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Abstract—In the last few years, substantially different approaches have been adopted for segmenting and detecting “things” (object

categories that have a well defined shape such as people and cars) and “stuff” (object categories which have an amorphous spatial

extent such as grass and sky). While things have been typically detected by sliding window or Hough transform based methods,

detection of stuff is generally formulated as a pixel or segment-wise classification problem. This paper proposes a framework for scene

understanding that models both things and stuff using a common representation while preserving their distinct nature by using a

property list. This representation allows us to enforce sophisticated geometric and semantic relationships between thing and stuff

categories via property interactions in a single graphical model. We use the latest advances made in the field of discrete optimization to

efficiently perform maximum a posteriori (MAP) inference in this model. We evaluate our method on the Stanford dataset by comparing

it against state-of-the-art methods for object segmentation and detection. We also show that our method achieves competitive

performances on the challenging PASCAL ’09 segmentation dataset.

Index Terms—Scene understanding, semantic labeling, segmentation, graph-cut

Ç

1 INTRODUCTION

THE last decade has seen the development of a number of
methods for object detection, segmentation and scene

understanding. These methods can be divided into two
broad categories: methods that attempt to model and detect
object categories that have distinct shape properties such as
cars or humans (things), and methods that seek to model
and identify object categories whose internal structure and
spatial support are more heterogeneous such as grass or sky
(stuff). In the first category, we find that methods based on
pictorial structures (i.e., Felzenszwalb et al. [1]), pyramid
structures (i.e., Grauman and Darrell [2]), generalized
Hough transform [3], [4], [5], [6], [7], or multi-view model
[8], [9] work best. These representations are appropriate for
capturing shape or structural properties of things, and typi-
cally identify the object by a bounding box. The second cate-
gory of methods aims at segmenting the image into
semantically consistent regions [10], [11], [12] and work
well for stuff, like sky or road.

In order to coherently interpret the depicted scene, var-
ious types of contextual relationships among objects (stuff

or things) have been explored. For example, co-occurrence
relationships (e.g., cow and grass typically occur in the
same image) have been captured in [13], [14], 2D geomet-
ric relationships (e.g., below, next-to, etc.) have been uti-
lized in [15], [16], [17], 2.5D geometry relationships (e.g.,
horizon line) have been incorporated by Hoiem et al. [18]
and Bao et al. [19]. The use of such contextual relation-
ships has inspired the development of robust algorithms
for various object recognition tasks. For instance, many
segmentation methods [13], [20], [21] have been proposed
to capture stuff-stuff relationships in a random field for-
mulation. Similarly, thing-thing relationships have been
incorporated into a random field for jointly detecting mul-
tiple objects (Desai et al. [16]).

Recently, researchers have proposed methods to jointly
detect things and segment stuff. Gould et al. [22] proposed
a random field model incorporating both stuff-stuff,
thing-stuff, and thing-horizon relationships. One limita-
tion of their approach is that it cannot capture 2D geo-
metric and co-occurrence relationships between things.
Moreover, inference is computationally very demanding
and typically takes around five minutes per image. To
overcome this limitation, some authors have proposed
inference procedures which leverage existing approaches
for detection and segmentation and use the output of
such approaches as input features in an iterative fashion
[23], [24], [25], [26]. Unfortunately, convergence is not
guaranteed for most of these approaches.

We propose a novel framework for jointly detecting
things and segmenting stuff that can coherently capture
many known types of contextual relationships. Our contri-
butions are three-fold. First, the model infers the geometric
and semantic relationships describing the objects (i.e., object
x is behind object y) via object property interactions. Second,
the model enables instance base segmentation (see color
coded segments in Fig. 1d by associating segments of thing
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categories to instance-specific labels. Finally, the special
design of model potentials allows us to utilize a combina-
tion of state-of-the-art discrete optimization techniques to
achieve efficient inference which takes a few seconds per
image in average using a single core.

Object hypotheses and property lists. Our framework
extends the basic conditional random field (CRF) formula-
tions for scene segmentation (i.e., assigning an object cate-
gory to each segmentation variable X) [11], [27] by
introducing the concept of a “generic object hypothesis”
described by a property list (Fig. 2-Top). Instead of only
capturing the semantic property of the hypothesis using
an object categorical label l in the basic conditional ran-
dom field, we allow the list to include geometric proper-
ties, such as the 2D location ðu; vÞ, the distance from the
camera (depth) d, and the set of segments V associated
with the object hypothesis. Notice that the generic object

hypothesis naturally describes the existence of an object
instance with respect to the camera. Hence, our scene seg-
mentation framework can not only segment a scene into
different object categories but also into object instances
with different properties (i.e., things) as shown in Fig. 1d.
Thus, it generalizes the work of Barinova et al. [6], [28].

We augment the above-mentioned CRF formulation with
object hypothesis indicator (binary) variables which capture
the presence or absence of object hypotheses (see the solid
(on state) and dash (off state) nodes in Fig. 2a-Top). We refer
to our model as the augmented CRF, or ACRF, to highlight
the newly added object hypothesis indicator variables. Two
additional relationships are captured in our ACRF. First,
the state of the indicator variable needs to be consistent
with the assignment of the segmentation variables associ-
ated with the corresponding object hypothesis. We intro-
duce a novel higher-order potential function to penalize, for

Fig. 2. Our augmented CRF model (ACRF). Panel (a) illustrates that our model jointly segments the image by assigning labels to segments (bottom
layer) and detects object by determining which object hypotheses exist (top layer). The existence of the hypotheses is indicated by solid (on) and
dash (off) nodes. As shown on the top panel, each “thing” object hypothesis possesses properties such as category, location ðu; vÞ, etc. On the other
hand, each “stuff” object hypothesis possesses only the category label. In panel (b), we give examples of relationships established via property inter-
actions. For “thing” categories, geometric relationships such as behind and above can be established. On the other hand, for “stuff” categories,
semantic relationship such as co-occurrence can be established. Notice that the two edges, which connect to the stuff categories and end in the
dashed separator line, represent the co-occurrence relationships between stuff and all thing categories. In panel (c), the figure shows the label space
of the segmentation variables X (color-coded blocks) and the indicator variables Y (0 and 1 blocks). The higher-order potential capturing the relation-
ship between indicator i and a set of segmentation variable in Vi is represented by an edge between a node on top layer and a set of nodes at the bot-
tom layer. In panel (d)-Bottom, the figure shows the pairwise and higher order potential among segmentation variables X which are presented in the
basic CRF formulation. In panel (d)-Top, the figure shows the pairwise potential between pairs of indicator variables Y which encodes different geo-
metric and semantic relationships.

Fig. 1. Our goal is to segment the image into things (e.g., cars, humans, etc.) and stuff (e.g., road, sky, etc.) by combining segmentation (bottom) with
object detection (top). Results from different variants of our method (capturing a subset of critical contextual relationships) are shown from left to right
columns. At the top of each column, we show the top 4 probable bounding boxes, where light and dark boxes denote the confidence ranking from
high to low. Instance-based segmentation are shown in each bottom column, where different colors represent different object instances, and all stuff
categories are labelled with white color to make the figure less cluttered. The CRF+Det model enforces the detections to be consistent with the seg-
ment labels. While the green car segments are reinforced by the strong (white) car detection, very weak (dark) false detections are also introduced
due to noisy segment labels in the background region. On the other hand, our final ACRF captures the key relationships so that it recovers many
missing detections and segmentation labels. Thing-Stuff and Thing-Thing relationships are indicated by color-coded arrows connecting bounding
boxes and/or segments. Different color codes indicate different types of relationships.
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the first time, both types of inconsistency: i) the indicator is
off but many segments in set V are still assigned to the cor-
responding hypothesis; ii) the indicator is on but only a few
segments in set V are assigned to the corresponding hypoth-
esis. Second, the object indicator variables allow us to easily
encode sophisticated semantic and geometric relationships
between pairs of object hypotheses. For instance, simple
pairwise potentials defined over object indicator variables
can allow to incorporate i) 2D geometric relationships such
as “above” which models the property that one hypothesis
lies above the other (e.g., a person sitting on a bike), ii) 2.5D
depth-ordering and occlusion relationships such as “in-
front” which models the property that one hypothesis lies
in front of the other (e.g., a person standing in front of a
car). More sophisticated relationships such as a composition
of these basic 2D or 2.5D relationships can also be sup-
ported. Critically, the ACRF model generalizes Ladicky
et al.’s model [13] capturing stuff-stuff co-occurrence con-
textual relationships only. In contrast, our model can
encode relationships between generic object hypotheses
(both things and stuff) depending on their semantic and
geometrical properties. We illustrate the efficacy of our
approach in Fig. 1. As seen in the figure, detections typically
do not agree with the segmentation results (Fig. 1b if the
detection and segmentation are applied separately. A model
capturing relationships among object hypothesis and seg-
ments ensures consistency between detection and segmen-
tation results (Fig. 1c). However, the relationships between
object hypotheses are ignored. Hence, false object hypothe-
ses sometime are introduced. Finally, when pair-wise rela-
tionships of object hypotheses (e.g., next-to, behind, etc.) are
included, even small object instances, that are hard to detect
and segment, can be discovered (Fig. 1d).

Learning. Given the property list, a pre-defined set of
pair-wise relationships of object hypotheses are encoded in
our model via property interactions as described in Section
3.3. The likelihood of the relationships are treated as model
parameters that are learned from training data. For exam-
ple, the model should learn that a person is likely to sit on a
motorbike, and cow and airplane are unlikely to co-occur.
In our model, a likely relationship will add a negative cost
to the energy of the model. On the other hand, an unlikely
relationship will add a positive cost. We formulate the prob-
lem of learning these costs jointly with other parameters as a
Structured SVM (SSVM) [29] learning problem with two
types of loss functions related to the segmentation loss and
detection loss, respectively (see Section 5 for details).

MAP Inference. Jointly estimating the segmentation varia-
blesX and indicator variables Y (see nodes in Fig. 2c) is chal-
lenging due to the intrinsic difference of the indicator and
segmentation variable space, and newly added complex rela-
tionships between them (see edges in Figs. 2c, and 2d). We
design an efficient graph-cut-based move making algorithm
by combining state-of-the-art discrete optimization techni-
ques. Our method is based on the a-expansion move making
approach [30], which works by projecting the energy mini-
mization problem of segmentation variables X into a binary
energy minimization problem to have the same space as the
indicator variables Y . We use the “probing” approach simi-
lar to the one introduced by Rother et al. [31] to handle the
non-submodular function describing pair-wise relationships

of object hypotheses. Our MAP inference algorithm takes
only a few seconds per image in average using a single core
as opposed to fiveminutes by Gould et al. [22].

Outline of the Paper. The rest of the paper is organized as
follows. We first describe the related work in Section 2.
Model representation, inference, and learning are elabo-
rated in Section 3, 4, and 5, respectively. Implementation
details and experimental results are given in Section 6.

2 RELATED WORK

Our method is closely related to the following three meth-
ods which all can be considered as special cases of our
model. Desai et al. [16] propose a CRF model capturing
thing-thing relationships and show that object detection
performance can be consistently improved for multiple
object categories. Their model can be considered as a special
case of our model when no segmentation variableX exists.

Both Ladicky et al.’s methods [13], [32] extend the basic
CRF model to incorporate more sophisticated relationships.
Ladicky et al. [32] incorporate things-stuff relationships and
demonstrate that the information from object detection can
be used to improve the segmentation performance consis-
tently across all object categories. Their model can be con-
sidered as a special case of our model when no thing-thing
relationship is incorporated. One more subtle difference is
that their model only weekly enforces the consistency
between things and stuff. Their model does not penalize the
case when the indicator is off but many segments are still
assigned to the corresponding hypothesis. Notice that the
strong consistency of things-stuff in our model is crucial in
combination with thing-thing relationships. Otherwise,
many segments will still be assigned to the corresponding
hypothesis even when the hypothesis is suppressed by
thing-thing relationships. Ladicky et al. [13] propose to cap-
ture co-occurrence types of object relationships and demon-
strate that the co-occurrence information can be used to
improve the segmentation performance significantly. Their
model can also be considered as a special case of our model
when no geometric relationships of object hypotheses (i.e.,
above, same horizon, etc.) are established. Finally, [13] can-
not be used to assign segments to object instances or localize
object instances. Our results on the Stanford dataset demon-
strate that our model achieves superior performances than
[13], [32].

Our method shares similar ideas with Yao et al. [33] to
jointly model object detection and scene segmentation.
However, there are two main differences. Yao et al. also
jointly model scene classification problem and use the scene
class to restrict the possible object categories existing in an
image. Therefore, they need to apply a set of pre-trained
scene classifiers in addition to the object detectors and
scene segmentation methods. Moreover, their model does
not incorporate thing-thing geometric relationships. Their
model ignores facts such as cars are typically “next-to”
each other and cups are “on-top” a table. As a result, their
method works well on datasets which contains only few
object instances (typically less than 3) such as the MSRC
dataset [27]. On the contrary, our experimental results
show that our method works well on datasets containing
manymore object instances such as Stanford dataset [21].
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The semantic structure from motion (SSFM) proposed by
Bao and Savarese [34] also jointly models object instances
and regions. However, unlike our method which utilizes
one single image, their approach utilizes the correspond-
ences of object instances and regions established across mul-
tiple images to improve object detection and segmentation
performances.

Li et al. [35], [36] propose generative models to jointly
classify the scene, recognize the class of each segment,
and/or annotate the images with a list of tags. However,
the model cannot localize each object instances. Hence, the
thing-thing and thing-stuff interactions are not incorpo-
rated in their model.

Many methods explore contextual relationships between
segments and/or object hypotheses to improve a specific
visual task such as detection, category discovery, etc. For
instance, [37] use contextual relationships to discover object
categories commonly appearing within a set of images. It
was demonstrated in [38], [39] that the contextual relation-
ships can be used to improve object detection performance.

3 AUGMENTED CRF

We now explain our augmented conditional random field
(ACRF) model. ACRF jointly models object detection and
scene segmentation (Fig. 2a) by incorporating contextual
relationships between things and stuff, and between multi-
ple things (Fig. 2b).

Basic CRF. Similar to other scene segmentation methods,
our model is developed on top of a basic conditional ran-
dom fields model. The basic CRF model is defined over a
set of random variables X ¼ fxig; i 2 V where V represents
the set of image elements, which could be pixels, patches,
segments, etc., (Fig. 2c-Bottom). Each random variable xi is
assigned to a label from a discrete label space L, which is
typically the set L of object categories such as grass, road,
car and people.

The energy (or cost) function EðXÞ of the CRF is the neg-
ative logarithm of the joint posterior distribution of the
model and has the following form:

EðXÞ ¼ � logP ðXjEÞ ¼ �log feRF ðXjEÞ þK

¼
X
c2CX

ccðXcÞ þK; (1)

where E is the given evidence from the image and any addi-

tional information (e.g., object property lists), feRF ðXjEÞ
takes the form of a CRF model with higher order potentials

defined over image elements (Fig.2d-Bottom). feRF ðXjEÞ can
be decomposed into potential cc which is a cost function

defined over a set of element variables Xc (called a clique)

indexed by c 2 CX; CX is the set of cliques for image ele-

ments, and K is a constant related to the partition function.

The problem of finding the most probable or maximum a

posteriori assignment of the CRF model is equivalent to

solving the following discrete optimization problem:

X� ¼ arg min
X2LjVjEðXÞ, where jVj indicates the number of

elements.

The basic CRF model mostly relies on bottom-up infor-
mation. It is constructed using unary potentials based on
local classifiers and smoothness potentials defined over

pairs of neighboring pixels. Higher-order potentials (such
as the ones used in [11]) encourage labels of image ele-
ments within a group to be the same. This classic repre-
sentation for object segmentation has led to excellent
results for the stuff object categories, but has failed to
replicate the same level of performance on the thing
object categories. The reason for this dichotomy lies in the
model’s inability to explicitly encode the relationship
between the shape and relative positions of different parts
of structured object categories such as the head and the
torso of a person.

In contrast, part-based models such as pictorial struc-
tures [40], Latent SVM (LSVM) [1], and Hough transform
based models [3], [6] have shown to be much more effec-
tive at detecting “things” by generating a list of object
hypotheses ordered according to their scores/likelihoods.
Each hypothesis is often characterized by a property list
including the category of the object l, the spatial location
in the image ðu; vÞ, the depth or distance d of the object
instance from the camera, and the set of segments V asso-
ciated with the object hypothesis (Fig. 2 Top panel). In
many application, a detection problem can be relaxed
into an image-level classification problem. A classification
method generates a hypothesis of the existence of an
object category in the image without specifying the spatial
configuration of the object. Since the spatial configuration
of the object does not need to be specified, hypotheses for
both “things” and “stuff” can be generated. Notice that,
in this case, the property of such hypothesis only includes
the category of the object l.

Augmented CRF. In order to take advantage of both the
object detection and segmentation methods, we introduce a
set of indicator variables (later referred to as indicators)
Y ¼ fyj 2 f0; 1g; j 2 Q̂g corresponding to every object
hypothesis in our ACRF model (Fig. 2c-Top). Theoretically,
the number of all possible object hypotheses jQ̂j is large,
since it is the Cartesian product of the space of all possible
object category labels L, all possible spatial locations U�V
in the image, and all depth or distance values within a range
½0; D�. For example, a sliding window detector exploring
10 scales/depths considers 369K hypotheses in total for a
320� 240 image.Therefore, it is potentially hard to handle.
Fortunately, in real world images, only a few hypotheses
are actually present. Thus, most indicator variables yj; j 2 Q̂
are off (i.e., yj ¼ 0). We use object detectors that have been
trained on achieving a high recall rate to generate a rela-
tively small set of plausible object hypotheses Qd (about 20
per class on Stanford dataset1) compared to the size of all
possible object hypotheses Q̂. In addition, a set of object
hypotheses Qc with only object category label, similar to the
ones generated by image-level classification methods, are
included. As a result, we obtain the set of object hypotheses
Q ¼ Qd [Qc.

Recall that variables X representing the image elements
in the basic CRF formulation for object segmentation typi-
cally take values from the set of object categories L. In con-
trast, in our framework, these variables take values from the
set of plausible object hypotheses xi 2 L ¼ Q (refer as

1. We set the pre-trained detector threshold as �0.7.
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augmented labeling space). This allows us to obtain segmenta-
tions of instances of particular object categories which the
basic CRF formulation is unable to handle.

The joint posterior distribution of the segmentation varia-
blesX and indicator variables Y can be written as

P ðX;Y jEÞ / feRF ðXjEÞ foRF ðY jEÞ fconðX; Y jEÞ: (2)

The function foRF takes the form of a CRF model defined over

object indicator variables as follows:

foRF ðY jEÞ ¼
Y
c2CY

e’cðYcÞ; (3)

where the potential ’cðYcÞ is a cost function defined over a set

of indicator variables Yc indexed by c 2 CY , and CY is the set of

cliques of indicators. The potential function fcon enforces that

the segmentation and indicator variables take values which are

consistent with each other (Fig. 2c). The term is formally

defined as

fconðX;Y jEÞ ¼
Y
j2Q

eFðyj;XjÞ; (4)

where Fðyj;XjÞ is the potential relating each indicator yj with
a set of image elements Xj ¼ fxi; i 2 Vjg corresponding to the

set of segments Vj of the jth hypothesis. Hence, the model

energy can be written as

EðX;Y Þ ¼
X
c2CX

ccðXcÞ þ
X
j2Q

Fðyj;XjÞ

þ
X
c2CY

’cðYcÞ:
(5)

The first term of the energy function is defined in a manner

similar to [11]. We describe other terms of the energy function

in detail in the following sections.

3.1 Relating Y and X

The function Fðyj;XjÞ (Fig. 2c) is a likelihood term that
enforces consistency in the assignments of the jth indicator
variable yj and a set of segmentation variables Xj. It is for-
mally defined as

Fðyj;XjÞ ¼
inf if yj 6¼ dðXj; ljÞ
g lj

� jXjj � 0 if yj ¼ dðXj; ljÞ ¼ 1

0 if yj ¼ dðXj; ljÞ ¼ 0;

8<
: (6)

where j is the index of an object hypothesis in Q, the function

dðXj; ljÞ indicates whether the majority of Xj have object cate-

gory label lj, and is defined as

dðXj; ljÞ ¼ 1 if RðXj; ljÞ ¼ jXjðljÞj
jXjj � rðljÞ

0 otherwise;

(
(7)

where XjðljÞ ¼ fxi ¼ lj; i 2 Vjg is the set of image elements in

Xj with label lj, jXjj is the total number of elements in Xj,

RðXj; ljÞ is the consistency percentage, and rðljÞ 2 ½0 1� is an
object category-specific consistency threshold. Hence, the first

condition in Eq. (6) and Eq. (7) ensures that yj ¼ 1 if and only

if the jth hypothesis shares an object category with at least

rðljÞ percent of image elements in Xj (i.e., RðXj; ljÞ � rðljÞ).
The remaining conditions in Eq. (6) show that this potential is

an Occam razor or MDL prior, similar to [6], [13] so that the

model is penalized by g lj
� jXjj when yj ¼ 1.

3.2 Object Indicator CRF

The object indicator CRF potential ’cðYcÞ in Eq. (5) can be
decomposed into two terms as follows:X

c2CY
’cðYcÞ ¼

X
j2Qd

’uðyjÞ þ
X

ðj;kÞ2U
’pðyj; ykÞ; (8)

where Qd 	 Q is the set of hypotheses with geometric proper-

ties and U is the set of pairs of indicators, which interact with

each other.

The term ’uðyjÞ is the unary potential for an indicator
variable with geometric properties. It is defined as:

’uðyjÞ ¼ bj � jXjj � 0; if yj ¼ 0
0; if yj ¼ 1;

�
(9)

such that the cost of suppressing hypothesis j (i.e., label yj is
off) is bj � jXjj, and bj is the calibrated detection confidence so

that confidences are comparable across object categories.

The term ’pðyj; ykÞ (black edges in Fig. 2d-Top) repre-
sents the interactions between a pair of indicator variables.
Depending on the types of properties associated with the
pair of indicator variables, this term can represent a number
of relationships. It can not only model spatial relationship
in 2D such as the ones learned and employed in the
approach proposed by [16], but also model behind and in-
front relationships given the depth property. The term can
also encode co-occurrence relationships [13] for pairs of
indicators with only category properties.

For a pair of indicators j and k, the term is formally
defined as

’pðyj; ykÞ ¼ w
rjk
lj;lk

ðyj; ykÞ �maxðjXjj; jXkjÞ; (10)

where rjk is the type of relationship that we want to enforce

between the pair of object instances j and k, and is a subset of

the overall relationship set R, which is pre-defined as:

R ¼ fco-occur, above, below, next-to, in-front, behind, overlap,
and horizon lines agreementg.

The pseudo-boolean function

w
rjk
lj;lk

ðyj; ykÞ : f0; 1g2 ! IR (11)

specifies the cost of all four possible combination of yj and
yk under the relationship rjk for a pair of object categories

lj; lk. As a result, the potential can capture both attractive

(i.e., wð0; 0Þ þ wð1; 1Þ 
 wð0; 1Þ þ wð1; 0Þ) and repulsive (i.e.,

wð0; 0Þ þ wð1; 1Þ � wð0; 1Þ þ wð1; 0Þ) interactions. For exam-

ple, a person usually is sitting on a motorbike (attractive),

and cars do not overlap with each other in 3D (repulsive).

Notice that although the relationship set R is pre-defined,

the parameters wðyj; ykÞ are learned jointly with other model

parameters as described in Section 5.

3.3 Pair-Wise Relationships between Object
Hypotheses

The relationship rjk is specified by the properties associ-
ated with the indicators j and k. If the indicators i and j
have geometric properties, geometric relationships are
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determined by the following steps. Given a pair of
hypotheses, we firstly set the bounding box of one hypoth-
esis as a reference box. Then, we draw additional boxes
with respect to the reference box for a certain spatial rela-
tionship (i.e., above: draw on top of a box; next-to: draw on
left or right side of a box, etc., see Fig. 3 for details). If a
drawn box overlaps more than 50 percent with the bound-
ing box of the other hypothesis which is not selected as
the reference box, we can specify a relationship to the
given pair of boxes. If none of the above relationships is
selected and the two original boxes overlaps each other
more than 50 percent, we use the depth property associ-
ated to the hypotheses to select either overlap, in-front, or
behind relationship. The “horizon lines agreement” rela-
tionship is based on whether the predicted two horizon
lines from two bounding boxes are in agreement or not. In
specific, horizon lines for two boxes are estimated assum-
ing objects’ average heights are known, similar to [18]. If
two lines are close to each other within a certain range,
which is a function of the specific class (i.e., person or car
have smaller range, boat have a larger range), they are
having a same horizon line. On the other hand, if the indi-
cators i and j have only object category properties, the
relationship rjk models the co-occurrence cost of the object
categories. In this case, we further assume

wco
j;kðyj; ykÞ ¼

g lj;lk
� 0 if yj ¼ yk ¼ 1

0 otherwise;

�
(12)

where g lj;lk
is the co-occurrence cost for object categories lj

and lk. From the above definition, we can see that our model

generalizes both CRF models proposed in [13], [16].

4 INFERENCE

We now show that the MAP inference problem in our ACRF
model can be solved by minimizing the energy function
using an efficient graph cut based expansion move making
algorithm [30].

Standard move making algorithms repeatedly project the
energy minimization problem into a smaller subspace in
which a sub-problem is efficiently solvable. Solving this
sub-problem produces a change to the solution (referred to
as a move) which results in a solution having lower or equal
energy. The optimal move leads to the largest possible
decrease in the energy.

The expansionmove algorithm projects the problem into a
Boolean label sub-problem. In an a-expansion move, every

segmentation variableX can either retain its current label or
transit to the label a. One iteration of the algorithm involves
making moves for all a in L successively. Under the
assumption that the projection of the energy is pairwise and
submodular, it can be exactly solved using graph cuts [41],
[42]. Since our ACRF model is built on top of the basic CRF
proposed in [11], [30], in the following, we derive the graph
construction only for energy terms related to indicator vari-
ables Y . For the constructions of the basic CRF, please refer
to [11], [30].

4.1 Functions of Indicator Variables Y with Only
Category Property

The energy terms related to the indicator variables, whose
only property is a category label, are Fðyj;XjÞ in Eq. (6),
’pðyj; ykÞ in Eq. (10), with assumption in Eq. (12). Observing
that we can represent the combination of these terms as a
function, F : L ! IR as

FðLðY ÞÞ ¼ min
X

X
j2Qc

Fðyj;XjÞ þ
X

ðj;kÞ2Uc

’pðyj; ykÞ; (13)

where LðY Þ ¼ flj; j 2 Qc; yj ¼ 1g is a set of existing object cat-
egories (i.e., yj ¼ 1),Qc is any subset of the indicator variables,

whose only property is a category label, and Uc is a subset of U
such that j; k 2 Qc. From the definition of the term in Sections

3.1 and 3.2, we can see that FðfljgÞ ¼ g lj
jXjj. Furthermore,

Fðflj; lkgÞ ¼ FðfljgÞ þ glk jXkj
þ g lj;lk

maxðjXjj; jXkjÞ;
(14)

Fðflj; lk; lqgÞ ¼ Fðflj; lkgÞ þ g lq jXqj
þ g lj;lq

maxðjXjj; jXqjÞ
þ g lk;lq

maxðjXkj; jXqjÞ:
(15)

This shows that the above function satisfies the properties of

the co-occurrence potential

L1 	 L2 ¼) FðL1Þ 
 FðL2Þ; (16)

proposed by [13] which allows us to use their graph construc-

tion for minimizing this energy function. We estimate g’s from

the training data as described in [13].

4.2 Functions of Indicator Variables Y with
Geometric Properties

The energy terms related to the indicator variables with
geometric properties are Fðyj; XjÞ in Eq. (6) and ’pðyj; ykÞ
in Eq. (10). Since it is essential to capture both repulsive
and attractive pair-wise relationships for object instance
hypotheses in ’pðyj; ykÞ, it cannot be combined with
Fðyj; XjÞ in Eq. (6) to form a co-occurrence potential sat-
isfying Eq. (16). Hence, we need to introduce a new
graph construction approach to guarantee submodular-
ity. In the following, we show that by approximating
Fðyj; XjÞ, projecting the segmentation variables X using
a-expansion, and negating indicator variables Y dynami-
cally in the expansion algorithm, the projected function
is guaranteed to be submodular.

Fig. 3. (a) Pairwise relationships between object hypotheses can be
determined by drawing an additional box with respect to a reference
box. (b) In this example, a person (right) is “next-to” a person on the left
side.
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4.2.1 Approximating Fðyj;XjÞ
We observe in Eq. (6), when yj ¼ 1

Fðyj;XjÞ ¼
inf if dðXj; ljÞ ¼ 0

gjjXjj if dðXj; ljÞ ¼ 1

(

� gjjXjj 1�RðXj; ljÞ
1� rðljÞ :

(17)

When yj ¼ 0

Fðyj;XjÞ ¼ inf if dðXj; ljÞ ¼ 1
0 if dðXj; ljÞ ¼ 0

�
� gjjXjjRðXj; ljÞ

rðljÞ : (18)

Hence, Fðyj;XjÞ becomes

Fðyj;XjÞ � gjjXjj yj
1�RðXj; ljÞ
1� rðljÞ þ ð1� yjÞRðXj; ljÞ

rðljÞ
� �

:

(19)

The effect of the approximation in Eqs. (18) and (17) are
shown in Fig. 4. Instead of imposing an infinite cost when
dðX; lÞ 6¼ y, our approximation imposes a cost which is line-
arly proportional to the consistency percentage RðX; lÞ.
When y ¼ 1, the ratio between the consistency percentage
and the consistency threshold RðX; lÞ=rðlÞ are encouraged
to be large, which means that the more elements in X are
labeled as l, the better (Fig. 4-Left). In contrast, when y ¼ 0,
the ratio between the consistency percentage and the consis-
tency threshold RðX; lÞ=rðlÞ is encouraged to be small,
which means that the less elements in X are labeled as l, the
better (Fig. 4-Right). Next, we introduce the a-expansion
and how to negate the indicator variables Y dynamically in
the expansion algorithm so that the projected function is
guaranteed to be submodular.

4.2.2 a-Expansion Move and Dynamical Negation

Algorithm

We define the transformation function Taðxi; tiÞ for the
a-expansion move which transforms the label of a random
variable xi as:

Taðxi; tiÞ ¼ a; if ti ¼ 0
xi; if ti ¼ 1:

�
(20)

The corresponding a-expansion move energy for the
term in Eq. (19) can be written as: Fðyj; TjÞ ¼

gjjXjjf yj
1�rðljÞ 1�RðXj; ljÞ þ

P
i2VjðljÞ

ð1�tiÞ
jXjj

� �
þ 1�yj

rðljÞ
P

i2VjðljÞ
ðtiÞ
jXjjg; if a 6¼ lj

gjjXjjf1�yj
rðljÞ RðX; ljÞ þ

P
i2VjnVjðljÞ

ð1�tiÞ
jXjj

� �
þ yj

1�rðljÞ
P

i2VjnVjðljÞ
ðtiÞ
jXjjg; if a ¼ lj;

8>>>>>><
>>>>>>:

(21)

where Tj ¼ fti; i 2 Vjg is a set of transformed binary variables,

VjðljÞ ¼ fi;xi ¼ ljg \ fi 2 Vjg is the set of image elements

in Vj with label lj, Vj n VjðljÞ is the remaining set of elements

in Vj with labels other than lj (i.e.,fi;xi 6¼ ljg \ fi 2 Vjg).
Most importantly, we observed that when a 6¼ lj the function

is submodular in ðyj; tiÞ, but when a ¼ lj it is submodular in

ðyj; tiÞ, where yj ¼ 1� yj is the negation of yj. This motivates

us to dynamically negate a subset of the indicator variables

according to the category labels fljg.

4.2.3 Probing ’pðyj; ykÞ
The graph construction of the pair-wise instance indicators in
Eq. (10) is equivalent to the construction of binary variables
which is described in [30]. However, there is one issue that we
need to resolve in order to ensure submodularity of the pair-
wise binary function. First of all, since it is essential to capture
both attractive (i.e., both indicators having the same labels)
and repulsive (i.e., both indicators having different labels)
relationships, some pair-wise functions ’pðyj; ykÞ will be sub-
modular and otherswill be non-submodular in ðyj; ykÞ. There-
fore, we need to fix the negating pattern of the indicator
variables. However, this contradicts with the dynamic negat-
ing approach described in the previous section.

Fortunately, a simple approach “probing” the indicator
variables similar to the one described in [31] can effectively
handle the non-submodular function, since each indicator
only interacts with a small number of nearby indicators. The
probing approach randomly fixes a small set of indicator
variables fyj; j 2 Qfixg, where the contradiction between the
fix negating pattern and dynamic negating algorithm takes
place. As a result, the pair-wise function is ensured to be
submodular. Notice that our inference algorithm does not
rely on sophisticated techniques such as QPBO [31] which
requires more memory and computation time.

4.3 Overall Projected Energy Function

At each iteration of the a-expansion, the terms of the origi-
nal model energy (Eq. (5)) becomes a pairwise and submod-
ular function of T , Y , and Y . The overall projected energy
function (except the function in Eq. (13)) becomes,

EðT; Y; Y Þ ¼
X
c2CX

ccðTcÞ þ
X
j2Qa

Fðyj; T Þ þ
X
j2Qa

Fðyj; T Þ

þ
X

ðj2Qa;k2QaÞ[ðj;kÞ2Ud

’pðyj; ykÞ

þ
X

ðj2Qa;k2QaÞ[ðj;kÞ2Ud

’pðyj; ykÞ

þ
X

ðj2Qa;k2QaÞ[ðj;kÞ2Ud

’pðyj; ykÞ;

(22)

Fig. 4. Comparison between the original function Fðy;XjÞ (blue lines)
and the approximated function (red lines) in Eqs. (18) and (17). The left
panel shows the case when y ¼ 1. The right panel shows the case when
y ¼ 0. Notice that the dash blue lines indicate the sharp transition from
finite values to infinite values.
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where Qa ¼ fj; lj 6¼ ag n Qfix, Qa ¼ fj; lj ¼ ag n Qfix, and

Ud ¼ U n Uc. Therefore, we will construct the graph using T ,
partially using indicator Y ¼ fyj; j 2 Qag, and partially using

the negation of indicator Y ¼ fyj; j 2 Qag depending on

whether lj ¼ a. Notice that Qfix is randomly selected at every

iteration. Therefore, no indicator variable is always fixed. The

a-expansion algorithm eventually converges to a local optimal

solution.

5 LEARNING

The full ACRF model in Eq. (5) contains several terms. In
order to balance the importance of different terms, we intro-
duce a set of linear weights for each term as follows:

WTCðX;Y Þ ¼
X
c2CX

wcccðXcÞ þ
X

ðj;kÞ2Ud

w
rjk
lj;lk

ðyj; ykÞ

þ
X
j2Qd

wuðljÞðFðyj;XjÞ þ ’uðyjÞÞ

þ wco

 X
ðj;kÞ2Uc

’pðyj; ykÞ þ
X
j2Qc

Fðyj;XjÞ
!
;

(23)

where wc models weights for unary, pair-wise, and higher-

order terms in X. wuðlÞ is the object category specific weight

for unary term in y, wco is the weight for hypothesis with only

category label, and w
rjk
lj;lk

is the weight for a pair of object cate-

gories lj; lk with the relationship type rjk in Eq. (10). Recall

from Sections 3.2 and 4 that Qd and Qc are the set of hypothe-

ses with geometric properties and with only category label,

respectively. Similarly, Ud and Uc are the subset of U such that

j; k 2 Qd and j; k 2 Qc, respectively. Notice that the function

CðX;Y; IÞ also depends on the image evidence I. We typically

omit the image evidence I for simplicity. Since all these weights

are linearly related to the energy function, we formulate the

problem of jointly training these weights as a Structured SVM

(SSVM) learning problem [29] similar to [16].

Assuming that a set of example images, ground truth
segment object category labels, and ground truth object
bounding boxes fIn;Xn; Y ngn¼1;...;N are given. The SSVM
problem is as follows:

minW;��0 W
TW þ C

X
n

�nðX;Y Þ

s:t:

�nðX;Y Þ ¼ max
X;Y

ð~ðX;Y ;Xn; Y nÞ

þWTCðXn; Y n; InÞ �WTCðX;Y; InÞÞ; 8n;
(24)

whereW concatenates all the model parameters which are line-

arly related to the potentials CðX;Y Þ; C controls the relative

weight of the sum of the violated terms f�nðX; Y Þg with

respect to the regularization term; ~ðX;Y ;Xn; Y nÞ is the loss
function that generates large loss when the X or Y is very dif-

ferent from Xn or Y n. Depending on the performance evalua-

tion metric, we design different loss functions as described in

the Section 5.1

Following the SSVM formulation, we propose to use a
stochastic subgradient descent method to solve Eq. (24).

The subgradient of @W�nðX; Y Þ can be calculated as CðXn;
Y nÞ �CðX�; Y �Þ, where ðX�; Y �Þ¼arg minX;Y ðWTCðX; Y Þ�
~ðX; Y ;Xn; Y nÞÞ. When the loss function can be decom-
posed into a sum of local losses on individual segments and
individual detections, ðX�; Y �Þ can be solved using graph-
cut similar to the inference problem (Section 4). For other
complicated loss functions, we found that it is effective to
set ðX�; Y �Þ approximately as arg minX;YW

TCðX; Y Þ, when
the loss is bigger than a threshold.

The remaining model parameters are set as follows. The
object category-specific consistency threshold rðlÞ in Eq. (6)
are estimated using the median values observed in training
data. The g involved in Eq. (13) are estimated from the MSE
as described in [13]. The b in Eq. (9) are set to be the cali-
brated detection confidence such that b � 0. The unary
potentials in ccðXcÞ are obtained from off-the-shelf stuff
classifiers [13], [43] (see details in Section 6). The pair-wise
potentials in ccðXcÞ are modelled using codebook represen-
tations similar to [40].

5.1 Loss Function

For the experiments on Stanford dataset, the performance is
measured by the pixel-wise classification accuracy (i.e, per-
centage of pixels correctly classified), and the detection
accuracy. We define the loss function ~ðX;Y ;Xn; Y nÞ as
the sum of segmentation loss ~ðX;XnÞ and the detection
loss~ðY ;Y nÞ.

The segmentation accuracy is measured by

true positive

true positiveþ false negative
: (25)

Hence, the segmentation loss~ðX;XnÞ is defined as

~ðX;XnÞ ¼ 1

Q

X
i2V

1
�
xi 6¼ xn

i

�
cxðliÞ; (26)

where V captures the indices for the set of segments,

1fSTATEMENTg is 1 if the STATEMENT is true, cxðliÞ is

the object category li specific cost (used to re-weight the loss

contributed from different object categories), and

Q ¼Pi2V cxðliÞ. Therefore, the overall segmentation loss can

be decomposed into a sum over local loss for each segment
1
Q1fxi 6¼ xn

i gcxðliÞ.
The detection loss~ðY ;Y nÞ is defined as

~ðY ;Y nÞ ¼ 1

M

X
i2Qd

1
�
yi 6¼ yni

�
cyðliÞ; (27)

where Qd captures the indices for the set of detections,

M ¼Pi2B cyðliÞ. Similarly, the overall detection loss can be

decomposed into a sum over local loss for each detection
1
M 1fyi 6¼ yni gcyðliÞ.

For the experiments on the PASCAL dataset, the overall
loss function ~ðX;Y ;Xn; Y nÞ is similarly decomposed into
sum of the segmentation loss ~ðX;XnÞ and the detection
loss ~ðY ;Y nÞ. The detection loss is the same as before.
However, since the segmentation performance is measured
differently by

true positive

true positiveþ false positiveþ false negative
; (28)
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the segmentation loss is defined as 1-segmentation perfor-

mance. Notice that the segmentation loss cannot be decom-

posed into a per segment loss. Therefore, we obtain ðX�; Y �Þ
approximately as arg minX;YW

TCðX;Y Þ, when ~ðX�; Y �;
Xn; Y nÞ is bigger than a threshold.

6 EXPERIMENTS

We compare our full ACRF model with [13], [21], [32], [44],
[45] on the Stanford background (referred to as Stanford)
dataset [21] as well as with several state-of-the-art techni-
ques on PASCAL VOC 2009 segmentation (referred to as
PASCAL) dataset [46]. As opposed to other datasets, such
as MSRC [27], Stanford dataset contains more cluttered
scenes and more object instances per image. Hence, seg-
menting and detecting “things” is particularly challenging.
The challenging PASCAL segmentation dataset contains a
large number of “things” labels with a single “stuff/back-
ground” label. However, the dataset contains a limited
number of object instances in each image which is less ideal
to demonstrate the importance of pair-wise relationships
between object hypotheses.

Implementation details. For all the experiments below, we
use the same pre-trained LSVM detectors [1] to obtain a
set of object hypotheses with geometric properties for
“things” categories (e.g., car, person, and bike). The object
depths are inferred by combining both cues from the size
and the bottom positions of the object bounding boxes sim-
ilar to [18], [19], [24]. The subset of segments V associated
to each object hypothesis is obtained by using the average
object segmentation in the training set. In detail, for each
mixture component in LSVM, we estimate the average
object segmentation and use it to select the set of segmen-
tation variables overlapped with the average object seg-
mentation. The responses from off-the-shelf stuff
classifiers are used as the unary stuff potentials in our
model. On Stanford dataset, we use the STAIR Vision
Library [43] that was earlier used in [21]. On PASCAL
dataset, we use only the pixel-wise unary responses from
the first layer of the hierarchical CRF [13].We model

different types of pair-wise stuff relationships using a
codebook representation similar to [47]. The following
geometric pair-wise relationships are used for the experi-
ments to incorporate geometric relationship between two
object hypotheses: next-to, above, below, in-front, behind,
overlap. On top of that, we have one additional geometric
relationship based on horizon lines agreement between
two hypotheses. The types of relationships are determined
as described in Section 3.3. All models are trained with
object bounding boxes and pixel-wise class supervisions.

6.1 Stanford Dataset

The Stanford dataset [21] contains 715 images from
challenging urban and rural scenes. On top of eight back-
ground (“stuff”) categories, we annotate nine foreground
(“things”) object categories—car, person, motorbike, bus,
boat, cow, sheep, bicycle, others. We follow the five-fold
cross-validation scheme which splits the data into different
set of 572 training and 143 testing images. In Table 2a,2 our
ACRF model outperforms state-of-the-art methods [13],
[21], [32], [44], [45] in the percentage of pixels correctly clas-
sified as either one of the eight background classes, or a gen-
eral foreground class (referred to as global accuracy).

Global accuracy versus average accuracy. The global accu-
racy is not ideal to highlight the accuracy gain of our
method in foreground classes, since it ignores classification
errors in fine foreground classes and the number of back-
ground pixels clearly outnumbers the number of fore-
ground pixels. Hence, we report per class accuracy and the
uniform average accuracy across a general background class
and eight foreground classes (referred to as average accu-
racy) in Tables 1, 2b, and 5.

In Table 1, the performances of most foreground classes
(seven out of eight) are significantly improved when addi-
tional components are added on top of the basic CRF model.
As a result, the full ACRF model obtains a 14:2 percent

TABLE 2
Segmentation Performance Comparison on the Stanford Dataset

(a) Global accuracy of our ACRF model compared to state-of-the-art methods (b) Sensitivity analysis of our segmentation accuracy affected by the
quality of the detectors on Stanford dataset. Notice that the average accuracy decreases only gradually when the maximum recall decreases.

TABLE 1
System Analysis of Our Model on the Stanford Dataset

The CRF row shows the results of the basic CRF model which uses only the stuff-stuff relationship component (first term in Eq. (5)) of our ACRF
model. The C+D row shows results by adding object hypothesis indicators obtained from pre-trained detectors to the CRF model (first two terms in
Eq. (5)). The last row shows results of the full ACRF model. Notice that in the “Background” column, we treat all background classes as a general
background class. Our ACRF model improves the average accuracy for a significant 14 percent compared to the basic CRF model.

2. We implement [13], [32] by ourselves and evaluate the
performance.
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average improvement over the basic CRF model. Typical
results are shown in Fig. 9-Top. Using our efficient inference
algorithm, inference takes in average 1.33 seconds for each
image which has 200 to 300 super-pixels on a Intel(R) Xeon
(R) CPU@ 2.40 GHz.We highlight that our model can gener-
ate object instance-based segmentations due to the ability to
reason in the augmented labeling spaceQ (Fig. 5a).

Another advantage of using our model is to improve
detection accuracy. We measure detection performance in
terms of Recall versus false positive per image (FPPI) in
Fig. 5b, where detection results from five-fold validations are
accumulated and shown in one curve. The performance of
the proposed model is compared with the pre-trained LSVM
[1]. Our model achieves consistent higher recall than the
LSVM baseline at small number of FPPI as shown in Fig. 5b.

Since our method utilizes pre-trained object detectors to
obtain a set of plausible object hypotheses, we evaluate the
segmentation accuracy given worse detectors to see how
our method depends on the quality of the detectors. We
simulate a worse detector by reducing the number of
recalled objects in the set of plausible detections. As shown
in Table 2b, the average accuracy decreases only gradually
when the maximum recall decreases. Notice that, even
when the recall is only 20 percent, our ACRF model still
achieves accuracy better than the basic CRF.

6.2 PASCAL Dataset

This dataset contains 14; 743 images with 21 categories
including 20 thing categories and 1 stuff category. Only a
subset of images have segmentation labels, and we used

the standard split for training (749 images), validation
(750 images), and testing (750 images). A system analysis of
our model (Table 3) shows that the performances of most
classes were improved when additional components are
added on top of the basic CRF model. However, our ACRF
model is able to significantly boost up the performance and
achieves competitive accuracy compared to other teams in
the challenge (ranked in 4th in Table 4). Typical results are
shown in Fig. 9-Bottom.

6.3 Relationship Analysis

We found that the pair-wise geometric relationships con-
tribute to the accuracy improvement of our ACRF model
more than the co-occurrence relationships, since CRF þ Det
þ co-occurrence relationships (Last row in Table 5) do not
consistently improve the accuracy of all categories com-
pared to CRF þ Det (middle row in Table 1). Moreover, all

Fig. 5. (a) Typical thing segmentation results on the Stanford dataset. Notice that our model can obtain instance-based segmentations (last column)
due to the ability to reason in the augmented labeling space Q. (b) Recall versus FPPI curves of our ACRF and LSVM on the Stanford dataset. Our
ACRF achieves better recall at different FPPI values.

TABLE 3
The Segmentation Accuracy of Different Variants of Our Model (i.e., CRF, CRF+ Detection,

and Full ACRF Models) on PASCAL Dataset

TABLE 4
Average Segmentation Accuracy of Our ACRF Model Compared to Other State-of-the-Art Methods on PASCAL Dataset

TABLE 5
Segmentation Accuracy on the Stanford Dataset When the

Pair-Wise Geometric Relationships Are Partially (e.g., Car and
Person, or Car and Bus Geometric Relationships Removed) or

Totally (i.e., All Geometric Relationships) Removed
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geometric relationships collectively contribute to the accu-
racy improvement, since our model is still better than CRF
þ Det when the geometric relationships of two most fre-
quently co-occurred pairs of object categories, namely car
versus person and car versus bus, are removed, respectively
(First two rows in Table 5). The learned relation parameters
of the two most frequently co-occurred pairs of object cate-
gories are visualized in Figs. 6a and 6b. Nevertheless, the
learned relationships sometime introduce errors. We show
the failure cases in Fig. 7.

In Fig. 6c, we evaluate the percentage of pairs of true pos-
itive object detections for each relationship. Before (i.e., raw
detections from LSVM [1]) applying inference, the percent-
age is fairly low since there are many false positive detec-
tions. After applying our ACRF model, the percentage
increases dramatically as expected. We also outperform two
stronger baseline methods aiming at pruning out incorrect
pairs of object hypotheses for each relationship as defined

below. BL1 uses only the detection confidence to prune out
detections. In specific, for each pair of detections with a cer-
tain relationship, we assign a score as a sum of scores
for both bounding boxes from LSVM. Then, we sample p
percent of pairs with highest scores, where p is the percent-
age of pairs of true positive detections for a certain relation-
ship from the training set. BL2 incorporates pairwise object
interactions and prune out detections. Again, for each pair
of detections with a certain relationship, we assign a score
as a sum of detection scores for both detections. Then, we
sample pairs within top pðc1; c2Þ percent, where pðc1; c2Þ is a
class-pair specific percentage of pairs of true positive detec-
tions from the training set, and c1 and c2 is classes corre-
sponding to two bounding boxes.

Using the inferred relationshipswe can provide high level
geometrical description of the scene and determine proper-
ties such as: object x is behind object y. Finally, we can obtain
3Dpop-upmodelsof the scene fromasingle imageas inFig. 8.

7 CONCLUSION

We have presented a unified CRF-based framework for
jointly detecting and segmenting “things” and “stuff” cate-
gories in natural images. We have shown that our frame-
work incorporates in a coherent fashion various types of
(geometrical and semantic) contextual relationships via
property interactions. Our new formulation generalizes pre-
vious results based on CRF where the focus was to capture
the co-occurrence between stuff categories only. We have
quantitatively and qualitatively demonstrated that our
method: i) produces better segmentation results than state-

Fig. 6. Examples of the learned pair-wise relationships between object hypotheses are visualized in panel (a,b). The grayscale color code indicates to
what degree the relationship is likely (white means it is likely, black means it is unlikely). Our model learned that (a) a car is likely to be in front of a
bus, and a car is unlikely to be below a bus, (b) a car is likely to be behind a person. (c) Prediction accuracy of the objects co-occurrence for each
type of relationship averaged over five-fold validations. The first and last columns show the accuracy before and after applying inference on our full
ACRF model, respectively. Notice that there is a consistent improvement across all types. The performance of two baseline methods are reported in
the middle two columns which are all inferior then our results.

Fig. 7. Failure cases analysis. Panel (a) shows the case when the
learned pairwise relationship between a car and a person next-to each
other does not match to the existing relationship in the test image. As a
result, the false alarm of a car (red box) appears with ACRF. (b) The typ-
ical example when depth heuristic fails. The yellow car in the center of
the image is successfully detected and segmented with a CRF þ Det
model. However, it fails to detect with ACRF model, because the depth
is not correctly inferred due to the fact that the height of the yellow car is
not close to the average height of the cars in the training set.

Fig. 8. 3D pop-up models from the Stanford dataset. Videos related
to above 3D pop-up models can be found in the project page: cvgl.
stanford.edu/vision/projects/ACRF/ACRFproj.html.
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of-the art on the Stanford dataset and competitive results
on PASCAL ’09 dataset; ii) improves the recall of object
instances on Stanford dataset; iii) enables the estimation of

contextual relationship among things and stuff. Extensions
for future work include incorporating more sophisticated
types of properties.

Fig. 9. Typical results on theStanford (top four rows) and thePASCALdatasets (bottom four rows). Every set of results compare ground truth annotation,
disjointedmodel (disjointedly appliedobject detection and segmentationmethods), CRF+Det,ACRF, from left to right, respectively. Theodd rows show
the topK object hypotheses (color-coded bounding boxes representing the confidence ranking from light (hight confidence) to dark (low confidence)),
whereK is the number of recalled objects in theACRF result. The even rows show the segmentation results (color-code is shownat the bottom).
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