluated given the cached information
{v,w,a} as follows:

p(x|0,C,s,l)oc Y 5(q—bj-s+Lh—w;-s,a-a)
Jj€g(0,0)

where g(0,C) is a set of patches from O mapped to codebook entry C.

3.1.4. Recognition and 3D reconstruction

3.1.4.1. Recognition when depth is available. It is straightforward to
use the model when 3D information is observed during recogni-
tion. Since the uncertainty of scale is removed, Eq. (5) becomes

V(0,xD) < Y "p(x/0,C'(f), m(l;, d;), L)p(OIC'(f))
Jid

Since s; = m(l;,d;) is a single value at each location j, the system can
detect objects more efficiently by computing less features and
counting less votes. Moreover, patches selected using local appear-
ance at a wrong scale can be pruned out to reduce hallucination of
objects (Fig. 5).

3.1.4.2. Recognition when depth is not available. When no 3D infor-
mation is available during recognition, p(sj|l;,d;) becomes a uniform
distribution over the entire scale space. Since there is no closed
form solution of integral over s;, we propose to discretize the space
into a finite number of scales S so that Eq. (5) can be approximated
by

V(0.xID) o Y > p(x|0.C'(fj).5;. [)p(OIC'(f)).

Ji sjes

3.1.4.3. Decoding 3D information. Once we obtain a detection
hypothesis (x,0) (green box in Fig. 7a) corresponding to a peak
in the voting space V, the patches that have cast votes for a given
hypothesis can be identified (red cross in Fig. 7a). Since the
depth information is encoded by the scale s and position [ of
each image patch, we apply Eq. (4) in a reverse fashion to in-
fer/decode depths from scales. The reconstruction, however, is af-
fected by a number of issues: (i) Quantization error: The fact that
scale space is discretized into a finite set of scales, implies that
the depths d that we obtained are also discretized. As a result,
we observe the reconstructed point clouds as slices of the true
object (see Fig. 7b). We propose to use the height of the object
hypothesis h and the specific object-height/patch-scale ratio w
to recover the continuous scale § = h/w. Notice that since w is
not discretized, s is also not discretized. Hence, we recover the
reconstruction of an object as a continuum of 3D points (see
Fig. 7c). (ii) Phantom objects: The strength and robustness of
our voting-based method comes from the ability to aggregate
pieces of information from different training instances. As a re-
sult, the reconstruction may contain multiple phantom objects
since image patches could resemble those coming from different
training instances with slightly different intrinsic scales. Notice
that the phantom objects phenomenon reflects the uncertainty
of the scale of the object in an object categorical model. In order
to construct a unique shape of the detected object instance, we
calculate the relative object height in 3D with respect to a se-
lected reference instance to normalize the inferred depth. Using
this method, we infer a unique 3D structure of the visible surface
of the detected object.

3.1.4.4. Implementation details. In order to obtain a detail 3D shape
of the object, we evaluate 40 scales. At each scale, the voting space
is discretized into bins of 5 pixels by 5 pixels. The aspect ratio of
the object is also descritized into about 10 bins (depending on
the object category). In order to achieve high maximum recall,
we allow the detector to return as many as 1000 candidates with
scores higher than 0.01. After non-maximum suppression, we
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Fig. 7. A typical detection result in (a) shows object hypothesis bounding box (green box) and patches (red crosses) vote for the hypothesis. A naive reconstruction suffers
from quantization error (b) and phantom objects (c). Our algorithm overcomes these issues and obtains (d). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 8. Two examples of 3D + 2D ICP fitting. In (a and b) (Left), the 2D contour alignment results are shown, where a subset of points on the 2D object contour are indicated by
red crosses, and projected vertices lying on the occluding boundary of the 3D CAD model are indicated by green dots. In (a and b) (Right), the 3D points alignment results are
shown, where the partial/sparse inferred point clouds (by DEHV) are indicated by red crosses, and the vertices of the 3D CAD model are indicated by green dots. Notice that
these two alignments are jointly enforced by Eq. (6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 9. Hole filling results using (Left) classic Poisson compositing, and (Right) our
error-tolerant compositing technique. Notice that red circles highlight regions
where the bleeding artifact is fixed by the error-tolerant technique. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

typically obtain less than 100 candidates, and the correct detec-
tions are typically among the top few candidates. Training DEHV
for each class with one tree takes less than one hour and trees
can be trained in parallel. Detection using DEHV takes less than
one minute per image. The 2D + 3D ICP is completed less than a

second for each CAD model, and the total time for 2D + 3D ICP is
linearly proportional to the number of CAD models. The texture
completion step is done in a few seconds. Therefore, the overall
process will take about a few minutes in our experiment using less
than 10 CAD models.

3.2. Stage 2: 3D modelling

The goal of 3D modelling is to obtain the full 3D shape and tex-
ture of an (unknown) object from a single images portraying the
object observed from an (unknown) viewpoint. We can achieve
this by using the inferred depths from the image (Section 3.1),
which is a partial (view point limited) 3D point cloud (Partial
Shape) of the object (Fig. 1c¢). Here we discuss details on how to
complete the partial reconstruction.

3.3. 3D shape recovery

We adopt the idea of using 3D shape exemplars to help recover
the missing portions of object 3D surface. The idea (similar to [65])
is to find a 3D shape exemplar from a given database of 3D shape
that can be aligned to the existing incomplete 3D structure. As a re-
sult of this alignment, the incomplete elements of the surface can
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Fig. 11. Pose estimation results averaged across three categories. The average accuracy increases when more 3D information is available. Notice that, when depth is available

in both training and testing, the best performances are achieved.

be filled (replaced) with those of the aligned 3D exemplar. The
challenges are: (i) how to search efficiently in the database of 3D
shape exemplars until the most suitable shape is found. (ii) per-
form accurate alignment so as to enable accurate replacement.
The first challenge is addressed by leveraging the DEHV detector’s
ability to return object class and pose labels. This greatly reduces
the search space and allows to extract from the dataset a subset
of exemplars that are likely to be very similar to the one we seek
to reconstruct.

We carry out accurate alignment between the reconstructed 3D
shape and the exemplar 3D shape using a novel ICP algorithm. This
novel ICP performs alignment jointly in 3D shape as well as in im-
age space. The alignment in 3D shape is carried out between verti-
ces of a 3D exemplar model and the reconstructed 3D points. The
alignment in image space is carried out between the projected
occluding boundaries of the 3D exemplar model and object 2D con-
tour. In the image, 2D contours are obtained by applying grabcut
foreground segmentation algorithm [66] within the detection win-
dow. This joint alignment process is obtained by minimizing the
following cost function,

C(T) = Cs(q;, T(v)) + 2 _Calej, Proj(T(vy,))) (6)
i J

The first term, C3(q; T(#;)) evaluates the 3D distance between an in-

ferred 3D point g; and the transformed corresponding vertex T(;),

where T(-) applies a 3D affine transform on a vertex . The second

term,

C2(e;, Proj(T(vy))),

Table 1
Depth error comparison between our method and the baseline method. Notice that
our errors are always lower than the baseline errors.

Abs. depth in (m) (known focal Rel. depth (unknown focal

length) length)

Sparse/baseline Sparse/baseline
Mouse  0.0145/0.0255 0.0173/0.0308
Mug 0.0176/0.0228 0.0201/0.0263
Stapler  0.0094/0.0240 0.0114/0.0298

evaluates the 2D distance between a pixel at the object’s 2D contour
ej and the 2D projection of the transformed corresponding vertex at
the occlusion boundary (Proj(T(vy,))). The parameter A strikes the
balance between two terms and it is chosen empirically. Since the
ground truth 3D and 2D correspondences are unknown, the ICP
algorithm alternates between 1) finding the transformation T which
minimizes the cost ((T) and 2) finding the correspondences which
are the closest 3D point T(7;) to g; and the closest 2D point
Proj(T(v,,)) to e, till convergence. By choosing the model corre-
sponding to the smallest cost, we automatically complete the 3D
shape which best represents the query object in both 2D and 3D
(See Fig. 8). Notice that both terms in Eq. (6) are critical for achiev-
ing robust alignment. For instance, the alignment of projected 3D
CAD model with the 2D object contour (second term of Eq. (6))
can give rise to erroneous solutions that can be easily fixed if the
first term of Eq. (6) is also considered. On the other hand, second
term of Eq. (6) is useful to fix small registration errors in 3D which
may correspond to large retrojection errors.
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Fig. 12. Example of object detections (Top) and inferred 3D point clouds (Bottom). The inferred point clouds preserve the detailed structure of the objects, like the handle of
mug. Object contours are overlaid on top of the image to improve the readers understanding. Please refer to the author’s project page for a better visualization.
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Fig. 13. Performance on the mug category of ETHZ shape dataset [3]. (a-Top) Performance comparison with other pure Hough voting methods (M2HT) [9] and (PMK rank)
[10]. (a-Bottom) Performance comparison between state-of-the-art non-hough voting methods [3]. (b) Detection rate vs. FPPI of DEHV.

Table 2
Pose estimation performance on 3D object dataset [21].
DEHV stapler DEHV mouse Savarese et al. Farhadi et al.
2008 [4] 2009 [73]
75.0 73.5 64.78 78.16

3.4. Texture completion

After shape alignment (Fig. 1d), we can directly map the texture
from the image inside the 2D object contour onto the 3D model.
This simple approach gives us a model with incomplete texture
(see Fig. 1e), where occluded object regions will not be assigned
to any texture. In order to obtain a model with complete texture,
we propose the following two approaches to infer the texture of
the occluded regions of the 3D model.

3.4.1. Symmetric property

We use the property that object categories have often symmet-
ric topology to transfer the texture from the visible regions to the
invisible ones (see Fig. 1f). Specifically, we assume that the object
shape of the categories of interest are approximately bilateral sym-
metric (that is, they are symmetric with respect to a plane of reflec-
tion). Most common man-made objects satisfy this property. The
identification of the bilateral symmetry is carried automatically
by applying the symmetry detection algorithm by [67] to the reg-
istered CAD model. This algorithm allows to detect the plane of
reflection. After the plane of reflection is detected, we identify

1
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Fig. 14. Object localization result using PASCAL VOCO07 dataset. The precision-recall
generated by our method (red) is compared with the results of 2007 challenge [2]-
Oxford, [2]-UoCTTI, [2]-IRISA, [2]-Darmstadt, [2]-INRIAPlusClass, [2]-INRIANormal,
[2]-TKK, [2]-MPICenter, [2]-MPIESSOL. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

the pairs of faces which are in symmetric correspondence across
the plane of reflection. By knowing symmetric pairs of faces, we
transfer the texture from the visible surface areas (group of faces)
to the invisible ones as follows: (i) Since faces are either on the left
or right side of the plane of reflection, we decide which group (left
or right of the plane of reflection) are most visible. The texture
coordinates of the vertices composing the faces in the less visible
group are removed. (ii) The remaining texture coordinates are
transferred to their symmetric correspondences.
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. 3D Object Detection
3D Matching Modeling Result

3D Object
Modeling

6 DOF Poses

Fig. 15. Examples of the complete 3D object inference process using the testing images from Pascal VOCO07 [2], ETHZ Shape [3], and 3D object dataset [13]. This figure should
be viewed in colour. Row 1 Detection results (green box) overlaid with image patch centers (red cross) which cast the votes. Row 2 Inferred 3D point clouds (red dots), given
the detection results. Row 3 3D registration results, where red indicates the inferred partial point clouds and green indicates the visible parts of the 3D CAD model. Row 4 3D
Object modelling using the 3D CAD models and estimated 3D pose of the objects. Notice that the supporting plane in 3D object modelling are manually added. Row 5
Visualizations of the estimated 6 DOF poses. (See author’s project page for 3D visualization.) (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Relative Depth Error  Dense/Baseline
Mouse Mug Stapler Car Bicycle
3DICP 0.0140/0.0216 | 0.0287/0.0252 | 0.0271/0.0283 | 0.0770/0.1038 | 0.0630/0.0631
2D+3DICP| 0.0113/0.0209 | 0.0227/0.0295 | 0.0260/0.0360 | 0.0900/0.1189 | 0.0563/0.0607

Fig. 16. This table shows the median of the relative depth errors for inferred depths obtained after both just 3D ICP (Top-Row) and joint 2D + 3D ICP (Bottom-Row) CAD
model alignment. Notice that relative depth error is defined as @ where d is the ground truth depth, and d is the estimated depth. Notice that ds for each object instance are
scaled so that ds and ds have the same median so that inconsistent differences between median depths will not influence the evaluation of 3D shape reconstruction.
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Fig. 17. Relative depth errors using different number of CAD models for 2D + 3D
ICP.

3.4.2. Hole filling

The property of symmetry discussed above does not guarantee
that all surface elements are filled or assigned to object texture.
Typically, the resulting models will still have small holes on the
surface (see Fig. 1f). A rich line of work [68-71] have studied the
problem of image completion or hole filling only on the 2D domain.

In this paper, we apply an error-tolerant image compositing tech-
nique (inspired by [6]) to the un-textured region (holes in Fig. 1f).
Instead of solving the classic poisson equation [72], we solve the
following weighted equation:

div(W(VI - v)) =0 7

where I is the unknown image, v is the gradient field to guide the
texture completion process, and W is the weight capturing the
importance of the gradient field. W is introduced in [6] so that
the error between the image VI and the gradient field » is not
evenly distributed which causes the typical bleeding artifacts
(Fig. 9). In our implementation, we extract the boundary RGB value
from the image and simply assume a uniform gradient field » within
region (hole). Most importantly, we set W such that all interior pix-
els correspond to a constant weight, except for pixels lying on the
edges between pairs of faces with very different surface normals
corresponds to zero weights. The weights corresponding to bound-
ary pixels are set such that if a boundary colour is very different
from the median colour of its neighboring boundary pixels, its cor-
responding weight is low, and vice versa. In order to fill all the
holes, we first group the faces without texture to a set of disjoint
groups, where faces in different groups do not share vertices. For
each group, we find the hole boundary which shares vertices with
the faces with texture, and extract the RGB value from the faces
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Fig. 18. Examples of typical failures. (a): Ground truth object bounding box and candidate object bounding box are shown in red and green respectively. In this case, our
DEHV detector fails to locate the object in the image. Hence, the following steps to reconstruct the object will be poorly performed. (b): The object is detected correctly.
However, the 3D ICP algorithm fails to align the CAD model (green) to the inferred partial/sparse point clouds (red), since the inferred point clouds are too sparse. In this case,
the object 2D contour information is very uesful for improving the alignment result. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

with texture along the hole boundary. We then project the group of
faces without texture onto an image plane with a most frontal view
and solve I in Eq. (7) to fill the image RGB value within the projected
hole boundary.

4. Experiment

We conduct experiments to evaluate the object detection and
shape recovery performance of our DEHV algorithm in Sec-
tion 4.1, and the quality of 3D modelling in terms of both shape
recovery and texture completion in Section 4.2. Typical failure
cases of the object detector and 3D ICP are shown in
Fig. 18(a,b) respectively.

4.1. Evaluation of DEHV

We evaluated our DEHV algorithm on several datasets: ETHZ
Shape dataset [3], 3D object dataset [13], and Pascal VOC07 dataset
[2]. The training settings were as follows. For each training image,
we randomly sample 100 image patches from object instances and
500 image patches from background regions. The scale of the patch
size from the corresponding object instance is determined by its
(known) depth (Fig. 6). At the end, 10 random trees (Section 3.1.3)
are trained using the sampled foreground and background patches
for each dataset. For each experiment, we use a Hog-like feature
introduced in [8]. During detection, our method treats each dis-
crete viewpoint as a different class O.

4.1.1. Exp.I: System analysis on a novel 3D table-top object dataset

Due to the lack of datasets comprising both images and 3D
depth maps of set of generic object categories, we propose a new
3D table-top object category dataset collected on a robot platform.
The dataset contains three common table-top object categories:
mice, mugs, and staplers, each with 10 object instances. We ar-
range these objects in two different sets for the purpose of object
localization and pose estimation evaluation. The object localization
dataset (Table-Top-Local) contains 200 images with the number of
object ranging from 2 to 6 object instances per image in a clutter
office environment. The object pose estimation dataset (Table-
Top-Pose) contains 480 images where each object instance is cap-
tured under 16 different poses (eight angles and two heights). For
both settings, each image comes with depth information collected
using a structure-light stereo camera. Please see the author’s pro-
ject page (http://www.eecs.umich.edu/sunmin) for more informa-
tion about the dataset.

We evaluate our method under three different training and
testing conditions, which are (1) standard ISM model trained and
tested without depth, (2) DEHV trained with depth but tested
without depth, and (3) DEHV trained and tested with depth. We
show that the knowledge of 3D information helps in terms of ob-
ject localization (Fig. 10), and pose estimation (Fig. 11). Moreover,
we evaluate our method’s ability to infer depth from just a single
2D image. Given the ground truth focal length of the camera, we
evaluate the absolute depth error for the inferred partial point
clouds in Table 1-Left Column. Notice that our errors are always
lower than the baseline errors.! We also evaluate the relative depth
errors® reported in Table 1-Right Column when the exact focal
length is unknown. Object detection examples and inferred 3D point
clouds are shown in Fig. 12.

4.1.2. Exp.Il:Comparision on three challenging datasets

In order to demonstrate that DEHV generalizes well on other
publicly available datasets, we compare our results with state-of-
the-art object detectors on a subset of object categories from the
ETHZ shape dataset, 3D object dataset, and Pascal 2007 dataset.
Notice that all of these datasets contain 2D images only. Therefore,
training of DEHV is performed using the 2D images from
these public available dataset and the depth maps available
from the 3D table-top dataset and our own set of 3D reconstruction
of cars®.

4.1.2.1. ETHZ shape dataset. We test our method on the Mug cate-
gory of the ETHZ Shape dataset. It contains 48 positive images with
mugs and 207 negative images with a mixture of apple logos, bot-
tles, giraffes, mugs, and swans. Following the experiment setup in
[3], we use 24 positive images and an equal number of negative
images for training. We further match the 24 mugs with the mugs
in 3D table-top object dataset to transfer the depth maps to the
matched object instances so that we obtain augmented depth for
positive training images. All the remaining 207 images in the ETHZ
Shape dataset are used for testing.

The table in Fig. 13a-top shows the comparison of our method
with the standard ISM and two state-of-the-art pure voting-based
methods at 1.0 False-Positive-Per-Image (FPPI). Our DEHV method
(recall 83.0 at 1 FPPI) significantly outperforms Max-Margin Hough
Voting (M?HT) [9] (recall 55 at 1 FPPI) and pyramid match kernel

! It is computed assuming each depth is equal to the median of the depths of the
inferred partial point clouds.

2 @ where d is the ground truth depth, and d is the estimated depth. dis scaled so
that d and d have the same median.

3 Notice that our own dataset is only used to provide depth information.


http://www.eecs.umich.edu/sunmin

1200 M. Sun et al. /Computer Vision and Image Understanding 117 (2013) 1190-1202

(a) Recognition

(b) Partial Shape

B8 004 0G2 0 002 008 006 008 01

T T T T
-0.015  -0.01 -0.005 0 0005

(c) Incomplete 3D (d) complete 3D

Fig. 19. Examples of semi-automatic 3D object modelling process on a number of query images. This figure is best viewed in colour. Col. (a) Sample detection results (green
bounding box). Col. (b) Partial/Sparse reconstruction of the detected object, where the inferred point clouds in red. Col. (c) Incomplete object 3D models using only the visible
part of the registered 3D CAD model. Col. (d) Complete 3D model after texture completion using symmetric properties and hole filling. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

ranking (PMK ranking) [10] (recall 74.2 at 1 FPPI). The table in
Fig. 13a-bottom shows that our method is superior than state-of-
the-art non-voting-based method KAS [3]. Note that these results
are not including a second stage verification step which would nat-
urally boost up performance. The recall vs (FPPI) curve of our
method is shown in Fig. 13b.

4.1.2.2. 3D object dataset. We test our method on the mouse and
stapler categories of the 3D object dataset [13,4], where each cat-
egory contains 10 object instances observed under eight angles,
three heights, and two scales. We adapt the same experimental
settings as [13,4] with additional depth information from the first
five instances of the 3D table-top object dataset to train our DEHV
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models. The pose estimation performance of our method is shown
in Table 2. It is superior than [4] and comparable to [73] (which
primarily focuses on pose estimation only).

4.1.2.3. Pascal VOC 2007 dataset. We tested our method on the car
category of the Pascal VOC 2007 challenge dataset [2], and report
the localization performance. Unfortunately PASCAL does not con-
tain depth maps. Thus, in order to train DEHV with 3D information,
we collect a 3D car dataset containing five car instances observed
from eight viewpoints, and use Bundler [74] to obtain its 3D recon-
struction. We match 254 car instances # in the training set of Pascal
2007 dataset to the instances in 3D car dataset and associate depth
maps to these 254 Pascal training images. This way the 254 positive
images can be associated to a rough depth value. Finally, both 254
positive Pascal training images and the remaining 4250 negative
images are used to train our DEHV detector. We obtain reasonably
good detection performance (Average Precision 0.218) even though
we trained with fewer positive images (Fig. 14). Detection examples
and inferred objects 3D shape are shown in Fig. 15.

4.2. Evaluation of 3D modelling

We conduct experiments to evaluate quantitatively and qualita-
tively the 3D modelling stage of our system (Stage 2 Section 3.2).
At that end, we collect a dataset which comprises 3D reconstruc-
tions of five object categories: mice, mugs, staplers, cars, and bicy-
cles. For each category, the dataset includes about three object
instances and each instance contains images of the object from
camera poses evenly sampled across multiple azimuth angles.
The corresponding depth information of each image is either col-
lected from a structured-light stereo camera or a structure from
motion method.

We evaluate our method’s ability to recover the full 3D shape
from an inferred rough 3D structure (output of stage 1). Relative
depth errors between ground truth depths and recovered depths
(i.e. these obtained after both just 3D ICP (Top-Row) and joint
2D + 3D ICP (Bottom-Row) CAD model alignment) are shown in
Fig. 16. Baseline errors are computed assuming the depths are all
equal to the median of the inferred depths. Notice that the errors
of 2D + 3D ICP are always smaller than the baseline errors, and
the errors of 2D + 3D ICP are always smaller or similar than the er-
rors of 3D ICP. In our experiments, the inferred 3D and 2D informa-
tion are matched with about 5 different 3D CAD models selected
from the database with the correct object category and pose. The
database of 3D CAD models is either collected from [11] and other
online 3D warehouses, or obtained by shape from silhouette [12].
Fig. 17 shows a plot of the relative depth errors of 2D + 3D ICP ver-
sus the number of CAD models of mouse being used. The plot sug-
gests that the more CAD models are used in 2D +3D ICP, the
smaller the error in registration is.

We have further used the ETHZ Shape mug dataset [3] and 3D
object dataset [13] to generate typical examples of 3d reconstruc-
tions from a single view. Fig. 19 shows qualitative results of our full
algorithm on several images from 3D object dataset, ETHZ Shape
mug dataset, 3D table-top object dataset, and 3D modelling
dataset.

5. Conclusion

We proposed a new detection scheme called DEHV which can
successfully detect objects, estimate their pose from either a single
2D image or a 2D image combined with depth information. More-

4 254 cars is a subset of the 1261 positive images in the PASCAL training set. The
subset is selected if they are easy to match with the 3D car dataset.

over, we demonstrated that DEHV is capable of recover the 3D
shape of object categories from just one single uncalibrated image.
Given such a partial 3D Shape of the object, we show that novel 3D
shape recovery and texture completions techniques can be applied
to fully reconstruct the 3D model of the object with both complete
shape and texture. As future work, we envision the possibility of
integrating more sophisticated texture or 3D shape completion
techniques for further improving the quality of the overall 3D mod-
el on a large scale of object categories.

Acknowledgments

We acknowledge the support of NSF (Grant CNS 0931474) and
the Gigascale Systems Research Center, one of sixresearch centers
funded under the Focus Center Research Program(FCRP), a
Semiconductor Research Corporation Entity, Google Research
Award(SC347174), and Willow Garage Inc. for collecting the 3D
table-top object category dataset.

References

[1] B. Leibe, A. Leonardis, B. Schiele, Combined object categorization and
segmentation with an implicit shape model, in: ECCV Workshop on
Statistical Learning in Computer Vision, 2004.

[2] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The PASCAL
Visual Object Classes Challenge 2007 (VOC2007) Results, 2007.

[3] V. Ferrari, L. Fevrier, F. Jurie, C. Schmid, Groups of adjacent contour segments
for object detection, IEEE Trans. PAMI 30 (1) (2008) 36-51.

[4] S. Savarese, L. Fei-Fei, View synthesis for recognizing unseen poses of object
classes, in: ECCV, 2008.

[5] Microsoft Corp. Redmond WA, Kinect for Xbox 360.

[6] M.KJ. Michael W. Tao, S. Paris, Error-tolerant image compositing, in: ECCV,
2010.

[7] D.H. Ballard, Generalizing the hough transform to detect arbitrary shapes,
Pattern Recognition.

[8] J. Gall, V. Lempitsky, Class-specific hough forests for object detection, in: CVPR,

2009.

[9] S. Maji, J. Malik, Object detection using a max-margin hough tranform, in:
CVPR, 20009.

[10] B. Ommer, ]J. Malik, Multi-scale object detection by clustering lines, in: ICCV,
2009.

[11] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The princeton shape benchmark,
in: Proceedings of the Shape Modeling International 2004, 2004.

[12] A. Laurentini, The visual hull concept for silhouette-based image
understanding, IEEE Trans. Pattern Anal. Mach. Intell. 16 (2) (1994) 150-162.

[13] S. Savarese, L. Fei-Fei, 3D generic object categorization, localization and pose
estimation, in: ICCV, 2007.

[14] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in:
CVPR, 2005.

[15] R. Fergus, P. Perona, A. Zisserman, A sparse object category model for efficient
learning and exhaustive recognition., in: CVPR, 2005.

[16] H. Schneiderman, T. Kanade, A statistical approach to 3D object detection
applied to faces and cars, in: CVPR, 2000.

[17] H. Su, M. Sun, L. Fei-Fei, S. Savarese, Learning a dense multi-view
representation for detection, viewpoint classification and synthesis of object
categories, in: ICCV, 2009.

[18] D. Hoeim, C. Rother, J. Winn, 3d layoutcrf for multi-view object class
recognition and segmentation, in: CVPR, 2007.

[19] P. Yan, D. Khan, M. Shah, 3d model based object class detection in an arbitrary
view., in: ICCV, 2007.

[20] J. Liebelt, C. Schmid, K. Schertler, Viewpoint-independent object class
detection using 3d feature maps, in: CVPR, 2008.

[21] M. Arie-Nachimson, R. Basri, Constructing implicit 3d shape models for pose
estimation, in: ICCV, 2009.

[22] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, L. Van Gool, Using multi-view
recognition and meta-data annotation to guide a robot’s attention, Int. J. Rob.
Res. 28 (2009) 976-998.

[23] M.R. Oswald, E. Toeppe, K. Kolev, D. Cremers, Non-parametric single view
reconstruction of curved objects using convex optimization, in: DAGM, Jena,
Germany, 2009.

[24] D.P. Huttenlocher, S. Ullman, Recognizing solid objects by alignment with an
image, [JCV 5 (2) (1990) 195-212.

[25] F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, 3D object modeling and
recognition using affine-invariant patches and multi-view spatial constraints.,
in: CVPR, 2003.

[26] A.C. Romea, D. Berenson, S. Srinivasa, D. Ferguson, Object recognition and full
pose registration from a single image for robotic manipulation, in: ICRA, 2009.

[27] D.G. Lowe, Local feature view clustering for 3d object recognition, in: CVPR,
2001.


http://refhub.elsevier.com/S1077-3142(13)00096-9/h0005
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0005
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0010
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0010
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0015
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0015
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0015
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0020
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0020

1202 M. Sun et al. /Computer Vision and Image Understanding 117 (2013) 1190-1202

[28] R.B. Rusu, N. Blodow, Z.C. Marton, M. Beetz, Close-range scene segmentation
and reconstruction of 3d point cloud maps for mobile manipulation in human
environments, in: IROS, 2009.

[29] T. Deselaers, A. Criminisi, ]. Winn, A. Agarwal, Incorporating on-demand stereo
for real time recognition, in: CVPR, 2007.

[30] D. Hoeim, S. Savarese, Representations and Techniques for 3D Object
Recognition and Scene Interpretation, Morgan and Claypool, 2011.

[31] P.E. Debevec, CJ. Taylor, ]J. Malik, Modeling and rendering architecture from
photographs: a hybrid geometry- and image-based approach, in: SIGGRAPH,
1996.

[32] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, ]. Tops, R.
Koch, Visual modeling with a hand-held camera, IJCV 59 (3) (2004) 207-232.

[33] N. Snavely, S.M. Seitz, R. Szeliski, Photo tourism: Exploring photo collections in
3d, in: SIGGRAPH, 2006.

[34] S. Agarwal, N. Snavely, 1. Simon, S.M. Seitz, R. Szeliski, Building rome in a day,
in: ICCV, 2009.

[35] AR. Dick, P.H.S. Torr, R. Cipolla, Modelling and interpretation of architecture
from several images, [JCV 60 (2) (2004) 111-134.

[36] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, N. Master,
Calibrated, registered images of an extended urban area, IJCV 53 (1) (2003)
93-107.

[37] Y. Horry, K.-1. Anjyo, K. Arai, Tour into the picture: using a spidery mesh
interface to make animation from a single image, in: SIGGRAPH, 1997.

[38] D. Liebowitz, A. Criminisi, A. Zisserman, Creating architectural models from
images, in: EuroGraphics, 1999.

[39] J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M.
Uyttendaele, D. Lischinski, Deep photo: model-based photograph
enhancement and viewing, in: SIGGRAPH Asia, 2008.

[40] A. Saxena, M. Sun, A.Y. Ng, Make3d: learning 3d scene structure from a single
still image, IEEE TPAMI 31 (5) (2009) 824-840.

[41] D. Hoiem, A.A. Efros, M. Hebert, Automatic photo pop-up, in: SIGGRAPH, 2005.

[42] D.C. Lee, M. Hebert, T. Kanade, Geometric reasoning for single image structure
recovery, in: CVPR, 2009.

[43] H. Wang, S. Gould, D. Koller, Discriminative learning with latent variables for
cluttered indoor scene understanding, in: ECCV, 2010.

[44] V. Hedau, D. Hoiem, D. Forsyth, Thinking inside the box: Using appearance
models and context based on room geometry, in: ECCV, 2010.

[45] A. Schwing, T. Hazan, M. Pollefeys, R. Urtasun, Efficient structured prediction
for 3d indoor scene understanding, in: CVPR, 2012.

[46] J.-Y. Bouguet, P. Perona, Visual navigation using a single camera, in: ICCV,
1995.

[47] S. Savarese, M. Andreetto, H. Rushmeier, F. Bernardin, P. Perona, 3d
reconstruction by shadow carving: theory and practical evaluation, IJCV 71
(3) (2006) 305-336.

[48] S. Rusinkiewicz, O. Hall-Holt, M. Levoy, Real-time 3d model acquisition, ACM
Trans. Graph. 21 (3) (2002) 438-446.

[49] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S.
Anderson, J. Davis, J. Ginsberg, J. Shade, D. Fulk, The digital michelangelo
project: 3d scanning of large statues, in: SIGGRAPH, 2000.

[50] K.N. Kutulakos, S.M. Seitz, A theory of shape by space carving, [JCV 38 (3)
(2000) 199-218.

[51] P.RS. Mendonga, K.-Y.K. Wong, R. Cipolla, Camera pose estimation and
reconstruction from image profiles under circular motion, in: ECCV, 2000.

[52] S.M. Seitz, B. Curless, ]. Diebel, D. Scharstein, R. Szeliski, A comparison and
evaluation of multi-view stereo reconstruction algorithms, in: CVPR, 2006.

[53] M. Prasad, AW. Fitzgibbon, A. Zisserman, LJ.V. Gool, Finding nemo:
deformable object class modelling using curve matching, in: CVPR, 2010.

[54] L. McMillan, G. Bishop, Plenoptic modeling: an image-based rendering system,
in: SIGGRAPH, 1995.

[55] M. Levoy, P. Hanrahan, Light field rendering, in: SIGGRAPH, 1996.

[56] D.G. Aliaga, T. Funkhouser, D. Yanovsky, I. Carlbom, Sea of images: a dense
sampling approach for rendering large indoor environments, IEEE Comput.
Graph. Appl. 23 (6) (2003) 22-30.

[57] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, High-quality
video view interpolation using a layered representation, in: SIGGRAPH, 2004.

[58] M. Prasad, A. Fitzgibbon, Single view reconstruction of curved surfaces, in:
CVPR, 2006.

[59] C. Colombo, A. Del Bimbo, F. Pernici, Metric 3d reconstruction and texture
acquisition of surfaces of revolution from a single uncalibrated view, TPAMI 27
(1) (2005) 99-114.

[60] X. Chen, S.B. Kang, Y.-Q. Xu, ]. Dorsey, H.-Y. Shum, Sketching reality: realistic
interpretation of architectural designs, ACM Trans. Graph. 27 (2) (2008) 1-15.

[61] O.A. Karpenko, J.F. Hughes, Smoothsketch: 3d free-form shapes from complex
sketches, ACM Trans. Graph. 25/3 (2006) 589-598.

[62] N. Jiang, P. Tan, L.-F. Cheong, Symmetric architecture modeling with a single
image, in: SIGGRAPH Asia, 2009.

[63] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, LJ.V. Gool, Depth-from-
recognition: Inferring meta-data by cognitive feedback, in: 3D
Representation for Recognition Workshop in ICCV, 2007.

[64] M. Sun, G. Bradski, B.-X. Xu, S. Savarese, Depth-encoded hough voting for joint
object detection and shape recovery, in: ECCV, 2010.

[65] M. Pauly, NJ. Mitra, ]. Giesen, M. Gross, LJ. Guibas, Example-based 3d scan
completion, in: SGP, 2005.

[66] C.Rother, V. Kolmogorov, A. Blake, “grabcut: interactive foreground extraction
using iterated graph cuts, ACM Trans. Graph. 23 (3) (2004) 309-314.

[67] N.J. Mitra, L. Guibas, M. Pauly, Partial and approximate symmetry detection for
3d geometry, ACM Trans. Graph. 25 (3) (2006) 560-568.

[68] P.P. Antonio Criminisi, K. Toyama, Object removal by exemplar-based
inpainting, in: CVPR, 2003.

[69] A. Shamir, S. Avidan, Seam carving for media retargeting, Commun. ACM 52 (1)
(2009) 77-85.

[70] J. Hays, A.A. Efros, Scene completion using millions of photographs, in:
SIGGRAPH, ACM, 2007.

[71] A.A. Efros, T.K. Leung, Texture synthesis by non-parametric sampling, in: ICCV,
1999.

[72] P. Pérez, M. Gangnet, A. Blake, Poisson image editing, ACM Trans. Graph. 22 (3)
(2003) 313-318.

[73] A. Farhadi, M.K. Tabrizi, I. Endres, D. Forsyth, A latent model of discriminative
aspect, in: ICCV, 2009.

[74] N. Snavely, S.M. Seitz, R. Szeliski, Photo tourism: exploring photo collections in
3d, in: SIGGRAPH, 2006.


http://refhub.elsevier.com/S1077-3142(13)00096-9/h0025
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0025
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0025
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0030
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0030
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0035
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0035
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0040
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0040
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0040
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0045
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0050
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0050
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0050
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0055
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0055
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0060
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0060
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0065
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0065
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0065
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0070
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0070
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0070
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0075
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0075
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0080
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0080
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0085
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0090
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0095
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0095
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0100
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0100
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0100
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0105
http://refhub.elsevier.com/S1077-3142(13)00096-9/h0105

	Object detection, shape recovery, and 3D modelling by depth-encoded hough voting
	1 Introduction
	2 Previous work
	2.1 3D modelling

	3 Our method
	3.1 Stage 1: Depth-Encoded Hough Voting
	3.1.1 Interplay between scale and depth
	3.1.2 Random forest codebook
	3.1.3 Training the model
	3.1.4 Recognition and 3D reconstruction
	3.1.4.1 Recognition when depth is available
	3.1.4.2 Recognition when depth is not available
	3.1.4.3 Decoding 3D information
	3.1.4.4 Implementation details


	3.2 Stage 2: 3D modelling
	3.3 3D shape recovery
	3.4 Texture completion
	3.4.1 Symmetric property
	3.4.2 Hole filling


	4 Experiment
	4.1 Evaluation of DEHV
	4.1.1 Exp.I: System analysis on a novel 3D table-top object dataset
	4.1.2 Exp.II:Comparision on three challenging datasets
	4.1.2.1 ETHZ shape dataset
	4.1.2.2 3D object dataset
	4.1.2.3 Pascal VOC 2007 dataset


	4.2 Evaluation of 3D modelling

	5 Conclusion
	Acknowledgments
	References


